1
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
2
|
Yin S, Mao M, Gong L, Zhu Y, Wan Y, Tong X, Wang J, Wang G, Liu Y, Wu C, Huang R, Chen Y. CTLA4 modulates B cell receptor signals to inhibit HBsAb secretion in chronic hepatitis B patients. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167848. [PMID: 40279930 DOI: 10.1016/j.bbadis.2025.167848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Restoring B cell defects is crucial to achieve the functional cure of chronic hepatitis B virus (CHB) infection, yet the specific targets remain largely unexplored. Our study identified that CTLA4 was highly upregulated in both peripheral and hepatic HBsAg-specific B cells from CHB patients, while effective peginterferon-α treatment could reduce the frequency of CTLA4+HBsAg+ B cells. Single-cell RNA-seq analysis revealed that the diminished IL-6 JAK/STAT3 and IL-2/STAT5 signaling pathways in memory B cells from CHB patients,which might contribute to the incapability of HBsAb antibody secretion. CTLA4+ B cells, especially from CHB patients, consistently showed defective responses in B cell receptor signaling and inflammatory responses compared to CTLA4- B cells. Notably, CTLA4 depletion partially restored the secretion of HBsAb in vitro from peripheral B cells from CHB patients, but also could restore anti-HBs humoral responses and potentiate viral clearance in HBV mouse model. Mechanistic analysis revealed that CTLA4 is directly bound to SHP-1, resulting in the impaired Jak-STAT and B cell receptor signaling pathway. Collectively, our data highlights an unappreciated role of CTLA4 on B cell responses. Targeting CTLA4 on B cells holds promise to achieve the functional cure of CHB patients.
Collapse
Affiliation(s)
- Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Minxin Mao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Linyan Gong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yijia Zhu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yawen Wan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Guiyang Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Yong Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| |
Collapse
|
3
|
Dara L, De Martin E. Immune-Mediated Liver Injury From Checkpoint Inhibitor: An Evolving Frontier With Emerging Challenges. Liver Int 2025; 45:e16198. [PMID: 39868913 PMCID: PMC11771569 DOI: 10.1111/liv.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have transformed the treatment of cancer, though they come with the risk of immune-related adverse (irAEs) events such as hepatotoxicity or Immune-mediated Liver Injury from Checkpoint Inhibitors (ILICI). ILICI is a serious irAE that, when severe, requires cessation of ICI and initiation of immunosuppression. Cytotoxic T Lymphocytes (CTLs) play a central role in ILICI; however, they are just part of the picture as immunotherapy broadly impacts all aspects of the immune microenvironment and can directly and indirectly activate innate and adaptive immune cells. Clinically, as our understanding of this entity grows, we encounter new challenges. The presentation of ILICI is heterogeneous with respect to latency, pattern of injury (hepatitis vs. cholangitis) and severity. This review focuses on our knowledge regarding risk factors, presentation and treatment of ILICI including ILICI refractory to steroids. An emerging topic, the possibility of rechallenge while accepting some risk, in patients who experience ILICI but require immunotherapy, is also discussed. This review provides an update on the current knowns and unknowns in ILICI and highlights several knowledge gaps where studies are needed.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver DiseaseKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eleonora De Martin
- APHP, Hôpital Paul‐BrousseCentre Hépato‐Biliaire, Inserm, Unité 1193, Université Paris‐Saclay, FHU HepatinovVillejuifFrance
| |
Collapse
|
4
|
Jiang Y, Immadi MS, Wang D, Zeng S, On Chan Y, Zhou J, Xu D, Joshi T. IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network. J Adv Res 2024:S2090-1232(24)00320-5. [PMID: 39097091 DOI: 10.1016/j.jare.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments. OBJECTIVES Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients. METHODS The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients' data from several clinical trials covering melanoma, gastric cancer, and bladder cancer. RESULTS Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu. CONCLUSION IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Yen On Chan
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA; Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
5
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
6
|
Munir AZ, Gutierrez A, Qin J, Lichtman AH, Moslehi JJ. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer 2024; 24:540-553. [PMID: 38982146 DOI: 10.1038/s41568-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized oncology, with nearly 50% of all patients with cancer eligible for treatment with ICIs. However, patients on ICI therapy are at risk for immune-related toxicities that can affect any organ. Inflammation of the heart muscle, known as myocarditis, resulting from ICI targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein 1 (PD1) and PD1 ligand 1 (PDL1) is an infrequent but potentially fatal complication. ICI-mediated myocarditis (ICI-myocarditis) is a growing clinical entity given the widespread use of ICIs, its increased clinical recognition and growing use of combination ICI treatment, a well-documented risk factor for ICI-myocarditis. In this Review, we approach ICI-myocarditis from a basic and mechanistic perspective, synthesizing the recent data from both preclinical models and patient samples. We posit that mechanistic understanding of the fundamental biology of immune-checkpoint molecules may yield new insights into disease processes, which will enable improvement in diagnostic and therapeutic approaches. The syndrome of ICI-myocarditis is novel, and our understanding of immune checkpoints in the heart is in its nascency. Yet, investigations into the pathophysiology will inform better patient risk stratification, improved diagnostics and precision-based therapies for patients.
Collapse
Affiliation(s)
- Amir Z Munir
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Alan Gutierrez
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Javid J Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
7
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
8
|
Mu-Mosley H, von Itzstein MS, Fattah F, Liu J, Zhu C, Xie Y, Wakeland EK, Park JY, Kahl BS, Diefenbach CS, Gerber DE. Distinct autoantibody profiles across checkpoint inhibitor types and toxicities. Oncoimmunology 2024; 13:2351255. [PMID: 38737792 PMCID: PMC11085965 DOI: 10.1080/2162402x.2024.2351255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) are increasingly used in combination. To understand the effects of different ICI categories, we characterized changes in circulating autoantibodies in patients enrolled in the E4412 trial (NCT01896999) of brentuximab vedotin (BV) plus ipilimumab, BV plus nivolumab, or BV plus ipilimumab-nivolumab for Hodgkin Lymphoma. Cycle 2 Day 1 (C2D1) autoantibody levels were compared to pre-treatment baseline. Across 112 autoantibodies tested, we generally observed increases in ipilimumab-containing regimens, with decreases noted in the nivolumab arm. Among 15 autoantibodies with significant changes at C2D1, all nivolumab cases exhibited decreases, with more than 90% of ipilimumab-exposed cases showing increases. Autoantibody profiles also showed differences according to immune-related adverse event (irAE) type, with rash generally featuring increases and liver toxicity demonstrating decreases. We conclude that dynamic autoantibody profiles may differ according to ICI category and irAE type. These findings may have relevance to clinical monitoring and irAE treatment.
Collapse
Affiliation(s)
- Hong Mu-Mosley
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mitchell S. von Itzstein
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jialiang Liu
- Quantitative Biomedical Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chengsong Zhu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Edward K. Wakeland
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jason Y. Park
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brad S. Kahl
- School of Medicine, Washington University,Louis, MO, USA
| | | | - David E. Gerber
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Smit V, de Mol J, Kleijn MNAB, Depuydt MAC, de Winther MPJ, Bot I, Kuiper J, Foks AC. Sexual dimorphism in atherosclerotic plaques of aged Ldlr -/- mice. Immun Ageing 2024; 21:27. [PMID: 38698438 PMCID: PMC11064395 DOI: 10.1186/s12979-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic inflammatory disease characterized by lipid accumulation and immune cell responses in the vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence and manifestation vary by sex. However, sexual dimorphism in the immune landscape of atherosclerotic plaques has up to date not been studied at high-resolution. In this study, we investigated sex-specific differences in atherosclerosis development and the immunological landscape of aortas at single-cell level in aged Ldlr-/- mice. METHODS We compared plaque morphology between aged male and female chow diet-fed Ldlr-/- mice (22 months old) with histological analysis. Using single-cell RNA-sequencing and flow cytometry on CD45+ immune cells from aortas of aged Ldlr-/- mice, we explored the immune landscape in the atherosclerotic environment in males and females. RESULTS We show that plaque volume is comparable in aged male and female mice, and that plaques in aged female mice contain more collagen and cholesterol crystals, but less necrotic core and macrophage content compared to males. We reveal increased immune cell infiltration in female aortas and found that expression of pro-atherogenic markers and inflammatory signaling pathways was enriched in plaque immune cells of female mice. Particularly, female aortas show enhanced activation of B cells (Egr1, Cd83, Cd180), including age-associated B cells, in addition to an increased M1/M2 macrophage ratio, where Il1b+ M1-like macrophages display a more pro-inflammatory phenotype (Nlrp3, Cxcl2, Mmp9) compared to males. In contrast, increased numbers of age-associated Gzmk+CD8+ T cells, dendritic cells, and Trem2+ macrophages were observed in male aortas. CONCLUSIONS Altogether, our findings highlight that sex is a variable that contributes to immunological differences in the atherosclerotic plaque environment in mice and provide valuable insights for further preclinical studies into the impact of sex on the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Virginia Smit
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Jill de Mol
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Marie A C Depuydt
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers - location AMC, University of Amsterdam, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ilze Bot
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Johan Kuiper
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Amanda C Foks
- LACDR, Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Zhou G, Zhan Q, Huang L, Dou X, Cui J, Xiang L, Qi Y, Wu S, Liu L, Xiao Q, Chen J, Tang X, Zhang H, Wang X, Luo X, Ren G, Yang Z, Liu L, Yan X, Luo Q, Pei C, Dai Y, Zhu Y, Zhou H, Ren G, Wang L. The dynamics of B-cell reconstitution post allogeneic hematopoietic stem cell transplantation: A real-world study. J Intern Med 2024; 295:634-650. [PMID: 38439117 DOI: 10.1111/joim.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
BACKGROUND The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lingle Huang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xi Dou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jin Cui
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Xiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yuhong Qi
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Sicen Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lanxiang Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xinyu Yan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qin Luo
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Caixia Pei
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yulian Dai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guilin Ren
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
11
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
12
|
Radbruch A, Melchers F. [Why the regeneration of immunological tolerance by vaccination is difficult]. Z Rheumatol 2024; 83:105-111. [PMID: 38110746 DOI: 10.1007/s00393-023-01453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
Autoimmunity, including that involved in chronic inflammatory rheumatic diseases, seems to be the price we have to pay for our efficient immune system. It has the ability to precisely recognize pathogens and tumor cells, to efficiently fight them, to adapt to their alterations and provide specific immunity for a lifetime. "Inoculation", and more specifically "vaccination" takes advantage of this, either by transfer of protective antibodies (passive vaccination) or by using attenuated pathogens or parts of them by which a specific protective immunity is induced (active vaccination). The idea to use vaccination to reduce undesired (auto)immunity and chronic inflammation is nothing new in rheumatology. Many biologicals are antibodies, which specifically block the mediators of inflammation and in the broader sense are similar to a passive vaccination. The active vaccination with autoantigens using the recent mRNA/liposome technology, has shown in experimental animal models that they can prevent the formation of chronic inflammatory immune reactions, in that they strengthen the physiological tolerance and deviate the immune system to noninflammatory immune reactions against the antigen; however, there is still a long way to go to achieve the actual goals of a permanent suppression of established undesired immune reactions and the regeneration of immunological tolerance.
Collapse
Affiliation(s)
- Andreas Radbruch
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Fritz Melchers
- Deutsches Rheumaforschungszentrum Berlin, ein Leibniz Institut, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
13
|
Ntsethe A, Mkhwanazi ZA, Dludla PV, Nkambule BB. B Cell Subsets and Immune Checkpoint Expression in Patients with Chronic Lymphocytic Leukemia. Curr Issues Mol Biol 2024; 46:1731-1740. [PMID: 38534728 DOI: 10.3390/cimb46030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by dysfunctional B cells. Immune checkpoint molecules such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death-1 (PD-1) are upregulated in patients with CLL and may correlate with prognostic markers such as beta-2 microglobulin (B2M). The aim of this study was to evaluate the levels of immune checkpoints on B cell subsets and to further correlate them with B2M levels in patients with CLL. We recruited 21 patients with CLL and 12 controls. B cell subsets and the levels of immune checkpoint expression were determined using conventional multi-color flow cytometry. Basal levels of B2M in patients with CLL were measured using an enzyme-linked immunosorbent assay. Patients with CLL had increased levels of activated B cells when compared to the control group, p < 0.001. The expression of PD-1 and CTLA-4 were increased on activated B cells and memory B cells, p < 0.05. There were no associations between B2M levels and the measured immune checkpoints on B cell subsets, after adjusting for sex and age. In our cohort, the patients with CLL expressed elevated levels of PD-1 and CTLA-4 immune checkpoints on activated and memory B cell subsets. However, there was no correlation between these immune checkpoint expressions and B2M levels.
Collapse
Affiliation(s)
- Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| | - Zekhethelo Alondwe Mkhwanazi
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| | - Phiwayinkosi Vusi Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
14
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Ravi P, Freeman D, Thomas J, Ravi A, Mantia C, McGregor BA, Berchuck JE, Epstein I, Budde P, Ahangarian Abhari B, Rupieper E, Gajewski J, Schubert AS, Kilian AL, Bräutigam M, Zucht HD, Sonpavde G. Comprehensive multiplexed autoantibody profiling of patients with advanced urothelial cancer. J Immunother Cancer 2024; 12:e008215. [PMID: 38309723 PMCID: PMC10840035 DOI: 10.1136/jitc-2023-008215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Comprehensive profiling of autoantibodies (AAbs) in metastatic urothelial cancer (mUC) has not been performed to date. This may aid in diagnosis of UC, uncover novel therapeutic targets in this disease as well as identify associations between AAbs and response and toxicity to systemic therapies. METHODS We used serum from patients with mUC collected prior to and after systemic therapy (immune checkpoint inhibitor (ICI) or platinum-based chemotherapy (PBC)) at Dana-Farber Cancer Institute. 38 age-matched and sex-matched healthy controls (HCs) from healthy blood donors were also evaluated. The SeroTag immuno-oncology discovery array (Oncimmune) was used, with quantification of the AAb reactivity toward 1132 antigens. Bound AAbs were detected using an anti-immunoglobulin G-specific detection antibody conjugated to the fluorescent reporter dye phycoerythrin. The AAb reactivity was reported as the median fluorescence intensity for each color and sample using a Luminex FlexMAP3D analyzer. Clinical outcomes of interest included radiographic response and development of immune-related adverse events (irAEs). Significance analysis of microarray was used to compare mUC versus HC and radiographic response. Associations with irAE were evaluated using a logistic regression model. P<0.05 was considered statistically significant. RESULTS 66 patients were included with a median age of 68 years; 54 patients (82%) received ICI and 12 patients (18%) received PBC. Compared with HCs, AAbs against the cancer/testis antigens (CTAG1B, CTAG2, MAGEB18), HSPA1A, TP53, KRAS, and FGFR3 were significantly elevated in patients with mUC. AAbs against BRCA2, TP53, and CTNBB1 were associated with response, and those against BICD2 and UACA were associated with resistance to ICI therapy. AAbs against MITF, CDH3, and KDM4A were associated with development of irAEs in patient who received an ICI. A higher variance in pre-to-post treatment fold change in AAb levels was seen in patients treated with ICI versus PBC and was associated with response to ICI. CONCLUSIONS This is the first report of comprehensive AAb profiling of patients with mUC and identified key AAbs that were elevated in patients with mUC versus HCs as well as AAbs associated with therapeutic response to ICI. These findings are hypothesis generating and further mechanistic studies evaluating humoral immunity in UC are required.
Collapse
Affiliation(s)
- Praful Ravi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dory Freeman
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Arvind Ravi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | - Ilana Epstein
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | - Guru Sonpavde
- AdventHealth Cancer Institute, Orlando, Florida, USA
| |
Collapse
|
16
|
Tellier J, Tarasova I, Nie J, Smillie CS, Fedele PL, Cao WHJ, Groom JR, Belz GT, Bhattacharya D, Smyth GK, Nutt SL. Unraveling the diversity and functions of tissue-resident plasma cells. Nat Immunol 2024; 25:330-342. [PMID: 38172260 DOI: 10.1038/s41590-023-01712-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Antibody-secreting plasma cells (PCs) are generated in secondary lymphoid organs but are reported to reside in an emerging range of anatomical sites. Analysis of the transcriptome of different tissue-resident (Tr)PC populations revealed that they each have their own transcriptional signature indicative of functional adaptation to the host tissue environment. In contrast to expectation, all TrPCs were extremely long-lived, regardless of their organ of residence, with longevity influenced by intrinsic factors like the immunoglobulin isotype. Analysis at single-cell resolution revealed that the bone marrow is unique in housing a compendium of PCs generated all over the body that retain aspects of the transcriptional program indicative of their tissue of origin. This study reveals that extreme longevity is an intrinsic property of TrPCs whose transcriptome is imprinted by signals received both at the site of induction and within the tissue of residence.
Collapse
Affiliation(s)
- Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ilariya Tarasova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Junli Nie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Pasquale L Fedele
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Haematology Department, Monash Health, Clayton, Victoria, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Wang H J Cao
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Soussan S, Pupier G, Cremer I, Joubert PE, Sautès-Fridman C, Fridman W, Sibéril S. Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies. Front Immunol 2024; 15:1343020. [PMID: 38318190 PMCID: PMC10838986 DOI: 10.3389/fimmu.2024.1343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
18
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
19
|
Suchanek O, Clatworthy MR. Homeostatic role of B-1 cells in tissue immunity. Front Immunol 2023; 14:1106294. [PMID: 37744333 PMCID: PMC10515722 DOI: 10.3389/fimmu.2023.1106294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 09/26/2023] Open
Abstract
To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
20
|
Dhodapkar KM, Duffy A, Dhodapkar MV. Role of B cells in immune-related adverse events following checkpoint blockade. Immunol Rev 2023; 318:89-95. [PMID: 37421187 PMCID: PMC10530150 DOI: 10.1111/imr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Blockade of immune checkpoints has transformed the therapy of several cancers. However, immune-related adverse events (irAEs) have emerged as a major challenge limiting the clinical application of this approach. B cells are recognized as major players in the pathogenesis of human autoimmunity and have been successfully targeted to treat these disorders. While T cells have been extensively studied as therapeutic targets of immune checkpoint blockade (ICB), these checkpoints also impact B cell tolerance. Blockade of immune checkpoints in the clinic is associated with distinct changes in the B cell compartment that correlate with the development of irAEs. In this review, we focus on the possible role of humoral immunity, specifically human B cell subsets and autoantibodies in the pathogenesis of ICB-induced irAEs. There remains an unmet need to better understand the T:B cell cross talk underlying the activation of pathogenic B cells and the development of ICB-induced irAEs. Such studies may identify new targets or approaches to prevent or treat irAEs and improve the application of ICB therapy in cancer.
Collapse
Affiliation(s)
- Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alyssa Duffy
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
| | - Madhav V. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
| |
Collapse
|
21
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H, Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol 2023; 63:97. [PMID: 37417358 PMCID: PMC10367053 DOI: 10.3892/ijo.2023.5545] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial tumor located in the nasopharynx and is highly associated with Epstein‑Barr virus (EBV) infection. Although radiotherapy alone can cure ~90% of patients with early‑stage disease, >70% of patients with NPC have locoregionally advanced or metastatic disease at the first diagnosis due to the insidious and aggressive nature of NPC. After comprehensive radiochemotherapy, 20‑30% of patients with advanced NPC still fail treatment, mainly due to recurrence and/or metastasis (R/M). Conventional salvage treatments, such as radiotherapy, chemotherapy and surgery, are suboptimal and frequently accompanied by severe adverse effects and limited efficacy. In recent years, immunotherapy has emerged as a promising treatment modality for R/M NPC. An increasing number of clinical studies have investigated the safety and efficacy of immunotherapy for advanced NPC and have shown considerable progress. In the present review, the rationale for the use of immunotherapy to treat NPC was summarized and the current status, progress and challenges of NPC clinical research on different immunotherapeutic approaches were highlighted, including immune checkpoint inhibitors, vaccines, immunomodulators, adoptive cell transfer and EBV‑specific monoclonal antibodies. The comprehensive overview of immunotherapy in NPC may provide insight for clinical practice and future investigation.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120
| | - Zongyao Huang
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yungchang Chen
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
22
|
Ma K, Du W, Wang S, Xiao F, Li J, Tian J, Xing Y, Kong X, Rui K, Qin R, Zhu X, Wang J, Luo C, Wu H, Zhang Y, Wen C, He L, Liu D, Zou H, Lu Q, Wu L, Lu L. B1-cell-produced anti-phosphatidylserine antibodies contribute to lupus nephritis development via TLR-mediated Syk activation. Cell Mol Immunol 2023; 20:881-894. [PMID: 37291237 PMCID: PMC10250184 DOI: 10.1038/s41423-023-01049-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Chongqing International Institute for Immunology, Chongqing, 400038, China
| | - Shiyun Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Rencai Qin
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cainan Luo
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dongzhou Liu
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
23
|
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang JY, Huang JJ, Zou L, Ye Z, Huang Z. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol 2023; 14:1198365. [PMID: 37497212 PMCID: PMC10367421 DOI: 10.3389/fimmu.2023.1198365] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs.
Collapse
Affiliation(s)
- Md Munnaf Hossen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuhao Xia
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Linghua Zou
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Rehabilitation Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
24
|
Ibis B, Aliazis K, Cao C, Yenyuwadee S, Boussiotis VA. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front Immunol 2023; 14:1197364. [PMID: 37342323 PMCID: PMC10277501 DOI: 10.3389/fimmu.2023.1197364] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
During the past decade, there has been a revolution in cancer therapeutics by the emergence of antibody-based immunotherapies that modulate immune responses against tumors. These therapies have offered treatment options to patients who are no longer responding to classic anti-cancer therapies. By blocking inhibitory signals mediated by surface receptors that are naturally upregulated during activation of antigen-presenting cells (APC) and T cells, predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking agents have revolutionized cancer treatment. However, breaking these inhibitory signals cannot be selectively targeted to the tumor microenvironment (TME). Since the physiologic role of these inhibitory receptors, known as immune checkpoints (IC) is to maintain peripheral tolerance by preventing the activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple types of immune-related adverse effects (irAEs). These irAEs, together with the natural properties of ICs as gatekeepers of self-tolerance, have precluded the use of ICI in patients with pre-existing autoimmune diseases (ADs). However, currently accumulating data indicates that ICI might be safely administered to such patients. In this review, we discuss mechanisms of well established and newly recognized irAEs and evolving knowledge from the application of ICI therapies in patients with cancer and pre-existing ADs.
Collapse
Affiliation(s)
- Betul Ibis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Konstantinos Aliazis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carol Cao
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard College, Cambridge, MA, United States
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Azizi G, Hesari MF, Sharifinejad N, Fayyaz F, Chavoshzadeh Z, Mahdaviani SA, Alan MS, Jamee M, Tavakol M, Sadri H, Shahrestanaki E, Nabavi M, Ebrahimi SS, Shirkani A, Vosughi Motlagh A, Delavari S, Rasouli SE, Esmaeili M, Salami F, Yazdani R, Rezaei N, Abolhassani H. The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fattah Hesari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Sadri
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sareh Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Moallem St, Bushehr, Iran
| | - Ahmad Vosughi Motlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Erfan Rasouli
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, NEO, Blickagangen 16, 14157, Huddinge, Stockholm, Sweden.
| |
Collapse
|
26
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
27
|
Chen Z, Huang J, Kwak-Kim J, Wang W. Immune checkpoint inhibitors and reproductive failures. J Reprod Immunol 2023; 156:103799. [PMID: 36724630 DOI: 10.1016/j.jri.2023.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
The human conceptus is a semi-allograft, which is antigenically foreign to the mother. Hence, the implantation process needs mechanisms to prevent allograft rejection during successful pregnancy. Immune checkpoints are a group of inhibitory pathways expressed on the surface of various immune cells in the form of ligand receptors. Immune cells possess these pathways to regulate the magnitude of immune responses and induce maternal-fetal tolerance. Briefly, 1) CTLA-4 can weaken T cell receptor (TCR) signals and inhibit T cell response; 2) The PD-1/PD-L1 pathway can reduce T cell proliferation, enhance T cell anergy and fatigue, reduce cytokine production, and increase T regulatory cell activity to complete the immunosuppression; 3) TIM3 interacts with T cells by binding Gal-9, weakening Th1 cell-mediated immunity and T cell apoptosis; 4) The LAG-3 binding to MHC II can inhibit T cell activation by interfering with the binding of CD4 to MHC II, and; 5) TIGIT can release inhibitory signals to NK and T cells through the ITIM structure of its cytoplasmic tail. Therefore, dysregulated immune checkpoints or the application of immune checkpoint inhibitors may impair human reproduction. This review intends to deliver a comprehensive overview of immune checkpoints in pregnancy, including CTLA-4, PD-1/PD-L1, TIM-3, LAG-3, TIGIT, and their inhibitors, reviewing their roles in normal and pathological human pregnancies.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266000, PR China; Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Jinxia Huang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Department of Gynecology, Weihai Central Hospital Affiliated to Qingdao University, 3 Mishan East Road, Weihai 264400, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
28
|
Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol 2023; 80:102283. [PMID: 36709596 PMCID: PMC10019320 DOI: 10.1016/j.coi.2023.102283] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Taylor J, Gandhi A, Gray E, Zaenker P. Checkpoint inhibitor immune-related adverse events: A focused review on autoantibodies and B cells as biomarkers, advancements and future possibilities. Front Immunol 2023; 13:991433. [PMID: 36713389 PMCID: PMC9874109 DOI: 10.3389/fimmu.2022.991433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has evolved rapidly with unprecedented treatment benefits being obtained for cancer patients, including improved patient survival. However, over half of the patients experience immune related adverse events (irAEs) or toxicities, which can be fatal, affect the quality of life of patients and potentially cause treatment interruption or cessation. Complications from these toxicities can also cause long term irreversible organ damage and other chronic health conditions. Toxicities can occur in various organ systems, with common observations in the skin, rheumatologic, gastrointestinal, hepatic, endocrine system and the lungs. These are not only challenging to manage but also difficult to detect during the early stages of treatment. Currently, no biomarker exists to predict which patients are likely to develop toxicities from ICI therapy and efforts to identify robust biomarkers are ongoing. B cells and antibodies against autologous antigens (autoantibodies) have shown promise and are emerging as markers to predict the development of irAEs in cancer patients. In this review, we discuss the interplay between ICIs and toxicities in cancer patients, insights into the underlying mechanisms of irAEs, and the involvement of the humoral immune response, particularly by B cells and autoantibodies in irAE development. We also provide an appraisal of the progress, key empirical results and advances in B cell and autoantibody research as biomarkers for predicting irAEs. We conclude the review by outlining the challenges and steps required for their potential clinical application in the future.
Collapse
Affiliation(s)
- John Taylor
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia,*Correspondence: John Taylor,
| | - Aesha Gandhi
- Sir Charles Gairdner Hospital, Department of Medical Oncology, Nedlands, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Pauline Zaenker
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
30
|
Yuksel M, Nazmi F, Wardat D, Akgül S, Polat E, Akyildiz M, Arikan Ç. Standard immunosuppressive treatment reduces regulatory B cells in children with autoimmune liver disease. Front Immunol 2023; 13:1053216. [PMID: 36685568 PMCID: PMC9849683 DOI: 10.3389/fimmu.2022.1053216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Autoimmune hepatitis (AIH) is a chronic liver disease caused by a perturbed immune system. The scarcity of short- and long-term immune monitoring of AIH hampered us to comprehend the interaction between immunosuppressive medication and immune homeostasis. Methods and patients We recruited children with AIH at the time of diagnosis and at the 1st, 3rd, 6th, 12th, 18th, and 24th months of immunosuppression (IS). We also enrolled children with AIH being on IS for >2 years. Children with drug-induced liver injury (DILI), and those receiving tacrolimus after liver transplantation (LT), were enrolled as disease/IS control subjects. Healthy children (HC) were also recruited. Peripheral blood mononuclear cells (PBMCs) were isolated from all participants. Healthy liver tissue from adult donors and from livers without inflammation were obtained from children with hepatoblastoma. By using flow cytometry, we performed multi-parametric immune profiling of PBMCs and intrahepatic lymphocytes. Additionally, after IS with prednisolone, tacrolimus, rapamycin, or 6-mercaptopurine, we carried out an in vitro cytokine stimulation assay. Finally, a Lifecodes SSO typing kit was used to type HLA-DRB1 and Luminex was used to analyze the results. Results Untreated AIH patients had lower total CD8 T-cell frequencies than HC, but these cells were more naïve. While the percentage of naïve regulatory T cells (Tregs) (CD4+FOXP3lowCD45RA+) and regulatory B cells (Bregs, CD20+CD24+CD38+) was similar, AIH patients had fewer activated Tregs (CD4+FOXP3highCD45RA - ) compared to HC. Mucosal-associated-invariant-T-cells (MAIT) were also lower in these patients. Following the initiation of IS, the immune profiles demonstrated fluctuations. Bregs frequency decreased substantially at 1 month and did not recover anymore. Additionally, the frequency of intrahepatic Bregs in treated AIH patients was lower, compared to control livers, DILI, and LT patients. Following in vitro IS drugs incubation, only the frequency of IL-10-producing total B-cells increased with tacrolimus and 6MP. Lastly, 70% of AIH patients possessed HLA-DR11, whereas HLA-DR03/DR07/DR13 was present in only some patients. Conclusion HLA-DR11 was prominent in our AIH cohort. Activated Tregs and MAIT cell frequencies were lower before IS. Importantly, we discovered a previously unrecognized and long-lasting Bregs scarcity in AIH patients after IS. Tacrolimus and 6MP increased IL-10+ B-cells in vitro.
Collapse
Affiliation(s)
- Muhammed Yuksel
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Farinaz Nazmi
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Dima Wardat
- Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Sebahat Akgül
- Transplant Immunology Research Centre of Excellence (TIREX) Tissue Typing Lab, Koç University Hospital, Istanbul, Türkiye
| | - Esra Polat
- Paediatric Gastroenterology and Hepatology, Sancaktepe Education and Research Hospital, Istanbul, Türkiye
| | - Murat Akyildiz
- Adult Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye
| | - Çigdem Arikan
- Paediatric Gastroenterology-Hepatology, Koç University Hospital, Istanbul, Türkiye,Liver Immunology Lab, Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, Türkiye,*Correspondence: Çigdem Arikan,
| |
Collapse
|
31
|
Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci 2022; 12:57. [PMID: 35526067 PMCID: PMC9080186 DOI: 10.1186/s13578-022-00795-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background B1 cells are self-renewing innate-like B lymphocytes that provide the first line of defense against pathogens. B1 cells primarily reside in the peritoneal cavity and are known to originate from various fetal tissues, yet their developmental pathways and the mechanisms underlying maintenance of B1 cells throughout adulthood remain unclear. Results We performed high-throughput single-cell analysis of the transcriptomes and B-cell receptor repertoires of peritoneal B cells of neonates, young adults, and elderly mice. Gene expression analysis of 31,718 peritoneal B cells showed that the neonate peritoneal cavity contained many B1 progenitors, and neonate B cell specific clustering revealed two trajectories of peritoneal B1 cell development, including pre-BCR dependent and pre-BCR independent pathways. We also detected profound age-related changes in B1 cell transcriptomes: clear difference in senescence genetic program was evident in differentially aged B1 cells, and we found an example that a B1 subset only present in the oldest mice was marked by expression of the fatty-acid receptor CD36. We also performed antibody gene sequencing of 15,967 peritoneal B cells from the three age groups and discovered that B1 cell aging was associated with clonal expansion and two B1 cell clones expanded in the aged mice had the same CDR-H3 sequence (AGDYDGYWYFDV) as a pathogenically linked cell type from a recent study of an atherosclerosis mouse model. Conclusions Beyond offering an unprecedent data resource to explore the cell-to-cell variation in B cells, our study has revealed that B1 precursor subsets are present in the neonate peritoneal cavity and dissected the developmental pathway of the precursor cells. Besides, this study has found the expression of CD36 on the B1 cells in the aged mice. And the single-cell B-cell receptor sequencing reveals B1 cell aging is associated with clonal expansion. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00795-6.
Collapse
|
32
|
Tandel N, Negi S, Tyagi RK. NKB cells: A double-edged sword against inflammatory diseases. Front Immunol 2022; 13:972435. [PMID: 36405684 PMCID: PMC9669376 DOI: 10.3389/fimmu.2022.972435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon-γ (IFN-γ)-producing natural killer (NK) cells and innate lymphoid cells (ILCs) activate the adaptive system's B and T cells in response to pathogenic invasion; however, how these cells are activated during infections is not yet fully understood. In recent years, a new lymphocyte population referred to as "natural killer-like B (NKB) cells", expressing the characteristic markers of innate NK cells and adaptive B cells, has been identified in both the spleen and mesenteric lymph nodes during infectious and inflammatory pathologies. NKB cells produce IL-18 and IL-12 cytokines during the early phases of microbial infection, differentiating them from conventional NK and B cells. Emerging evidence indicates that NKB cells play key roles in clearing microbial infections. In addition, NKB cells contribute to inflammatory responses during infectious and inflammatory diseases. Hence, the role of NKB cells in disease pathogenesis merits further study. An in-depth understanding of the phenotypic, effector, and functional properties of NKB cells may pave the way for the development of improved vaccines and therapeutics for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
33
|
Kim GR, Choi JM. Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Mol Cells 2022; 45:513-521. [PMID: 35950451 PMCID: PMC9385567 DOI: 10.14348/molcells.2022.2056] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.
Collapse
Affiliation(s)
- Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
34
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
35
|
Wang S, Chen S, Zhong Q, Liu Y. Immunotherapy for the treatment of advanced nasopharyngeal carcinoma: a promising new era. J Cancer Res Clin Oncol 2022; 149:2071-2079. [PMID: 35876949 DOI: 10.1007/s00432-022-04214-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is ranked the top otorhinolaryngology malignant tumors in the world. However, the general prognosis of recurrent and metastatic (R/M) nasopharyngeal carcinomas (NPCs) remains poor, and current surgery and chemoradiotherapy do not generate satisfactory outcomes. METHODS As a new therapeutic choice, immunotherapy, especially with regard to the development of checkpoint inhibitors including PD-1 and CTLA-4 inhibitors have made considerable progress in recent years. As Epstein-Barr virus (EBV) infection is associated with increased risk of NPC, EBV-related immunotherapy may lead to a breakthrough in advanced NPCs. RESULTS In this review, we summarized the clinical characters of NPC, and several past and ongoing clinical trials of checkpoint inhibitors and EBV-CTLs (CTLs: cytotoxic T lymphocytes) in R/M NPC immunotherapy. CONCLUSION We conclude that although the evaluated effects of new immunotherapy drugs have brought us hope on NPC treatment, further phase II-III trials with larger samples are still required to improve the proportion and scheme of drug collocation for better clinical outcomes and less drug-related safety.
Collapse
Affiliation(s)
- Shaoli Wang
- Otolaryngological Department, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Xiuhua Road, Haikou, Hainan, People's Republic of China
| | - Siying Chen
- Otolaryngological Department, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Xiuhua Road, Haikou, Hainan, People's Republic of China
| | - Qionglei Zhong
- Otolaryngological Department, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Xiuhua Road, Haikou, Hainan, People's Republic of China
| | - Yan Liu
- Otolaryngological Department, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road Xigang, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
36
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
37
|
Mechanisms underlying immune-related adverse events during checkpoint immunotherapy. Clin Sci (Lond) 2022; 136:771-785. [PMID: 35621125 DOI: 10.1042/cs20210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint (IC) proteins are some of the most important factors that tumor cells hijack to escape immune surveillance, and inhibiting ICs to enhance or relieve antitumor immunity has been proven efficient in tumor treatment. Immune checkpoint blockade (ICB) agents such as antibodies blocking programmed death (PD) 1, PD-1 ligand (PD-L) 1, and cytotoxic T lymphocyte-associated antigen (CTLA)-4 have been approved by the U.S. Food and Drug Administration (FDA) to treat several types of cancers. Although ICB agents have shown outstanding clinical success, and their application has continued to expand to additional tumor types in the past decade, immune-related adverse events (irAEs) have been observed in a wide range of patients who receive ICB treatment. Numerous studies have focused on the clinical manifestations and pathology of ICB-related irAEs, but the detailed mechanisms underlying irAEs remain largely unknown. Owing to the wide expression of IC molecules on distinct immune cell subpopulations and the fact that ICB agents generally affect IC-expressing cells, the influences of ICB agents on immune cells in irAEs need to be determined. Here, we discuss the expression and functions of IC proteins on distinct immune cells and the potential mechanism(s) related to ICB-targeted immune cell subsets in irAEs.
Collapse
|
38
|
She Z, Li C, Wu F, Mao J, Xie M, Hun M, Abdirahman AS, Luo S, Wan W, Tian J, Wen C. The Role of B1 Cells in Systemic Lupus Erythematosus. Front Immunol 2022; 13:814857. [PMID: 35418972 PMCID: PMC8995743 DOI: 10.3389/fimmu.2022.814857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multisystemic and multi-organ involvement, recurrent relapses and remissions, and the presence of large amounts of autoantibodies in the body as the main clinical features. The mechanisms involved in this disease are complex and remain poorly understood; however, they are generally believed to be related to genetic susceptibility factors, external stimulation of the body’s immune dysfunction, and impaired immune regulation. The main immune disorders include the imbalance of T lymphocyte subsets, hyperfunction of B cells, production of large amounts of autoantibodies, and further deposition of immune complexes, which result in tissue damage. Among these, B cells play a major role as antibody-producing cells and have been studied extensively. B1 cells are a group of important innate-like immune cells, which participate in various innate and autoimmune processes. Yet the role of B1 cells in SLE remains unclear. In this review, we focus on the mechanism of B1 cells in SLE to provide new directions to explore the pathogenesis and treatment modalities of SLE.
Collapse
Affiliation(s)
- Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Amin Sheikh Abdirahman
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
40
|
Lerner A, Benzvi C. Checkpoint Inhibitors and Induction of Celiac Disease-like Condition. Biomedicines 2022; 10:609. [PMID: 35327411 PMCID: PMC8945786 DOI: 10.3390/biomedicines10030609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors herald a new era in oncological therapy-resistant cancer, thus bringing hope for better outcomes and quality of life for patients. However, as with other medications, they are not without serious side effects over time. Despite this, their advantages outweigh their disadvantages. Understanding the adverse effects will help therapists locate, apprehend, treat, and perhaps diminish them. The major ones are termed immune-related adverse events (irAEs), representing their auto-immunogenic capacity. This narrative review concentrates on the immune checkpoint inhibitors induced celiac disease (CD), highlighting the importance of the costimulatory inhibitors in CD evolvement and suggesting several mechanisms for CD induction. Unraveling those cross-talks and pathways might reveal some new therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Research Department, Ramat Gan 52621, Israel;
- Research Department, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Research Department, Ramat Gan 52621, Israel;
| |
Collapse
|
41
|
Ghosh N, Chan KK, Jivanelli B, Bass AR. Autoantibodies in Patients With Immune-Related Adverse Events From Checkpoint Inhibitors: A Systematic Literature Review. J Clin Rheumatol 2022; 28:e498-e505. [PMID: 34371516 PMCID: PMC8816970 DOI: 10.1097/rhu.0000000000001777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immune-related adverse events (irAEs) from immune checkpoint inhibitors (ICIs) are sometimes associated with autoantibodies, but we do not know how frequently or whether these autoantibodies are present before ICI initiation. Our aim was to determine the positivity rate of autoantibodies in patients with organ-specific ICI-associated irAEs and determine their value as pretreatment biomarkers. METHODS We searched for all English, peer-reviewed publications from MEDLINE, Embase, and Cochrane Library through February 20, 2020, and included any publication describing patients with irAEs and reporting results of any autoantibody investigation. Three reviewers independently extracted data, and 1 reviewer verified all data for accuracy and quality of reporting. RESULTS We identified 515 publications. Most reports described endocrine, rheumatic, gastrointestinal/hepatic, and myositis/myasthenia/myocarditis irAEs. Autoantibodies were present in close to 50% of patients with ICI-associated endocrinopathies. Anti-BP180 was found in more than 50% of patients with skin irAEs. Antibodies were also common in patients with the triad of myositis/myasthenia/myocarditis including striational antibodies (49%), acetylcholine receptor antibodies (40%), and myositis-associated antibodies (27%). Only 11% of patients with arthritis had either rheumatoid factor or cyclic citrullinated peptide antibodies, and only 30% of patients with sicca had Sjögren antibodies. Autoantibodies were also relatively uncommon in patients with hepatitis (antinuclear antibody, 18%) and colitis (perinuclear antineutrophil cytoplasmic antibody, 19%). Some cohort studies analyzing pre-ICI seropositivity suggest there may be a role for autoantibodies as biomarkers of irAEs. CONCLUSIONS Reported autoantibody positivity is high in irAEs involving the endocrine organs, skin, and muscle, but lower in irAEs affecting other organ systems. Autoantibody investigations in pre-ICI treatment patients have yielded mixed results regarding their utility as a biomarker of irAEs.
Collapse
Affiliation(s)
- Nilasha Ghosh
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| | - Karmela K. Chan
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| | | | - Anne R. Bass
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
42
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
43
|
Henriques-Pons A, Beghini DG, Silva VDS, Iwao Horita S, da Silva FAB. Pulmonary Mesenchymal Stem Cells in Mild Cases of COVID-19 Are Dedicated to Proliferation; In Severe Cases, They Control Inflammation, Make Cell Dispersion, and Tissue Regeneration. Front Immunol 2022; 12:780900. [PMID: 35095855 PMCID: PMC8793136 DOI: 10.3389/fimmu.2021.780900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | | - Samuel Iwao Horita
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | |
Collapse
|
44
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
45
|
Dang VD, Stefanski AL, Lino AC, Dörner T. B- and Plasma Cell Subsets in Autoimmune Diseases: Translational Perspectives. J Invest Dermatol 2021; 142:811-822. [PMID: 34955289 DOI: 10.1016/j.jid.2021.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
B lymphocytes play a central role in immunity owing to their unique antibody-producing capacity that provides protection against certain infections and during vaccination. In autoimmune diseases, B cells can gain pathogenic relevance through autoantibody production, antigen presentation, and proinflammatory cytokine secretion. Recent data indicate that B and plasma cells can function as regulators through the production of immunoregulatory cytokines and/or employing checkpoint molecules. In this study, we review the key findings that define subsets of B and plasma cells with pathogenic and protective functions in autoimmunity. In addition to harsh B-cell depletion, we discuss the strategies that have the potential to reinstall the balance of pathogenic and protective B cells with the potential of more specific and personalized therapies.
Collapse
Affiliation(s)
- Van Duc Dang
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ana-Luisa Stefanski
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
46
|
Immune checkpoints and the multiple faces of B cells in systemic lupus erythematosus. Curr Opin Rheumatol 2021; 33:592-597. [PMID: 34402453 DOI: 10.1097/bor.0000000000000825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW B-lymphocytes are crucial in the pathogenesis of systemic lupus erythematosus (SLE), including autoantibody production, antigen presentation, co-stimulation, and cytokine secretion. Co-stimulatory and co-inhibitory molecules control interactions between B and T cells during an inflammatory response, which is essential for an appropriate host protection and maintenance of self-tolerance. Here, we review recent findings about checkpoint molecules and SLE B cells including their potential therapeutic implications and experiences from clinical trials. RECENT FINDINGS Most prominent checkpoint molecules involved in pathologic B and T cell interaction in SLE are CD40/CD40L and inducible co-stimulator/ICOSL, both also intimately involved in the formation of germinal centers and ectopic lymphoid tissue. Dysregulations of inhibitory checkpoint molecules, like programmed death-1/programmed death-ligand 1 and B- and T-lymphocyte attenuator have been suggested to impair B cell functions in SLE recently. SUMMARY Accumulating evidence indicates that dampening immune responses by either blocking co-activating signals or enhancing co-inhibitory signals in different cell types is a promising approach to treat autoimmune diseases to better control active disease but may also allow resolution of chronic autoimmunity.
Collapse
|
47
|
Dai Y, Zhao W, Yue L, Dai X, Rong D, Wu F, Gu J, Qian X. Perspectives on Immunotherapy of Metastatic Colorectal Cancer. Front Oncol 2021; 11:659964. [PMID: 34178645 PMCID: PMC8219967 DOI: 10.3389/fonc.2021.659964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer, especially liver metastasis, is still a challenge worldwide. Traditional treatment such as surgery, chemotherapy and radiotherapy have been difficult to be further advanced. We need to develop new treatment methods to further improve the poor prognosis of these patients. The emergence of immunotherapy has brought light to mCRC patients, especially those with dMMR. Based on several large trials, some drugs (pembrolizumab, nivolumab) have been approved by US Food and Drug Administration to treat the patients diagnosed with dMMR tumors. However, immunotherapy has reached a bottleneck for other MSS tumors, with low response rate and poor PFS and OS. Therefore, more clinical trials are underway toward mCRC patients, especially those with MSS. This review is intended to summarize the existing clinical trials to illustrate the development of immunotherapy in mCRC patients, and to provide a new thinking for the direction and experimental design of immunotherapy in the future.
Collapse
Affiliation(s)
- Yongjiu Dai
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wenhu Zhao
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Yue
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinzheng Dai
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Qian
- Hepatobiliary/Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Gámez-Díaz L, Seidel MG. Different Apples, Same Tree: Visualizing Current Biological and Clinical Insights into CTLA-4 Insufficiency and LRBA and DEF6 Deficiencies. Front Pediatr 2021; 9:662645. [PMID: 33996698 PMCID: PMC8113415 DOI: 10.3389/fped.2021.662645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a crucial immune checkpoint that is constitutively expressed in regulatory T (Treg) cells. Following T-cell activation, CTLA-4 is rapidly mobilized from its intracellular vesicle pool to the cell surface to control the availability of co-stimulatory B7 molecules, thereby maintaining immune homeostasis. Heterozygous mutations in CTLA-4 lead to defects in (i) CTLA-4 ligand binding, (ii) homo-dimerization, (iii) B7-transendocytosis, and (iv) CTLA-4 vesicle trafficking, resulting in an inborn error of immunity with predominant autoimmunity. CTLA-4 vesicle trafficking impairment is also observed in patients with lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency or the differentially expressed in FDCP6 homolog (DEF6) deficiency, caused by biallelic mutations in LRBA and DEF6, respectively. Therefore, patients with CTLA-4 insufficiency, LRBA deficiency, and-most recently reported-DEF6 deficiency present an overlapping clinical phenotype mainly attributed to a defective suppressive activity of Tregs, as all three diseases reduce overall surface expression of CTLA-4. In this paper, we describe the clinical phenotypes of these immune checkpoint defects, their patho-mechanisms, and visually compare them to other immune regulatory disorders (IPEX syndrome, CD27, and CD70 deficiencies) by using the immune deficiency and dysregulation (IDDA version 2.1) "kaleidoscope" score. This illustrates the variability of the degrees and manifestations of immune deficiency and dysregulation. Patients characteristically present with an increased risk of infections, autoimmune cytopenias, multi-organ autoimmunity, and inflammation, which are often severe and life-threatening. Furthermore, these patients suffer an increased risk of developing malignancies, especially Non-Hodgkin's lymphoma. Successful treatment options include regular administration of soluble CTLA-4-Ig fusion protein, Treg cell-sparing immune suppressants like sirolimus or mycophenolate mofetil, and hematopoietic stem cell transplantation. This mini-review highlights the most relevant biological and clinical features as well as treatment options for CTLA-4 insufficiency and LRBA and DEF6 deficiencies.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Faculty of Medicine, Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Markus G. Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Pediatric Hematology and Immunology, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (Basel) 2021; 13:1440. [PMID: 33809974 PMCID: PMC8005092 DOI: 10.3390/cancers13061440] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Aram Davtyan
- Atomwise, 717 Market St, San Francisco, CA 94103, USA;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy;
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|