1
|
Meza-Torres J, Tinevez JY, Crouzols A, Mary H, Kim M, Hunault L, Chamorro-Rodriguez S, Lejal E, Altamirano-Silva P, Groussard D, Gobaa S, Peltier J, Chassaing B, Dupuy B. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 2025; 17:2444411. [PMID: 39719371 DOI: 10.1080/19490976.2024.2444411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Clinical symptoms of Clostridioides difficile infection (CDI) range from diarrhea to pseudomembranous colitis. A major challenge in managing CDI is the high rate of relapse. Several studies correlate the production of CDT binary toxin by clinical strains of C. difficile with higher relapse rates. Although the mechanism of action of CDT on host cells is known, its exact contribution to CDI is still unclear. To understand the physiological role of CDT during CDI, we established two hypoxic relevant intestinal models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged with the epidemic strain UK1 CDT+ and its isogenic CDT- mutant. We report that CDT induces mucin-associated microcolonies that increase C. difficile colonization and display biofilm-like properties by enhancing C. difficile resistance to vancomycin. Importantly, biofilm-like microcolonies were also observed in the cecum and colon of infected mice. Hence, our study shows that CDT induces biofilm-like microcolonies, increasing C. difficile persistence and risk of relapse.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Minhee Kim
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Hunault
- Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Susan Chamorro-Rodriguez
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Emilie Lejal
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Bruno Dupuy
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| |
Collapse
|
2
|
Chen Z, Zhang W, Wang D, Luo R, Yao Y, Tao X, Li L, Pan Q, Sun X. CD44 is a macrophage receptor for TcdB from Clostridioides difficile that via its lysine-158 succinylation contributes to inflammation. Gut Microbes 2025; 17:2506192. [PMID: 40383912 DOI: 10.1080/19490976.2025.2506192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Toxin B (TcdB) is a critical virulence factor in Clostridioides difficile-associated disease (CDAD), which activates macrophages to promote inflammation and epithelial damage. However, the mechanism by which TcdB targets inflammation-related receptors on the macrophage surface and the underlying molecular mechanisms remain unknown. The frizzled-binding domain of TcdB (TcdB-FBD) is a promising target of TcdB. Here, FBD was found to trigger macrophage inflammation, similar to TcdB, but did not induce cytotoxicity. Thus, using FBD as a bait protein, macrophage CD44 was identified as an inflammation-related receptor for TcdB/FBD. The role of CD44 was confirmed by CRISPR/Cas9-mediated gene knockout in macrophages and CD44 knockout mice. Using 4-D label-free succinylation quantitative modification proteomics, we demonstrated that TcdB/FBD binds to CD44 in macrophages, promotes CD44 K158 succinylation via SUCLG2 suppression, and enhances NF-κB translocation/transcriptional activity, thereby driving inflammation. Finally, blocking the binding of TcdB to CD44 was demonstrated as a favorable strategy for inhibiting TcdB-mediated macrophage inflammation. This study not only provides a new therapeutic target for the prevention and treatment of CDAD but also elucidates a new molecular mechanism underlying the inflammatory effect of TcdB via the TcdB/FBD-CD44 axis.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Wenzi Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Hubei Province Key Laboratory of Allergy and Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Danni Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ruiqin Luo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yuexin Yao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiaoyang Tao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Lu Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Shi K, Wang L, Zheng XM, Zhang Z, Zhong F, Sun ZZ, Mohany M, Huang HH, Li J, Li S, Zhang L. Metronidazole-ursodeoxycholic acid bifunctional antibacterial: A promising strategy to combat Clostridium difficile infection and prevent recurrence. Eur J Med Chem 2025; 291:117631. [PMID: 40233427 DOI: 10.1016/j.ejmech.2025.117631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Current treatments against Clostridium difficile infection (CDI), such as vancomycin and metronidazole, frequently lead to severe recurrence due to disruption of gut microbiota balance, which results in a pressing need for new chemical entities to treat CDI. Bile acids, such as UDCA, have been demonstrated to inhibit the growth and spore germination of C. difficile, and regulate the structure of the intestinal flora. This study involved the synthesis of eight bile acid-metronidazole hybrids. Among them, the most promising hybrid, SCUT1-2, effectively killed the vegetative cells of C. difficile with a minimum inhibitory concentration (MIC) of 0.06-0.50 μg/mL, and inhibited spore germination in vitro. The absolute bioavailability of SCUT1-2 (F = 56.8 %) indicated that approximately half of SCUT1-2 was absorbed systemically, while a considerable portion remained in the gastrointestinal tract in its original form, laying a solid foundation for its effective action in vivo. SCUT1-2 could effectively alleviate the symptoms of weight loss and diarrhea in mice caused by CDI and effectively reduce the relevant expressions of inflammatory factors, outperforming metronidazole. Furthermore, SCUT1-2 demonstrated a favorable therapeutic effect in reducing mortality and disease symptoms in CDI mice by killing C. difficile cells and regulating the composition and structure of the intestinal flora. Notably, SCUT1-2 could effectively prevent recurrent CDI. This work provides a potential clinical lead for the development of CDI therapies and highlights hybrid medication as a new strategy.
Collapse
Affiliation(s)
- Kun Shi
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Li Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Xiao-Min Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhe Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Fan Zhong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhen-Zhu Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hai-Hui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jing Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shan Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Xian T, Liu Y, Cao X, Feng T. Alterations to the vaginal microbiota and their correlation with serum pro-inflammatory cytokines in post-weaning sows with endometritis. Theriogenology 2025; 239:117386. [PMID: 40088711 DOI: 10.1016/j.theriogenology.2025.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Endometritis is a prevalent disease in sows that strongly reduces reproductive performance. Its causes are complex and multifaceted, making disease management challenging without targeted measures. To provide a scientific basis for developing targeted disease management strategies, we examined vaginal microbiota diversity and its correlation with serum pro-inflammatory cytokine levels in sows with endometritis and the main pathogenic bacterial species contributing to endometritis. Fourteen post-weaning sows selected at a pig farm in Beijing, China, were randomly divided into healthy (C) and endometritis (E) groups. Levels of cytokines including interleukin-1α (IL-1α), IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were quantified by enzyme-linked immunosorbent assays. Vaginal microbiota species were identified using 16S rDNA sequencing. Concentrations of IL-1α and IL-6 in serum and vaginal microbial diversity were significantly increased in group E versus group C. The relative abundance of Firmicutes exhibited a marked increase in group E, whereas that of Fusobacteriota was significantly decreased. The composition and relative abundance of dominant bacterial genera differed between the two groups, and the dominant genera in group E were Clostridium_sensu_stricto_1, UCG-005, UCG-002, Terrisporobacter, and Christensenellaceae_R-7_group. IL-6 was significantly positively correlated with Clostridium_sensu_stricto_1 and Terrisporobacter in group E. These results suggest that vaginal microbiota abundance and diversity and serum pro-inflammatory cytokine levels are increased in sows with endometritis, and the latter are closely associated with vaginal microbiota abundance and composition. This study provides a foundation for investigating the pathogenesis of endometritis in sows and a theoretical basis for disease prevention and treatment.
Collapse
Affiliation(s)
- Tingting Xian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China
| | - Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China; Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, 100097, China.
| |
Collapse
|
5
|
Wang L, Xu T, Wu S, Zhao C, Huang H. The efficacy and underlying mechanisms of berberine in the treatment of recurrent Clostridioides difficile infection. Int J Antimicrob Agents 2025; 65:107468. [PMID: 39986400 DOI: 10.1016/j.ijantimicag.2025.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Recurrent Clostridioides difficile infection (rCDI) is a global health threat that has received considerable attention. Berberine (BBR), a natural pentacyclic isoquinoline alkaloid, has been used as a cost-effective treatment for intestinal infections in Asia for many years. However, the effect of BBR on rCDI is not clear. The efficacy and underlying mechanisms of BBR were evaluated in a vancomycin-dependent rCDI mouse model and an intestinal organoids model. The study findings showed that BBR treatment alleviated the severity of infection and increased survival rate in rCDI mice. Mechanistically, BBR alleviated intestinal epithelial damage with higher Occludin expression, suppressed some inflammatory pathways and reduced the level of inflammatory factors in both the caecum and serum. Moreover, 16S rRNA sequencing analysis indicated that BBR reshaped the gut microbiota by increasing the abundance of Firmicutes and reducing the abundance of Proteobacteria. At genus level, BBR treatment increased levels of Blautia and Bilophila, and reduced levels of Proteus. In addition, acetic acid, one of the short-chain fatty acids (SCFAs), was also increased after BBR treatment in rCDI mice. Collectively, BBR exerted a protective effect in rCDI via multiple underlying mechanisms and is a potential drug candidate for alleviating rCDI, but further research is needed in this area.
Collapse
Affiliation(s)
- Li Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Teng Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the PRC, Shanghai, China.
| |
Collapse
|
6
|
Berry P, Khanna S. The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection. Indian J Gastroenterol 2025; 44:129-141. [PMID: 39821715 DOI: 10.1007/s12664-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies. Conventional antibiotic treatments, although effective, face limitations due to rising antibiotic resistance and high recurrence rates, which can reach up to 60% after multiple infections. This has prompted exploration of alternative therapies such as fecal microbiota-based therapies, including fecal microbiota transplantation (FMT) and live biotherapeutics (LBPs), which demonstrate superior efficacy in preventing recurrence. They are aimed at restoring the gut microbiota. Fecal microbiota, live-jslm and fecal microbiota spores, live-brpk have been approved by the U.S. Food and Drug Administration in individuals aged 18 years or older for recurrent CDI after standard antimicrobial treatment. They have demonstrated high efficacy and a favorable safety profile in clinical trials. Another LBP under study includes VE-303, which is not derived from human donor stool. This review provides a comprehensive overview of the current therapeutic landscape for CDI, including its epidemiology, pathophysiology, risk factors, diagnostic modalities and treatment strategies. The review delves into the emerging role of live biotherapeutics, with a particular focus on fecal microbiota-based therapies. We explore their development, mechanisms of action, clinical applications and potential to revolutionize CDI management.
Collapse
Affiliation(s)
- Parul Berry
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Midani FS, Danhof HA, Mathew N, Ardis CK, Garey KW, Spinler JK, Britton RA. Emerging Clostridioides difficile ribotypes have divergent metabolic phenotypes. mSystems 2025; 10:e0107524. [PMID: 40013784 PMCID: PMC11915817 DOI: 10.1128/msystems.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
Clostridioides difficile is a gram-positive spore-forming pathogen that commonly causes diarrheal infections in the developed world. Although C. difficile is a genetically diverse species, certain ribotypes are overrepresented in human infections, and it is unclear if metabolic adaptations are essential for the emergence of these epidemic ribotypes. To identify ribotype-specific metabolic differences, we therefore tested carbon substrate utilization by 88 C. difficile isolates and looked for differences in growth between 22 ribotypes. As expected, C. difficile was capable of growing on a variety of carbon substrates. Further, C. difficile strains clustered by phylogenetic relationship and displayed ribotype-specific and clade-specific metabolic capabilities. Surprisingly, we observed that two emerging lineages, ribotypes 023 and 255, have divergent metabolic phenotypes. In addition, although C. difficile Clade 5 is the most evolutionary distant clade and often detected in animals, it displayed robust growth on simple sugars similar to Clades 1-4. Altogether, our results corroborate the generalist metabolic strategy of C. difficile but also demonstrate lineage-specific metabolic capabilities.IMPORTANCEThe gut pathogen Clostridioides difficile utilizes a wide range of carbon sources. Microbial communities can be rationally designed to combat C. difficile by depleting its preferred nutrients in the gut. However, C. difficile is genetically diverse with hundreds of identified ribotypes, and most of its metabolic studies were performed with lab-adapted strains. To identify ribotype-specific metabolic differences, we profiled carbon metabolism by a myriad of C. difficile clinical isolates. While the metabolic capabilities of these isolates clustered by their genetic lineage, we observed surprising metabolic divergence between two emerging lineages. We also found that genetically newer and older clades grew to a similar level on simple sugars, which contrasts with recent findings that newer clades experienced positive selection on genes involved in simple sugar metabolism. Altogether, our results underscore the importance of considering the metabolic diversity of pathogens in the study of their evolution and the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Firas S. Midani
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathanael Mathew
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Colleen K. Ardis
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert A. Britton
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Huang X, Johnson AE, Brehm JN, Do TVT, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. mSphere 2025; 10:e0104924. [PMID: 39817755 PMCID: PMC11852769 DOI: 10.1128/msphere.01049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Furthermore, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to the persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of C. difficile.IMPORTANCEClostridioides difficile is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit C. difficile infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of C. difficile inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex in vitro model of C. difficile infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of C. difficile to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate C. difficile colonization.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, Texas, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
9
|
Peña-Durán E, García-Galindo JJ, López-Murillo LD, Huerta-Huerta A, Balleza-Alejandri LR, Beltrán-Ramírez A, Anaya-Ambriz EJ, Suárez-Rico DO. Microbiota and Inflammatory Markers: A Review of Their Interplay, Clinical Implications, and Metabolic Disorders. Int J Mol Sci 2025; 26:1773. [PMID: 40004236 PMCID: PMC11854938 DOI: 10.3390/ijms26041773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human microbiota, a complex ecosystem of microorganisms, plays a pivotal role in regulating host immunity and metabolism. This review investigates the interplay between microbiota and inflammatory markers, emphasizing their impact on metabolic and autoimmune disorders. Key inflammatory biomarkers, such as C-reactive protein (CRP), interleukin-6 (IL-6), lipopolysaccharides (LPS), zonulin (ZO-1), and netrin-1 (Ntn1), are discussed in the context of intestinal barrier integrity and chronic inflammation. Dysbiosis, characterized by alterations in microbial composition and function, directly modulates the levels and activity of these biomarkers, exacerbating inflammatory responses and compromising epithelial barriers. The disruption of microbiota is further correlated with increased intestinal permeability and chronic inflammation, serving as a precursor to conditions like type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease. Additionally, this review examines therapeutic strategies, including probiotics and prebiotics, designed to restore microbial balance, mitigate inflammation, and enhance metabolic homeostasis. Emerging evidence positions microbiota-targeted interventions as critical components in the advancement of precision medicine, offering promising avenues for diagnosing and treating inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Emiliano Peña-Durán
- Licenciatura en Médico Cirujano y Partero, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jesús Jonathan García-Galindo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas II, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Luis Daniel López-Murillo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas I, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Alfredo Huerta-Huerta
- Hospital Medica de la Ciudad, Santa Catalina, Calle. Pablo Valdez 719, La Perla, Guadalajara 44360, Mexico
| | - Luis Ricardo Balleza-Alejandri
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alberto Beltrán-Ramírez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas I, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
| | - Elsa Janneth Anaya-Ambriz
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46708, Mexico
| | - Daniel Osmar Suárez-Rico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Calle Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico
- Departamento Académico Aparatos y Sistemas II, Decanato de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 44670, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
10
|
Zhang S, Ma W, Zhang X, Cui W, Liu Y, Tian X, Wang Q, Luo Y. Polysaccharide lyase PL3.3 possibly potentiating Clostridioides difficile clinical symptoms based on complete genome analysis of RT046/ST35 and RT012/ST54. Int Microbiol 2025:10.1007/s10123-025-00634-x. [PMID: 39833587 DOI: 10.1007/s10123-025-00634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Clostridioides difficile has rapidly become a major cause of nosocomial infectious diarrhea worldwide due to the misuse of antibiotics. Our previous study confirmed that RT046/ST35 strain is associated with more severe clinical symptoms compared to RT012/ST54 strain. We conducted genome comparison of the RT046/ST35 and RT012/ST54 strains using whole-genome sequencing technology. The RT046/ST35 strain had a genome length of 7,869,254 bp with a GC content of 29.49%. The original length of the RT012/ST54 strain was 7,499,568 bp with a GC content of 29.64%. Additionally, we detected plasmid1 in the RT046/ST54 strain. We found that the RT046/ST35 strain had more genomic islands compared to the RT012/ST54 strain, and we identified polysaccharide lyase (PL) in the region around 2.2 M. Furthermore, we discovered that the increased severity of clinical symptoms in the RT046/ST35 strain compared to the RT012/ST54 strain was unrelated to virulence factors and emphasized the potential crucial role of PL in RT046/ST35. There were almost no differences in eggNOG annotation and KEGG annotation between RT046/ST35 and RT012/ST54. RT046/ST35 had more mRNA processes in GO annotation. In conclusion, our study suggests that the core factor contributing to the more serious clinical symptoms of the RT046/ST35 strain compared to the RT012/ST54 strain is possibly PL.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Wen Ma
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Xin Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Youhan Liu
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Xuewen Tian
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China
| | - Qinglu Wang
- College of Graduate Education, Shandong Sport University, 10600 Shiji Road, Licheng Zone, Jinan, Shandong, 255300, P.R. China.
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong, 255000, P.R. China.
| |
Collapse
|
11
|
Jones K, de Brito CB, Byndloss MX. Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens. Cell Chem Biol 2025; 32:46-60. [PMID: 39824157 PMCID: PMC12021424 DOI: 10.1016/j.chembiol.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.
Collapse
Affiliation(s)
- Katerina Jones
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Camila Bernardo de Brito
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana Xavier Byndloss
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Cass C, Guruge J, Leekha S, Rengarajan S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. Cell Host Microbe 2025; 33:30-41.e6. [PMID: 39731916 PMCID: PMC11717617 DOI: 10.1016/j.chom.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of clinical outcomes. Microbiota humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clinically prevalent clade 1 lineages and identified candidate taxa, including Blautia, as markers of stable colonization. Using gnotobiotic mice engrafted with defined human microbiota, we validated strain-specific CDI severity across clade 1 strains isolated from patients. Mice engrafted with a community broadly representative of colonized patients were protected from severe disease across all strains without suppression of C. difficile colonization. These results underline the capacity of gut community structure to attenuate a diversity of pathogenic strains without inhibiting colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna L DeVeaux
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sakshi Khanna
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aura L Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wesley Agee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Janaki Guruge
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sidh Leekha
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sunaina Rengarajan
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 PMCID: PMC11731898 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Xu C, Zhu J, Tu K, Tang H, Zhou X, Li Q, Chen K, Yang X, Huang Y. The clinical features and risk factors of coagulopathy associated with cefoperazone/sulbactam: a nomogram prediction model. Front Pharmacol 2025; 15:1505653. [PMID: 39830359 PMCID: PMC11742127 DOI: 10.3389/fphar.2024.1505653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Background Cefoperazone/sulbactam (CPZ/SAM) is an important treatment option for infections caused by multidrug-resistant gram-negative bacteria. However, it is associated with an increased risk of coagulation disorders (CD) and causes severe bleeding in some instances. Early identification of risk factors and prediction of CD related to CPZ/SAM are crucial for prevention and treatment. This study aimed to explore the risk factors and developed a nomogram model for predicting the risk of coagulopathy in patients undergoing CPZ/SAM treatment. Methods A total of 1719 patients who underwent CPZ/SAM in the Affiliated Hospital of Southwest Medical University from August 2018 to August 2022, were recruited as the training cohort. For validation, 1,059 patients treated with CPZ/SAM from September 2022 to August 2024 were enrolled. Patients were divided into the CD and the N-CD groups. The occurrence of CD was designated as the dependent variable. The univariate and multivariate logistic regression analysis was performed to identify the risk factors of CD. A nomogram model was constructed from the multivariate logistic regression analysis and internally validated for model discrimination and calibration. The performance of the nomogram was estimated using the concordance index (C-index) and calibration curve. Results The multivariate logistic regression analysis resulted in the following independent risk factors for CD: baseline INR level (OR: 5.768, 95% CI: 0.484∼11.372, p = 0.036), nutritional risk (OR:2.711, 95%CI: 1.495∼4.125, p < 0.001), comorbidity of digestive system (OR:1.287, 95%CI: 0.434∼2.215, p = 0.004), poor food intake (OR:1.261, 95%CI: 0.145∼2.473, p = 0.032), ALB level (OR: -0.132, 95%CI: -0.229∼-0.044, p = 0.005) and GFR< 30 mL/min (OR: 1.925, 95%CI: 0.704∼3.337, p = 0.004). The internal validation confirmed the model's good performance (C-index, 0.905 [95% CI: 0.864∼0.945]). The calibration plots in the nomogram model were of high quality. Validation further confirmed the reliability of the nomogram, with a C-index of 0.886 (95% CI: 0.832-0.940). Conclusion The nomogram model facilitated accurate prediction of CD in patients undergoing CPZ/SAM. And this could potentially contribute to reducing the incidence of CPZ/SAM-associated CD and consequently improving patients' outcomes.
Collapse
Affiliation(s)
- Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junlong Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kun Tu
- School of pharmacy, Southwest Medical University, Luzhou, China
| | - Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinxin Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiuyu Li
- School of pharmacy, Southwest Medical University, Luzhou, China
| | - Kun Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Blakeley-Ruiz JA, Bartlett A, McMillan AS, Awan A, Walsh MV, Meyerhoffer AK, Vintila S, Maier JL, Richie TG, Theriot CM, Kleiner M. Dietary protein source alters gut microbiota composition and function. THE ISME JOURNAL 2025; 19:wraf048. [PMID: 40116459 PMCID: PMC12066410 DOI: 10.1093/ismejo/wraf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
The source of protein in a person's diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices impact the composition and function of the intestinal microbiota that ultimately modulate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determined the effects of seven different sources of dietary protein on the gut microbiota of mice using an integrated metagenomics-metaproteomics approach. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the molecular phenotype of microbiota members because measured proteins indicate the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial proteins involved in the degradation of amino acids and the degradation of glycosylations conjugated to dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes. Egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein sources can change the gut microbiota's metabolism, which could have major implications in the context of gut microbiota mediated diseases.
Collapse
Affiliation(s)
- J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States
| | - Arthur S McMillan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Ayesha Awan
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Molly Vanhoy Walsh
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alissa K Meyerhoffer
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Simina Vintila
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jessie L Maier
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Tanner G Richie
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
16
|
Stevens EJ, Li JD, Hector TE, Drew GC, Hoang K, Greenrod STE, Paterson S, King KC. Within-host competition causes pathogen molecular evolution and perpetual microbiota dysbiosis. THE ISME JOURNAL 2025; 19:wraf071. [PMID: 40244062 PMCID: PMC12066030 DOI: 10.1093/ismejo/wraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Pathogens newly invading a host must compete with resident microbiota. This within-host microbial warfare could lead to more severe disease outcomes or constrain the evolution of virulence. By passaging a widespread pathogen (Staphylococcus aureus) and a natural microbiota community across populations of nematode hosts, we show that the pathogen displaced microbiota and reduced species richness, but maintained its virulence across generations. Conversely, pathogen populations and microbiota passaged in isolation caused more host harm relative to their respective no-host controls. For the evolved pathogens, this increase in virulence was partly mediated by enhanced biofilm formation and expression of the global virulence regulator agr. Whole genome sequencing revealed shifts in the mode of selection from directional (on pathogens evolving in isolation) to fluctuating (on pathogens evolving in host microbiota). This approach also revealed that competitive interactions with the microbiota drove early pathogen genomic diversification. Metagenome sequencing of the passaged microbiota shows that evolution in pathogen-infected hosts caused a significant reduction in community stability (dysbiosis), along with restrictions on the co-existence of some species based on nutrient competition. Our study reveals how microbial competition during novel infection could determine the patterns and processes of evolution with major consequences for host health.
Collapse
Affiliation(s)
- Emily J Stevens
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jingdi D Li
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Tobias E Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Georgia C Drew
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Kim Hoang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Samuel T E Greenrod
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, Wirral, CH64 7TE, United Kingdom
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
17
|
Li Y, Rui W, Sheng X, Deng X, Li X, Meng L, Huang H, Yang J. Bifidobacterium breve synergizes with Akkermansia muciniphila and Bacteroides ovatus to antagonize Clostridioides difficile. THE ISME JOURNAL 2025; 19:wraf086. [PMID: 40302032 DOI: 10.1093/ismejo/wraf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
The development of ecologically based in vivo microecological formulations for treating Clostridioides difficile infection (CDI) is a current research focus. Here, we selected three microorganisms-Akkermansia muciniphila (AM), Bacteroides ovatus (BO), and Bifidobacterium breve (BB)-to formulate a mixed bacterial formulation (ABB). Subsequently, we evaluated the ecological interactions among these three microorganisms and investigated their therapeutic efficacy in a CDI murine model. Our investigation revealed the presence of a commensalism relationship among AM, BO, and BB. These microorganisms collectively formed a robust and densely packed symbiotic biofilm, with BB being the predominant member in terms of numerical abundance. This phenomenon was concomitant with a marked elevation in the levels of AI-2 and c-di-GMP. ABB exhibits the capability to inhibit crucial biological indicators of C. difficile (CD), such as toxin production, through the secretion of substantial quantities of lactic acid. Additionally, ABB indirectly suppresses CD by activating the NF-κB signaling pathway in Raw 264.7 cells, which stimulates the secretion of significant quantities of IL-6, IL-8, TNF-α, and IL-1β. ABB demonstrated exceptional efficacy in a CDI murine model, as evidenced by a substantial enhancement in survival rates and intestinal short-chain fatty acid level, the down-regulation of inflammation-associated cytokine secretion, a notable reduction in fecal CD toxin levels, and CD viable bacterial counts. Concurrently, there was an augmentation in the level of gut microbial diversity, accompanied by a rapid reduction in Enterococcus abundance. This ABB formulation holds promise for further development into a novel microecological formulation for the treatment of CDI.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Wen Rui
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Xiaoya Sheng
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Xilong Deng
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Xiaoqian Li
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Lingtong Meng
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - He Huang
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| | - Jingpeng Yang
- State Key Laboratory of Microbial Technology, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu 210033, China
| |
Collapse
|
18
|
Kreis V, Toffano-Nioche C, Denève-Larrazet C, Marvaud JC, Garneau JR, Dumont F, van Dijk EL, Jaszczyszyn Y, Boutserin A, D'Angelo F, Gautheret D, Kansau I, Janoir C, Soutourina O. Dual RNA-seq study of the dynamics of coding and non-coding RNA expression during Clostridioides difficile infection in a mouse model. mSystems 2024; 9:e0086324. [PMID: 39601557 DOI: 10.1128/msystems.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Clostridioides difficile is the leading cause of healthcare-associated diarrhea in industrialized countries. Many questions remain to be answered about the mechanisms governing its interaction with the host during infection. Non-coding RNAs (ncRNAs) contribute to shape virulence in many pathogens and modulate host responses; however, their role in C. difficile infection (CDI) has not been explored. To better understand the dynamics of ncRNA expression contributing to C. difficile infectious cycle and host response, we used a dual RNA-seq approach in a conventional murine model. From the pathogen side, this transcriptomic analysis revealed the upregulation of virulence factors, metabolism, and sporulation genes, as well as the identification of 61 ncRNAs differentially expressed during infection that correlated with the analysis of available raw RNA-seq data sets from two independent studies. From these data, we identified 118 potential new transcripts in C. difficile, including 106 new ncRNA genes. From the host side, we observed the induction of several pro-inflammatory pathways, and among the 185 differentially expressed ncRNAs, the overexpression of microRNAs (miRNAs) previously associated to inflammatory responses or unknown long ncRNAs and miRNAs. A particular host gene expression profile could be associated to the symptomatic infection. In accordance, the metatranscriptomic analysis revealed specific microbiota changes accompanying CDI and specific species associated with symptomatic infection in mice. This first adaptation of in vivo dual RNA-seq to C. difficile contributes to unravelling the regulatory networks involved in C. difficile infectious cycle and host response and provides valuable resources for further studies of RNA-based mechanisms during CDI.IMPORTANCEClostridioides difficile is a major cause of nosocomial infections associated with antibiotic therapy classified as an urgent antibiotic resistance threat. This pathogen interacts with host and gut microbial communities during infection, but the mechanisms of these interactions remain largely to be uncovered. Noncoding RNAs contribute to bacterial virulence and host responses, but their expression has not been explored during C. difficile infection. We took advantage of the conventional mouse model of C. difficile infection to look simultaneously to the dynamics of gene expression in pathogen, its host, and gut microbiota composition, providing valuable resources for future studies. We identified a number of ncRNAs that could mediate the adaptation of C. difficile inside the host and the crosstalk with the host immune response. Promising inflammation markers and potential therapeutic targets emerged from this work open new directions for RNA-based and microbiota-modulatory strategies to improve the efficiency of C. difficile infection treatments.
Collapse
Affiliation(s)
- Victor Kreis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | | | | | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Francesca D'Angelo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Imad Kansau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
19
|
Huang X, Johnson AE, Brehm JN, Thanh Do TV, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603937. [PMID: 39071387 PMCID: PMC11275744 DOI: 10.1101/2024.07.17.603937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth, and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with six clinically-used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Further, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. Inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. This data provides further support for the importance of bile salt-independent mechanisms in regulating colonization of C. difficile.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, TX USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
20
|
Wang Z, Song K, Kim BS, Manion J. Sensory neuroimmune interactions at the barrier. Mucosal Immunol 2024; 17:1151-1160. [PMID: 39374664 DOI: 10.1016/j.mucimm.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Epithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery. Our increasing understanding of the anatomic and functional characteristics of the sensory nervous system is greatly advancing a new field of peripheral neuroimmunology and subsequently changing our understanding of mucosal immunology. Herein, we detail how sensory biology is informing mucosal neuroimmunology, even beyond neuroimmune interactions seen within the central and autonomic nervous systems.
Collapse
Affiliation(s)
- Zhen Wang
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keaton Song
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA.
| | - John Manion
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
22
|
Ouyang Z, Zhao H, Zhao M, Yang Y, Zhao J. Type IV pili are involved in phenotypes associated with Clostridioides difficile pathogenesis. Crit Rev Microbiol 2024; 50:1011-1019. [PMID: 37452617 DOI: 10.1080/1040841x.2023.2235002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, rod-shaped, obligate anaerobe that is the leading cause of antibiotic-associated diarrhea. Type IV pili (T4P) are elongated appendages on the surface of C. difficile that are polymerized from many pilin proteins. T4P play an important role in C. difficile adherence and particularly in its persistence in the host intestine. Recent studies have shown that T4P promote C. difficile aggregation, surface motility, and biofilm formation, which may enhance its pathogenicity. Additionally, the second messenger cyclic diguanylate increases pilA1 transcript abundance, indirectly promoting T4P-mediated aggregation, surface motility, and biofilm formation of C. difficile. This review summarizes recent advances in C. difficile T4P research and the physiological activities of T4P in the context of C. difficile pathogenesis.
Collapse
Affiliation(s)
- Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Hanlin Zhao
- Department of Medical Laboratory, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yaxuan Yang
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
23
|
Midani FS, Danhof HA, Mathew N, Ardis CK, Garey KW, Spinler JK, Britton RA. Emerging Clostridioides difficile ribotypes have divergent metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608124. [PMID: 39185189 PMCID: PMC11343193 DOI: 10.1101/2024.08.15.608124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Clostridioides difficile is a gram-positive spore-forming pathogen that commonly causes diarrheal infections in the developed world. Although C. difficile is a genetically diverse species, certain ribotypes are overrepresented in human infections. It is unknown if metabolic adaptations are essential for the emergence of these epidemic ribotypes. Here, we tested carbon substrate utilization by 88 C. difficile isolates and looked for differences in growth between 22 ribotypes. By profiling clinical isolates, we assert that C. difficile is a generalist species capable of growing on a variety of carbon substrates. Further, C. difficile strains clustered by phylogenetic relationship and displayed ribotype-specific and clade-specific metabolic capabilities. Surprisingly, we observed that two emerging lineages, ribotypes 023 and 255, have divergent metabolic phenotypes. In addition, although C. difficile Clade 5 is the most evolutionary distant clade and often detected in animals, it displayed more robust growth on simple dietary sugars than Clades 1-4. Altogether, our results corroborate the generalist metabolic strategy of C. difficile and demonstrate lineage-specific metabolic capabilities. In addition, our approach can be adapted to the study of additional pathogens to ascertain their metabolic niches in the gut. IMPORTANCE The gut pathogen Clostridioides difficile utilizes a wide range of carbon sources. Microbial communities can be rationally designed to combat C. difficile by depleting its preferred nutrients in the gut. However, C. difficile is genetically diverse with hundreds of identified ribotypes and most of its metabolic studies were performed with lab-adapted strains. Here, we profiled carbon metabolism by a myriad of C. difficile clinical isolates. While the metabolic capabilities of these isolates clustered by their genetic lineage, we observed surprising metabolic divergence between two emerging lineages. We also found that the most genetically distant clade grew robustly on simple dietary sugars, posing intriguing questions about the adaptation of C. difficile to the human gut. Altogether, our results underscore the importance of considering the metabolic diversity of pathogens in the study of their evolution and the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Firas S. Midani
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathanael Mathew
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Colleen K. Ardis
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert A. Britton
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
25
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Guruge J, Leekha S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603094. [PMID: 39026847 PMCID: PMC11257545 DOI: 10.1101/2024.07.11.603094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in clinical presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of outcomes. Microbiota-humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clade 1 lineages and identified commensal Blautia associated with markers of non-pathogenic colonization. Using gnotobiotic mice engrafted with defined human microbiota, we observed strain-specific CDI severity across clade 1 strains. Yet, mice engrafted with a higher diversity community were protected from severe disease across all strains without suppression of C. difficile colonization. These results indicate that when colonization resistance has been breached without overt infection, commensals can attenuate a diversity of virulent strains without inhibiting pathogen colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
|
26
|
Brosse A, Coullon H, Janoir C, Péchiné S. The state of play of rodent models for the study of Clostridioides difficile infection. J Med Microbiol 2024; 73:001857. [PMID: 39028257 PMCID: PMC11316558 DOI: 10.1099/jmm.0.001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Séverine Péchiné
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
27
|
Anderson BG, Raskind A, Hissong R, Dougherty MK, McGill SK, Gulati AS, Theriot CM, Kennedy RT, Evans CR. Offline Two-Dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome Following Fecal Microbiota Transplantation. J Proteome Res 2024; 23:2000-2012. [PMID: 38752739 DOI: 10.1021/acs.jproteome.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Biological interpretation of untargeted LC-MS-based metabolomics data depends on accurate compound identification, but current techniques fall short of identifying most features that can be detected. The human fecal metabolome is complex, variable, incompletely annotated, and serves as an ideal matrix to evaluate novel compound identification methods. We devised an experimental strategy for compound annotation using multidimensional chromatography and semiautomated feature alignment and applied these methods to study the fecal metabolome in the context of fecal microbiota transplantation (FMT) for recurrent C. difficile infection. Pooled fecal samples were fractionated using semipreparative liquid chromatography and analyzed by an orthogonal LC-MS/MS method. The resulting spectra were searched against commercial, public, and local spectral libraries, and annotations were vetted using retention time alignment and prediction. Multidimensional chromatography yielded more than a 2-fold improvement in identified compounds compared to conventional LC-MS/MS and successfully identified several rare and previously unreported compounds, including novel fatty-acid conjugated bile acid species. Using an automated software-based feature alignment strategy, most metabolites identified by the new approach could be matched to features that were detected but not identified in single-dimensional LC-MS/MS data. Overall, our approach represents a powerful strategy to enhance compound identification and biological insight from untargeted metabolomics data.
Collapse
Affiliation(s)
- Brady G Anderson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Compound Identification Development Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Raskind
- Michigan Compound Identification Development Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Rylan Hissong
- Michigan Compound Identification Development Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Michael K Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah K McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ajay S Gulati
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Compound Identification Development Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles R Evans
- Michigan Compound Identification Development Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor Michigan 48109, United States
| |
Collapse
|
28
|
Costa DVS, Pham N, Loureiro AV, Yang SE, Behm BW, Warren CA. Clostridioides difficile infection promotes gastrointestinal dysfunction in human and mice post-acute phase of the disease. Anaerobe 2024; 87:102837. [PMID: 38527650 PMCID: PMC11180562 DOI: 10.1016/j.anaerobe.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Natalie Pham
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Suemin E Yang
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Brian W Behm
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Yang T, Li G, Xu Y, He X, Song B, Cao Y. Characterization of the gut microbiota in polycystic ovary syndrome with dyslipidemia. BMC Microbiol 2024; 24:169. [PMID: 38760705 PMCID: PMC11100065 DOI: 10.1186/s12866-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the β diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.
Collapse
Affiliation(s)
- Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
30
|
Li J, Tian C, Feng S, Cheng W, Tao S, Li C, Xiao Y, Wei H. Modulation of Gut Microbial Community and Metabolism by Bacillus licheniformis HD173 Promotes the Growth of Nursery Piglets Model. Nutrients 2024; 16:1497. [PMID: 38794735 PMCID: PMC11124511 DOI: 10.3390/nu16101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Maintaining the balance and stability of the gut microbiota is crucial for the gut health and growth development of humans and animals. Bacillus licheniformis (B. licheniformis) has been reported to be beneficial to the gut health of humans and animals, whereas the probiotic effects of a new strain, B. licheniformis HD173, remain uncertain. In this study, nursery piglets were utilized as animal models to investigate the extensive impact of B. licheniformis HD173 on gut microbiota, metabolites, and host health. The major findings were that this probiotic enhanced the growth performance and improved the health status of the nursery piglets. Specifically, it reduced the level of pro-inflammatory cytokines IL-1β and TNF-α in the serum while increasing the level of IL-10 and SOD. In the gut, B. licheniformis HD173 reduced the abundance of pathogenic bacteria such as Mycoplasma, Vibrio, and Vibrio metschnikovii, while it increased the abundance of butyrate-producing bacteria, including Oscillospira, Coprococcus, and Roseburia faecis, leading to an enhanced production of butyric acid. Furthermore, B. licheniformis HD173 effectively improved the gut metabolic status, enabling the gut microbiota to provide the host with stronger metabolic abilities for nutrients. In summary, these findings provide scientific evidence for the utilization of B. licheniformis HD173 in the development and production of probiotic products for maintaining gut health in humans and animals.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shuaifei Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| |
Collapse
|
31
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
32
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
33
|
Zhong S, Yang J, Huang H. Efficacy Assessment of the Co-Administration of Vancomycin and Metronidazole in Clostridioides difficile-Infected Mice Based on Changes in Intestinal Ecology. J Microbiol Biotechnol 2024; 34:828-837. [PMID: 38668685 DOI: 10.4014/jmb.2312.12034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 05/16/2024]
Abstract
Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.
Collapse
Affiliation(s)
- Saiwei Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P.R. China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
34
|
Masset Z, Gunaratnam S, Millette M, McFarland LV, Lacroix M. Environmental and Nutritional Parameters Modulating Genetic Expression for Virulence Factors of Clostridioides difficile. Antibiotics (Basel) 2024; 13:365. [PMID: 38667041 PMCID: PMC11047382 DOI: 10.3390/antibiotics13040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridioides difficile infections (CDIs) continue to be a persistent healthcare concern despite newer antibiotic treatments, enhanced infection control practices, and preventive strategies focused on restoring the protective intestinal microbial barrier. Recent strides in gene sequencing research have identified many genes regulating diverse virulence factors for CDIs. These genes may be over- or under-expressed when triggered by various environmental and nutritional factors. The aims of this paper are to review the important genes involved in C. difficile pathogenesis and to identify modifiable environmental, nutritional, and other factors that may trigger the expression of these genes and thus offer new strategies to prevent CDIs.
Collapse
Affiliation(s)
- Zoe Masset
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| | - Sathursha Gunaratnam
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Mathieu Millette
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Lynne V. McFarland
- Public Health Reserves Corps, Seattle, WA 98115, USA
- McFarland Consulting, Seattle, WA 98115, USA
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| |
Collapse
|
35
|
Wang Q, Wang F, Tang L, Wang Y, Zhou Y, Li X, Jin M, Fu A, Li W. Bacillus amyloliquefaciens SC06 alleviated intestinal damage induced by inflammatory via modulating intestinal microbiota and intestinal stem cell proliferation and differentiation. Int Immunopharmacol 2024; 130:111675. [PMID: 38377852 DOI: 10.1016/j.intimp.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
The aim of our research was to investigate the effects of Bacillus amyloliquefaciens SC06 on growth performance, immune status, intestinal stem cells (ISC) proliferation and differentiation, and gut microbiota in weaned piglets. Twelve piglets (male, 21 days old, 6.11 ± 0.12 kg) were randomly allocated to CON and SC06 (1 × 108 cfu/kg to diet) groups. This experiment lasted three weeks. Our results showed that SC06 increased (P < 0.05) growth performance and reduced the diarrhea rate in weaned piglets. In addition, SC06 increased intestinal morphology and interleukin (IL)-10 levels, and decreased (P < 0.01) necrosis factor (TNF-α) levels in jejunum and serum. Moreover, weaning piglets fed SC06 had a better balance of colonic microbiota, with an increase in the abundance of Lactobacillus. Furthermore, SC06 enhanced ISCs proliferation and induced its differentiation to goblet cells via activating wnt/β-catenin pathway in weaned piglets and intestinal organoid. Taken together, SC06 supplementation improved the growth performance and decreased inflammatory response of piglets by modulating intestinal microbiota, thereby accelerating ISC proliferation and differentiation and promoting epithelial barrier healing.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
36
|
Bali P, Lal P, Sivapuram MS, Kutikuppala LVS, Avti P, Chanana A, Kumar S, Anand A. Mind over Microbes: Investigating the Interplay between Lifestyle Factors, Gut Microbiota, and Brain Health. Neuroepidemiology 2024; 58:426-448. [PMID: 38531341 DOI: 10.1159/000538416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.
Collapse
Affiliation(s)
- Parul Bali
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Parth Lal
- Advance Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhava Sai Sivapuram
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Peda Avutapalli, India
| | | | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Saurabh Kumar
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- CCRYN-Collaborative Centre for Mind Body Intervention through Yoga, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Centre for Cognitive Science and Phenomenology, Panjab University, Chandigarh, India
| |
Collapse
|
37
|
Warren Norris MAH, Plaskon DM, Tamayo R. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination. J Mol Biol 2024; 436:168456. [PMID: 38278436 PMCID: PMC10942720 DOI: 10.1016/j.jmb.2024.168456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Clostridioides difficile is an intestinal pathogen that exhibits phase variation of flagella and toxins through inversion of the flagellar (flg) switch controlling flagellar and toxin gene expression. The transcription termination factor Rho preferentially inhibits swimming motility of bacteria with the 'flg-OFF' switch sequence. How C. difficile Rho mediates this selectivity was unknown. C. difficile Rho contains an N-terminal insertion domain (NID) which is found in a subset of Rho orthologues and confers diverse functions. Here we determined how Rho distinguishes between flg-ON and -OFF mRNAs and the roles of the NID and other domains of C. difficile Rho. Using in vitro ATPase assays, we determined that Rho specifically binds a region containing the left inverted repeat of the flg switch, but only of flg-OFF mRNA, indicating that differential termination is mediated by selective Rho binding. Using a suite of in vivo and in vitro assays in C. difficile, we determined that the NID is essential for Rho termination of flg-OFF mRNA, likely by influencing the ability to form stable hexamers, and the RNA binding domain is critical for flg-OFF specific termination. This work gives insight into the novel mechanism by which Rho interacts with flg mRNA to mediate phase variation of flagella and toxins in C. difficile and broadens our understanding of Rho-mediated termination in an organism with an AT-rich genome.
Collapse
Affiliation(s)
- Mercedes A H Warren Norris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dylan M Plaskon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Pensinger DA, Dobrila HA, Stevenson DM, Hryckowian ND, Amador-Noguez D, Hryckowian AJ. Exogenous butyrate inhibits butyrogenic metabolism and alters virulence phenotypes in Clostridioides difficile. mBio 2024; 15:e0253523. [PMID: 38289141 PMCID: PMC10936429 DOI: 10.1128/mbio.02535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
The gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood. A prominent class of gut microbiome-produced metabolites important for colonization resistance against C. difficile is short-chain fatty acids (SCFAs). In particular, one SCFA (butyrate) decreases the fitness of C. difficile in vitro and is correlated with C. difficile-inhospitable gut environments, both in mice and in humans. Here, we demonstrate that butyrate-dependent growth inhibition in C. difficile occurs under conditions where C. difficile also produces butyrate as a metabolic end product. Furthermore, we show that exogenous butyrate is internalized into C. difficile cells and is incorporated into intracellular CoA pools where it is metabolized in a reverse (energetically unfavorable) direction to crotonyl-CoA and (S)-3-hydroxybutyryl-CoA and/or 4-hydroxybutyryl-CoA. This internalization of butyrate and reverse metabolic flow of a butyrogenic pathway(s) in C. difficile coincides with alterations in toxin release and sporulation. Together, this work highlights butyrate as a marker of a C. difficile-inhospitable environment to which C. difficile responds by releasing its diarrheagenic toxins and producing environmentally resistant spores necessary for transmission between hosts. These findings provide foundational data for understanding the molecular and genetic basis of how C. difficile growth is inhibited by butyrate and how butyrate alters C. difficile virulence in the face of a highly competitive and dynamic gut environment.IMPORTANCEThe gut microbiome engenders colonization resistance against the diarrheal pathogen Clostridioides difficile, but the molecular basis of this colonization resistance is incompletely understood, which hinders the development of novel therapeutic interventions for C. difficile infection (CDI). We investigated how C. difficile responds to butyrate, an end-product of gut microbiome community metabolism which inhibits C. difficile growth. We show that exogenously produced butyrate is internalized into C. difficile, which inhibits C. difficile growth by interfering with its own butyrate production. This growth inhibition coincides with increased toxin release from C. difficile cells and the production of environmentally resistant spores necessary for transmission between hosts. Future work to disentangle the molecular mechanisms underlying these growth and virulence phenotypes will likely lead to new strategies to restrict C. difficile growth in the gut and minimize its pathogenesis during CDI.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Horia A. Dobrila
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Ghosh S, Erickson D, Chua MJ, Collins J, Jala VR. The microbial metabolite urolithin A reduces Clostridioides difficile toxin expression and toxin-induced epithelial damage. mSystems 2024; 9:e0125523. [PMID: 38193707 PMCID: PMC10878087 DOI: 10.1128/msystems.01255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacterium responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activity, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.IMPORTANCETherapy for Clostridioides difficile infections includes the use of antibiotics, immunosuppressors, and fecal microbiota transplantation. However, these treatments have several drawbacks, including the loss of colonization resistance, the promotion of autoimmune disorders, and the potential for unknown pathogens in donor samples. To date, the potential benefits of microbial metabolites in CDI-induced colitis have not been fully investigated. Here, we report for the first time that the microbial metabolite urolithin A has the potential to block toxin production from C. difficile and enhance gut barrier function to mitigate CDI-induced colitis.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
| | - Daniel Erickson
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Michelle J. Chua
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - James Collins
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
40
|
Smith AB, Specker JT, Hewlett KK, Scoggins TR, Knight M, Lustig AM, Li Y, Evans KM, Guo Y, She Q, Christopher MW, Garrett TJ, Moustafa AM, Van Tyne D, Prentice BM, Zackular JP. Liberation of host heme by Clostridioides difficile-mediated damage enhances Enterococcus faecalis fitness during infection. mBio 2024; 15:e0165623. [PMID: 38078767 PMCID: PMC10790701 DOI: 10.1128/mbio.01656-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Clostridioides difficile and Enterococcus faecalis are two pathogens of great public health importance. Both bacteria colonize the human gastrointestinal tract where they are known to interact in ways that worsen disease outcomes. We show that the damage associated with C. difficile infection (CDI) releases nutrients that benefit E. faecalis. One particular nutrient, heme, allows E. faecalis to use oxygen to generate energy and grow better in the gut. Understanding the mechanisms of these interspecies interactions could inform therapeutic strategies for CDI.
Collapse
Affiliation(s)
- Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Katharine K. Hewlett
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Montana Knight
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail M. Lustig
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Kirsten M. Evans
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Qianxuan She
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Timothy J. Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed M. Moustafa
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
43
|
Hill CA, Casterline BW, Valguarnera E, Hecht AL, Shepherd ES, Sonnenburg JL, Bubeck Wardenburg J. Bacteroides fragilis toxin expression enables lamina propria niche acquisition in the developing mouse gut. Nat Microbiol 2024; 9:85-94. [PMID: 38168616 PMCID: PMC11214347 DOI: 10.1038/s41564-023-01559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacterial toxins are well-studied virulence factors; however, recent studies have revealed their importance in bacterial niche adaptation. Enterotoxigenic Bacteroides fragilis (ETBF) expresses B. fragilis toxin (BFT) that we hypothesized may contribute to both colonic epithelial injury and niche acquisition. We developed a vertical transmission model for ETBF in mice that showed that BFT enabled ETBF to access a lamina propria (LP) niche during colonic microbiome development that was inaccessible to non-toxigenic B. fragilis. LP entry by ETBF required BFT metalloprotease activity, and showed temporal restriction to the pre-weaning period, dependent on goblet-cell-associated passages. In situ single-cell analysis showed bft expression at the apical epithelial surface and within the LP. BFT expression increased goblet cell number and goblet-cell-associated passage formation. These findings define a paradigm by which bacterial toxin expression specifies developmental niche acquisition, suggesting that a selective advantage conferred by a toxin may impact long-term host health.
Collapse
Affiliation(s)
- Craig A Hill
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Benjamin W Casterline
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Aaron L Hecht
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | |
Collapse
|
44
|
Yang J, Rui W, Zhong S, Li X, Liu W, Meng L, Li Y, Huang H. Symbiotic biofilms formed by Clostridioides difficile and bacteroides thetaiotaomicron in the presence of vancomycin. Gut Microbes 2024; 16:2390133. [PMID: 39132815 PMCID: PMC11321409 DOI: 10.1080/19490976.2024.2390133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| |
Collapse
|
45
|
Anderson SM, Sears CL. The Role of the Gut Microbiome in Cancer: A Review, With Special Focus on Colorectal Neoplasia and Clostridioides difficile. Clin Infect Dis 2023; 77:S471-S478. [PMID: 38051969 PMCID: PMC10697667 DOI: 10.1093/cid/ciad640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
The gut microbiome has coevolved with humans to aid in physiologic functions and prevent disease. An increasing prevalence of gut dysbiosis in modern society exists and has strong linkages to multiple disease processes common in the developed world. Mechanisms for microbiome-human interactions that impact host homeostasis include bacterial metabolite/toxin production, biofilm formation with mucous layer infiltration, and host immune system modulation. Most of this crosstalk occurs at the epithelial layer of the gut, and as such the role of these interactions in the induction of colorectal cancer-a highly prevalent disease globally and one undergoing significant epidemiologic shifts-is under increasing scrutiny. Although multiple individual gut bacteria have been hypothesized as possible driver organisms in the oncogenic process, no bacterium has been definitively identified as a causal agent of colorectal cancer, suggesting that host lifestyle factors, microbiome community interactions, and the mucosal and/or systemic immune response may play a critical role in the process. Recent evidence has emerged implicating the ubiquitous human pathogen Clostridioides difficile as a possible promoter of colorectal cancer through chronic toxin-mediated cellular changes. Although much remains to be defined regarding the natural history of infections caused by this pathogen and its potential for oncogenesis, it provides a strong model for the role of both individual bacteria and of the gut microbial community as a whole in the development of colorectal cancer.
Collapse
Affiliation(s)
- Sean M Anderson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
47
|
Ramoneda J, Jensen TBN, Price MN, Casamayor EO, Fierer N. Taxonomic and environmental distribution of bacterial amino acid auxotrophies. Nat Commun 2023; 14:7608. [PMID: 37993466 PMCID: PMC10665431 DOI: 10.1038/s41467-023-43435-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Many microorganisms are auxotrophic-unable to synthesize the compounds they require for growth. With this work, we quantify the prevalence of amino acid auxotrophies across a broad diversity of bacteria and habitats. We predicted the amino acid biosynthetic capabilities of 26,277 unique bacterial genomes spanning 12 phyla using a metabolic pathway model validated with empirical data. Amino acid auxotrophy is widespread across bacterial phyla, but we conservatively estimate that the majority of taxa (78.4%) are able to synthesize all amino acids. Our estimates indicate that amino acid auxotrophies are more prevalent among obligate intracellular parasites and in free-living taxa with genomic attributes characteristic of 'streamlined' life history strategies. We predicted the amino acid biosynthetic capabilities of bacterial communities found in 12 unique habitats to investigate environmental associations with auxotrophy, using data compiled from 3813 samples spanning major aquatic, terrestrial, and engineered environments. Auxotrophic taxa were more abundant in host-associated environments (including the human oral cavity and gut) and in fermented food products, with auxotrophic taxa being relatively rare in soil and aquatic systems. Overall, this work contributes to a more complete understanding of amino acid auxotrophy across the bacterial tree of life and the ecological contexts in which auxotrophy can be a successful strategy.
Collapse
Affiliation(s)
- Josep Ramoneda
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
| | - Thomas B N Jensen
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilio O Casamayor
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
48
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
49
|
Grześkowiak Ł, Vahjen W, Zentek J. Influence of high- and low-fermentable dietary fibres in sows' diet on the colostrum potential against Clostridioides difficile toxin-induced effects in IPEC-J2 cells. J Anim Physiol Anim Nutr (Berl) 2023; 107:1376-1380. [PMID: 37203280 DOI: 10.1111/jpn.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Sow colostrum has been reported to protect the IPEC-J2 cells and piglet colon tissues from detrimental effect of Clostridioides difficile toxins. Since dietary fibre can influence the colostrum composition in sows, we hypothesised that it can also differentially affect the colostrum potential against C. difficile toxin-induced effects in IPEC-J2. IPEC-J2 were incubated with colostrum from sows fed either high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibres and in combination with the toxins and analysed by trans-epithelial electrical resistance (TEER) and cell viability using propidium iodide in flow cytometry. Toxins drastically decreased the integrity of IPEC-J2. Colostrum from the sows fed either SBP or LNC exerted protective effect against toxins on IPEC-J2 integrity and this effect was numerically superior in the SBP group. Differences in the percentages of TEER between different treatments were noted after 2 h (p = 0.043), 3 h (p = 0.017) and 4 h (p = 0.017) of incubation and a tendency for differences was noted after 5 h of incubation (p = 0.071). Colostrum from either SBP- or LNC-fed sows did not protect the IPEC-J2 from toxin-induced death. Colostrum of the sows fed either high-fermentable or low-fermentable fibres has a potential to protect IPEC-J2 from the loss of integrity, which may be important in protection from C. difficile-infection development in neonatal piglets.
Collapse
Affiliation(s)
- Łukasz Grześkowiak
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
50
|
Frost LR, Stark R, Anonye BO, MacCreath TO, Ferreira LRP, Unnikrishnan M. Dual RNA-seq identifies genes and pathways modulated during Clostridioides difficile colonization. mSystems 2023; 8:e0055523. [PMID: 37615437 PMCID: PMC10654110 DOI: 10.1128/msystems.00555-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE The initial interactions between the colonic epithelium and the bacterium are likely critical in the establishment of Clostridioides difficile infection, one of the major causes of hospital-acquired diarrhea worldwide. Molecular interactions between C. difficile and human gut cells have not been well defined mainly due to the technical challenges of studying cellular host-pathogen interactions with this anaerobe. Here we have examined transcriptional changes occurring in the pathogen and host cells during the initial 24 hours of infection. Our data indicate several changes in metabolic pathways and virulence-associated factors during the initial bacterium-host cell contact and early stages of infection. We describe canonical pathways enriched based on the expression profiles of a dual RNA sequencing in the host and bacterium, and functions of bacterial factors that are modulated during infection. This study thus provides fresh insight into the early C. difficile infection process.
Collapse
Affiliation(s)
- Lucy R. Frost
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Richard Stark
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Blessing O. Anonye
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas O. MacCreath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ludmila R. P. Ferreira
- RNA Systems Biology Laboratory (RSBL), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|