1
|
Mao L, Zhang Q, Wu Q, Zhang Y, Jiang J, Li Z, Chen L, Wang R, Zeng Q, Ren Y, Liu P, Liu M, Luo G. The integration of scRNA-seq with microarray and in-vivo experiments facilitates a comprehensive elucidation of the molecular mechanisms underlying endothelial cell involvement in myocardial infarction. Biochem Biophys Res Commun 2025; 766:151820. [PMID: 40288264 DOI: 10.1016/j.bbrc.2025.151820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Myocardial infarction (MI) remains a major global health challenge, with endothelial cell function playing a crucial role in its progression. Advances in single-cell RNA sequencing (scRNA-seq) have enhanced our understanding of MI pathogenesis. This study aims to identify key genes within endothelial cells using scRNA-seq data and validate them through microarray data and in vivo models elucidate their role in the progression of MI. ScRNA-seq and microarray datasets relevant to MI were obtained from the GEO database. The Seurat package was used for data pre-processing and marker gene identification. Endothelial cell subpopulations were characterised using the hdWGCNA package, while intercellular interactions with fibroblasts were assessed using CellChat. Key genes were identified using comprehensive bioinformatics techniques such as scCODE, FindMarkers and protein-protein interaction (PPI) analysis, with validation from microarray data and in vivo experiments (WB, qPCR, immunofluorescence) in the model of MI. The analysis via scRNA-seq revealed 16 distinct cell clusters encompassing 7 unique cell types. Endothelial cells were categorized into 8 subpopulations by hdWGCNA; notably, Endothelial Cells-2 exhibited significant interactions with fibroblasts mediated by PDGF, PROS, and GAS signaling pathways. Integration of hdWGCNA, scCODE and FindMarkers, 10 key genes were identified, which were subsequently refined to DBP, NR1D1, and TEF following PPI analysis. These genes demonstrated marked downregulation the progression of MI, as confirmed by subsequent in vivo experiments. This study highlights the crucial roles of DBP, NR1D1, and TEF in MI development, providing a basis for future research on endothelial cell function in cardiovascular disease.
Collapse
Affiliation(s)
- Linshen Mao
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Qingyu Zhang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Qin Wu
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Jinhui Jiang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhengzhou Li
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Li Chen
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Raoqiong Wang
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Qihu Zeng
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China
| | - Yanmei Ren
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Ping Liu
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; School of Integrated Traditional and Western Medicine, Southwest Medical University, Luzhou, 646000, China.
| | - Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China.
| | - Gang Luo
- Department of Cardiovascular Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Luzhou, 646000, China.
| |
Collapse
|
2
|
Pasut A, Lama E, Van Craenenbroeck AH, Kroon J, Carmeliet P. Endothelial cell metabolism in cardiovascular physiology and disease. Nat Rev Cardiol 2025:10.1038/s41569-025-01162-x. [PMID: 40346347 DOI: 10.1038/s41569-025-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Endothelial cells are multifunctional cells that form the inner layer of blood vessels and have a crucial role in vasoreactivity, angiogenesis, immunomodulation, nutrient uptake and coagulation. Endothelial cells have unique metabolism and are metabolically heterogeneous. The microenvironment and metabolism of endothelial cells contribute to endothelial cell heterogeneity and metabolic specialization. Endothelial cell dysfunction is an early event in the development of several cardiovascular diseases and has been shown, at least to some extent, to be driven by metabolic changes preceding the manifestation of clinical symptoms. Diabetes mellitus, hypertension, obesity and chronic kidney disease are all risk factors for cardiovascular disease. Changes in endothelial cell metabolism induced by these cardiometabolic stressors accelerate the accumulation of dysfunctional endothelial cells in tissues and the development of cardiovascular disease. In this Review, we discuss the diversity of metabolic programmes that control endothelial cell function in the cardiovascular system and how these metabolic programmes are perturbed in different cardiovascular diseases in a disease-specific manner. Finally, we discuss the potential and challenges of targeting endothelial cell metabolism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Lama
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jeffrey Kroon
- Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, The Netherlands.
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Sun Y, Xu H, Zhu Y, Rao Y, Fan X, Wang Z, Gu H, Yue X, Zhao X, Su L, Cai R. Single-cell and spatial transcriptomic analyses reveal transcriptional cell lineage heterogeneity in extracranial arteriovenous malformation. J Dermatol Sci 2025; 118:66-75. [PMID: 40118698 DOI: 10.1016/j.jdermsci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Extracranial arteriovenous malformations (eAVMs) are rare congenital vascular anomalies consisting of abnormal artery-vein bypass with no intervening capillary network, and can lead to disability and death. The critical genetic determination factors and key transcriptional pathways of the eAVMs genesis process are still unclear. OBJECTIVE To generate an overview of the molecular information within eAVMs at the single-cell level. METHODS We performed single-cell RNA sequencing (scRNA-seq) on nine samples of eAVMs receiving a confirmatory histopathologic evaluation from a board-certified dermatopathologist and two nonlesional tissue sample controls. 10x Visium spatial transcriptomics (ST) was performed on one eAVM to spatially localize heterogeneous cells and profile the gene expression dynamics of the cells in their morphological context. The scRNA-seq and ST data were integrated and analyzed to further query for spatially restricted mapping of intrapopulation heterogeneous cells. RESULTS We identified different cell states of endothelial cells (ECs), perivascular cells and immune cells in eAVMs, uncovered the presence of MAFB+ nidus ECs, characterized mesenchymal activation in ECs, and identified transcriptional variation within perivascular cells and the presence of smooth muscle-like pericytes in eAVMs. Dysregulated cell to cell interactions among ECs, perivascular cells and immune cells that are associated with eAVMs, including those involving MDK, VEGF, ANGPT, SEMA3 and GALECTIN-9 were cataloged. Together, our results depicted the heterogeneity underlying cell function and interaction of eAVMs at a single-cell resolution. CONCLUSION We present a comprehensive picture of the cell-resolution atlas that describes the transcriptomic heterogeneity underlying cell function and interaction in eAVMs.
Collapse
Affiliation(s)
- Yi Sun
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyang Xu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanze Zhu
- School of Automation, Northwestern Polytechnical University, Xi 'an, China
| | - Yamin Rao
- Department of Pathology, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xindong Fan
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojie Yue
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiong Zhao
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ren Cai
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Legrand M, Renault S, de Pinieux G, Bourreau C, Brion R, Le Nail LR, Blandin S, Hulin P, Verrecchia F, Rédini F, Trichet V, Corre I. Endothelial remodeling in osteosarcomas: insights from patient samples and in vitro studies. Am J Cancer Res 2025; 15:1629-1646. [PMID: 40371135 PMCID: PMC12070084 DOI: 10.62347/kyfo6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/13/2024] [Indexed: 05/16/2025] Open
Abstract
Osteosarcomas (OS) are the most frequent malignant primary bone sarcomas with an overall poor prognostic for high-risk patients. The current therapeutic management combining chemotherapy and surgery remains partially inefficient. OS are very heterogeneous tumors, evolving in a complex and specific highly vascularized microenvironment. Upon microenvironmental signals, remodeling of tumor vessels may occur through angiogenic processes but also through endothelial differentiation process namely the endothelial-to-mesenchymal transition (EndoMT). In a patient cohort of ten high-grade OS samples (at diagnosis, after surgery, and/or metastasis), we detected by a multiplexing immunohistochemistry approach the presence of endothelial cells co-expressing endothelial CD31/EMCN and mesenchymal ASMA/FSP1 markers. In order to partially mimic an OS microenvironment in vitro, we exposed human umbilical vein endothelial cells (HUVECs) to secreted factors of OS tumor or stromal cells. In this cellular model, we established that the secretome from stromal cells did not induce EndoMT in primary ECs. Nevertheless, soluble factors from the OS cell line KHOS were able to induce in ECs some of the EndoMT hallmarks such as induction of mesenchymal markers associated to increased migration, but without inhibition of tubulogenesis. In conclusion, this study identified the presence of endothelial-mesenchymal cells in the tumor microenvironment of OS patients and give cues for further investigation of the regulation and consequences of this remodeling in the biology of OS.
Collapse
Affiliation(s)
- Mélanie Legrand
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Université de Tours, CHRU, Service d’Anatomie PathologiqueF-37044 Tours, France
| | - Sarah Renault
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
| | - Gonzague de Pinieux
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Université de Tours, CHRU, Service d’Anatomie PathologiqueF-37044 Tours, France
| | - Clara Bourreau
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
| | - Régis Brion
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NAF-44000 Nantes, France
| | - Louis-Romée Le Nail
- Université de Tours, CHRU, Service de Chirurgie Orthopédique et Traumatologie, CNRS ERL 7001 LNOx EA 7501 GICCF-37044 Tours, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR BonamyF-44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR BonamyF-44000 Nantes, France
| | - Franck Verrecchia
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NAF-44000 Nantes, France
| | - Françoise Rédini
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NAF-44000 Nantes, France
| | - Valérie Trichet
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Nantes Université, INSERM U1229, RMeSF-44000 Nantes, France
| | - Isabelle Corre
- Nantes Université, Inserm UMR 1238F-44000 Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NAF-44000 Nantes, France
| |
Collapse
|
5
|
Jiang Q, Braun DA, Clauser KR, Ramesh V, Shirole NH, Duke-Cohan JE, Nabilsi N, Kramer NJ, Forman C, Lippincott IE, Klaeger S, Phulphagar KM, Chea V, Kim N, Vanasse AP, Saad E, Parsons T, Carr-Reynolds M, Carulli I, Pinjusic K, Jiang Y, Li R, Syamala S, Rachimi S, Verzani EK, Stevens JD, Lane WJ, Camp SY, Meli K, Pappalardi MB, Herbert ZT, Qiu X, Cejas P, Long HW, Shukla SA, Van Allen EM, Choueiri TK, Churchman LS, Abelin JG, Gurer C, MacBeath G, Childs RW, Carr SA, Keskin DB, Wu CJ, Kaelin WG. HIF regulates multiple translated endogenous retroviruses: Implications for cancer immunotherapy. Cell 2025; 188:1807-1827.e34. [PMID: 40023154 PMCID: PMC11988688 DOI: 10.1016/j.cell.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC), despite having a low mutational burden, is considered immunogenic because it occasionally undergoes spontaneous regressions and often responds to immunotherapies. The signature lesion in ccRCC is inactivation of the VHL tumor suppressor gene and consequent upregulation of the HIF transcription factor. An earlier case report described a ccRCC patient who was cured by an allogeneic stem cell transplant and later found to have donor-derived T cells that recognized a ccRCC-specific peptide encoded by a HIF-responsive endogenous retrovirus (ERV), ERVE-4. We report that ERVE-4 is one of many ERVs that are induced by HIF, translated into HLA-bound peptides in ccRCCs, and capable of generating antigen-specific T cell responses. Moreover, ERV expression can be induced in non-ccRCC tumors with clinical-grade HIF stabilizers. These findings have implications for leveraging ERVs for cancer immunotherapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Yale Center of Cellular and Molecular Oncology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vijyendra Ramesh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Duke-Cohan
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Isabelle E Lippincott
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kshiti M Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nawoo Kim
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allison P Vanasse
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Isabel Carulli
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katarina Pinjusic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan D Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William J Lane
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kevin Meli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet A Shukla
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA 02215, USA; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark 2800 Lyngby, Denmark.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
6
|
Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, Srivastava R, Suresh MX, Kumari R, Goodwin JE, Inoki K. The molecular determinants regulating redox signaling in diabetic endothelial cells. Front Pharmacol 2025; 16:1563047. [PMID: 40290438 PMCID: PMC12023289 DOI: 10.3389/fphar.2025.1563047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidation and reduction are vital for keeping life through several prime mechanisms, including respiration, metabolism, and other energy supplies. Mitochondria are considered the cell's powerhouse and use nutrients to produce redox potential and generate ATP and H2O through the process of oxidative phosphorylation by operating electron transfer and proton pumping. Simultaneously, mitochondria also produce oxygen free radicals, called superoxide (O2 -), non-enzymatically, which interacts with other moieties and generate reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hydroxyl radical (OH-). These reactive oxygen species modify nucleic acids, proteins, and carbohydrates and ultimately cause damage to organs. The nutrient-sensing kinases, such as AMPK and mTOR, function as a key regulator of cellular ROS levels, as loss of AMPK or aberrant activation of mTOR signaling causes ROS production and compromises the cell's oxidant status, resulting in various cellular injuries. The increased ROS not only directly damages DNA, proteins, and lipids but also alters cellular signaling pathways, such as the activation of MAPK or PI3K, the accumulation of HIF-1α in the nucleus, and NFkB-mediated transcription of pro-inflammatory cytokines. These factors cause mesenchymal activation in renal endothelial cells. Here, we discuss the biology of redox signaling that underlies the pathophysiology of diabetic renal endothelial cells.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - M. Masilamani Selvam
- Department of Pharmaceutical Technology, Paavai Engineering College, Namakkal, Tamil Nadu, India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - M. Xavier Suresh
- School of Advanced Sciences and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | - Reena Kumari
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Zehr S, Wolf S, Oellerich T, Leisegang MS, Brandes RP, Schulz MH, Warwick T. GeneCOCOA: Detecting context-specific functions of individual genes using co-expression data. PLoS Comput Biol 2025; 21:e1012278. [PMID: 40163580 PMCID: PMC11964461 DOI: 10.1371/journal.pcbi.1012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/02/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Extraction of meaningful biological insight from gene expression profiling often focuses on the identification of statistically enriched terms or pathways. These methods typically use gene sets as input data, and subsequently return overrepresented terms along with associated statistics describing their enrichment. This approach does not cater to analyses focused on a single gene-of-interest, particularly when the gene lacks prior functional characterization. To address this, we formulated GeneCOCOA, a method which utilizes context-specific gene co-expression and curated functional gene sets, but focuses on a user-supplied gene-of-interest (GOI). The co-expression between the GOI and subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear regression, and resulting root-mean-square error values are compared against background values obtained from randomly selected genes. The resulting p values provide a statistical ranking of functional gene sets from any collection, along with their associated terms, based on their co-expression with the gene of interest in a manner specific to the context and experiment. GeneCOCOA thereby provides biological insight into both gene function, and putative regulatory mechanisms by which the expression of the GOI is controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in the accurate recall of known gene-disease associations. We furthermore include a differential GeneCOCOA mode, thus presenting the first implementation of a gene-focused approach to experiment-specific gene set enrichment analysis. GeneCOCOA is formulated as an R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.
Collapse
Affiliation(s)
- Simonida Zehr
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt am Main, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
11
|
Graber M, Gollmann-Tepeköylü C, Schweiger V, Hirsch J, Pölzl L, Nägele F, Lener D, Hackl H, Sopper S, Kirchmair E, Mair S, Voelkl J, Plattner C, Eichin F, Trajanoski Z, Krogsdam A, Eder J, Fiegl M, Hau D, Tancevski I, Grimm M, Cooke JP, Holfeld J. Modulation of cell fate by shock wave therapy in ischaemic heart disease. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf011. [PMID: 40201592 PMCID: PMC11977462 DOI: 10.1093/ehjopen/oeaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/10/2024] [Accepted: 02/06/2025] [Indexed: 04/10/2025]
Abstract
Aims Cardiac shockwave therapy (SWT) improves left ventricular (LV) function in patients with ischaemic cardiomyopathy. Shockwave therapy activates Toll-like receptor 3 (TLR3), a receptor-inducing chromatin remodelling and nuclear reprogramming of cardiac cells. We hypothesized that mechanical activation of TLR3 facilitates reprogramming of fibroblasts towards endothelial cells restoring myocardial perfusion and function. Methods and results Human cardiac fibroblasts were treated by mechanical stimulation via SWT or TLR3 agonist Poly(I:C) in the presence of endothelial induction medium. A lineage tracing experiment was performed in a transgenic mouse model of Fsp1-Cre/LacZ mice after coronary occlusion. Left ventricular function and scarring were assessed. Single-cell sequencing including RNA trajectory analysis was performed. Chromatin remodelling and epigenetic plasticity were evaluated via western blot and Assay for Transposase-Accessible Chromatin sequencing. Mechanical stimulation of human fibroblasts with SWT activated TLR3 signalling and enhanced the expression of endothelial genes in a TLR3-dependent fashion. The induced endothelial cells (ECs) resembled genuine ECs in that they produced endothelial nitric oxide and formed tube-like structures in Matrigel. In a lineage tracing experiment in Fsp1-Cre/LacZ mice, shockwave treatment increased LacZ/CD31-positive cells (indicating transdifferentiation) after coronary occlusion. Furthermore, SWT reduced myocardial scar size and improved LV function. Single-cell RNA-seq and RNA trajectory analyses revealed that SWT induced an endothelial fibroblast cluster and mechanical stimulation induced significant changes in chromatin organization, with chromatin being more accessible after both treatments in 1705 genomic regions. Conclusion Shockwave therapy enhances DNA accessibility via TLR3 activation and facilitates the transdifferentiation of fibroblasts towards endothelial cells in ischaemic myocardium.
Collapse
Affiliation(s)
- Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Victor Schweiger
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Daniela Lener
- Department of Internal Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Elke Kirchmair
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Felix Eichin
- Institute of Bioinformatics, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Institute of Bioinformatics, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Jonas Eder
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Manuel Fiegl
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Dominik Hau
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., Mail Stop: R10-South, Houston, TX 77030, USA
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
| |
Collapse
|
12
|
Bourreau C, Navarro E, Cotinat M, Krejbich M, Guillonneau F, Guette C, Boissard A, Henry C, Corre I, Treps L, Clere N. Secretomes From Non-Small Cell Lung Cancer Cells Induce Endothelial Plasticity Through a Partial Endothelial-to-Mesenchymal Transition. Cancer Med 2025; 14:e70707. [PMID: 40028673 PMCID: PMC11873768 DOI: 10.1002/cam4.70707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
AIM The tumor microenvironment (TME) of non-small cell lung cancer (NSCLC) is highly heterogeneous and is involved in tumorigenesis and resistance to therapy. Among the cells of the TME, endothelial cells are associated with the latter processes through endothelial-to-mesenchymal transition (EndMT). During EndMT, endothelial cells (ECs) progressively lose their endothelial phenotype in favor of a mesenchymal phenotype, which favors the production of cancer-associated fibroblasts (CAFs). Our study aimed to investigate the consequences of exposure to different lung tumor secretomes on EC phenotype and plasticity. MATERIALS AND METHODS Conditioned media (CM) were prepared from the tumor cell lines A549, H1755, H23, H1437, and H1975. Proliferation and migration of ECs treated with these CMs were assessed by Cyquant and Incucyte technologies, respectively. The angiogenic capacity of ECs was assessed by following tubulogenesis on Matrigel. Phenotypic changes in treated ECs were detected by flow cytometry. Morphological analysis of actin fibers was performed by immunohistochemistry, while proteomic analysis by mass spectrometry was used to identify the protein content of secretomes. RESULTS A change of the endothelial phenotype was found when human umbilical vein endothelial cells (HUVECs) were treated with different CMs. This phenotypic change was associated with a morphological change, an increase in both stress fiber expression and spontaneous migration. Furthermore, an increase in mesenchymal markers (α-SMA and CD44) confirmed the phenotypic changes. However, the secretomes did not modify the rate of double-labeled cells (vWF+/α-SMA+ or CD31+/CD44+). Proteomic analysis identified potential targets involved in the EndMT with therapeutic relevance. CONCLUSION Taken together, these data suggest that CMs can induce partial EndMT.
Collapse
Affiliation(s)
- Clara Bourreau
- Univ Angers, Inserm, CNRS, MINT, SFR ICATAngersFrance
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - Emilie Navarro
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - Marine Cotinat
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - Morgane Krejbich
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - François Guillonneau
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
- Institut de Cancérologie de l'OuestAngersFrance
| | - Catherine Guette
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
- Institut de Cancérologie de l'OuestAngersFrance
| | | | | | - Isabelle Corre
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - Lucas Treps
- Nantes Université, Université d'Angers, CHU Nantes, Inserm, CNRS, CRCI2NANantesFrance
| | - Nicolas Clere
- Univ Angers, Inserm, CNRS, MINT, SFR ICATAngersFrance
| |
Collapse
|
13
|
Kumari K, Verma K, Sahu M, Dwivedi J, Paliwal S, Sharma S. Emerging role of mesenchymal cells in cardiac and cerebrovascular diseases: Physiology, pathology, and therapeutic implications. Vascul Pharmacol 2025:107473. [PMID: 39993517 DOI: 10.1016/j.vph.2025.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
In recent years, the therapeutic utility of mesenchymal stem cells (MSCs) has received substantial attention from investigators, owing to their pleiotropic properties. The emerging insights from the developments in tissue engineering provide perspectives for the repair of damaged tissue and the replacement of failing organs. Perivascular cells including MSC-like pericytes, vascular smooth muscles, and other cells located around blood vessels, have been acknowledged to contribute to in situ angiogenesis and repair process. MSCs offer a wide array of therapeutic applications in different pathological states. However, in the current article, we have highlighted the recent updates on MSCs and their key applications in cardiac and cerebrovascular diseases, evident in different preclinical and clinical studies. We believe the present article would assist the investigators in understanding the recent advances of MSCs and exploring their therapeutic potential in varied ailments, especially cardiac and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center - Shreveport, LA, USA
| | - Meenal Sahu
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| |
Collapse
|
14
|
Li H, Jia Y, Chen Z, Yang L, Ni L, Cao Y, Fan R, Yuan Z, Zhu K, Zhang Z, Zuo L, Wu P, Gao Y, Lin Y. Bioinformatics analysis of coronary microvascular dysfunction in rats based on single-cell RNA sequencing. Sci Rep 2025; 15:5050. [PMID: 39934189 PMCID: PMC11814319 DOI: 10.1038/s41598-025-85318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025] Open
Abstract
Coronary microvascular dysfunction serves as one of the etiological factors for ischemic heart disease and represents a novel therapeutic direction for coronary artery diseases; however, the research on its pathogenesis remains inconsistent. This study aims to explore the single-cell gene expression profiles in rats with coronary microvascular dysfunction using single-cell RNA sequencing, with a particular focus on the in-depth analysis of endothelial cell gene expression characteristics. By establishing a rat model of coronary microvascular dysfunction, we collected cardiac apical tissue to prepare single-cell suspensions and further analyzed them using bioinformatics methods. From a total of 55,419 cells, we identified 28 distinct cell clusters, with endothelial cells and fibroblasts being the predominant cell types. Compared to the NC group, the proportion of endothelial cells in the CMD group was significantly reduced, while the number of fibroblasts was significantly increased. Through further analysis of the endothelial cells, we classified them into normal phenotype endothelial cells, mesenchymal phenotype endothelial cells, proliferative phenotype endothelial cells, and lymphatic endothelial cells, with mesenchymal and proliferative endothelial cells originating from normal phenotype endothelial cells. Additionally, the CMD group exhibited an increase in immune cells, enhanced inflammatory response, and increased oxidative stress. These findings may provide novel potential therapeutic targets for the treatment of Coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Hao Li
- LinFen Central Hospital, Department of Cardiology, LinFen, 041000, China
| | - Yiding Jia
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Zelin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Luqun Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Lin Ni
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Rong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Zitong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Kaiyi Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Zhijun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China
| | - Lin Zuo
- Shanxi Medical UniversityLaboratory of Cell Physiology, Jinzhong, 030600, China
| | - Ping Wu
- First Hospital of Shanxi Medical University, Department of Cardiology, Taiyuan, 030012, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China.
| | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Cardiology, 99 Longcheng Street, Xiaodian District, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
15
|
Choi DK. Epigenetic regulation of angiogenesis and its therapeutics. Genomics Inform 2025; 23:4. [PMID: 39934895 DOI: 10.1186/s44342-025-00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.
Collapse
Affiliation(s)
- Dong Kyu Choi
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
16
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
18
|
Skulimowska I, Morys J, Sosniak J, Gonka M, Gulati G, Sinha R, Kowalski K, Mosiolek S, Weissman IL, Jozkowicz A, Szade A, Szade K. Polyclonal regeneration of mouse bone marrow endothelial cells after irradiative conditioning. Cell Rep 2024; 43:114779. [PMID: 39489938 PMCID: PMC11602546 DOI: 10.1016/j.celrep.2024.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 11/05/2024] Open
Abstract
Bone marrow endothelial cells (BM-ECs) are the essential components of the BM niche and support the function of hematopoietic stem cells (HSCs). However, conditioning for HSC transplantation causes damage to the recipients' BM-ECs and may lead to transplantation-related morbidity. Here, we investigated the cellular and clonal mechanisms of BM-EC regeneration after irradiative conditioning. Using single-cell RNA sequencing, imaging, and flow cytometry, we revealed how the heterogeneous pool of BM-ECs changes during regeneration from irradiation stress. Next, we developed a single-cell in vitro clonogenic assay and demonstrated that all EC fractions hold a high potential to reenter the cell cycle and form vessel-like structures. Finally, we used Rainbow mice and a machine-learning-based model to show that the regeneration of BM-ECs after irradiation is mostly polyclonal and driven by the broad fraction of BM-ECs; however, the cell output among clones varies at later stages of regeneration.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jan Morys
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kacper Kowalski
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Sylwester Mosiolek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
19
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
20
|
Zou Y, Shi H, Li Y, Li T, Liu N, Liu B. Heat shock protein 27 downregulation attenuates isoprenaline-induced myocardial fibrosis and diastolic dysfunction by modulating the endothelial-mesenchymal transition. Biochem Pharmacol 2024; 230:116612. [PMID: 39515591 DOI: 10.1016/j.bcp.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Heart failure (HF), an end-stage clinical syndrome secondary to cardiac impairment, significantly affects patients' quality of life and long-term prognosis. Myocardial fibrosis leads to systolic and diastolic dysfunction, and promotes the progression of HF. Several studies involving the modulation of myocardial fibrosis have been conducted in an effort to improve cardiac function. Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in cellular stress states. HSP27 modulates epithelial-mesenchymal transition, playing a crucial role in the pathology of several fibrotic diseases. However, its association with myocardial fibrosis regulation is unknown. This study aimed to investigate the mechanisms by which HSP27 regulates myocardial fibrosis. We created cardiac-specific HSP25 (the murine ortholog of human HSP27) knockout mice and found that HSP25 knockdown inhibited endothelial-mesenchymal transition (EndMT), attenuated myocardial fibrosis, and ameliorated diastolic dysfunction in isoproterenol-induced HF mice via echocardiography, histology, and western bloting. In vitro, HSP27 knockdown attenuated transforming growth factor beta-induced EndMT, whereas HSP27 overexpression promoted EndMT. Furthermore, the SMAD3/SNAIL1 pathway was found to be crucial for HSP27-mediated EndMT regulation. As an essential molecule in EndMT regulation and myocardial fibrosis modulation, HSP27 may hold promise as a therapeutic target for patients with HF.
Collapse
Affiliation(s)
- Yifei Zou
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Henghe Shi
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Yinghao Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Tianyi Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Ning Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| |
Collapse
|
21
|
Volf N, Vuerich R, Colliva A, Volpe MC, Marengon M, Zentilin L, Giacca M, Ring NAR, Vodret S, Braga L, Zacchigna S. Endothelial-to-mesenchymal transition enhances permissiveness to AAV vectors in cardiac endothelial cells. Mol Ther 2024; 32:3808-3814. [PMID: 39175195 PMCID: PMC11573677 DOI: 10.1016/j.ymthe.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
A major obstacle in inducing therapeutic angiogenesis in the heart is inefficient gene transfer to endothelial cells (ECs). Here, we identify compounds able to enhance the permissiveness of cardiac ECs to adeno-associated virus (AAV) vectors, which stand as ideal tools for in vivo gene delivery. We screened a library of >1,500 US Food and Drug Administration (FDA)-approved drugs, in combination with AAV vectors, in cardiac ECs. Among the top drugs increasing AAV-mediated transduction, we found vatalanib, an inhibitor of multiple tyrosine kinase receptors. The increased AAV transduction efficiency by vatalanib was paralleled by induction of the endothelial-to-mesenchymal transition, as documented by decreased endothelial and increased mesenchymal marker expression. Induction of the endothelial-to-mesenchymal transition by other strategies similarly increased EC permissiveness to AAV vectors. In vivo injection of AAV vectors in the heart after myocardial infarction resulted in the selective transduction of cells undergoing the endothelial-to-mesenchymal transition, which is known to happen transiently after cardiac ischemia. Collectively, these results point to the endothelial-to-mesenchymal transition as a mechanism for improving AAV transduction in cardiac ECs, with implications for both basic research and the induction of therapeutic angiogenesis in the heart.
Collapse
Affiliation(s)
- Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Maria Concetta Volpe
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Margherita Marengon
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nadja Anneliese Ruth Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
22
|
Seeler S, Arnarsson K, Dreßen M, Krane M, Doppler SA. Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research. Curr Cardiol Rep 2024; 26:1183-1196. [PMID: 39158785 DOI: 10.1007/s11886-024-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Sabine Seeler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Kristjan Arnarsson
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany.
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany.
| |
Collapse
|
23
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H, Peng C. Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol 2024; 282:136993. [PMID: 39489255 DOI: 10.1016/j.ijbiomac.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-induced myocardial dysfunction presents significant challenges in clinical management and is associated with increased mortality. Anisodamine (654-1/-2) has potentials in alleviating cardiac and endothelial impairments associated with sepsis. Exosomes, small vesicles secreted by cells, carry various bioactive molecules, such as nucleic acids, proteins, and lipids. These vesicles can travel to target cells to influence their function and modulating biological processes. In the context of endothelial-cardiac crosstalk, exosomes derived from endothelial cells can transfer signals that either exacerbate or mitigate myocardial injury, playing a crucial role in the progression of cardiovascular diseases. However, the precise role of endothelial-cardiac crosstalk, particularly through exosomes, in mediating the cardioprotective effects of anisodamine remains unclear. This study evaluated the effects of anisodamine on myocardial and endothelial injuries induced by LPS. Mechanisms were analyzed through network pharmacology, molecular docking, Western blotting, and RT-qPCR. The interaction between endothelial and cardiomyocyte inflammatory responses to anisodamine was assessed using a co-culture assay. Furthermore, both in vivo and in vitro assays were conducted to evaluate the effects of anisodamine-/LPS- treated HUVECs exosomes on A16 cell and myocardial function in mice. Anisodamine effectively mitigated apoptosis, inflammation, mitochondrial and myocardial injury, glycocalyx degradation, and oxidative stress by regulating the PI3K-AKT, NLRP-3/Caspase-1/ASC, TNF-α/PKCα/eNOs/NO, and NF-κB/iNOs/NO pathways in A16 cells and HUVECs. Moreover, in vivo and in vitro assays confirmed the protective effects of anisodamine against myocardial injuries mediated by exosomes derived from LPS-treated HUVECs. In summary, anisodamine ameliorated inflammation-induced endothelial and cardiomyocyte dysfunction. The in vitro and in vivo assays demonstrated that anisodamine could alleviate myocardial dysfunction through exosome-mediated mechanisms, offering new therapeutic avenues for treating myocardial injury and highlighting the potential of targeted exosome therapy in clinical settings.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- Chengdu NO. 1 Pharmaceutical Co., Ltd., No. 133, Section 2, East Third Ring Road, Tianpeng, Pengzhou 611930, Sichuan, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
25
|
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, Zheng R, Sun Y, Shang H. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis 2024; 11:101163. [PMID: 39224111 PMCID: PMC11367031 DOI: 10.1016/j.gendis.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of mRNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs (e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs.
Collapse
Affiliation(s)
- Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yawen Du
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chuwei Tang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Herong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaofeng Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
26
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
27
|
Zhang D, Wen Q, Zhang R, Kou K, Lin M, Zhang S, Yang J, Shi H, Yang Y, Tan X, Yin S, Ou X. From Cell to Gene: Deciphering the Mechanism of Heart Failure With Single-Cell Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308900. [PMID: 39159065 PMCID: PMC11497092 DOI: 10.1002/advs.202308900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of Rehabilitation MedicineSouthwest Medical UniversityLuzhouSichuan646000China
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang RdWuhanHubei430022China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Hangchuan Shi
- Department of Clinical & Translational ResearchUniversity of Rochester Medical Center265 Crittenden BlvdRochesterNY14642USA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical Center601 Elmwood AveRochesterNY14642USA
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PhysiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shigang Yin
- Luzhou Key Laboratory of Nervous system disease and Brain FunctionSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinGuangxi541004China
| |
Collapse
|
28
|
Foster SR, Hudson JE. Endothelial cells as paracrine mediators of long COVID. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1181-1183. [PMID: 39402205 DOI: 10.1038/s44161-024-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Affiliation(s)
- Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
29
|
Cho HH, Rhee S, Cho DI, Jun JH, Heo H, Cho SH, Kim D, Wang M, Kang BG, Yoo SJ, Cho M, Lim SY, Cho JY, Jeong IS, Kim YS, Ahn Y. IKKε-deficient macrophages impede cardiac repair after myocardial infarction by enhancing the macrophage-myofibroblast transition. Exp Mol Med 2024; 56:2052-2064. [PMID: 39261656 PMCID: PMC11446912 DOI: 10.1038/s12276-024-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
The regulatory role of the inhibitor of NF-kB kinase ε (IKKε) in postmyocardial infarction (MI) inflammation remains uncertain. Using an MI mouse model, we examined the cardiac outcomes of IKKε knockout (KO) mice and wild-type mice. We employed single-cell RNA sequencing (scRNA-seq) and phosphorylated protein array techniques to profile cardiac macrophages. IKKε KO mice exhibited compromised survival, heightened inflammation, pronounced cardiac fibrosis, and a reduced ejection fraction. A distinct cardiac macrophage subset in IKKε KO mice exhibited increased fibrotic marker expression and decreased phosphorylated p38 (p-p38) levels, indicating an enhanced macrophage-myofibroblast transition (MMT) post-MI. While cardiac inflammation is crucial for initiating compensatory pathways, the timely resolution of inflammation was impaired in the IKKε KO group, while the MMT in macrophages accelerated post-MI, leading to cardiac failure. Additionally, our study highlighted the potential of 5-azacytidine (5-Aza), known for its anti-inflammatory and cardioprotective effects, in restoring p-p38 levels in stimulated macrophages. The administration of 5-Aza significantly reduced the MMT in cardiac macrophages from the IKKε KO group. These findings underscore the regulation of the inflammatory response and macrophage transition by the IKKε-p38 axis, indicating that the MMT is a promising therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Hyang Hee Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - HyoJung Heo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Su Han Cho
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Dohyup Kim
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Soo Ji Yoo
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Soo Yeon Lim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jae Yeong Cho
- Department of Cardiology, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea
| | - In Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea.
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.
- Department of Cardiology, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
30
|
Wirth L, Erny E, Krane M, Lahm H, Hein L, Gilsbach R, Lother A. Gene expression networks in endothelial cells from failing human hearts. Am J Physiol Heart Circ Physiol 2024; 327:H573-H581. [PMID: 39028282 DOI: 10.1152/ajpheart.00425.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Chronic heart failure is associated with adverse remodeling of the heart that is typically characterized by cardiomyocyte hypertrophy. This requires the formation of new capillaries to maintain oxygen supply. Insufficient angiogenesis promotes the transition from compensated hypertrophy into heart failure. The aim of this study was to identify angiogenesis-related gene networks and corresponding regulatory hubs in endothelial cells from failing human hearts. We isolated left ventricular endothelial cells from patients with advanced heart failure undergoing left ventricular assist device surgery (n = 15) and healthy organ donors (n = 2) and performed RNA sequencing. Subgroup analysis revealed no impact of comorbidities on gene expression. In a weighted gene coexpression network analysis, we found 26 gene clusters, of which 9 clusters showed a significant positive or negative correlation with the presence of heart failure. We identified the transcription factors CASZ1 (castor zinc finger 1), ZNF523 (zinc finger protein 523), and NFE2L1 (nuclear factor erythroid 2-related factor 1) as hub genes of a cluster related to angiogenesis. Knockdown of CASZ1, ZNF523, or NFE2L1 in human umbilical vein endothelial cells led to a downregulation of genes from the respective cluster, including CD34 and platelet-derived growth factor-β, confirming their regulatory function. In conclusion, we assessed gene networks in endothelial cells and identified transcription factors CASZ1, ZNF532, and NFE2L1 as potential regulators of angiogenesis in failing human hearts. Our study provides insights into the transcriptional regulation of angiogenesis beyond the classical vascular endothelial growth factor signaling pathway.NEW & NOTEWORTHY Gene coexpression network analysis defined 26 gene clusters expressed in endothelial cells from failing human hearts. Transcription factors CASZ1, ZNF523, and NFE2L1 were identified as hub genes of a cluster related to angiogenesis. Knockdown of CASZ1, ZNF523, or NFE2L1 in human umbilical vein endothelial cells led to a downregulation of genes from the respective cluster, confirming their regulatory function. This provides insights into the transcriptional regulation of angiogenesis in heart failure beyond classical signaling pathways.
Collapse
Affiliation(s)
- Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Erny
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
- German Center for Cardiovascular Research (DZHK) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Wang J, Ding HK, Xu HJ, Hu DK, Hankey W, Chen L, Xiao J, Liang CZ, Zhao B, Xu LF. Single-cell analysis revealing the metabolic landscape of prostate cancer. Asian J Androl 2024; 26:451-463. [PMID: 38657119 PMCID: PMC11449408 DOI: 10.4103/aja20243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/29/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - Han-Jiang Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - De-Kai Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - William Hankey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Chen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - Bing Zhao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
32
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
33
|
Lebas M, Chinigò G, Courmont E, Bettaieb L, Machmouchi A, Goveia J, Beatovic A, Van Kerckhove J, Robil C, Angulo FS, Vedelago M, Errerd A, Treps L, Gao V, Delgado De la Herrán HC, Mayeuf-Louchart A, L’homme L, Chamlali M, Dejos C, Gouyer V, Garikipati VNS, Tomar D, Yin H, Fukui H, Vinckier S, Stolte A, Conradi LC, Infanti F, Lemonnier L, Zeisberg E, Luo Y, Lin L, Desseyn JL, Pickering G, Kishore R, Madesh M, Dombrowicz D, Perocchi F, Staels B, Pla AF, Gkika D, Cantelmo AR. Integrated single-cell RNA-seq analysis reveals mitochondrial calcium signaling as a modulator of endothelial-to-mesenchymal transition. SCIENCE ADVANCES 2024; 10:eadp6182. [PMID: 39121218 PMCID: PMC11313856 DOI: 10.1126/sciadv.adp6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.
Collapse
Affiliation(s)
- Mathilde Lebas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Evan Courmont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Louay Bettaieb
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Amani Machmouchi
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | | | | | - Cyril Robil
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiola Silva Angulo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mauro Vedelago
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alina Errerd
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Treps
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Vance Gao
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Alicia Mayeuf-Louchart
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Laurent L’homme
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mohamed Chamlali
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Camille Dejos
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Valérie Gouyer
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Hao Yin
- Robarts Research Institute, Western University, London, Canada
| | - Hajime Fukui
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anneke Stolte
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | | | - Loic Lemonnier
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Elisabeth Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jean-Luc Desseyn
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Geoffrey Pickering
- Robarts Research Institute, Western University, London, Canada
- Department of Medicine, Biochemistry, and Medical Biophysics, Western University, London, Canada
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, Division of Cardiology, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - David Dombrowicz
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Dimitra Gkika
- Université de Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Anna Rita Cantelmo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
34
|
Lin Y, Gil CH, Banno K, Yokoyama M, Wingo M, Go E, Prasain N, Liu Y, Hato T, Naito H, Wakabayashi T, Sominskaia M, Gao M, Chen K, Geng F, Salinero JMG, Chen S, Shelley WC, Yoshimoto M, Li Calzi S, Murphy MP, Horie K, Grant MB, Schreiner R, Redmond D, Basile DP, Rafii S, Yoder MC. ABCG2-Expressing Clonal Repopulating Endothelial Cells Serve to Form and Maintain Blood Vessels. Circulation 2024; 150:451-465. [PMID: 38682338 PMCID: PMC11300167 DOI: 10.1161/circulationaha.122.061833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.
Collapse
Affiliation(s)
- Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chang-Hyun Gil
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kimihiko Banno
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Matthew Wingo
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ellen Go
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Division of Pediatric Rheumatology, Riley Hospital for Children, Indianapolis, IN
| | - Nutan Prasain
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ying Liu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hisamichi Naito
- Department of Vascular Physiology, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Taku Wakabayashi
- Department of Vascular Physiology, Kanazawa University School of Medicine, Kanazawa, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Musia Sominskaia
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Chen
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sisi Chen
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W. Christopher. Shelley
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Momoko Yoshimoto
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Maria B. Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David P. Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mervin C. Yoder
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Perez-Gutierrez L, Li P, Ferrara N. Endothelial cell diversity: the many facets of the crystal. FEBS J 2024; 291:3287-3302. [PMID: 36266750 DOI: 10.1111/febs.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and play crucial roles in angiogenesis. While it has been known for a long time that there are considerable differences among ECs from lymphatic and blood vessels, as well as among arteries, veins and capillaries, the full repertoire of endothelial diversity is only beginning to be elucidated. It has become apparent that the role of ECs is not just limited to their exchange functions. Indeed, a multitude of organ-specific functions, including release of growth factors, regulation of immune functions, have been linked to ECs. Recent years have seen a surge into the identification of spatiotemporal molecular and functional heterogeneity of ECs, supported by technologies such as single-cell RNA sequencing (scRNA-seq), lineage tracing and intersectional genetics. Together, these techniques have spurred the generation of epigenomic, transcriptomic and proteomic signatures of ECs. It is now clear that ECs across organs and in different vascular beds, but even within the same vessel, have unique molecular identities and employ specialized molecular mechanisms to fulfil highly specialized needs. Here, we focus on the molecular heterogeneity of the endothelium in different organs and pathological conditions.
Collapse
Affiliation(s)
- Lorena Perez-Gutierrez
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Pin Li
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| |
Collapse
|
36
|
Shabani P, Ohanyan V, Alghadeer A, Gavazzi D, Dong F, Yin L, Kolz C, Shockling L, Enrick M, Zhang P, Shi X, Chilian W. Bone marrow cells contribute to seven different endothelial cell populations in the heart. Basic Res Cardiol 2024; 119:699-715. [PMID: 38963562 PMCID: PMC11319501 DOI: 10.1007/s00395-024-01065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ammar Alghadeer
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Daniel Gavazzi
- Hiram College Physics and Computer Science Department, Hiram, OH, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
37
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
38
|
Li Z, Wu W, Li Q, Heng X, Zhang W, Zhu Y, Chen L, Chen Z, Shen M, Ma N, Xiao Q, Yan Y. BCL6B-dependent suppression of ETV2 hampers endothelial cell differentiation. Stem Cell Res Ther 2024; 15:226. [PMID: 39075623 PMCID: PMC11287929 DOI: 10.1186/s13287-024-03832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiushi Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yinghong Zhu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Ziqi Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, USA
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital of Guangzhou Medical University and Guangzhou Municipal, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
39
|
Li Z, Wang S, Yin X, Tao D, Wang X, Zhang J. Identification and Validation of Diagnostic Model Based on Angiogenesis- and Epithelial Mesenchymal Transition-Related Genes in Myocardial Infarction. Int J Gen Med 2024; 17:3239-3255. [PMID: 39070220 PMCID: PMC11283268 DOI: 10.2147/ijgm.s465411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Myocardial infarction (MI) is a chronic cardiovascular disease. This study aims to discern potentially angiogenesis- and epithelial mesenchymal transition (EMT)-related genes as biomarkers for MI diagnosis through bioinformatics. Methods All datasets and angiogenesis- and EMT-related genes were collected from the public database. The differentially expressed genes (DEGs) of MI and MI-related genes were acquired. DEGs, MI-related genes, and angiogenesis- and EMT-related genes were intersected to obtain hub genes. Functional enrichment, immune microenvironment, and transcription factors (TFs)-hub genes regulatory network analysis were performed. The diagnostic markers and models were developed and validated. Drug prediction and molecular docking were performed. Finally, diagnostic markers expressions were validated using RT-qPCR. Results A total of 224 angiogenesis- and EMT-related genes, 2,897 DEGs, 1,217 MI-related genes, and 9 hub genes were acquired. The immune infiltration levels of plasma cells, T cells CD4 memory activated, monocytes, macrophages M0, mast cells resting, and neutrophils were higher in patients with MI. LRPAP1, COLGALT1, QSOX1, THBD, VCAN, PLOD1, and PLAUR as the diagnostic markers were identified and used to construct diagnostic models, which can distinguish MI from controls well. Then, 9 drugs were screened, and the binding energies ranged from -7.08 to -5.21 kcal/mol. RT-qPCR results showed that the expression of LRPAP1, PLAUR, and PLOD1 was significantly increased in the MI group. Conclusion The 7 diagnostic markers may play potential roles in MI and could contribute to improved future diagnostics.
Collapse
Affiliation(s)
- Zhengmei Li
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, People’s Republic of China
| | - Shiai Wang
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Xunli Yin
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Dong Tao
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Xuebing Wang
- Department of Cardiovascular Medicine, The Seventh People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Junli Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, People’s Republic of China
| |
Collapse
|
40
|
Schmidt K, Schmidt A, Groß S, Just A, Pfanne A, Fuchs M, Jordan M, Mohr E, Pich A, Fiedler J, Thum T. SGLT2 inhibitors attenuate endothelial to mesenchymal transition and cardiac fibroblast activation. Sci Rep 2024; 14:16459. [PMID: 39013942 PMCID: PMC11252266 DOI: 10.1038/s41598-024-65410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Beneficial effects of sodium glucose co-transporter 2 inhibitors (SGLT2is) in cardiovascular diseases have been extensively reported leading to the inclusion of these drugs in the treatment guidelines for heart failure. However, molecular actions especially on non-myocyte cells remain uncertain. We observed dose-dependent inhibitory effects of two SGLT2is, dapagliflozin (DAPA) and empagliflozin (EMPA), on inflammatory signaling in human umbilical vein endothelial cells. Proteomic analyses and subsequent enrichment analyses discovered profound effects of these SGLT2is on proteins involved in mitochondrial respiration and actin cytoskeleton. Validation in functional oxygen consumption measurements as well as tube formation and migration assays revealed strong impacts of DAPA. Considering that most influenced parameters played central roles in endothelial to mesenchymal transition (EndMT), we performed in vitro EndMT assays and identified substantial reduction of mesenchymal and fibrosis marker expression as well as changes in cellular morphology upon treatment with SGLT2is. In line, human cardiac fibroblasts exposed to DAPA showed less proliferation, reduced ATP production, and decelerated migration capacity while less extensive impacts were observed upon EMPA. Mechanistically, sodium proton exchanger 1 (NHE1) as well as sodium-myoinositol cotransporter (SMIT) and sodium-multivitamin cotransporter (SMVT) could be identified as relevant targets of SGLT2is in non-myocyte cardiovascular cells as validated by individual siRNA-knockdown experiments. In summary, we found comprehensive beneficial effects of SGLT2is on human endothelial cells and cardiac fibroblasts. The results of this study therefore support a distinct effect of selected SGLT2i on non-myocyte cardiovascular cells and grant further insights into potential molecular mode of action of these drugs.
Collapse
Affiliation(s)
- Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
41
|
Ke D, Cao M, Ni J, Yuan Y, Deng J, Chen S, Dai X, Zhou H. Macrophage and fibroblast trajectory inference and crosstalk analysis during myocardial infarction using integrated single-cell transcriptomic datasets. J Transl Med 2024; 22:560. [PMID: 38867219 PMCID: PMC11167890 DOI: 10.1186/s12967-024-05353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cardiac fibrosis after myocardial infarction (MI) has been considered an important part of cardiac pathological remodeling. Immune cells, especially macrophages, are thought to be involved in the process of fibrosis and constitute a niche with fibroblasts to promote fibrosis. However, the diversity and variability of fibroblasts and macrophages make it difficult to accurately depict interconnections. METHODS We collected and reanalyzed scRNA-seq and snRNA-seq datasets from 12 different studies. Differentiation trajectories of these subpopulations after MI injury were analyzed by using scVelo, PAGA and Slingshot. We used CellphoneDB and NicheNet to infer fibroblast-macrophage interactions. Tissue immunofluorescence staining and in vitro experiments were used to validate our findings. RESULTS We discovered two subsets of ECM-producing fibroblasts, reparative cardiac fibroblasts (RCFs) and matrifibrocytes, which appeared at different times after MI and exhibited different transcriptional profiles. We also observed that CTHRC1+ fibroblasts represent an activated fibroblast in chronic disease states. We identified a macrophage subset expressing the genes signature of SAMs conserved in both human and mouse hearts. Meanwhile, the SPP1hi macrophages were predominantly found in the early stages after MI, and cell communication analysis indicated that SPP1hi macrophage-RCFs interactions are mainly involved in collagen deposition and scar formation. CONCLUSIONS Overall, this study comprehensively analyzed the dynamics of fibroblast and macrophage subsets after MI and identified specific subsets of fibroblasts and macrophages involved in scar formation and collagen deposition.
Collapse
Affiliation(s)
- Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Mingzhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Jiangyang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Si Chen
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Xiujun Dai
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, People's Republic of China.
| |
Collapse
|
42
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
43
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
45
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
46
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
48
|
Hudson JA, Ferrand RA, Gitau SN, Mureithi MW, Maffia P, Alam SR, Shah ASV. HIV-Associated Cardiovascular Disease Pathogenesis: An Emerging Understanding Through Imaging and Immunology. Circ Res 2024; 134:1546-1565. [PMID: 38781300 DOI: 10.1161/circresaha.124.323890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cardiac abnormalities were identified early in the epidemic of AIDS, predating the isolation and characterization of the etiologic agent, HIV. Several decades later, the causation and pathogenesis of cardiovascular disease (CVD) linked to HIV infection continue to be the focus of intense speculation. Before the widespread use of antiretroviral therapy, HIV-associated CVD was primarily characterized by HIV-associated cardiomyopathy linked to profound immunodeficiency. With increasing antiretroviral therapy use, viral load suppression, and establishment of immune competency, the effects of HIV on the cardiovascular system are more subtle. Yet, people living with HIV still face an increased incidence of cardiovascular pathology. Advances in cardiac imaging modalities and immunology have deepened our understanding of the pathogenesis of HIV-associated CVD. This review provides an overview of the pathogenesis of HIV-associated CVD integrating data from imaging and immunologic studies with particular relevance to the HIV population originating from high-endemic regions, such as sub-Saharan Africa. The review highlights key evidence gaps in the field and suggests future directions for research to better understand the complex HIV-CVD interactions.
Collapse
Affiliation(s)
- Jonathan A Hudson
- Kings College London BHF Centre, School of Cardiovascular and Metabolic Medicine & Sciences, United Kingdom (J.A.H.)
| | - Rashida A Ferrand
- Department of Clinical Research (R.A.F.), London School of Hygiene and Tropical Medicine, United Kingdom
- Biomedical Research and Training Institute, Harare, Zimbabwe (R.A.F.)
| | - Samuel N Gitau
- Department of Radiology, Aga Khan University Nairobi, Kenya (S.N.G.)
| | - Marianne Wanjiru Mureithi
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences (M.W.M.), University of Nairobi, Kenya
| | - Pasquale Maffia
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (P.M.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Italy (P.M.)
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases and Multimorbidity, African Research Universities Alliance and The Guild of European Research-Intensive Universities, Glasgow, United Kingdom (P.M.)
| | - Shirjel R Alam
- Department of Cardiology, North Bristol NHS Trust, United Kingdom (S.R.A.)
| | - Anoop S V Shah
- Department of Non-Communicable Disease Epidemiology (A.S.V.S.), London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Cardiology, Imperial College NHS Trust, London, United Kingdom (A.S.V.S.)
| |
Collapse
|
49
|
Pernomian L, Waigi EW, Nguyen V, Mohammed AD, da Costa TJ, Fontes MT, Kubinak JL, Aitken A, Biancardi VC, Sinclair DA, McCarthy CG, Wang Y, Tan W, Wenceslau CF. A Single-Short Partial Reprogramming of the Endothelial Cells decreases Blood Pressure via attenuation of EndMT in Hypertensive Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595057. [PMID: 38826452 PMCID: PMC11142064 DOI: 10.1101/2024.05.20.595057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Small artery remodeling and endothelial dysfunction are hallmarks of hypertension. Growing evidence supports a likely causal association between cardiovascular diseases and the presence of endothelial-to-mesenchymal transition (EndMT), a cellular transdifferentiation process in which endothelial cells (ECs) partially lose their identity and acquire additional mesenchymal phenotypes. EC reprogramming represents an innovative strategy in regenerative medicine to prevent deleterious effects induced by cardiovascular diseases. Methods Using a partial reprogramming of ECs, via overexpression of Oct-3/4, Sox-2, and Klf-4 (OSK) transcription factors, we aimed to bring ECs back to a youthful phenotype in hypertensive mice. Primary ECs were infected with lentiviral vectors (LV) containing the specific EC marker cadherin 5 (Cdh5) and the fluorescent reporter enhanced green fluorescence protein (EGFP) with empty vector (LVCO) or with OSK (LV-OSK). Confocal microscopy and western blotting analysis were used to confirm the OSK overexpression. Cellular migration, senescence, and apoptosis were evaluated. Human aortic ECs (HAoECs) from male and female normotensive and hypertensive patients were analyzed after OSK or control treatments for their endothelial nitric oxide synthase (eNOS) levels, nitric oxide (NO), and genetic profile. Male and female normotensive (BPN/3J) and hypertensive (BPH/2J) mice were treated with an intravenous (i.v.) injection of LVCO or LV-OSK and evaluated 10 days post-infection. The blood pressure, cardiac function, vascular reactivity of small arteries, in vivo EGFP signal and EndMT inhibition were analyzed. Results OSK overexpression induced partial EC reprogramming in vitro , and these cells showed endothelial progenitor cell (EPC)-like features with lower migratory capability. OSK treatment of hypertensive BPH/2J mice normalized blood pressure and resistance arteries hypercontractility, via the attenuation of EndMT and elastin breaks. EGFP signal was detected in vivo in the prefrontal cortex of both BPN/3J and BPH/2J-treated mice, but OSK induced angiogenesis only in male BPN/3J mice. OSK-treated human ECs from hypertensive patients showed high eNOS activation and NO production, with low ROS formation. Single-cell RNA analysis showed that OSK alleviated EC senescence and EndMT, restoring their phenotypes in human ECs from hypertensive patients. Conclusion Overall, these data indicate that OSK treatment and EC reprogramming can decrease blood pressure and reverse hypertension-induced vascular damage.
Collapse
|
50
|
Tamiato A, Tombor LS, Fischer A, Muhly-Reinholz M, Vanicek LR, Toğru BN, Neitz J, Glaser SF, Merten M, Rodriguez Morales D, Kwon J, Klatt S, Schumacher B, Günther S, Abplanalp WT, John D, Fleming I, Wettschureck N, Dimmeler S, Luxán G. Age-Dependent RGS5 Loss in Pericytes Induces Cardiac Dysfunction and Fibrosis. Circ Res 2024; 134:1240-1255. [PMID: 38563133 PMCID: PMC11081481 DOI: 10.1161/circresaha.123.324183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFβ (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.
Collapse
Affiliation(s)
- Anita Tamiato
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Lukas S. Tombor
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Leah Rebecca Vanicek
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Büşra Nur Toğru
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Jessica Neitz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Simone Franziska Glaser
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Maximilian Merten
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - David Rodriguez Morales
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology (J.K., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Klatt
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- Institute for Vascular Signalling, Center of Molecular Medicine (S.K., I.F.), Goethe University Frankfurt, Germany
| | - Bianca Schumacher
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Stefan Günther
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
- Bioinformatics and Deep Sequencing Platform (S.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wesley T. Abplanalp
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Ingrid Fleming
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- Institute for Vascular Signalling, Center of Molecular Medicine (S.K., I.F.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Nina Wettschureck
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
- Department of Pharmacology (J.K., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| |
Collapse
|