1
|
Dai P, Sun Y, Huang Z, Liu YT, Gao M, Liu HM, Shi J, He C, Xiang B, Yao Y, Yu H, Xu G, Kong L, Xiao X, Wang X, Zhang X, Xiong W, Hu J, Lin D, Zhong B, Chen G, Gong Y, Xie C, Zhang J. USP2 inhibition unleashes CD47-restrained phagocytosis and enhances anti-tumor immunity. Nat Commun 2025; 16:4564. [PMID: 40379682 DOI: 10.1038/s41467-025-59621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
The CD47/SIRPα axis conveys a 'don't eat me' signal, thereby thwarting the phagocytic clearance of tumor cells. Although blocking antibodies targeting CD47 have demonstrated promising anti-tumor effects in preclinical models, clinical trials involving human cancer patients have not yielded ideal results. Exploring the regulatory mechanisms of CD47 is imperative for devising more efficacious combinational therapies. Here, we report that inhibiting USP2 prompts CD47 degradation and reshapes the tumor microenvironment (TME), thereby enhancing anti-PD-1 immunotherapy. Mechanistically, USP2 interacts with CD47, stabilizing it through deubiquitination. USP2 inhibition destabilizes CD47, thereby boosting macrophage phagocytosis. Single-cell RNA sequencing shows USP2 inhibition reprograms TME, evidenced by increasing M1 macrophages and CD8+ T cells while reducing M2 macrophages. Combining ML364 with anti-PD-1 reduces tumor burden in mouse models. Clinically, low USP2 expression predicts a better response to anti-PD-1 treatment. Our findings uncover the regulatory mechanism of CD47 by USP2 and targeting this axis boosts anti-tumor immunity.
Collapse
Affiliation(s)
- Panpan Dai
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hai-Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lijun Kong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiyong Wang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xue Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenjun Xiong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhong
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Chao CJ, Zhang E, Trinh DN, Udofa E, Lin H, Silvers C, Huo J, He S, Zheng J, Cai X, Bao Q, Zhang L, Phan P, Elgendy SM, Shi X, Burdette JE, Lee SSY, Gao Y, Zhang P, Zhao Z. Integrating antigen capturing nanoparticles and type 1 conventional dendritic cell therapy for in situ cancer immunization. Nat Commun 2025; 16:4578. [PMID: 40379691 DOI: 10.1038/s41467-025-59840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Eliciting a robust immune response against tumors is often hampered by the inadequate presence of effective antigen presenting cells and their suboptimal ability to present antigens within the immunosuppressive tumor microenvironment. Here, we report a cascade antigen relay strategy integrating antigen capturing nanoparticles (AC-NPs) and migratory type 1 conventional dendritic cells (cDC1s), named Antigen Capturing nanoparticle Transformed Dendritic Cell therapy (ACT-DC), to facilitate in situ immunization. AC-NPs are engineered to capture antigens directly from the tumor and facilitate their delivery to adoptively transferred migratory cDC1s, enhancing antigen presentation to the lymph nodes and reshaping the tumor microenvironment. Our findings suggest that ACT-DC improves in situ antigen collection, triggers a robust systemic immune response without the need for exogenous antigens, and transforms the tumor environment into a more "immune-hot" state. In multiple tumor models including colon cancer, melanoma, and glioma, ACT-DC in combination with immune checkpoint inhibitors eliminates primary tumors in 50-100% of treated mice and effectively rejects two separate tumor rechallenges. Collectively, ACT-DC could provide a broadly effective approach for in situ cancer immunization and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Duong N Trinh
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Edidiong Udofa
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiawei Huo
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shan He
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Qing Bao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Luyu Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sara M Elgendy
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiangqian Shi
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3
|
de la Rosa I, Sisó P, Ríos C, Gracia J, Cuevas D, Maiques O, Eritja N, Soria X, Angel-Baldó J, Gatius S, Sanchez-Moral L, Sarrias MR, Matias-Guiu X, Martí RM, Macià A. High Copy Number Variations Correlate with a Pro-Tumoral Microenvironment and Worse Prognosis in Acral Lentiginous Melanoma. Int J Mol Sci 2025; 26:4097. [PMID: 40362334 PMCID: PMC12071846 DOI: 10.3390/ijms26094097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Acral lentiginous melanoma (ALM) is a rare melanoma subtype primarily located in acral regions. However, ALMs exhibit a distinctive genetic profile characterized by a high number of copy number variations (CNVs) and limited point mutations. Late diagnosis and restricted therapeutic efficacy contribute to its poor prognosis. The secretome within the tumor microenvironment (TME) influences immune modulation and plays a vital role in melanoma progression. We aim to analyze the role of ALM secretome and CNVs profile with prognosis in primary ALM patients. Here, we demonstrated that high CNV burden (CNVsHigh) was associated with worse clinicopathological characteristics and poor prognosis. Furthermore, our study also revealed that conditioned media (CM) of CNVsHigh genetic profile ALM cell line was associated with pro-tumoral, pro-angiogenic, and immunosuppressive secretome profiles. In addition, CM of CNVsHigh cell lines in vitro promotes macrophage polarization to immunosuppressive phenotype. Moreover, we observed an increased presence of immunosuppressive tumor-associated macrophages (TAMs) at the invasive front (IF) of CNVsHigh ALM biopsies. This research reveals the adverse prognostic impact of CNVsHigh in ALM patients, establishing a novel link with a pro-tumor secretome, offering potential biomarkers for prognosis and personalized treatment to enhanced disease monitoring in ALM patients.
Collapse
Affiliation(s)
- Inés de la Rosa
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
| | - Pol Sisó
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
| | - Christopher Ríos
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
| | - Judith Gracia
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
| | - Dolors Cuevas
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Oscar Maiques
- Cytoskeleton and Cancer Metastasis Group, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SM2 5NG, UK;
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, UK
| | - Núria Eritja
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Xavier Soria
- Department of Dermatology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (X.S.); (J.A.-B.)
| | - Joan Angel-Baldó
- Department of Dermatology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (X.S.); (J.A.-B.)
| | - Sonia Gatius
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Lidia Sanchez-Moral
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (L.S.-M.); (M.-R.S.)
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (L.S.-M.); (M.-R.S.)
- Center for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rosa M. Martí
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Dermatology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (X.S.); (J.A.-B.)
| | - Anna Macià
- Oncologic Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (I.d.l.R.); (P.S.); (C.R.); (J.G.); (D.C.); (N.E.); (S.G.); (X.M.-G.)
| |
Collapse
|
4
|
Chen J, Shi S, Li X, Gao F, Zhu X, Feng R, Hu K, Li Y, Chen S, Zhang R, Wang X, Ding C, Liu G, Chen T, Liang W. CCL7 promotes macrophage polarization and synovitis to exacerbate rheumatoid arthritis. iScience 2025; 28:112177. [PMID: 40224025 PMCID: PMC11987677 DOI: 10.1016/j.isci.2025.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Chemokine C-C motif ligand 7 (CCL7) is implicated in various immune and inflammatory processes; however, its role in rheumatoid arthritis (RA) remains unclear. In this study, we observed that CCL7 expression was upregulated in synovial M1-polarized macrophages and in the serum of RA mice and patients. CCL7 was found to promote macrophage polarization toward the M1 phenotype while inhibiting M2 differentiation in vitro. Furthermore, intra-articular injection of recombinant CCL7 protein in mice resulted in enhanced M1 polarization, increased inflammation, and fibrosis within synovial tissues, which exacerbated arthritis-associated pain. These effects were partially mitigated by treatment with a CCL7 neutralizing antibody. Mechanistically, we identified a CCL7 autocrine positive feedback loop that amplifies inflammation via the CCL7-CCR1-JAK2/STAT1 pathway. Collectively, our findings reveal a previously unrecognized CCL7-mediated autocrine inflammatory amplification loop that modulates macrophage polarization and exacerbates RA progression, positioning CCL7 as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jun Chen
- Department of Rehabilitation Therapy, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan 442099, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuo Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaojia Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Feng Gao
- Department of Physical Therapy, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan 442099, China
| | - Xu Zhu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ru Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ke Hu
- Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yicheng Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Shuiyuan Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Rongkai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Wenquan Liang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Garstka MA, Kedzierski L, Maj T. Diabetes can impact cellular immunity in solid tumors. Trends Immunol 2025; 46:295-309. [PMID: 40133163 DOI: 10.1016/j.it.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Cancer is increasingly prevalent worldwide, often coexisting with type 2 diabetes (T2D). Recent breakthroughs reveal the immune system's pivotal role in eliminating tumors and how the metabolic environment, such as glucose availability, affects antitumor immunity. Diabetes is known to dysregulate both innate and adaptive immune responses, while cancer creates an immunosuppressive microenvironment. We hypothesize that diabetes in cancer subjects may exacerbate this immunosuppression. Here, we examine the current understanding of the interplay between T2D and solid tumors and the associated challenges. Despite inconsistencies in data from mouse models and human tissues, evidence suggests that T2D can impact the antitumor response. Possible mechanisms may involve myeloid cells, inducing local immunosuppression and impairing antigen presentation, and certain lymphoid cell populations, exhibiting exhaustion.
Collapse
Affiliation(s)
- Malgorzata A Garstka
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China; Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maj
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
8
|
Chen P, Wang H, Tang Z, Shi J, Cheng L, Zhao C, Li X, Zhou C. Selective Depletion of CCR8+Treg Cells Enhances the Antitumor Immunity of Cytotoxic T Cells in Lung Cancer by Dendritic Cells. J Thorac Oncol 2025:S1556-0864(25)00109-1. [PMID: 40056978 DOI: 10.1016/j.jtho.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Accumulation of regulatory T (Treg) cells, an immunosuppressive population, limits the efficacy of immunotherapy in NSCLC. C-C motif chemokine receptor 8 (CCR8) is selectively expressed in tumor-infiltrating Treg cells and is, therefore, considered an ideal target. METHODS The efficacy and safety of anti-CCR8 monotherapy and its combination with programmed cell death protein-1 (PD1) inhibitor were evaluated in four NSCLC-bearing mice models. To track the dynamic changes in tumor microenvironment, we performed the single-cell RNA sequencing, the single-cell T-cell receptor sequencing analysis, the flow cytometry, the multi-color immunofluorescence, and the Luminex assay on tumors after three, seven, 14, and 21 days of different treatment regimens. Then, in vitro and in vivo experiments were applied to validate our findings and explore molecular mechanisms of the synergistic effects. RESULTS Across four NSCLC-bearing mice models, the combination of CCR8 antibody and PD1 inhibitor significantly reduced tumor growth (p < 0.05) without obvious mouse body weight drops and systemic cytokine storm. The anti-CCR8 therapy synergizes with PD1 blockade by remodeling the tumor microenvironment and disrupting CCR8+Treg-C-C motif chemokine ligand 5 (CCL5)+ dendritic cells (DC) interaction. Mechanistically, therapeutic depletion of CCR8+Treg cells combined with PD1 inhibitor extremely increased interleukin-12 secretion by the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation on CCL5+ DCs, thereby promoting cytotoxic activity of CD8+ T cells. The therapeutic potential of the CCR8 antibody LM-108 in combination with immunotherapy was observed in clinical patients with advanced NSCLC. CONCLUSION Overall, CCR8 expression on tumor-infiltrating Treg cells is correlated with immunosuppressive function on DCs and CD8+ T cells, thus impeding antitumor immunity.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The aryl hydrocarbon receptor controls IFN-γ-induced immune checkpoints PD-L1 and IDO via the JAK/STAT pathway in lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae023. [PMID: 40073102 DOI: 10.1093/jimmun/vkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk and scRNA sequencing of LUADs and tumor-infiltrating T cells were used to map out a signaling pathway leading from IFN-γ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: (1) IFN-γ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 up-regulation is mediated by the AhR in murine and human LUAD cells, (2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, (3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. (4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFN-γ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Táchira Pichardo
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Mazzilli
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mohammed Muzamil Khan
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Vinay K Duggineni
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Stefano Monti
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
10
|
Huang L, Liu Y, Shi Y, Sun Q, Li H, Sun C. Comprehensive single-cell analysis of triple-negative breast cancer based on cDC1 immune-related genes: prognostic model construction and immunotherapy potential. Discov Oncol 2025; 16:206. [PMID: 39969635 PMCID: PMC11839968 DOI: 10.1007/s12672-025-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Various components of the immunological milieu surrounding tumors have become a key focus in cancer immunotherapy research. There are currently no reliable biomarkers for triple-negative breast cancer (TNBC), leading to limited clinical benefits. However, some studies have indicated that patients with TNBC may achieve better outcomes after immunotherapy. Therefore, this study aimed to identify molecular features potentially associated with conventional type 1 dendritic cell (cDC1) immunity to provide new insights into TNBC prognostication and immunotherapy decision-making. METHODS Single-cell ribonucleic acid sequencing data from the Gene Expression Omnibus database were analyzed to determine which genes are differentially expressed genes (DEGs) in cDC1s. We then cross-referenced cDC1-related DEGs with gene sets linked to immunity from the ImmPort and InnateDB databases to screen for the genes linked to the immune response and cDC1s. We used univariate Cox and least absolute shrinkage and selection operator regression analyses to construct a risk assessment model based on four genes in patients with TNBC obtained from the Cancer Genome Atlas, which was validated in a testing group. This model was also used to assess immunotherapy responses among the IMvigor210 cohort. We subsequently utilized single sample Gene Set Enrichment Analysis, CIBERSORT, and ESTIMATE to analyze the immunological characteristics of the feature genes and their correlation with drug response. RESULTS We identified 93 DEGs related to the immune response and cDC1s, of which four (IDO1, HLA-DOB, CTSD, and IL3RA) were substantially linked to the overall survival rate of TNBC patients. The risk assessment model based on these genes stratified patients into high- and low-risk groups. Low-risk patients exhibited enriched ''hot tumor'' phenotypes, including higher infiltration of memory-activated CD4 + T cells, CD8 + T cells, gamma delta T cells, and M1 macrophages, as well as elevated immune checkpoint expression and tumor mutational burden, suggesting potential responsiveness to immunotherapy. Conversely, high-risk patients displayed "cold tumor" characteristics, with higher infiltration of M0 and M2 macrophages and lower immune scores, which may be poorer in response to immunotherapy. However, experimental validation and larger clinical studies are necessary to confirm these findings and explore the underlying mechanisms of the identified genes. CONCLUSION This study developed a robust risk assessment model using four genes that effectively forecast the outcome of patients with TNBC and have the potential to guide immunotherapy. This model provided new theoretical insights for knowing the TNBC immune microenvironment and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Linan Huang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - Yiran Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - Yulin Shi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| |
Collapse
|
11
|
Yang C, Li HX, Gan H, Shuai X, Dong C, Wang W, Lin D, Zhong B. KRAS4B oncogenic mutants promote non-small cell lung cancer progression via the interaction of deubiquitinase USP25 with RNF31. Dev Cell 2025:S1534-5807(25)00035-8. [PMID: 39952242 DOI: 10.1016/j.devcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogenic mutations are genetic drivers in various cancers, including non-small cell lung cancer (NSCLC). However, the regulatory mechanisms underlying the progression of NSCLC driven by oncogenic KRAS mutants are incompletely understood. Here, we show that ubiquitin specific peptidase 25 (USP25) impedes ring finger protein 31 (RNF31)-mediated linear ubiquitination of KRAS oncogenic mutants (KRASmuts) independently of its deubiquitinase activity, which facilitates the plasma membrane (PM) localization and the downstream oncogenic signaling of KRASmuts. Importantly, knockout (KO) of USP25 effectively suppresses tumor growth and RAS signaling in KRASmuts-driven autochthonous NSCLC mouse models and xenograft models, which is restored by additional deletion or inhibition of RNF31. Notably, knockin of USP25C178A in KRasG12D-driven NSCLC models fails to inhibit cancer progression and reconstitution of USP25C178A into USP25 KO A549 cells restores tumor growth. These findings identify previously uncharacterized roles of USP25 and RNF31 in oncogenic KRAS-driven NSCLC progression and provide potential therapeutic targets for KRASmuts-related cancers.
Collapse
Affiliation(s)
- Ci Yang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hong-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou 310024, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
12
|
Chen MH, Jiang J, Chen H, Wu RH, Xie W, Dai SZ, Zheng WP, Tan GH, Huang FY. Reinforcing cancer immunotherapy with engineered porous hollow mycobacterium tuberculosis loaded with tumor neoantigens. J Immunother Cancer 2025; 13:e010150. [PMID: 39915006 PMCID: PMC11804190 DOI: 10.1136/jitc-2024-010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Enhancing antigen cross-presentation is essential for the development of a tumor neoantigen vaccine. One approach is to stimulate antigen-presenting cells (APCs) to uptake neoantigens. Mycobacterium tuberculosis (MTb) contains pathogen-associated molecular patterns (PAMPs) recognized by APCs and adhesion molecules that facilitate MTb invasion of APCs. Therefore, we suggest using MTb as a carrier to enhance APC phagocytosis of neoantigens, thereby promoting antigen cross-presentation. METHODS The successful preparation of the MTb carrier (phMTb) was confirmed through electron and confocal microscopy. Fluorescence microscopy was used to detect PAMPs and adhesion molecules on phMTb as well as to observe its role in aiding dendritic cells (DCs) in antigen uptake into endosomes or lysosomes. Flow cytometry was used to assess the retention of PAMPs and adhesion molecules on phMTb, investigate antigen uptake by DCs, evaluate their activation and maturation status, examine the presentation of tumor neoantigens, and analyze immune cells in draining lymph nodes and tumor tissues. The efficacy of phMTb vaccine formulations in combination with anti-programmed cell death protein 1 (PD-1) antibody therapy was assessed using the MC38 mouse tumor models. Adverse effects were evaluated through H&E staining of major organs, assessment of reproductive capability and detection of biochemical indices. RESULTS The engineered porous hollow phMTb carrier successfully encapsulated model tumor neoantigens, with or without the adjuvant CpG. The phMTb retained PAMPs and adhesion molecules on its surface, similar to the parental MTb, thereby enhancing DC uptake of phMTb and its formulations containing tumor neoantigens and CpG. Vaccines formulated with phMTb facilitated DC maturation, activation, cross-presentation of tumor neoantigens, and promoted migration of phMTb-laden DCs to lymph nodes, enhancing effector and memory CD8+ T lymphocyte function. In murine tumor models, immunization with phMTb-formulated neoantigen vaccines elicited a robust tumor-specific cytotoxic T lymphocyte immune response with minimal adverse effects. Additionally, vaccination with phMTb-formulated neoantigen vaccines effectively reversed the tumor's immune-suppressive microenvironment. Concurrent administration of the PD-1 antibody with the phMTb-formulated neoantigen vaccine exhibited significant synergistic therapeutic effects. CONCLUSIONS The results of our study highlight the potential clinical translation of personalized tumor neoantigen vaccines using the phMTb carrier.
Collapse
Affiliation(s)
- Ming-Hui Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jie Jiang
- Public Research Center, Hainan Medical University, Haikou, Hainan, China
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Ri-Hong Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Weijing Xie
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
13
|
Tang Z, Hu J, Li XC, Wang W, Zhang HY, Guo YY, Shuai X, Chu Q, Xie C, Lin D, Zhong B. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression. Dev Cell 2025; 60:379-395.e8. [PMID: 39515330 DOI: 10.1016/j.devcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Neutrophils in the tumor microenvironment (TME) are heterogeneous populations associated with cancer prognosis and immunotherapy. However, the plasticity and function of heterogeneous neutrophils in the TME of non-small-cell lung cancer (NSCLC) remain unclear. Here, we show that neutrophils produce high levels of interleukin (IL)-8, which induce the differentiation of CD74highSiglecFlow neutrophils and suppress the generation of CD74lowSiglecFhigh neutrophils in the TME of IL-8-humanized NSCLC mice. The CD74highSiglecFlow neutrophils boost anti-tumor T cell responses via antigen cross-presentation. Deleting CD74 in IL-8-humanized neutrophils impairs T cell activation and exacerbates NSCLC progression, whereas a CD74 agonist enhances T cell activation and the efficacy of anti-programmed cell death 1 (PD-1) or osimertinib therapies. Additionally, the CD74highCD63low neutrophils in the TME and peripheral blood of advanced NSCLC patients phenocopy the CD74highSiglecFlow neutrophils in the TME of NSCLC mice and correlate well with the responsiveness to anti-PD-1 plus chemotherapies. These findings demonstrate an IL-8-CD74high neutrophil axis that promotes anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu-Chang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Yue Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025; 638:1076-1084. [PMID: 39814891 PMCID: PMC11864983 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Chang H, Li M, Zhang L, Li M, Ong SH, Zhang Z, Zheng J, Xu X, Zhang Y, Wang J, Liu X, Li K, Luo Y, Wang H, Miao Z, Chen X, Zha J, Yu Y. Loss of histone deubiquitinase Bap1 triggers anti-tumor immunity. Cell Oncol (Dordr) 2025; 48:183-203. [PMID: 39141316 PMCID: PMC11850471 DOI: 10.1007/s13402-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Immunotherapy using PD-L1 blockade is effective in only a small group of cancer patients, and resistance is common. This emphasizes the importance of understanding the mechanisms of cancer immune evasion and resistance. METHODS A genome-scale CRISPR-Cas9 screen identified Bap1 as a regulator of PD-L1 expression. To measure tumor size and survival, tumor cells were subcutaneously injected into both syngeneic WT mice and immunocompromised mice. The phenotypic and transcriptional characteristics of Bap1-deleted tumors were examined using flow cytometry, RNA-seq, and CUT&Tag-seq analysis. RESULTS We found that loss of histone deubiquitinase Bap1 in cancer cells activates a cDC1-CD8+ T cell-dependent anti-tumor immunity. The absence of Bap1 leads to an increase in genes associated with anti-tumor immune response and a decrease in genes related to immune evasion. As a result, the tumor microenvironment becomes inflamed, with more cDC1 cells and effector CD8+ T cells, but fewer neutrophils and regulatory T cells. We also found that the elimination of Bap1-deleted tumors depends on the tumor MHCI molecule and Fas-mediated CD8+ T cell cytotoxicity. Our analysis of TCGA data further supports these findings, showing a reverse correlation between BAP1 expression and mRNA signatures of activated DCs and T-cell cytotoxicity in various human cancers. CONCLUSION The histone deubiquitinase Bap1 could be used as a biomarker for tumor stratification and as a potential therapeutic target for cancer immunotherapies.
Collapse
Affiliation(s)
- Hong Chang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meng Li
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jie Zheng
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yao Luo
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haiyun Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
16
|
Luo L, Ji J, Dong J, He M, Jiang W, Liu Y, Wang W. Infiltration and subtype analysis of CD3 + CD20 + T cells in lung cancer. BMC Cancer 2025; 25:179. [PMID: 39885465 PMCID: PMC11783900 DOI: 10.1186/s12885-025-13581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND CD3 + CD20 + T cells (TB cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of TB cells in local tumor immunity remains uncertain, with limited research on their subtypes. METHODS Lung cancer surgical samples were stained using multi-color immunofluorescence to study the subtypes and distribution patterns of TB cells. RESULTS TB cells were confirmed to exist in a scattered pattern within tertiary lymphoid structures (TLS) in lung cancer tissues, with higher abundance in mature TLS. In subtype analysis, the CD4-CD8- double-negative TB cell subtype was predominant, comprising over 90% in samples with abundant TLS infiltration and over 60% in samples with poor infiltration. This was followed by the CD4 + CD8- and CD4-CD8 + single-positive TB cell subtypes, while the CD4 + CD8 + double-positive TB cell subtype was nearly absent. During the maturation of TLS, the proportion of B cells gradually increased, while the proportion of CD4-CD8- T cell subtype decreased. CONCLUSIONS TB cells extensively infiltrate the TLS regions in tumor tissues, with the double-negative subtype being predominant, potentially playing a crucial regulatory role in the local tumor immune microenvironment. This finding could facilitate the advancement of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Liping Luo
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ji
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Pulmonology, Meishan Cancer Hospital, Meishan, China
| | - Maotao He
- Pathology Department, Meishan Cancer Hospital, Meishan, China
| | - Wenjun Jiang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yang Liu
- Pathology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Weidong Wang
- Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Wu S, Xiang R, Zhong Y, Zhao S, Zhang Z, Kou Z, Zhang S, Zhao Y, Zu C, Zhao G, Xiao Y, Ren S, Gao X, Wang B. TLR7/8/9 agonists and low-dose cisplatin synergistically promotes tertiary lymphatic structure formation and antitumor immunity. NPJ Vaccines 2025; 10:13. [PMID: 39827246 PMCID: PMC11742977 DOI: 10.1038/s41541-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
In situ vaccination (ISV) triggers antitumor immune responses using the patient's own cancer antigens, yet limited neoantigen release hampers its efficacy. Our novel combination therapy involves low-dose local cisplatin followed by ISV with a TLR7/8/9 agonist formulation (CR108), in which CR108 boosts and sustains the antitumor responses induced by the cisplatin-released neoantigens. In mouse models, the cisplatin+CR108 combination significantly outperformed cisplatin or CR108 alone in abrogating established 4T1 and B16 tumors. The synergistic antitumor effects of cisplatin and CR108 were accompanied by markedly increased tumor tertiary lymphatic structures (TLS) formation, higher levels of type I and III interferons and TNF-α in serum, augmented T and B lymphocyte infiltration, antigen-presenting cell activation, as well as reduced functionally of exhausted T cells. Single-cell sequencing analysis uncovered a potential pathway for TLS to serve as a reservoir for functional antitumor effector T cells. Furthermore, cisplatin+CR108 combo therapy, but neither cisplatin nor CR108 alone, effectively inhibited the growth of treated 4T-1 tumor in an effector T cell-dependent manner. Notably, the combo therapy also suppressed the growth of distant untreated 4T-1 tumors, demonstrating systemic antitumor effects. Moreover, combo-therapy led to full regression of 4T-1 tumors in a large percentage of mice, who became strongly resistant to secondary tumor challenge, a clear indication of antitumor immunological memory. The cisplatin+CR108 combo therapy holds promise in converting "cold" tumors into "hot" ones and eliciting robust antitumor immune responses in vivo.
Collapse
Affiliation(s)
- Shuting Wu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Rong Xiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Shushu Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- The Wistar Institute, Philadelphia, 3601 Spruce Street, PA, 19104, USA
| | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Zhihua Kou
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Shijie Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yi Zhao
- Precision Scientific (Beijing) LTD., Beijing, 100085, China
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yanling Xiao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Sulin Ren
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Xiaoming Gao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China.
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Liu X, Liu H, Huang L, Lin L, Cai Q, Xiang Y, Liu Z, Zeng S, He J, Liang W. Inflammation, tertiary lymphoid structures, and lung cancer: a bibliometric analysis. Transl Lung Cancer Res 2024; 13:2636-2648. [PMID: 39507023 PMCID: PMC11535850 DOI: 10.21037/tlcr-24-350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/14/2024] [Indexed: 11/08/2024]
Abstract
Background The intricate interplay between inflammation and lung cancer has long been recognized by large number of studies, yet a comprehensive understanding of this relationship remains elusive. There is a clinical need to elucidate the role of tertiary lymphoid structures (TLSs) in lung cancer, particularly their impact on prognosis and therapy. This study aims to address these gaps by conducting a bibliometric analysis to explore the correlations between lung cancer, inflammation, and TLS, highlighting collaborative networks, publication trends, and emerging research directions. Methods This study conducted a comprehensive bibliometric analysis of academic literature on lung cancer and inflammation from 2013 to 2023 using the Web of Science Core Collection database. The search strategy "topic (TS) = ('lung cancer') AND TS = (inflammation)" yielded 5,470 records, which were refined through exclusion criteria to 1,284 relevant studies. The inclusion process involved excluding non-English studies and non-original articles or reviews, followed by a relevance check based on titles and abstracts. The bibliometric indicators were calculated based on a transparent and repeatable methodology to ensure the integrity of the findings. Results The investigation encompassed 1,284 selected studies, revealing an escalating publication trend since 2013. The interdisciplinary scope of research is apparent, with contributions from 54 countries, with China at the forefront. In-depth author and journal analyses exposed key contributors like Zhang L and influential journals like "Lung Cancer". Co-citation networks illuminated crucial references, clusters, and evolving themes over time, underscoring the intricate relationship between inflammation, cancer, and TLS. TLS as a key component of immune response and inflammation, studying its mechanism of impact on cancer will be a potential research direction in the future. Conclusions This study underscores the pivotal role of inflammation in lung cancer progression, mediated by a delicate balance of immune responses. The emerging prominence of TLS as indicator of adaptive immune responses within the tumor microenvironment (TME) offers intriguing avenues for future research and therapeutic interventions. However, limitations in the current research, such as the need for more longitudinal studies and clinical trials, must be addressed. The insights gained from this bibliometric analysis can inform clinical practices and guide future investigations into novel strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Huiting Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zengfu Liu
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zeng
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| |
Collapse
|
19
|
Hatten H, Colyn L, Volkert I, Gaßler N, Lammers T, Hofmann U, Hengstler JG, Schneider KM, Trautwein C. Loss of Toll-like receptor 9 protects from hepatocellular carcinoma in murine models of chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167321. [PMID: 38943920 DOI: 10.1016/j.bbadis.2024.167321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND & AIMS Toll-like receptor 9 (Tlr9) is a pathogen recognition receptor detecting unmethylated DNA derivatives of pathogens and damaged host cells. It is therefore an important modulator of innate immunity. Here we investigated the role of Tlr9 in fibrogenesis and progression of hepatocellular carcinoma in chronic liver disease. MATERIALS AND METHODS We treated mice with a constitutive deletion of Tlr9 (Tlr9-/-) with DEN/CCl4 for 24 weeks. As a second model, we used hepatocyte-specific Nemo knockout (NemoΔhepa) mice and generated double knockout (NemoΔhepaTlr9-/-) animals. RESULTS We show that Tlr9 is in the liver primarily expressed in Kupffer cells, suggesting a key role of Tlr9 in intercellular communication during hepatic injury. Tlr9 deletion resulted in reduced liver fibrosis as well as tumor burden. We observed down-regulation of hepatic stellate cell activation and consequently decreased collagen production in both models. Tlr9 deletion was associated with decreased apoptosis and compensatory proliferation of hepatocytes, modulating the initiation and progression of hepatocarcinogenesis. These findings were accompanied by a decrease in interferon-β and an increase in chemokines having an anti-tumoral effect. CONCLUSIONS Our data define Tlr9 as an important receptor involved in fibrogenesis, but also in the initiation and progression of hepatocellular carcinoma during chronic liver diseases.
Collapse
Affiliation(s)
- Hannes Hatten
- University Hospital RWTH Aachen, Department of Internal Medicine III, Aachen, Germany
| | - Leticia Colyn
- University Hospital RWTH Aachen, Department of Internal Medicine III, Aachen, Germany.
| | - Ines Volkert
- University Hospital RWTH Aachen, Department of Internal Medicine III, Aachen, Germany
| | - Nikolaus Gaßler
- Institute of Forensic Medicine, Section Pathology, University Hospital of Jena, Jena, Germany
| | - Twan Lammers
- University Hospital RWTH Aachen, Institute for Experimental Molecular Imaging (ExMI), Aachen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Kai Markus Schneider
- University Hospital RWTH Aachen, Department of Internal Medicine III, Aachen, Germany
| | - Christian Trautwein
- University Hospital RWTH Aachen, Department of Internal Medicine III, Aachen, Germany; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| |
Collapse
|
20
|
Chen X, Peng H, Zhang Z, Yang C, Liu Y, Chen Y, Yu F, Wu S, Cao L. SPDYC serves as a prognostic biomarker related to lipid metabolism and the immune microenvironment in breast cancer. Immunol Res 2024; 72:1030-1050. [PMID: 38890248 DOI: 10.1007/s12026-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer remains the most common malignant carcinoma among women globally and is resistant to several therapeutic agents. There is a need for novel targets to improve the prognosis of patients with breast cancer. Bioinformatics analyses were conducted to explore potentially relevant prognostic genes in breast cancer using The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases. Gene subtypes were categorized by machine learning algorithms. The machine learning-related breast cancer (MLBC) score was evaluated through principal component analysis (PCA) of clinical patients' pathological statuses and subtypes. Immune cell infiltration was analyzed using the xCell and CIBERSORT algorithms. Kyoto Encyclopedia of Genes and Genomes enrichment analysis elucidated regulatory pathways related to speedy/RINGO cell cycle regulator family member C (SPDYC) in breast cancer. The biological functions and lipid metabolic status of breast cancer cell lines were validated via quantitative real-time polymerase chain reaction (RT‒qPCR) assays, western blotting, CCK-8 assays, PI‒Annexin V fluorescence staining, transwell assays, wound healing assays, and Oil Red O staining. Key differentially expressed genes (DEGs) in breast cancer from the TCGA and GEO databases were screened and utilized to establish the MLBC score. Moreover, the MLBC score we established was negatively correlated with poor prognosis in breast cancer patients. Furthermore, the impacts of SPDYC on the tumor immune microenvironment and lipid metabolism in breast cancer were revealed and validated. SPDYC is closely related to activated dendritic cells and macrophages and is simultaneously correlated with the immune checkpoints CD47, cytotoxic T lymphocyte antigen-4 (CTLA-4), and poliovirus receptor (PVR). SPDYC strongly correlated with C-C motif chemokine ligand 7 (CCL7), a chemokine that influences breast cancer patient prognosis. A significant relationship was discovered between key genes involved in lipid metabolism and SPDYC, such as ELOVL fatty acid elongase 2 (ELOVL2), malic enzyme 1 (ME1), and squalene epoxidase (SQLE). Potent inhibitors targeting SPDYC in breast cancer were also discovered, including JNK inhibitor VIII, AICAR, and JW-7-52-1. Downregulation of SPDYC expression in vitro decreased proliferation, increased the apoptotic rate, decreased migration, and reduced lipid droplets. SPDYC possibly influences the tumor immune microenvironment and regulates lipid metabolism in breast cancer. Hence, this study identified SPDYC as a pivotal biomarker for developing therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhentao Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Changnian Yang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yingqi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanzhen Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
22
|
Huang Y, Peng M, Yu W, Li H. Activation of Wnt/β-catenin signaling promotes immune evasion via the β-catenin/IKZF1/CCL5 axis in hepatocellular carcinoma. Int Immunopharmacol 2024; 138:112534. [PMID: 38941667 DOI: 10.1016/j.intimp.2024.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune checkpoint therapy (ICT) has been shown to produce durable responses in various cancer patients. However, its efficacy is notably limited in hepatocellular carcinoma (HCC), with only a small percentage of patients responding positively to treatment. The mechanism underlying resistance to ICT in HCC remains poorly understood. Here, we showed that combination treatment of ICG-001, an inhibitor of the Wnt/β-catenin signaling pathway, with anti-PD-1 antibody effectively suppresses tumor growth and promotes the infiltration of immune cells such as DCs and CD8+ T cells in the tumor microenvironment (TME). By inhibiting the activity of β-catenin and blocking its binding to the transcription factor IKAROS family zinc finger 1 (IKZF1), ICG-001 upregulated the expression of CCL5. Moreover, IKZF1 regulated the activity of the CCL5 promoter and its endogenous expression. Through inhibition of the WNT/β-catenin signaling pathway, upregulation of the expression of CCL5 was achieved, which subsequently recruited more DCs into the TME via C-C motif chemokine receptor 5 (CCR5). This, in turn, resulted in an increase in the infiltration of CD8+ T cells in the TME, thereby enhancing the antitumor immune response. Analysis of a tissue microarray derived from HCC patient samples revealed a positive correlation between survival rate and prognosis and the expression levels of CCL5/CD8. In conclusion, our findings suggest that combined application of ICG-001 and anti-PD-1 antibody exhibits significantly enhanced antitumor efficacy. Hence, combining a WNT/β-catenin signaling pathway inhibitor with anti-PD-1 therapy may be a promising treatment strategy for patients with HCC.
Collapse
Affiliation(s)
- Yamei Huang
- Department of Pathology and Pathophysiology, Medical School of Southeast University, China
| | - Min Peng
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, China
| | - Weiping Yu
- Department of Pathology and Pathophysiology, Medical School of Southeast University, China.
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
23
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The Aryl Hydrocarbon Receptor Controls IFNγ-Induced Immune Checkpoints PD-L1 and IDO via the JAK/STAT Pathway in Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607602. [PMID: 39185148 PMCID: PMC11343147 DOI: 10.1101/2024.08.12.607602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While immunotherapy has shown efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, (the aryl hydrocarbon receptor/AhR), a known but counterintuitive mediator of immunosuppression (IFNγ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk- and scRNA sequencing of LUADs and tumor-infiltrating leukocytes were used to map out a signaling pathway leading from IFNγ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: 1) IFNγ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 upregulation is mediated by the AhR in murine and human LUAD cells, 2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, 3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. 4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFNγ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | | | | | - Mohammed Muzamil Khan
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - Vinay K. Duggineni
- Department of Environmental Health, Boston University School of Public Health
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
24
|
Giammona A, De Vellis C, Crivaro E, Maresca L, Amoriello R, Ricci F, Anichini G, Pietrobono S, Pease DR, Fernandez-Zapico ME, Ballerini C, Stecca B. Tumor-derived GLI1 promotes remodeling of the immune tumor microenvironment in melanoma. J Exp Clin Cancer Res 2024; 43:214. [PMID: 39090759 PMCID: PMC11295348 DOI: 10.1186/s13046-024-03138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.
Collapse
Affiliation(s)
- Alessandro Giammona
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Chiara De Vellis
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Enrica Crivaro
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Luisa Maresca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Federica Ricci
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Giulia Anichini
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Silvia Pietrobono
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - David R Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
25
|
Sun D, Tan L, Chen Y, Yuan Q, Jiang K, Liu Y, Xue Y, Zhang J, Cao X, Xu M, Luo Y, Xu Z, Xu Z, Xu W, Shen M. CXCL5 impedes CD8 + T cell immunity by upregulating PD-L1 expression in lung cancer via PXN/AKT signaling phosphorylation and neutrophil chemotaxis. J Exp Clin Cancer Res 2024; 43:202. [PMID: 39034411 PMCID: PMC11264977 DOI: 10.1186/s13046-024-03122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lipin Tan
- Department of nursing administration, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qiang Yuan
- Department of interventional medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kanqiu Jiang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yangyang Liu
- Department of Vascular Surgery, Hospital of Zhangjiagang, Suzhou, 215600, China
| | - Yuhang Xue
- Department of Thoracic Surgery, Hospital of Yancheng, Yancheng, 224000, China
| | - Jinzhi Zhang
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xianbao Cao
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Minzhao Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Luo
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhonghen Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Weihua Xu
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mingjing Shen
- Department of Thoracic and Cardiac Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
26
|
Jung H, Paust S. Chemokines in the tumor microenvironment: implications for lung cancer and immunotherapy. Front Immunol 2024; 15:1443366. [PMID: 39114657 PMCID: PMC11304008 DOI: 10.3389/fimmu.2024.1443366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) is a complex interconnected network of immune cells, fibroblasts, blood vessels, and extracellular matrix surrounding the tumor. Because of its immunosuppressive nature, the TME can pose a challenge for cancer immunotherapies targeting solid tumors. Chemokines have emerged as a crucial element in enhancing the efficacy of cancer immunotherapy, playing a direct role in immune cell signaling within the TME and facilitating immune cell migration towards cancer cells. However, chemokine ligands and their receptors exhibit context-dependent diversity, necessitating evaluation of their tumor-promoting or inhibitory effects based on tumor type and immune cell characteristics. This review explores the role of chemokines in tumor immunity and metastasis in the context of the TME. We also discuss current chemokine-related advances in cancer immunotherapy research, with a particular focus on lung cancer, a common cancer with a low survival rate and limited immunotherapy options.
Collapse
Affiliation(s)
| | - Silke Paust
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
27
|
Zhang LL, Du MY, Du X, Duan J, Yao DM, Jing J, Feng C, Song L. Correlation analysis of human papillomavirus E6/E7 mRNA detection with diagnosis, prognosis and recurrence risk in patients with cervical epithelioma. World J Clin Cases 2024; 12:4146-4153. [PMID: 39015927 PMCID: PMC11235549 DOI: 10.12998/wjcc.v12.i20.4146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Cervical intraepithelial neoplasia (CIN) is an important precursor of cervical cancer. Early detection and treatment can reduce the incidence of cervical cancer. AIM To investigate the detection rate of human papillomavirus (HPV) E6/E7 mRNA in cervical tissue of patients with different types of epithelial cell neoplasia (CIN) and its relationship with CIN progression and diagnosis. METHODS One hundred women with HPV infection detected by cervical exfoliation cytology between January 2022 and January 2023 were retrospectively selected. These patients were graded CIN based on colposcopy and cervical pathology. The positive expression rates of HPV E6/E7 mRNA and HPV [polymerase chain reaction (PCR)-reverse dot crossing] were compared among all groups. Patients with HPV E6/E7 mRNA expression in the grade 1 CIN group were followed up for 1 yr. The relationship between atypical squamous epithelium and high malignant epithelial neoplasia was investigated by univariate and multivariate analysis. RESULTS The diagnostic sensitivity, specificity, and sensitivity of PCR-reverse point hybridization technology for secondary CIN were 70.41%, 70.66%, and 0.714, respectively. Sensitivity and specificity for secondary CIN were 752% and 7853%, respectively, the area under the curve value was 0.789. Logistic Multifactorial model analysis revealed that the HPV positive rates and the HPV E6/E7 mRNA positive rates were independent risk factors of CIN grade I (P < 0.05). In CIN grade I patients with positive for HPV E6/E7 mRNA, in its orientation to grade CIN patients, in its orientation to grade CIN patients, at 69.2%, compared with patients negative for HPV E6/E7 mRNA (30.8%), significant difference (P < 0.05). CONCLUSION HPV E6/E7 mRNA and HPV (PCR-reverse dot hybrid) positive expression have a close relationship with CIN-grade disease progression and is an independent risk factor for high-grade CIN lesions.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Ming-Yan Du
- Department of Gynaecology, China Resources WISCO General Hospital, Wuhan 430080, Hubei Province, China
| | - Xin Du
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Jie Duan
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Dong-Mei Yao
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Jing Jing
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Chun Feng
- Department of Gynaecology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| | - Lin Song
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan 430075, Hubei Province, China
| |
Collapse
|
28
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Yu H, Liu J, Bu X, Ma Z, Yao Y, Li J, Zhang T, Song W, Xiao X, Sun Y, Xiong W, Shi J, Dai P, Xiang B, Duan H, Yan X, Wu F, Zhang WC, Lin D, Hu H, Zhang H, Slack FJ, He HH, Freeman GJ, Wei W, Zhang J. Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy. Cell Chem Biol 2024; 31:776-791.e7. [PMID: 37751743 PMCID: PMC10954589 DOI: 10.1016/j.chembiol.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/02/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing 100853, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinfeng Li
- Institute of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing 100853, China
| | - Tiantian Zhang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenjun Xiong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Panpan Dai
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R.China
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32827, USA
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Haojian Zhang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
30
|
Li H, Sun Y, Yao Y, Ke S, Zhang N, Xiong W, Shi J, He C, Xiao X, Yu H, Dai P, Xiang B, Xing X, Xu G, Song W, Song J, Zhang J. USP8-governed GPX4 homeostasis orchestrates ferroptosis and cancer immunotherapy. Proc Natl Acad Sci U S A 2024; 121:e2315541121. [PMID: 38598341 PMCID: PMC11032464 DOI: 10.1073/pnas.2315541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Haiou Li
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Yishuang Sun
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Yingmeng Yao
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Shanwen Ke
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Nannan Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou450008, China
| | - Wenjun Xiong
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Jie Shi
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Chuan He
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Xiangling Xiao
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Haisheng Yu
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Panpan Dai
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Bolin Xiang
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Xixin Xing
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Gaoshan Xu
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Jiquan Song
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Jinfang Zhang
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| |
Collapse
|
31
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Lee J, Kim D, Kong J, Ha D, Kim I, Park M, Lee K, Im SH, Kim S. Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors. SCIENCE ADVANCES 2024; 10:eadj0785. [PMID: 38295179 PMCID: PMC10830106 DOI: 10.1126/sciadv.adj0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.
Collapse
Affiliation(s)
- Juhun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Doyeon Ha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhae Kim
- ImmunoBiome Inc., Pohang 166-20, Korea
| | - Minhyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- ImmunoBiome Inc., Pohang 166-20, Korea
- Institute of Convergence Science, Yonsei University, Seoul 120-749, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Institute of Convergence Science, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
33
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
34
|
Tian Y, Xie Y, Yi G, Wu F, Dang X, Bai F, Wang J, Zhang D. Prognostic Value and Therapeutic Significance of CCL Chemokines in Gastric Cancer. Curr Med Chem 2024; 31:7043-7058. [PMID: 39129286 DOI: 10.2174/0109298673315146240731100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumours of the gastrointestinal tract, which has a significant negative impact on human health. AIMS CCL chemokines play important roles in a variety of tumor microenvironments; nevertheless, gastric cancer has surprisingly limited associations with CCL chemokines. METHODS In our study, we comprehensively utilized bioinformatics analysis tools and databases such as cBioPortal, UALCAN, GEPIA, GeneMANIA, STRING, and TRRUST to clarify the clinical significance and biology function of CCL chemokines in gastric cancer. RESULTS The mRNA expression levels of CCL1/3/4/5/7/8/14/15/18/20/21/22/26 were up-regulated, while the mRNA expression levels of CCL2/11/13/16/17/19/23/24/25/28 were down-regulated. The chemokine significantly associated with the pathological stage of gastric cancer is CCL2/11/19/21. In gastric cancer, the expression level of CCL chemokines was not associated with disease-free survival, but low expression of CCL14 was significantly associated with longer overall survival. Therein, associated with the regulation of CCL chemokines are only 10 transcription factors (RELA, NFKB1, STAT6, IRF3, REL, SPI1, STAT1, STAT3, JUN and SP1). The major biological process and functional enrichment of CCL chemokines are to induce cell-directed migration. CONCLUSION These results may indicate that CCL chemokines may be immunotherapeutic targets and promising prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yunqian Xie
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Guirong Yi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Fanqi Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoyu Dang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Feihu Bai
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Jun Wang
- Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
35
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
36
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
37
|
Chen Z, Giotti B, Kaluzova M, Vallcorba MP, Rawat K, Price G, Herting CJ, Pinero G, Cristea S, Ross JL, Ackley J, Maximov V, Szulzewsky F, Thomason W, Marquez-Ropero M, Angione A, Nichols N, Tsankova NM, Michor F, Shayakhmetov DM, Gutmann DH, Tsankov AM, Hambardzumyan D. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression. J Clin Invest 2023; 133:e163802. [PMID: 37733448 PMCID: PMC10645395 DOI: 10.1172/jci163802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1β in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1β/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1β/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1β, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1β could be considered as an effective therapy specifically for proneural GBM.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Milota Kaluzova
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Department of Neurology, Rutgers University, New Brunswick, New Jersey, USA
| | - Montse Puigdelloses Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Kavita Rawat
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Gabrielle Price
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Cameron J. Herting
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Gonzalo Pinero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - James L. Ross
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Emory University Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - James Ackley
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Victor Maximov
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Mar Marquez-Ropero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | | | - Nadejda M. Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- The Ludwig Center at Harvard, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry M. Shayakhmetov
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology and Emory Vaccine Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander M. Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurosurgery and
| |
Collapse
|
38
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
39
|
Chen Y, Shi J, Wang X, Zhou L, Wang Q, Xie Y, Peng C, Kuang L, Yang D, Yang J, Yang C, Li X, Yuan Y, Zhou Y, Peng A, Zhang Y, Chen H, Liu X, Zheng L, Huang K, Li Y. An antioxidant feedforward cycle coordinated by linker histone variant H1.2 and NRF2 that drives nonsmall cell lung cancer progression. Proc Natl Acad Sci U S A 2023; 120:e2306288120. [PMID: 37729198 PMCID: PMC10523483 DOI: 10.1073/pnas.2306288120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is highly malignant with limited treatment options, platinum-based chemotherapy is a standard treatment for NSCLC with resistance commonly seen. NSCLC cells exploit enhanced antioxidant defense system to counteract excessive reactive oxygen species (ROS), which contributes largely to tumor progression and resistance to chemotherapy, yet the mechanisms are not fully understood. Recent studies have suggested the involvement of histones in tumor progression and cellular antioxidant response; however, whether a major histone variant H1.2 (H1C) plays roles in the development of NSCLC remains unclear. Herein, we demonstrated that H1.2 was increasingly expressed in NSCLC tumors, and its expression was correlated with worse survival. When crossing the H1c knockout allele with a mouse NSCLC model (KrasLSL-G12D/+), H1.2 deletion suppressed NSCLC progression and enhanced oxidative stress and significantly decreased the levels of key antioxidant glutathione (GSH) and GCLC, the catalytic subunit of rate-limiting enzyme for GSH synthesis. Moreover, high H1.2 was correlated with the IC50 of multiple chemotherapeutic drugs and with worse prognosis in NSCLC patients receiving chemotherapy; H1.2-deficient NSCLC cells presented reduced survival and increased ROS levels upon cisplatin treatment, while ROS scavenger eliminated the survival inhibition. Mechanistically, H1.2 interacted with NRF2, a master regulator of antioxidative response; H1.2 enhanced the nuclear level and stability of NRF2 and, thus, promoted NRF2 binding to GCLC promoter and the consequent transcription; while NRF2 also transcriptionally up-regulated H1.2. Collectively, these results uncovered a tumor-driving role of H1.2 in NSCLC and indicate an "H1.2-NRF2" antioxidant feedforward cycle that promotes tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiaomu Wang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang441000, China
| | - Lin Zhou
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qing Wang
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yunhao Xie
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Chentai Peng
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Linwu Kuang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Dong Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yangmian Yuan
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yihao Zhou
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Anlin Peng
- Department of Pharmacy, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan430060, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan430030, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
40
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Pan H, Zou N, Tian Y, Zhu H, Zhang J, Jin W, Gu Z, Ning J, Li Z, Kong W, Jiang L, Huang J, Luo Q. Short-term outcomes of robot-assisted versus video-assisted thoracoscopic surgery for non-small cell lung cancer patients with neoadjuvant immunochemotherapy: a single-center retrospective study. Front Immunol 2023; 14:1228451. [PMID: 37497221 PMCID: PMC10366598 DOI: 10.3389/fimmu.2023.1228451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Neoadjuvant immunochemotherapy has been increasingly applied to treat non-small cell lung cancer (NSCLC). However, the comparison between robotic-assisted thoracoscopic surgery (RATS) and video-assisted thoracoscopic surgery (VATS) in the feasibility and oncological efficacy following neoadjuvant immunochemotherapy is scarce. This study aims to assess the superiorities of RATS over (VATS) concerning short-term outcomes in treating NSCLC patients with neoadjuvant immunochemotherapy. Methods NSCLC patients receiving RATS or VATS lobectomy following neoadjuvant immunochemotherapy at Shanghai Chest Hospital from 2019 to 2022 were retrospectively identified. Baseline clinical characteristics, perioperative outcomes, and survival profiles were analyzed. Results Forty-six NSCLC patients with neoadjuvant immunochemotherapy were included and divided into the RATS (n=15) and VATS (n=31) groups. The baseline clinical characteristics and induction-related adverse events were comparable between the two groups (all p>0.050). The 30-day mortality in the RATS and VATS groups were 0% and 3.23%, respectively (p=1.000). Patients undergoing RATS were associated with reduced surgical-related intensive unit care (ICU) stay than those receiving VATS (0.0 [0.0-0.0] vs. 0.0 [0.0-1.0] days, p=0.026). Moreover, RATS assessed more N1 LNs (6.27 ± 1.94 vs 4.90 ± 1.92, p=0.042) and LN stations (3.07 ± 1.03 vs 2.52 ± 0.57, p=0.038) compared with VATS. By comparison, no difference was found in surgical outcomes, pathological results, and postoperative complications between the RATS and VATS groups (all p>0.050). Finally, RATS and VATS achieved comparable one-year recurrence-free survival (82.96% vs. 85.23%, p=0.821) and the timing of central nervous system, LN, and bone recurrences (all p>0.050). Conclusion RATS is safe and feasible for NSCLC patients with neoadjuvant immunochemotherapy, reducing surgical-related ICU stay, assessing increased N1 LNs and stations, and achieving similar survival profiles to VATS.
Collapse
Affiliation(s)
- Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningyuan Zou
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqiu Jin
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Ning
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziming Li
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weicheng Kong
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Putuo District People’s Hospital, Zhejiang, China
| | - Long Jiang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Liu X, Zhuang Y, Huang W, Wu Z, Chen Y, Shan Q, Zhang Y, Wu Z, Ding X, Qiu Z, Cui W, Wang Z. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. Nat Commun 2023; 14:4106. [PMID: 37433774 PMCID: PMC10336067 DOI: 10.1038/s41467-023-39759-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
The response rate of pancreatic cancer to chemotherapy or immunotherapy pancreatic cancer is low. Although minimally invasive irreversible electroporation (IRE) ablation is a promising option for irresectable pancreatic cancers, the immunosuppressive tumour microenvironment that characterizes this tumour type enables tumour recurrence. Thus, strengthening endogenous adaptive antitumour immunity is critical for improving the outcome of ablation therapy and post-ablation immune therapy. Here we present a hydrogel microsphere vaccine that amplifies post-ablation anti-cancer immune response via releasing its cargo of FLT3L and CD40L at the relatively lower pH of the tumour bed. The vaccine facilitates migration of the tumour-resident type 1 conventional dendritic cells (cDC1) to the tumour-draining lymph nodes (TdLN), thus initiating the cDC1-mediated antigen cross-presentation cascade, resulting in enhanced endogenous CD8+ T cell response. We show in an orthotopic pancreatic cancer model in male mice that the hydrogel microsphere vaccine transforms the immunologically cold tumour microenvironment into hot in a safe and efficient manner, thus significantly increasing survival and inhibiting the growth of distant metastases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yingjie Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yuefang Zhang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, No.320 Yueyang Road, 200032, Shanghai, P. R. China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, No.320 Yueyang Road, 200032, Shanghai, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China.
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, 200025, Shanghai, P. R. China.
| |
Collapse
|
43
|
Dong HP, Li Y, Tang Z, Wang P, Zhong B, Chu Q, Lin D. Combined targeting of CCL7 and Flt3L to promote the expansion and infiltration of cDC1s in tumors enhances T-cell activation and anti-PD-1 therapy effectiveness in NSCLC. Cell Mol Immunol 2023; 20:850-853. [PMID: 36894615 PMCID: PMC10310796 DOI: 10.1038/s41423-023-00991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Hong-Peng Dong
- Cancer Center, Renmin Hospital of Wuhan University, Medical Research Institute and Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Tang
- Cancer Center, Renmin Hospital of Wuhan University, Medical Research Institute and Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Wang
- Cancer Center, Renmin Hospital of Wuhan University, Medical Research Institute and Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Medical Research Institute and Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
44
|
Suntiparpluacha M, Chanthercrob J, Sa-nguanraksa D, Sitthikornpaiboon J, Chaiboonchoe A, Kueanjinda P, Jinawath N, Sampattavanich S. Retrospective study of transcriptomic profiling identifies Thai triple-negative breast cancer patients who may benefit from immune checkpoint and PARP inhibitors. PeerJ 2023; 11:e15350. [PMID: 37334114 PMCID: PMC10269579 DOI: 10.7717/peerj.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a rare and aggressive breast cancer subtype. Unlike the estrogen receptor-positive subtype, whose recurrence risk can be predicted by gene expression-based signature, TNBC is more heterogeneous, with diverse drug sensitivity levels to standard regimens. This study explored the benefit of gene expression-based profiling for classifying the molecular subtypes of Thai TNBC patients. Methods The nCounter-based Breast 360 gene expression was used to classify Thai TNBC retrospective cohort subgroups. Their expression profiles were then compared against the previously established TNBC classification system. The differential characteristics of the tumor microenvironment and DNA damage repair signatures across subgroups were also explored. Results Thai TNBC cohort could be classified into four main subgroups, corresponding to the LAR, BL-2, and M subtypes based on Lehmann's TNBC classification. The PAM50 gene set classified most samples as basal-like subtypes except for Group 1. Group 1 exhibited similar enrichment of the metabolic and hormone response pathways to the LAR subtype. Group 2 shared pathway activation with the BL-2 subtype. Group 3 showed an increase in the EMT pathway, similar to the M subtype. Group 4 showed no correlation with Lehmann's TNBC. The tumor microenvironment (TME) analysis showed high TME cell abundance with increased expression of immune blockade genes in Group 2. Group 4 exhibited low TME cell abundance and reduced immune blockade gene expressions. We also observed distinct signatures of the DNA double-strand break repair genes in Group 1. Conclusions Our study reported unique characteristics between the four TNBC subgroups and showed the potential use of immune checkpoint and PARP inhibitors in subsets of Thai TNBC patients. Our findings warrant further clinical investigation to validate TNBC's sensitivity to these regimens.
Collapse
Affiliation(s)
- Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Sitthikornpaiboon
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Zheng Y, Liu X, Li N, Zhao A, Sun Z, Wang M, Luo J. Radiotherapy combined with immunotherapy could improve the immune infiltration of melanoma in mice and enhance the abscopal effect. Radiat Oncol J 2023; 41:129-139. [PMID: 37403355 DOI: 10.3857/roj.2023.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To analyze the gene mutation, immune infiltration and tumor growth of primary tumor and distant tumor under different treatment modes. MATERIALS AND METHODS Twenty B16 murine melanoma cells were injected subcutaneously into the of both sides of the thigh, simulating a primary tumor and a secondary tumor impacted by the abscopal effect, respectively. They were divided into blank control group, immunotherapy group, radiotherapy group, and radiotherapy combined immunotherapy group. During this period, tumor volume was measured, and RNA sequencing was performed on tumor samples after the test. R software was used to analyze differentially expressed genes, functional enrichment, and immune infiltration. RESULTS We found that any treatment mode could cause changes in differentially expressed genes, especially the combination treatment. The different therapeutic effects might be caused by gene expression. In addition, the proportions of infiltrating immune cells in the irradiated and abscopal tumors were different. In the combination treatment group, T-cell infiltration in the irradiated site was the most obvious. In the immunotherapy group, CD8+ T-cell infiltration in the abscopal tumor site was obvious, but immunotherapy alone might have a poor prognosis. Whether the irradiated or abscopal tumor was evaluated, radiotherapy combined with anti-programmed cell death protein 1 (anti-PD-1) therapy produced the most obvious tumor control and might have a positive impact on prognosis. CONCLUSION Combination therapy not only improves the immune microenvironment but may also have a positive impact on prognosis.
Collapse
Affiliation(s)
- Yufeng Zheng
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xue Liu
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Dalian Medical University, Dalian, China
| | - Na Li
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Aimei Zhao
- Department of Obstetrics and Gynecology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Fourth People's Hospital, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
46
|
Liu X, Zeng L, Zhou Y, Zhao X, Zhu L, Zhang J, Pan Y, Shao C, Fu J. P21 facilitates macrophage chemotaxis by promoting CCL7 in the lung epithelial cell lines treated with radiation and bleomycin. J Transl Med 2023; 21:314. [PMID: 37161570 PMCID: PMC10169365 DOI: 10.1186/s12967-023-04177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Interstitial lung diseases (ILDs) can be induced and even exacerbated by radiotherapy in thoracic cancer patients. The roles of immune responses underlying the development of these severe lung injuries are still obscure and need to be investigated. METHODS A severe lung damage murine model was established by delivering 16 Gy X-rays to the chest of mice that had been pre-treated with bleomycin (BLM) and thus hold ILDs. Bioinformatic analyses were performed on the GEO datasets of radiation-induced lung injury (RILI) and BLM-induced pulmonary fibrosis (BIPF), and RNA-sequencing data of the severely damaged lung tissues. The screened differentially expressed genes (DEGs) were verified in lung epithelial cell lines by qRT-PCR assay. The injured lung tissue pathology was analyzed with H&E and Masson's staining, and immunohistochemistry staining. The macrophage chemotaxis and activity promoted by the stressed epithelial cells were determined by using a cell co-culture system. The expressions of p21 in MLE-12 and Beas-2B cells were detected by qRT-PCR, western blot, and immunofluorescence. The concentration of CCL7 in cell supernatant was measured by ELISA assay. In some experiments, Beas-2B cells were transfected with p21-siRNA or CCL7-siRNA before irradiation and/or BLM treatment. RESULTS After the treatment of irradiation and/or BLM, the inflammatory and immune responses, chemokine-mediated signaling pathways were steadily activated in the severely injured lung, and p21 was screened out by the bioinformatic analysis and further verified to be upregulated in both mouse and human lung epithelial cell lines. The expression of P21 was positively correlated with macrophage infiltration in the injured lung tissues. Co-culturing with stressed Beas-2B cells or its conditioned medium containing CCL7 protein, U937 macrophages were actively polarized to M1-phase and their migration ability was obviously increased along with the damage degree of Beas-2B cells. Furthermore, knockdown p21 reduced CCL7 expression in Beas-2B cells and then decreased the chemotaxis of co-cultured macrophages. CONCLUSIONS P21 promoted CCL7 release from the severely injured lung epithelial cell lines and contributed to the macrophage chemotaxis in vitro, which provides new insights for better understanding the inflammatory responses in lung injury.
Collapse
Affiliation(s)
- Xinglong Liu
- Shanghai Institute of Infectious Disease and Biosecurity, and Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinrui Zhao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Zhu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chunlin Shao
- Shanghai Institute of Infectious Disease and Biosecurity, and Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
47
|
Ito M, Iwama S, Sugiyama D, Yasuda Y, Okuji T, Kobayashi T, Zhou X, Yamagami A, Onoue T, Miyata T, Sugiyama M, Hagiwara D, Suga H, Banno R, Nishikawa H, Arima H. Anti-tumor effects of anti-programmed cell death-1 antibody treatment are attenuated in streptozotocin-induced diabetic mice. Sci Rep 2023; 13:5939. [PMID: 37046033 PMCID: PMC10097709 DOI: 10.1038/s41598-023-33049-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Hyperglycemia impairs immune response; however, it remains unknown whether the anti-tumor effects of anti-programmed cell death-1 antibody (PD-1-Ab) treatment are changed in hyperglycemic conditions. We analyzed the effect of PD-1-Ab on tumor growth in streptozotocin-induced diabetic mice (STZ-mice) subcutaneously inoculated with MC38 (a colon carcinoma cell line). Furthermore, we assessed the expression of chemokines by polymerase chain reaction (PCR) array in tumor-draining lymph nodes (dLNs) of these mice and MC38 cells cultured in different glucose concentrations. The suppressive effect of PD-1-Ab on tumor growth was attenuated. This was accompanied by fewer tumor-infiltrating CD8+ T cells, and STZ-mice had fewer tumor-infiltrating CD11c+ dendritic cells (DCs) than normoglycemic mice. mRNA expression levels of CXCL9, a chemokine recruiting CD8+ T cells, were lower in dLNs of STZ-mice than in normoglycemic mice after PD-1-Ab treatment, and its protein was expressed in DCs. In MC38 cells cultured with 25 mM glucose, mRNA expression of CCL7, a chemokine recruiting DCs, was decreased compared to cells cultured with 5 mM glucose. These results suggest that the STZ-induced hyperglycemia impairs the effect of PD-1-Ab treatment on MC38 tumor growth, and is accompanied by reduced infiltration of DCs and CD8+ T cells and decreased expression of CCL7 and CXCL9.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takayuki Okuji
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Xin Zhou
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ayana Yamagami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
48
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
49
|
Su X, Wang G, Zheng S, Ge C, Kong F, Wang C. Comprehensive Explorations of CCL28 in Lung Adenocarcinoma Immunotherapy and Experimental Validation. J Inflamm Res 2023; 16:1325-1342. [PMID: 37006812 PMCID: PMC10065022 DOI: 10.2147/jir.s399193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Background Chemokines have been reported to play an important role in cancer immunotherapy. This study aimed to explore the chemokines involved in lung cancer immunotherapy. Methods All the public data were downloaded from The Cancer Genome Atlas Program database. Quantitative real time-PCR was used to detect the mRNA level of specific molecules and Western blot was used for the protein level. Other experiments used include luciferase reporter experiments, flow cytometric analysis, Chromatin immunoprecipitation assay, ELISA and co-cultured system. Results We found that the CCL7, CCL11, CCL14, CCL24, CCL25, CCL26, CCL28 had a higher level, while the CCL17, CCL23 had a lower level in immunotherapy non-responders. Also, we found that immunotherapy non-responders had a higher level of CD56dim NK cells, NK cells, Th1 cells, Th2 cells and Treg, yet a lower level of iDC and Th17 cells. Biological enrichment analysis indicated that in the patients with high Treg infiltration, the pathways of pancreas beta cells, KRAS signaling, coagulation, WNT BETA catenin signaling, bile acid metabolism, interferon alpha response, hedgehog signaling, PI3K/AKT/mTOR signaling, apical surface, myogenesis were significantly enriched in. CCL7, CCL11, CCL26 and CCL28 were selected for further analysis. Compared with the patients with high CCL7, CCL11, CCL26 and CCL28 expression, the patients with low CCL7, CCL11, CCL26 and CCL28 expression had a better performance of immunotherapy response and this effect might partly be due to Treg cells. Furthermore, biological exploration and clinical correlation of CCL7, CCL11, CCL26 and CCL28 were conducted, Finally, CCL28 was selected for validation. Experiments showed that under the hypoxia condition, HIF-1α was upregulated, which can directly bind to the promoter region of CCL28 and lead to its higher level. Also, CCL28 secreted by lung cancer cells could induce Tregs infiltration. Conclusion Our study provides a novel insight focused on the chemokines in lung cancer immunotherapy. Also, CCL28 was identified as an underlying biomarker for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Su
- School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Guoqing Wang
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Chang Ge
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Cailian Wang
- School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Correspondence: Cailian Wang, Email
| |
Collapse
|
50
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|