1
|
Wu Y, Mohamed MA, Yi T, Das A, Rumsey CL, Trebbin M, Breuer CK, Andreadis ST. Self-healing and cell-free vascular grafts. Biomaterials 2025; 318:123121. [PMID: 39889339 DOI: 10.1016/j.biomaterials.2025.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
We developed an innovative self-healing tissue engineering vessel (SH-TEV) that heals fast after repeated needle punctures, while maintaining artery like mechanical strength and toughness even under wet conditions. The SH-TEV is designed as a bilayer tube engineered by electrospinning an autonomous self-healing polyurethane, PU-DAA, around a tube of a native biomaterial, small intestinal submucosa (SIS), that can be functionalized with biomolecules to recruit host cells and promote endothelialization. The self-healing PU-DAA was designed to incorporate multi-strength H-bonds and reversible hydrazone bonds and exhibited high strength (3.95 ± 0.16 MPa), toughness (23.01 ± 2.37 MJ/m3), and fast autonomous self-healing (86.44 ± 6.65 % after 12 h) under physiological conditions. The self-healing layer supported attachment, spreading and proliferation of fibroblasts, indicating biocompatibility. When SH-TEVs were implanted as interpositional grafts into the rat aorta for 4 weeks, they remained patent without any thrombosis (100 % animal survival and 100 % graft patency), were endothelialized and developed a smooth muscle cell containing vascular wall. In addition, they showed excellent self-healing ability following needle puncture (hemostatic time <40 s) immediately after implantation and four weeks later. Collectively, these results demonstrate the potential of SH-TEVs as vascular access conduits for hemodialysis applications.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Tai Yi
- Nationwide Children's Hospital, Columbus, OH, 43215, USA
| | - Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Clayton L Rumsey
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Martin Trebbin
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14263, USA; Center of Cell, Gene and Tissue Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
2
|
Šimunović L, Miličević AM, Brenko L, Haramina T, Meštrović S. Absorption and desorption dynamics of thermoformed and 3-dimensional-printed orthodontic aligners. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00170-2. [PMID: 40366328 DOI: 10.1016/j.ajodo.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION The mechanical performance and fit of orthodontic aligners are influenced by their interaction with moisture in the oral environment. This study aimed to evaluate and compare the water absorption, desorption kinetics, and diffusion behavior of thermoformed (Invisalign [Align Technology, Santa Clara, Calif] and ClearCorrect [Institut Straumann AG, Basel, Switzerland]) and 3-dimensional (3D)-printed (Tera Harz TC-85, Clear A; Graphy Inc, Seoul, South Korea) orthodontic aligners. METHODS Thirty-two aligners were divided by brand and fabrication method. The samples were immersed in distilled water at 37°C for 14 days and weighed daily. Desorption was measured at hourly intervals for 8 hours and once at 24 hours after removal from immersion. Diffusion kinetics were modeled using log-log transformed data and linear regression based on the Fickian diffusion theory. RESULTS All materials followed Fickian diffusion profiles. Thermoformed aligners showed significantly higher water absorption than 3D-printed aligners by day 14 (4.91% for Invisalign vs 2.76% for Clear A; P <0.001). Invisalign also exhibited the highest diffusion slope (k = 0.74) and the fastest desorption (93.7% in the first hour). Three-dimensional-printed aligners displayed slower early desorption but reached comparable release at 24 hours. A strong correlation was observed between water absorption and early desorption (r = 0.903; P <0.001). CONCLUSIONS The aligner fabrication method and material composition significantly affected the moisture kinetics. Thermoformed aligners, especially those with outer thermoplastic polyurethane layers, demonstrate greater and faster water interactions, whereas 3D-printed aligners offer lower overall uptake but delayed release. These differences may influence the aligner fit and performance in clinical settings.
Collapse
Affiliation(s)
- Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ana Marija Miličević
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Brenko
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Tatjana Haramina
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Wijeratne PM, Ocando C, Grignard B, Berglund LA, Raquez JM, Zhou Q. Synthesis, Thermal and Mechanical Properties of Nonisocyanate Thermoplastic Polyhydroxyurethane Nanocomposites with Cellulose Nanocrystals and Chitin Nanocrystals. Biomacromolecules 2025. [PMID: 40343709 DOI: 10.1021/acs.biomac.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Incorporating biobased nanofillers including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) into nonisocyanate polyurethane (NIPU) offers a multifunctional approach to improving mechanical and thermal properties while promoting sustainability and green chemistry. Nanocomposites of segmented thermoplastic polyhydroxyurethane (PHU) from vanillyl alcohol bis(cyclocarbonate) (VABC), poly(tetramethylene oxide) diamine (PTMODA), and bis(aminomethyl) norbornane (NORB) reinforced with a low amount of CNCs and partially deacetylated ChNCs were prepared and characterized. Fourier transform infrared spectroscopy, atomic force microscopy, and small-angle X-ray scattering revealed that partially deacetylated ChNCs were covalently grafted to the PHU through aminolysis of carbonate end groups in the hard segment, while CNCs were mixed with the PHU without interfacial covalent bonding. Consequently, the PHU/ChNC nanocomposites showed nanophase separation with smaller hard domains compared to neat PHU, while the PHU/CNC nanocomposites exhibited a phase-mixed system with broader interface regions. Dynamic mechanical analysis and tensile tests further revealed that the PHU/ChNC nanocomposites demonstrated a 49-fold increase in Young's modulus, a 20-fold increase in ultimate tensile strength, and a three-order-of-magnitude enhancement in storage modulus in the rubbery state compared to the PHU/CNC nanocomposites, highlighting the profound influence of interfacial covalent linkages in enhancing the thermal mechanical performance of segmented PHU.
Collapse
Affiliation(s)
- Pavithra M Wijeratne
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Connie Ocando
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), Federation of Researchers in Innovative Technologies for CO2 Transformation (FRITCO2T Research Platform), CESAM Research Unit, University of Liege, 13, Allée Du 6 août, Building B6a, Liege 4000, Belgium
| | - Lars A Berglund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| |
Collapse
|
4
|
Yang C, Guo Z. Biomimetic Xanthium Strumarium Inspired Superhydrophobic Anti-/De-Icing Films with Near-Infrared Light-Induced Self-Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500016. [PMID: 40331489 DOI: 10.1002/smll.202500016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Superhydrophobic surfaces are susceptible to structural deformation and damage during use, which significantly impacts their long-term stability and performance in anti-/de-icing applications. To address this challenge, a biomimetic superhydrophobic polyurethane film inspired by Xanthium strumarium (PBXS) is proposed. This film not only delivers efficient anti-/de-icing performance but also demonstrates exceptional long-term durability. Even when the surface structure undergoes deformation or complete fracture, it can quickly self-heal under near-infrared light, restoring its original properties. The results show that, due to the superhydrophobic micron spine array and photothermal effect, PBXS can delay droplet freezing at low temperatures (-10 °C, 2052 s) and enable rapid de-icing (1 sun, 187 s). Moreover, by incorporating the shape-memory properties of thermoplastic polyurethane and self-healing capability, PBXS effectively addresses issues related to surface deformation (after ten deformation-healing cycles, PBXS maintains a water contact angle of 157 ± 1° and a rolling angle of 15.4 ± 1°) and material rupture (after ten fracture-healing cycles, PBXS retains a water contact angle of 152 ± 1° and a rolling angle of 16.1 ± 1°). This innovative approach enhances the long-term performance of anti-/de-icing films and shows significant potential for applications in road transportation, power transmission lines, and other anti-/de-icing fields.
Collapse
Affiliation(s)
- Chen Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
5
|
Hao LT, Lee S, Hwang DS, Jeon H, Park J, Kim HJ, Oh DX. Self-Healing Scaffolding Technology with Strong, Reversible Interactions under Physiological Conditions for Engineering Marbled Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40317268 DOI: 10.1021/acsami.5c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cultured meat offers a sustainable alternative to animal farming, with the potential to reduce environmental impacts and improve food security. However, recapitulating natural meat marbling remains a significant challenge. This study presents a straightforward technology for achieving precise marbling patterns in large-scale cultured meat using self-healing hydrogels containing boronic acid-conjugated chitosan. Unlike conventional hydrogels, which require nonphysiological conditions for strong, reversible bonding, our system achieves robust reversible bonding at neutral pH through a unique mechanism: the nucleophilic groups of chitosan facilitate boronic acid-diol bond formation, exhibiting half the strength of a typical covalent bond, as demonstrated by nanomechanics analysis. The hydrogels form dual reversible networks of boronic acid-diol and hydrogen bonds, enabling self-healing and tunable stiffness. Biocompatibility studies confirm that they support the growth of mouse-derived cells and bovine-derived primary muscle cells. Each hydrogel variant optimizes mechanotransduction for the distinct requirements of fat or muscle cell culture and differentiation. This self-healing scaffolding technology enables the seamless assembly of muscle and fat monocultures into centimeter-thick meat with micrometer-scale marbling patterns, tailoring organoleptic properties and nutritional profiles without the need for meat glues or processing equipment.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seunghyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Qian Y, Dong F, Wang S, Jiang Y, Xu X, Liu H. Ultrarobust, Stretchable, and Highly Elastic Supramolecular Elastomer with Hydrogen-Bond Interactions via sp 2 Hybridized Boron-Urethane Bonds. Angew Chem Int Ed Engl 2025; 64:e202421099. [PMID: 40063009 DOI: 10.1002/anie.202421099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Elastomers are omnipresent in everyday life and industry, yet the development of an elastomer with both superb stress and toughness presents a prodigious challenge. In this report, a high-strength, tough, and high-elastic elastomer derived from sp2 hybrid orbitals of phenylboronic acid was designed. The spatial conformation of network becomes significantly more compact due to the sp2 hybridization of boron. This enhances supramolecular hydrogen bonding interactions, resulting in a marked improvement in the material's mechanical properties. Notably, the hydrogen bonding energy in the polyurethane chain segments enhanced by 37%. The robust hydrogen bonding imparts the elastomer with super high true stress (1.30 GPa), superior toughness (442.2 MJ·m-3), and super puncture resistance strength of 167.8·N·mm-1. The material exhibited excellent fatigue resistance during continuous tensile cycles, while the irreversible deformation disappeared after standing at room temperature. Moreover, the elastomer bespeaks extraordinary elastic restorability, swiftly reverting to its primitive length after being extended to 16 times. This work provides a strategy that the mechanical properties of materials can be enhanced and toughened by utilizing spatial conformational changes in intermolecular interactions.
Collapse
Affiliation(s)
- Yuehan Qian
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Shanshan Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunmeng Jiang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Chinese Academy of Forestry, Nanjing, 210042, China
| |
Collapse
|
7
|
Hong H, Li Z, Wu H, Wang D, Liu L, Luo W, Yang T, Yang K, Yao J. Polyphenol lignin derived non-isocyanate polyurethane with mechanically robust and photothermal conversion performances. Int J Biol Macromol 2025; 310:143259. [PMID: 40250690 DOI: 10.1016/j.ijbiomac.2025.143259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The development of lignin-based non-isocyanate polyurethane (LNIPU) to replace petrochemical polyurethane (PU) has attracted attention, but is limited by the low reactivity and heterogeneity of lignin. Herein, high reactive polyphenol lignin was employed to prepare LNIPU via cyclic carbonation of lignin and subsequently reacting with diamine. The integration of polyphenol lignin constructed hydroxylaminoformate structures in polymeric hard segments, promoting the formation of intermolecular hydrogen bond networks and dynamic hard domains. The resultant LNIPU possessed tunable hard-soft nanophase separation structures by altering cyclic carbonated lignin amounts. And LNIPU behaved fantastic thermostability with the initial degradation temperature (T5%) of 200 °C. The tensile strength, Young's modulus and fracture energy of LNIPU were 5.96 MPa, 33.5 MPa and 0.25 MJ/m3, increased by 7.6, 5.1 and 2.8 times compared with NIPU, respectively. Due to the dual dynamic covalent and noncovalent networks, LNIPUs had relatively low activation energy (77.32-107.25 J/mol) and high molecular motility, enabling 100 % self-healing nature. Moreover, abundant aromatic conjugated structures in LNIPUs with polyphenol lignin enabled outstanding photothermal conversion ability. Under NIR irradiation with a power density of 1.0 W/cm2, the surface temperature of LNIPU 30 % quickly increased to 200 °C after 120 s, and displayed excellent stability undergoing 5 heating-cooling cycles. Therefore, this work not only provides a green and facile strategy for developing lignin-derived non-isocyanate polyurethan, but also provides a promising green engineering material with high strength, toughness and photothermal conversion property.
Collapse
Affiliation(s)
- Haojie Hong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Zihan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Han Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| | - Wei Luo
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Teng Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Kai Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juming Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Zhan S, Zhang H, Yang B, Zhang YM, Lu X, Wang X, Sun J. Engineering Hydrophobic Hierarchical Supramolecular Interactions in Reversibly Cross-Linked Elastomers for Outstanding Water Resistance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21907-21915. [PMID: 40132078 DOI: 10.1021/acsami.5c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Achieving outstanding water resistance in reversibly cross-linked elastomers (RCEs) remains challenging due to the presence of polar and hydrophilic groups within polymer chains. In this study, we present the fabrication of mechanically robust, healable, and recyclable RCEs with exceptional water resistance by incorporating hydrophobic hierarchical supramolecular interactions into poly(tetramethylene ether glycol) (PTMEG)-based polyurethane elastomers. These hierarchical supramolecular interactions, consisting of hydrogen bonding and π-π stacking, exhibit high binding energy, facilitating the in situ formation of phase-separated hydrophobic nanostructures that significantly enhance the water resistance of the elastomers. Consequently, the elastomers exhibit outstanding water resistance, with a water absorption as low as 1.1 wt % even after 40 days of immersion in water. In addition to their superior water resistance, the elastomers exhibit excellent mechanical properties, including a tensile strength of ∼67.8 MPa, toughness of ∼633 MJ m-3, and fracture energy of ∼160 kJ m-2. These mechanical properties are attributed to the synergistic effects of phase-separated nanostructures and strain-induced crystallization of PTMEG segments. Furthermore, the reversibility of the hydrophobic hierarchical supramolecular interactions enables the convenient healing and recycling of the elastomers, allowing the healed and recycled elastomers to restore their original mechanical performance. These elastomers were further demonstrated to be effective in encapsulating flexible electrochromic devices for underwater applications.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baige Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Wang X, Li S, Yang Z, Zhang Y, Wang Q, Wang T, Zhang X. Multifunctional Polyurethane Exhibiting High Mechanical Performance and Shape-Memory-Assisted Self-Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500847. [PMID: 40159724 DOI: 10.1002/smll.202500847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Polymeric materials often face inherent trade-offs between mechanical performance and self-healing capabilities, which presents significant challenges to their development and practical application. Here, an effective strategy is reported to overcome these limitations. By introducing a highly crystalline polyol-characterized by its chain folding and storage chain length-and coordination bonds into polyurethane, an exceptional balance of high tensile strength (47.18 ± 2.35 MPa), exceptional elongation at break (5952.72 ± 254.20%), outstanding toughness (1396.39 ± 90.05 MJ m-3), and high hardness (shore D hardness 43.8 ± 0.8) is achieved, while also maintaining intrinsic self-healing properties. The material's self-healing is facilitated by the water solubility of polyol (polyethylene glycol, PEG), which enables rapid healing and welding at low temperatures (4 °C) with the aid of water. Additionally, the shape-memory recovery force further enhances crack closure and healing, contributing to the material's durability. This unique combination of mechanical performance and self-healing capabilities underscores the potential of this material for advanced applications that require both high mechanical properties and robust self-healing functionality.
Collapse
Affiliation(s)
- Xiaoyue Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Song Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- The Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, P. R. China
| | - Zenghui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qihua Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingmei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinrui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
10
|
Fan Y, Malyi OI, Wang H, Cheng X, Fu X, Wang J, Ke H, Xia H, Shen Y, Bai Z, Chen S, Shao H, Chen X, Tang Y, Bao X. Surface-Confined Disordered Hydrogen Bonds Enable Efficient Lithium Transport in All-Solid-State PEO-Based Lithium Battery. Angew Chem Int Ed Engl 2025; 64:e202421777. [PMID: 39866035 DOI: 10.1002/anie.202421777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/28/2025]
Abstract
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures. To overcome these challenges, we develop a surface-confined disordered H-bond system with stable donor-acceptor interactions to construct a loosened chain segments/ions arrangement in the bulk phase of PEO-based electrolytes, realizing the crystallization inhibition of PEO, weak coordination of Li+ and entrapment of anions, which are conducive to efficient Li+ transport and stable Li+ deposition. The rationally designed LiFePO4-based ASSLB demonstrates a long cycle-life of over 400 cycles at 1.0 C and 65 °C with a capacity retention rate of 87.5 %, surpassing most of the currently reported polymer-based ASSLBs. This work highlights the importance of confined disordered H-bonds on Li+ transport in an all-solid-state battery system, paving the way for the future design of polymer-based ASSLBs.
Collapse
Affiliation(s)
- You Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | | | - Huicai Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiangxin Cheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiaobin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingshu Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- i-Lab, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haifeng Ke
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Huarong Xia
- Innovative Centre for Flexible Devices (iFLEX), School of Material Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Yanbin Shen
- i-Lab, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhengshuai Bai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Shi Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macau
| | - Huaiyu Shao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macau
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Material Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xiaojun Bao
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
11
|
Kim HJ, Kim H, Choi YH, Lee ES, Kim YH, Lee GH, Chae HG, Eom Y. Rapid Fabrication of Tendon-inspired Ultrastrong, Water-rich Hydrogel Fibers: Synergistic Engineering of Cyano- p-aramid Nanofibers and Poly(vinyl alcohol). ACS NANO 2025; 19:8316-8327. [PMID: 39988896 DOI: 10.1021/acsnano.4c18686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Load-bearing fibrous tissues, like tendons, have remarkable strength with high water content (∼60%) due to the anisotropic network of collagen fibers. However, the scalability of biomimetic anisotropic hydrogels is limited by time-intensive fabrication processes involving cross-linking and stretching, often spanning several hours to days. Here, we present a rapid, scalable approach for fabricating tendon-mimetic hydrogel fibers within 1 min using the synergistic engineering of cyano-p-aramid nanofibers (CY-ANFs) and poly(vinyl alcohol) (PVA). Through continuous air-gap spinning, the formation of the anisotropic CY-ANF network drives instant gelation, producing hundreds of meters of hydrogel fibers without additional gelation treatment. From the perspective of properties, the hydrophilic PVA matrix affords flexibility, while the hydrophobic CY-ANF network provides a nonswelling feature and load-bearing ability, resulting in ultrastrong, water-rich hydrogel fibers. These hydrogel fibers exhibit a water content exceeding 80 wt %, along with exceptional strength (∼17.9 MPa), surpassing the mechanical properties of natural tendons (strength and modulus of approximately 10 and 100 MPa, respectively). Lengthy hydrogel fibers are integrated into larger-sized fabrics by knitting or weaving while also possessing strain-sensing capabilities. With excellent biocompatibility, these hydrogel fibers are promising candidates for artificial fibrous tissues and various biotechnological applications.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeonjeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Hyeong Choi
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun Seong Lee
- Department of Biomedical Chemical Engineering, The Catholic University of Korea (CUK), Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong Hyeon Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga-Hyeun Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Gi Chae
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngho Eom
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Liu Z, Zhang H, Zhou R, Gao H, Wu Y, Wang Y, Wu H, Guan C, Wang L, Tang L, Song P, Xue H, Gao J. Thermoplastic Elastomer-Reinforced Hydrogels with Excellent Mechanical Properties, Swelling Resistance, and Biocompatibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414339. [PMID: 39921315 PMCID: PMC11948048 DOI: 10.1002/advs.202414339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Strong and tough hydrogels are promising candidates for artificial soft tissues, yet significant challenges remain in developing biocompatible, anti-swelling hydrogels that simultaneously exhibit high strength, fracture strain, toughness, and fatigue resistance. Herein, thermoplastic elastomer-reinforced polyvinyl alcohol (PVA) hydrogels are prepared through a synergistic combination of phase separation, wet-annealing, and quenching. This approach markedly enhances the crystallinity of the hydrogels and the interfacial interaction between PVA and thermoplastic polyurethane (TPU). This strategy results in the simultaneous improvement of the mechanical properties of the hydrogels, achieving a tensile strength of 11.19 ± 0.80 MPa, toughness of 62.67 ± 10.66 MJ m-3, fracture strain of 1030 ± 106%, and fatigue threshold of 1377.83 ± 62.78 J m-2. Furthermore, the composite hydrogels demonstrate excellent swelling resistance, biocompatibility, and cytocompatibility. This study presents a novel approach for fabricating strong, tough, stretchable, biocompatible, and fatigue- and swelling-resistant hydrogels with promising applications in soft tissues, flexible electronics, and load-bearing biomaterials.
Collapse
Affiliation(s)
- Zhanqi Liu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Hechuan Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ruigang Zhou
- College of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Haiyang Gao
- Department of ChemistryCollege of Liberal Arts and SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Yongchuan Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Yuqing Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Haidi Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Cheng Guan
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ling Wang
- School of Chemistry and Chemical EngineeringAnqing Normal UniversityAnqing246011China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4350Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Jiefeng Gao
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| |
Collapse
|
13
|
Zhang W, Ren M, Chen M, Wu L. Tough and self-healing waterborne polyurethane elastomers via hydrogen bonds and oxime-carbamate design for wearable flexible strain sensors. RSC Adv 2025; 15:6231-6240. [PMID: 40008024 PMCID: PMC11851271 DOI: 10.1039/d4ra09084e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Self-healing waterborne polyurethane elastomers, as functional materials, have been widely applied in flexible wearable devices. However, inevitable crack damage during use significantly limits their service life. Achieving an optimal balance between mechanical strength and self-healing ability remains a major challenge in the development of high-performance self-healing polyurethane materials. In this study, a rigid-soft phase-separated structure with multilayered rigid and flexible supramolecular segments was designed using isophorone isocyanate (IPDI), dimethylglyoxime (DMG), and 6-methyl-1,3,5-triazine-2,4-diamine (AGM) as hard segments, and polytetramethylene ether glycol (PTMEG) as soft segments. AGM establishes a multi-hydrogen bonding network with urethane groups, and DMG introduces dynamically reversible oxime-carbamate bonds, enabling the PU elastomers to achieve a self-healing efficiency of up to 95.5%. Benefiting from the gradient rigidity of the polyurethane, the strong hydrogen bond formed by the urea-carbamate bond and the triazine ring, the elastomer exhibited excellent mechanical properties, with a tensile strength of 33.04 MPa, an elongation at break of 954.79%, and a toughness of 90.66 MJ m-3. Moreover, when the composite conductor was used as an electronic skin, it possessed good self-healing properties with electrical response properties.
Collapse
Affiliation(s)
- Wei Zhang
- Wuhan Star Waterproofing Co., Ltd P. R. China
| | - Mengqing Ren
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Ming Chen
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
14
|
Lee Y, Tian X, Park J, Nam DH, Wu Z, Choi H, Kim J, Park DW, Zhou K, Lee SW, Tabish TA, Cheng X, Emaminejad S, Lee TW, Kim H, Khademhosseini A, Zhu Y. Rapidly self-healing electronic skin for machine learning-assisted physiological and movement evaluation. SCIENCE ADVANCES 2025; 11:eads1301. [PMID: 39937914 PMCID: PMC11818020 DOI: 10.1126/sciadv.ads1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Emerging electronic skins (E-Skins) offer continuous, real-time electrophysiological monitoring. However, daily mechanical scratches compromise their functionality, underscoring urgent need for self-healing E-Skins resistant to mechanical damage. Current materials have slow recovery times, impeding reliable signal measurement. The inability to heal within 1 minute is a major barrier to commercialization. A composition achieving 80% recovery within 1 minute has not yet been reported. Here, we present a rapidly self-healing E-Skin tailored for real-time monitoring of physical and physiological bioinformation. The E-Skin recovers more than 80% of its functionality within 10 seconds after physical damage, without the need of external stimuli. It consistently maintains reliable biometric assessment, even in extreme environments such as underwater or at various temperatures. Demonstrating its potential for efficient health assessment, the E-Skin achieves an accuracy exceeding 95%, excelling in wearable muscle strength analytics and on-site AI-driven fatigue identification. This study accelerates the advancement of E-Skin through rapid self-healing capabilities.
Collapse
Affiliation(s)
- Yongju Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Xinyu Tian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| | - Jaewon Park
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Dong Hyun Nam
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hyojeong Choi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Juhwan Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Dong-Wook Park
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford OX3 7BN, UK
- Department of Electrical and Computer Engineering and Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Keren Zhou
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| | - Sang Won Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Xuanbing Cheng
- Department of Electrical and Computer Engineering and Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sam Emaminejad
- Department of Electrical and Computer Engineering and Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeok Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, Seoul 02504, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| |
Collapse
|
15
|
Zhang Y, Yu X, Wang Y, Wang Z, Hou Q, Fan X. Stretchable, Self-Healable, and Durable Conductive Elastomer Derived from a Rationally Designed Covalently Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4165-4175. [PMID: 39764734 DOI: 10.1021/acsami.4c17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage. Therefore, robust Ag NW-based elastic conductors possessing stretchability, self-healing, and stability are highly desirable and challenging. Here, we present a universal interface tailoring strategy that introduces thiols onto the dynamically cross-linked elastic substrate surface. The surface thiol groups strongly interact with Ag NWs through Ag-S bonds, forming the stable conductive layer on the elastic substrate. At elevated temperatures, the Ag NWs are partially embedded in the surface of the elastic substrate and a buffer layer is formed to release the concentrated stress. As a result, the formed Ag NW-based elastic conductor displays the combination of good conductivity, high stretchability (>1000%), efficient self-healing capability (>95%), and remarkable stability. Besides, the Ag NW-based elastic conductor combining the good properties mentioned above is suitable for fabricating a sensitive and durable strain sensor against cyclic strain. The presented strategy can be considered a versatile and effective route to generating other surface thiol-rich covalently cross-linked elastomers with dynamic disulfide bonds.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaohui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhihong Wang
- Haiyan Hospital of Traditional Chinese Medicine, 279 Chaoyang East Road, Wuyuan Street, Haiyan County, Zhejiang 314399, P. R. China
| | - Qiaozhi Hou
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| | - Xiaoshan Fan
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| |
Collapse
|
16
|
Si P, Zou J, Dou Y, Zeng Q, Wu Y, Long Z, Cai Y, Hu J, Wu X, Huang G, Li H, Zhang D. Ionic aggregates induced room temperature autonomous self-healing elastic tape for reducing ankle sprain. J Colloid Interface Sci 2025; 678:819-828. [PMID: 39312870 DOI: 10.1016/j.jcis.2024.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Traditional kinesiology tape (KT) is an elastic fabric tape that clinicians and sports trainers widely use for managing ankle sprains. However, inadequate mechanical properties, adhesive strength, water resistance, and micro-damage generation could affect the longevity of the tape on the skin during physical activity and sweating. Therefore, autonomous room-temperature self-healing elastomers with robust mechanical properties and adequate adhesion to the skin are highly desirable to replace traditional KT. Ionic aggregates were introduced into the polymer matrix via electrostatic attraction between polymer colloid and polyelectrolyte to achieve such elastic tape. These ionic aggregates act as physical crosslink points to enhance mechanical properties and dissociate at room temperature to provide self-healing functions. The obtained elastic tape possesses a tensile strength of 3.7 MPa, elongation of 940 %, toughness of 16.6 MJ∙m-3, and self-healing efficiency of 90 % for 2 h at room temperature. It also exhibits adequate reversible adhesion on the skin via van der Waals force and electrostatic interaction in both dry and wet conditions. The new elastic tapes have great potential in biomedical engineering for preventing and rehabilitating ankle sprain.
Collapse
Affiliation(s)
- Pengxiang Si
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yefan Dou
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Yun Wu
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Xuan Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, School of Rehabilitation Science, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou 510280, China.
| | - Haoxuan Li
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| | - Dan Zhang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214222, China.
| |
Collapse
|
17
|
Yuan L, Yang X, Chen S, Yang Q, Fu R, Gu Y, Han L, Yan B. Constructing Strong and Tough Polymer Elastomers via Photoreversible Coumarin Dimer Mechanophores. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2339-2348. [PMID: 39722467 DOI: 10.1021/acsami.4c19537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness. Coumarin dimer mechanophore cross-linkers are formed in the polyurethane elastomer after exposure to 365 nm irradiation, leading to networks with dramatically enhanced mechanical properties. The tensile strength of the HNA-PU2000 elastomer with coumarin dimer mechanophore cross-linkers could increase from 13.9 to 26.9 MPa, elongation at break from 726 to 1053%, and toughness from 25.6 to 119.7 MJ·m-3, in contrast to its counterpart HNA-PU2000 elastomer without coumarin dimer mechanophores. Additionally, the polyurethane elastomer exhibits a decent reusable capability via force-/light-triggered cycloreversion of coumarin dimer mechanophores under mechanical stress or 254 nm irradiation. This mechano-/photochemical strategy to improve strength, toughness, and reusable capability of elastomers provides a facile approach for the development of high-performance elastomer materials.
Collapse
Affiliation(s)
- Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xuekun Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Runfang Fu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yingchun Gu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
18
|
Yang SM, Zhou S, Yuan JY. Self-Healing Elastomers and Coatings via Metal Coordination Bonds. Chemistry 2025:e202404038. [PMID: 39757123 DOI: 10.1002/chem.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Self-healing materials can recover the materials from physical damage, and extend the life of equipment. Metal coordination bonds are supramolecular interactions with tunable stability and sensitivity to external stimuli, which are crucial for developing self-healing materials. Incorporating metal coordination bonds into elastomers and coatings can enable materials to repair damage and enhance material performance. This review details the advance in self-healing elastomers and coatings. The structural characteristics, mechanical properties, and self-healing efficacy of these materials are discussed, and a perspective on the challenges and development directions is given.
Collapse
Affiliation(s)
- Song-Ming Yang
- Key lab of organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuo Zhou
- Key lab of organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ying Yuan
- Key lab of organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Lu K, Sun Z, Liu J, Huang C, Mao D, Chen H. Empowering soft conductive elastomers with self-reinforcement and remarkable resilience via phase-locking ions. MATERIALS HORIZONS 2025; 12:167-177. [PMID: 39469899 DOI: 10.1039/d4mh01003e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Endowing soft and long-range stretchable elastomers with exceptional strength, resilience, and ion-conductivity is crucial for high-performance flexible sensors. However, achieving this entails significant challenges due to intrinsic yet mutually exclusive structural factors. In this work, a series of self-reinforcing ion-conductive elastomers (SRICEs) is thus designed to meet the advanced but challenging requirements. The SRICEs behave like a soft/hard dual-phase separated micro-structure, which is optimized through a straightforward preferential assembly strategy (PAS) to ensure that the subsequently introduced ions are locked in the soft phase. Meanwhile, the interaction between ions and soft segments is meticulously tailored to achieve self-reinforcement through strain-induced crystallization. Consequently, an outstanding ultimate strength of approximately ∼51.0 MPa and an exceptional instant resilient efficiency of ∼92.9% are attained. To the best knowledge of the authors, these are the record-high values achieved simultaneously in one ion-conductive elastomer. Furthermore, the resultant toughness of ∼202.4 MJ m-3 is significantly higher, while the modulus of ∼5.0 MPa is lower than that of most reported robust ion-conductive elastomers. This unique combination of properties makes it suitable for advanced flexible applications, e.g. grid-free position recognition sensors. This work provides guidance for designing soft yet robust ion-conductive elastomers and optimizing their mechanical properties.
Collapse
Affiliation(s)
- Kai Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Zaizheng Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Jinming Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Chengyi Huang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo Key Laboratory of High-Performance Polymers and Composites, Ningbo, 315201, China
| | - Dongsheng Mao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Haiming Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo Key Laboratory of High-Performance Polymers and Composites, Ningbo, 315201, China
| |
Collapse
|
20
|
Shi Z, Zhou H, Fan Z, Guo K, Nie H, Zhou X, Xue Z. Waterborne Polyurethane Micelles Reinforce PEO-Based Electrolytes for Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407293. [PMID: 39422372 DOI: 10.1002/smll.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Although solid polymer electrolytes have been developed for several decades, poly(ethylene oxide) (PEO) or polymers with ethoxy (EO) segments are still one of the most promising candidates for advanced batteries. The low ionic conductivity and lithium-ion transference number as well as the deterioration of mechanical properties after coupling with lithium salts restrict its further adoption. Herein, a serial of PEO-based composite electrolytes optimized by waterborne polyurethane are prepared via blend method. With the assistance of H2O, ionic type waterborne polyurethane assembles into flexible micelles, in which hydrophobic segments as the core and hydrophilic groups as the shell. Utilizing this feature of waterborne polyurethane, PEO and Li salt (LiTFSI) aqueous solution is slowly added to the organic solution of waterborne polyurethane to compound in situ, and polymer composite electrolytes are fabricated. The multilevel (hydrogen bonds with different binding energy) and multiscale (deformation of flexible micelles) dynamic interaction endows the composite electrolyte with attractive mechanical properties. The assembled Li|Li symmetric battery with the molar ratio of EO to Li salts of 8:1 exhibits excellent cycling stability up to 800 h at 0.1 mA cm-2, and the assembled Li|LiFePO4 battery can be stably cycled at 1C for >400 cycles.
Collapse
Affiliation(s)
- Zhen Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongru Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kairui Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
21
|
Maier MA, dos Santos Adrego F, Jung SA, Boos AM, Pich A. Mechano-Triggered Release of Biomolecules from Supramolecular Hyaluronic Acid Hydrogels. ACS APPLIED POLYMER MATERIALS 2024; 6:13841-13854. [DOI: 10.1021/acsapm.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Michael A. Maier
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Fábio dos Santos Adrego
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Shannon A. Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Anja M. Boos
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Maastricht Institute for Biobased Materials, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
22
|
Kim G, Caglayan C, Yun GJ. High Modulus Epoxy/GO-PANI Self-Healing Materials Without Catalyst by Molecular Engineering and Nanocomposite Fabrication. Polymers (Basel) 2024; 16:3173. [PMID: 39599264 PMCID: PMC11598404 DOI: 10.3390/polym16223173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, self-healing materials have been studied actively in electronics, soft robotics, aerospace, and automobiles because they can prolong the life span of the materials. However, overcoming the trade-off relationship between mechanical properties and self-healing performance is challenging. Herein, graphene oxide-polyaniline (GO-PANI) filler was introduced to overcome this challenge because GO has a highly excellent modulus, and nitrogen atoms in PANI can endow a self-healing ability through hydrogen bonds. Aside from the hydrogen bond in PANI, the hydrogen bond in the carbonyl group and the disulfide exchange bond in the epoxy matrix also helped the materials heal efficiently. Therefore, the modulus of SV-GPN1 (Self-healing Vitrimer-GO-PANI1) reached 770 MPa, and a 65.0% healing efficiency was demonstrated. The modulus and self-healing efficiency were enhanced after adding GO-PANI filler. The self-healing ability, however, deteriorated when adding more GO-PANI filler because it hindered the collision between the molecules. Meanwhile, SV-GPN1 was excellent in reproducibility, which was proven by the experiment that 16.50 mm thick SV-GPN1 also displayed a self-healing ability. Thus, SV-GPN1 can be applied to structural materials in industries like aerospace because of its self-healing ability, excellent modulus, and reproducibility.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (C.C.)
| | - Cigdem Caglayan
- Department of Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (C.C.)
| | - Gun Jin Yun
- Department of Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (C.C.)
- Institute of Advanced Aerospace Engineering Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Zhai M, Shou T, Yin D, Chen Z, Wu Y, Liu Y, Zhao X, Hu S, Zhang L. Bio-Based Polyurethane Composites with Adjustable Fluorescence and Ultraviolet Shielding for Anti-Counterfeiting and Ultraviolet Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62606-62616. [PMID: 39483089 DOI: 10.1021/acsami.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Polyurethane and its composites play an important role in innovative packing materials including anticounterfeiting and ultraviolet protection, however, they are mainly derived from petroleum resources that are not sustainable. In this study, a 100% biobased thermoplastic polyurethane (Bio-TPU) was synthesized using biobased poly(trimethylene ether) glycol, pentamethylene disocyanate, and 1,4-butanediol. Subsequently, biobased tannic acid (TA) was employed to prepare biobased composites. The structures and properties of Bio-TPU and its composites were systematically evaluated. The results showed that the Bio-TPU/TA composite films had excellent and controllable fluorescence and UV-shielding properties. The fluorescence colors of the Bio-TPU/TA composite films could be adjusted to blue, green, and yellow by varying the TA content and adding coupling agents. Moreover, the UV transmittance of the Bio-TPU/TA composites decreased from 79.25 to 5.43% below 400 nm with an increasing TA content, indicating an excellent ultraviolet-barrier performance. Consequently, biobased TPU/TA composite films can be utilized as innovative anticounterfeiting materials and UV-shielding protection films. This study is expected to facilitate sustainable development in the polyurethane industry and broaden the high-end applications of polyurethane such as fashion, electronics, food manufacturing, pharmaceuticals, and finance.
Collapse
Affiliation(s)
- Mengyao Zhai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dexian Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Jung J, Lee S, Kim H, Lee W, Chong J, You I, Kang J. Self-healing electronic skin with high fracture strength and toughness. Nat Commun 2024; 15:9763. [PMID: 39528499 PMCID: PMC11554781 DOI: 10.1038/s41467-024-53957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Human skin is essential for perception, encompassing haptic, thermal, proprioceptive, and pain-sensing functions through ion movement. Additionally, it is mechanically resilient and self-healing for protection. Inspired by these unique properties, researchers have attempted to develop stretchable, self-healing sensors based on ion dynamics. However, most self-healing sensors reported to date suffer from low fracture strength and toughness. In this work, we present an ion-based self-healing electronic skin with exceptionally high fracture strength and toughness. We enhanced self-healing polymers and ionic conductors by introducing two types of orthogonal dynamic crosslinking bonds: dynamic aromatic disulfide bonds and 2-ureido-4-pyrimidone moieties. These dynamic bonds provide autonomous self-healing and high mechanical toughness even in the presence of ionic liquids. As a result, our self-healing polymer and self-healing ionic conductor exhibit remarkable stretchability (700%, 850%), fracture strength (34 MPa, 30 MPa), and toughness (78.5 MJ/m3, 87.3 MJ/m3), the highest values reported among self-healing ionic conductors to date. Using our materials, we developed various fully self-healing sensors and a soft gripper capable of autonomously recovering from mechanical damage. By integrating these components, we created a comprehensive self-healing electronic skin suitable for soft robotics applications.
Collapse
Affiliation(s)
- Jaehoon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sunwoo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonbeom Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jooyeun Chong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Insang You
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, ON, N3L3G1, Canada.
| | - Jiheong Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Cornellà AC, Furia F, Van Assche G, Brancart J. Controlling the Relaxation Dynamics of Polymer Networks by Combining Associative and Dissociative Dynamic Covalent Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407663. [PMID: 39328038 DOI: 10.1002/adma.202407663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Dynamic polymer networks offer a promising solution to key challenges in polymers such as recyclability, processability, and damage repair. However, the trade-off between combining facile processability, fast self-healing, and high creep resistance remains a major obstacle to implementation. To overcome this, two very distinct dynamic covalent chemistries, Diels-Alder and transesterification, is combined in a single network. The resulting dual dynamic networks offer an unprecedented set of properties and control over the relaxation times. The system decouples the relaxation dynamics of the network from the spatial motifs, and the tuning of the ratio between chemistries enables to control of the relaxation dynamics over six orders of magnitude. Taking advantage of this control, the composition and rheological behavior is optimized to drastically improve the resolution for extrusion-based additive manufacturing of dynamic covalent networks. Additionally, two well-defined and separated stress relaxation peaks are observed at compositions close to 50% of each dynamic chemistry, accentuating the double character of the system's relaxation dynamics. This atypical situation, enables to preparation of self-healing materials with negligible creep, and with shape-memory properties solely leveraging the two distinct relaxation dynamics, instead of the glass transition temperature or the melting point.
Collapse
Affiliation(s)
- Aleix Costa Cornellà
- Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering (SUME), Vrije Universiteit Brussel, (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Francesca Furia
- Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering (SUME), Vrije Universiteit Brussel, (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering (SUME), Vrije Universiteit Brussel, (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Sustainable Materials Engineering (SUME), Vrije Universiteit Brussel, (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
26
|
Wang H, Cao L, Wang X, Lang X, Cong W, Han L, Zhang H, Zhou H, Sun J, Zong C. Effects of Isocyanate Structure on the Properties of Polyurethane: Synthesis, Performance, and Self-Healing Characteristics. Polymers (Basel) 2024; 16:3045. [PMID: 39518254 PMCID: PMC11548432 DOI: 10.3390/polym16213045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Polyurethane (PU) plays a critical role in elastomers, adhesives, and self-healing materials. We selected the most commonly used aromatic isocyanates, 4,4'-methylene diphenyl diisocyanate (MDI) and tolylene-2,4-diisocyanate (TDI), and the most commonly used aliphatic isocyanates, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane-4,4'-diisocyanate (HMDI), as raw materials, combined with polytetramethylene ether glycol (PTMG) and 1,4-butanediol (BDO) to successfully synthesize five PU materials. The effects of isocyanate structure on polymerization rate, hydrogen bonding, thermal properties, phase separation, wettability, self-healing performance, adhesion, and mechanical properties were systematically investigated. The results show that isocyanates with higher symmetry facilitate hydrogen bonding, but excessive flexibility and crystallinity may inhibit its formation. MDI-based PU exhibits the highest hydrogen bonding index (HBI) of 4.10, along with the most distinct phase separation and the highest tensile strength of 23.4 MPa. HMDI-based PU demonstrates the best adhesion properties, with the highest lap shear strength of 7.9 MPa, and also exhibits excellent scratch healing ability. IPDI-based PU shows good self-healing performance, recovering 88.7% of its original tensile strength and 90.6% of its original lap shear strength after heating at 80 °C for 24 h. Furthermore, all the samples can be reprocessed by melt or solution methods, showing excellent recyclability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chengzhong Zong
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (H.W.)
| |
Collapse
|
27
|
Yu Z, Sun X, Zhu Y, Zhou E, Cheng C, Zhu J, Yang P, Zheng D, Zhang Y, Panahi-Sarmad M, Jiang F. Direct Ink Writing 3D Printing Elastomeric Polyurethane Aided by Cellulose Nanofibrils. ACS NANO 2024; 18:28142-28153. [PMID: 39353083 DOI: 10.1021/acsnano.4c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
3D printing of a flexible polyurethane elastomer is highly demandable for its potential to revolutionize industries ranging from footwear to soft robotics thanks to its exceptional design flexibility and elasticity performance. Nevertheless, conventional methods like fused deposition modeling (FDM) and vat photopolymerization (VPP) polyurethane 3D printing typically limit material options to thermoplastic or photocurable polyurethanes. In this research, a water-borne polyurethane ink was synthesized for direct ink writing (DIW) 3D printing through the incorporation of cellulose nanofibrils (CNFs), enabling direct printing of complex, monolithic elastomeric structures at room temperature that can maintain the designed structure. Additionally, a solvent-induced fast solidification (SIFS) method was introduced to facilitate room-temperature curing and enhance mechanical properties. The 3D-printed WPU structures demonstrated strong interfacial adhesion, exhibiting high ultimate tensile strength of up to 22 MPa and an elongation at break of 951%. The 3D-printed WPU structures also demonstrated outstanding resilience and durability, capable of enduring more than 100 cycles of compression and tension as well as withstanding vehicle crushing and heavy lifting. This method also shows suitability for 3D printing complex structures such as a vase and an octopus.
Collapse
Affiliation(s)
- Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Elaine Zhou
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Changfeng Cheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yifan Zhang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mahyar Panahi-Sarmad
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
28
|
Jing J, Yao B, Sun W, Chen J, Xu J, Fu J. Ultra-Tough, yet Rigid and Healable Supramolecular Polymers with Variable Stiffness for Multimodal Actuators. Angew Chem Int Ed Engl 2024; 63:e202410693. [PMID: 39087854 DOI: 10.1002/anie.202410693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Variable stiffness materials have shown considerable application in soft robotics. However, previously reported materials often struggle to reconcile high stiffness, stretchability, toughness, and self-healing ability, because of the inherently conflicting requisite of these properties in molecular design. Herein, we propose a novel strategy that involves incorporating acid-base ionic pairs capable of from strong crosslinking sites into a dense and robust hydrogen-bonding network to construct rigid self-healing polymers with tunable stiffness and excellent toughness. To demonstrate these distinct features, the polymer was employed to serve as the strain-regulation layers within a fiber-reinforced pneumatic actuator (FPA). The exceptional synergy between the configuration versatility of FPA and the dynamic molecular behavior of the supramolecular polymers equips the actuator with simultaneous improvement in motion dexterity, multimodality, loading capacity, robustness, and durability. Additionally, the concept of integrating high dexterity at both macro- and micro-scale is prospective to inspire the design of intelligent yet robust devices across various domains.
Collapse
Affiliation(s)
- Jiajie Jing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Wen Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Jiaoyang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, NO. 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| |
Collapse
|
29
|
Paez-Amieva Y, Mateo-Oliveras N, Martín-Martínez JM. Polyurethanes Synthesized with Blends of Polyester and Polycarbonate Polyols-New Evidence Supporting the Dynamic Non-Covalent Exchange Mechanism of Intrinsic Self-Healing at 20 °C. Polymers (Basel) 2024; 16:2881. [PMID: 39458709 PMCID: PMC11511022 DOI: 10.3390/polym16202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Polyurethanes (PUs) synthesized with blends of polycarbonate and polyester polyols (CD+PEs) showed intrinsic self-healing at 20 °C. The decrease in the polycarbonate soft segments content increased the self-healing time and reduced the kinetics of self-healing of the PUs. The percentage of C-O species decreased and the ones of C-N and C=O species increased by increasing the polyester soft segments in the PUs, due to higher micro-phase separation. All PUs synthetized with CD+PE blends exhibited free carbonate species and interactions between the polycarbonate and polyester soft segments to a somewhat similar extent in all PUs. By increasing the polyester soft segments content, the storage moduli of the PUs decreased and the tan delta values increased, which resulted in favored polycarbonate soft segments interactions, and this was related to slower kinetics of self-healing at 20 °C. Although the PU made with a mixture of 20 wt.% CD and 80 wt.% PE showed cold crystallization and important crystallinity of the soft segments, as well as high storage moduli, the intercalation of a small amount of polycarbonate soft segments disturbed the interactions between the polyester soft segments, so it exhibited self-healing at 20 °C. The self-healing of the PUs was attributed to the physical interactions between polycarbonate soft segments themselves and with polyester soft segments, and, to a minor extent, to the mobility of the polymeric chains. Finally, the PUs made with 40 wt.% or more polyester polyol showed acceptable mechanical properties.
Collapse
|
30
|
Yu C, Choi J, Lee J, Lim S, Park Y, Jo SM, Ahn J, Kim SY, Chang T, Boyer C, Kwon MS. Functional Thermoplastic Polyurethane Elastomers with α, ω-Hydroxyl End-Functionalized Polyacrylates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403048. [PMID: 39171759 DOI: 10.1002/adma.202403048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Thermoplastic polyurethane (TPU) is an essential class of materials for demanding applications, from soft robotics and electronics to medical devices and batteries. However, traditional TPU development is primarily relied on specific soft segments, such as polyether, polyester, and polycarbonate polyols. Here, a novel method is introduced for developing TPU elastomers with enhanced performance and superior functionalities compared to conventional TPUs, achieved through the use of α,ω-hydroxyl end-functionalized polyacrylates. This approach involves a defect-free synthesis of α,ω-hydroxyl end-functionalized polyacrylates through visible-light-driven photoiniferter polymerization. By strategically blending these functionalized polyacrylates with conventional polyols, TPUs that exhibit exceptional toughness and notable self-healing capabilities, traits rarely found in existing TPUs are engineered. Furthermore, incorporating photo-crosslinkable acrylic monomers has enabled the creation of the first TPU with superior elastomeric properties and photopatterning capabilities. This approach paves the way for a new direction in polyurethane engineering, introducing a novel class of soft segments and unlocking the potential for a wide range of advanced applications.
Collapse
Affiliation(s)
- Changhoon Yu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinho Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwook Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Min Jo
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junyoung Ahn
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - So Youn Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taihyun Chang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
Chang CW, Wu CT, Lo TY, Chen Y, Chang CT, Chen HR, Chang CC, Lee LR, Tseng YH, Chen JT. Alkaline-Responsive, Self-Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402472. [PMID: 38813745 DOI: 10.1002/smll.202402472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Ti Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tse-Yu Lo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Ting Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Huan-Ru Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu-Hsuan Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
32
|
Li J, Zheng Z, Ma Y, Dong Z, Li MH, Hu J. Mechanically Ultra-Robust Fluorescent Elastomer for Elaborating Auxetic Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402130. [PMID: 38678509 DOI: 10.1002/smll.202402130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Fluorescent elastomers are predominantly fabricated through doping fluorescent components or conjugating chromophores into polymer networks, which often involves detrimental effects on mechanical performance and also makes large-scale production difficult. Inspired by the heteroatom-rich microphase separation structures assisted by intensive hydrogen bonds in natural organisms, an ultra-robust fluorescent polyurethane elastomer is reported, which features a remarkable fracture strength of 87.2 MPa with an elongation of 1797%, exceptional toughness of 678.4 MJ m-3 and intrinsic cyan fluorescence at 445 nm. Moreover, the reversible fluorescence variation with temperature could in situ reveal the microphase separation of the elastomer in real time. By taking advantage of mechanical properties, intrinsic fluorescence and hydrogen bonds-promoted interfacial bonding ability, this fluorescent elastomer can be utilized as an auxetic skeleton for the elaboration of an integrated auxetic composite. Compared with the auxetic skeleton alone, the integrated composite shows an improved mechanical performance while maintaining auxetic deformation in a large strain below 185%, and its auxetic process can be visually detected under ultraviolet light by the fluorescence of the auxetic skeleton. The concept of introducing hydrogen-bonded heteroatom-rich microphase separation structures into polymer networks in this work provides a promising approach to developing fluorescent elastomers with exceptional mechanical properties.
Collapse
Affiliation(s)
- Jiawei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yaning Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhaoxing Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Chaoyang District, Changchun, 130022, China
| |
Collapse
|
33
|
Raftopoulos KN, Łukaszewska I, Lalik S, Zając P, Bukowczan A, Hebda E, Marzec M, Pielichowski K. Structure-Glass Transition Relationships in Non-Isocyanate Polyhydroxyurethanes. Molecules 2024; 29:4057. [PMID: 39274906 PMCID: PMC11396569 DOI: 10.3390/molecules29174057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The molecular dynamics, with an emphasis on the calorimetric and dynamic glass transitions, of non-isocyanate polyhydroxyurethanes (PHUs) produced by the equimolar polyaddition of polyether-based dicyclic carbonates (P-CCs) and various short diamines was studied. The diamine component consisted of a short aliphatic diamine (1,4-diaminobutane, DAB) and a more complex 'characteristic' diamine. The study was conducted to investigate (i) the chemical structure of the characteristic amine, (ii) its molar ratio, and (iii) the structure and molar mass of the P-CC. Infrared spectroscopy, differential scanning calorimetry, and broadband dielectric spectroscopy were employed. The P-CC, constituting the bulk of the systems, was the most crucial component for the glass transition. The characteristic amine influenced the glass transition as a result of its bulky structure, but also presumably as a result of the introduction of free volume and the formation of hydrogen bonds. The dynamic glass transition (α relaxation) trace in the Arrhenius plots showed a subtle change at a certain temperature that merits further study in the future. The charge mobility was fully coupled with the molecular mobility, as evidenced by dc conductivity being directly proportional to the characteristic frequency of α relaxation. The fluctuation in carbonyl units (β relaxation) was mildly affected by changes in their immediate environment.
Collapse
Affiliation(s)
- Konstantinos N Raftopoulos
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Izabela Łukaszewska
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Sebastian Lalik
- Institute of Physics, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paulina Zając
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Artur Bukowczan
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Monika Marzec
- Institute of Physics, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
34
|
Li W, Wu H, Huang Y, Yao Y, Hou Y, Teng Q, Cai M, Wu J. Ultra-Fast-Healing Glassy Hyperbranched Plastics Capable of Restoring 26.4 MPa Tensile Strength within One Minute at Room Temperature. Angew Chem Int Ed Engl 2024; 63:e202408250. [PMID: 38839568 DOI: 10.1002/anie.202408250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The growing concern regarding widespread plastic pollution has propelled the development of sustainable self-healing plastics. Although considerable efforts have been dedicated to fabricating self-healing plastics, achieving rapid healing at room temperature is extremely challenging. Herein, we have developed an ultra-fast-healing glassy polyurethane (UGPU) by designing a hyperbranched molecular structure with a high density of multiple hydrogen bonds (H-bonds) on compliant acyclic heterochains and introducing trace water to form water bridge across the fractured surfaces. The compliant acyclic heterochains allow the dense multiple hydrogen bonds to form a frozen network, enabling tensile strength of up to 70 MPa and storage modulus of 2.5 GPa. The hyperbranched structure can drive the reorganization of the H-bonding network through the high mobility of the branched chains and terminals, thereby leading to self-healing ability at room temperature. Intriguingly, the presence of trace water vapor facilitates the formation of activated layers and the rearrangement of networks across the fractured UGPU sections, thereby enabling ultra-fast self-healing at room temperature. Consequently, the restored tensile strength after healing for 1 minute achieves a historic-record of 26.4 MPa. Furthermore, the high transparency (>90 %) and ultra-fast healing property of UGPU make it an excellent candidate for advanced optical and structural materials.
Collapse
Affiliation(s)
- Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yue Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yihang Yao
- Nanostructures for Electronics & Electromechanics Laboratory, School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiancheng Teng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Minjie Cai
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
35
|
Yuan Y, Lin W, Xu L, Wang W. Recent Progress in Thermoplastic Polyurethane/MXene Nanocomposites: Preparation, Flame-Retardant Properties and Applications. Molecules 2024; 29:3880. [PMID: 39202959 PMCID: PMC11357442 DOI: 10.3390/molecules29163880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
MXene, a promising two-dimensional nanomaterial, exhibits significant potential across various applications due to its multilayered structure, metal-like conductivity, solution processability, and surface functionalization capabilities. These remarkable properties facilitate the integration of MXenes and MXene-based materials into high-performance polymer composites. Regarding this, a comprehensive and well-structured up-to-date review is essential to provide an in-depth understanding of MXene/thermoplastic polyurethane nanocomposites. This review discusses various synthetic and modification methods of MXenes, current research progress and future potential on MXene/thermoplastic polyurethane nanocomposites, existing knowledge gaps, and further development. The main focus is on discussing strategies for modifying MXene-based compounds and their flame-retardant efficiency, with particular emphasis on understanding their mechanisms within the TPU matrix. Ultimately, this review addresses current challenges and suggests future directions for the practical utilization of these materials.
Collapse
Affiliation(s)
- Yao Yuan
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China;
| | - Weiliang Lin
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China;
| | - Lulu Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Wu X, Li M, Li H, Gao H, Wang Z, Wang Z. Autonomous Underwater Self-Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase-Separated Microdomains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311131. [PMID: 38644339 DOI: 10.1002/smll.202311131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Indexed: 04/23/2024]
Abstract
High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.
Collapse
Affiliation(s)
- Xiankun Wu
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haonan Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huihui Gao
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhong Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
37
|
Zennifer A, Chellappan DR, Chinnaswamy P, Subramanian A, Sundaramurthi D, Sethuraman S. Efficacy of 3D printed anatomically equivalent thermoplastic polyurethane guide conduits in promoting the regeneration of critical-sized peripheral nerve defects. Biofabrication 2024; 16:045015. [PMID: 38968935 DOI: 10.1088/1758-5090/ad5fbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Three-dimensional (3D) printing is an emerging tool for creating patient-specific tissue constructs analogous to the native tissue microarchitecture. In this study, anatomically equivalent 3D nerve conduits were developed using thermoplastic polyurethane (TPU) by combining reverse engineering and material extrusion (i.e. fused deposition modeling) technique. Printing parameters were optimized to fabricate nerve-equivalent TPU constructs. The TPU constructs printed with different infill densities supported the adhesion, proliferation, and gene expression of neuronal cells. Subcutaneous implantation of the TPU constructs for three months in rats showed neovascularization with negligible local tissue inflammatory reactions and was classified as a non-irritant biomaterial as per ISO 10993-6. To performin vivoefficacy studies, nerve conduits equivalent to rat's sciatic nerve were fabricated and bridged in a 10 mm sciatic nerve transection model. After four months of implantation, the sensorimotor function and histological assessments revealed that the 3D printed TPU conduits promoted the regeneration in critical-sized peripheral nerve defects equivalent to autografts. This study proved that TPU-based 3D printed nerve guidance conduits can be created to replicate the complicated features of natural nerves that can promote the regeneration of peripheral nerve defects and also show the potential to be extended to several other tissues for regenerative medicine applications.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - David Raj Chellappan
- Central Animal Facility, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Prabu Chinnaswamy
- Department of Veterinary Pathology, Veterinary College and Research Institute, Orathanadu, Tamil Nadu 614 625, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
38
|
Sokjorhor J, Yimyai T, Thiramanas R, Crespy D. Self-healing, antibiofouling and anticorrosion properties enabled by designing polymers with dynamic covalent bonds and responsive linkages. J Mater Chem B 2024; 12:6827-6839. [PMID: 38904191 DOI: 10.1039/d4tb00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coating metal structures with a protective material is a popular strategy to prevent their deterioration due to corrosion. However, maintaining the barrier properties of coatings after their mechanical damage is challenging. Herein, we prepared multifunctional coatings with self-healing ability to conserve their anticorrosion performance after damage. The coating was formed by blending synthesized redox-responsive copolymers with the ability to release a corrosion inhibitor upon the onset of corrosion with synthesized self-healing polyurethanes containing disulfide bonds. The corrosion rate of steel substrates coated with a blend is approximately 24 times lower than that of steel coated with only self-healing polyurethane. An exceptional healing efficiency, as high as 95%, is obtained after mechanical damage. The antibiofouling property against bacterial and microalgal attachments on coatings is facilitated by the repellent characteristic of fluorinated segments and the biocidal activity of the inhibitor moieties in the copolymer.
Collapse
Affiliation(s)
- Jenpob Sokjorhor
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Tiwa Yimyai
- Department of Chemical and Bimolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
39
|
Liu H, Zhan S, Bo Y, Ding W, Yuan R, Tian X, Zhang Y, Zhang D, Yang H, Wang S, Zhang M. Strength Enhancement of Polyurethane Film by Solution Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12419-12426. [PMID: 38836381 DOI: 10.1021/acs.langmuir.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Recently, polyurethane elastomer (TPU) has attracted more and more attention depending on its excellent optical, mechanical, and retreatment properties. The high strength of polyurethane has always been pursued, which can enable its application in more fields. In this work, an aliphatic polyurethane elastomer membrane (HRPU6) was successfully synthesized, and its strength was obviously improved by solvent annealing technology. The tensile strength and adhesion strength can reach 64.56 and 2.58 MPa, but 36.55 and 1.57 MPa only before solvent annealing, respectively. The impact strength of laminated glass based on HRPU has also been significantly improved after solvent annealing, confirmed through drop ball impact testing. It has been confirmed that the increase in strength of HRPU6 is attributed to the enhancement of hydrogen bonding and the improvement of the phase separation degree.
Collapse
Affiliation(s)
- Hongyan Liu
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Siqi Zhan
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Yanyan Bo
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Wenhe Ding
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Ruize Yuan
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Xin Tian
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Yuanbo Zhang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Dongxiu Zhang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Huimin Yang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Shiwei Wang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| | - Mingyao Zhang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, People's Republic of China 130012
| |
Collapse
|
40
|
Lim JH, Han WB, Jang TM, Ko GJ, Shin JW, Han S, Kang H, Eom CH, Choi SJ, Rajaram K, Bandodkar AJ, Yeo WH, Hwang SW. Synthesis of shape-programmable elastomer for a bioresorbable, wireless nerve stimulator. Biosens Bioelectron 2024; 254:116222. [PMID: 38518560 DOI: 10.1016/j.bios.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - So Jeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
41
|
Qin J, Chen Y, Guo X, Huang Y, Chen G, Zhang Q, He G, Zhu S, Ruan X, Zhu H. Regulation of Hard Segment Cluster Structures for High-performance Poly(urethane-urea) Elastomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400255. [PMID: 38602431 PMCID: PMC11165464 DOI: 10.1002/advs.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Elastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties. Together with the multiple hydrogen bond structure and stress-induced crystallization, the obtained elastomer exhibits a high strength of 63.3 MPa, an excellent toughness of 431 MJ m-3 and an outstanding fracture energy of 489 kJ m-2, while maintaining good recyclability and degradability. It is believed that the obtained elastomer holds great promise in various application fields and it contributes to the development of a sustainable society.
Collapse
Affiliation(s)
- Jianliang Qin
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yifei Chen
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - Xiwei Guo
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yi Huang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Guoqing Chen
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Qi Zhang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Gaohong He
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
- State Key Laboratory of Fine ChemicalsR&D Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian116023China
| | - Shiping Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Xuehua Ruan
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - He Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| |
Collapse
|
42
|
Zeng X, Liang T, Cheng X, Fan J, Pang Y, Xu J, Sun R, Xia X, Zeng X. Design of Soft/Hard Interface with High Adhesion Energy and Low Interfacial Thermal Resistance via Regulation of Interfacial Hydrogen Bonding Interaction. NANO LETTERS 2024; 24:6386-6394. [PMID: 38743576 DOI: 10.1021/acs.nanolett.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, People's Republic of China
| | - Ting Liang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, People's Republic of China
| | - Xiaxia Cheng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jianfeng Fan
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yunsong Pang
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, People's Republic of China
| | - Rong Sun
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, People's Republic of China
| | - Xiaoliang Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
43
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
44
|
Cheng Y, Jin J, Yan H, Zhou G, Xu Y, Tang L, Liu X, Li H, Zhang K, Lu Z. Spaced Double Hydrogen Bonding in an Imidazole Poly Ionic Liquid Composite for Highly Efficient and Selective Photocatalytic Air Reductive H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202400857. [PMID: 38356122 DOI: 10.1002/anie.202400857] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Photocatalytic oxygen reductive H2O2 production is a promising approach to alternative industrial anthraquinone processes while suffering from the requirement of pure O2 feedstock for practical application. Herein, we report a spaced double hydrogen bond (IC-H-bond) through multi-component Radziszewski reaction in an imidazole poly-ionic-liquid composite (SI-PIL-TiO2) and levofloxacin hydrochloride (LEV) electron donor for highly efficient and selective photocatalytic air reductive H2O2 production. It is found that the IC-H-bond formed by spaced imino (-NH-) group of SI-PIL-TiO2 and carbonyl (-C=O) group of LEV can switch the imidazole active sites characteristic from a covered state to a fully exposed one to shield the strong adsorption of electron donor and N2 in the air, and propel an intenser positive potential and more efficient orbitals binding patterns of SI-PIL-TiO2 surface to establish competitive active sites for selectivity O2 chemisorption. Moreover, the high electron enrichment of imidazole as an active site for the 2e- oxygen reduction ensures the rapid reduction of O2. Therefore, the IC-H-bond enables a total O2 utilization and conversion efficiency of 94.8 % from direct photocatalytic air reduction, achieving a H2O2 production rate of 1518 μmol/g/h that is 16 and 23 times compared to poly-ionic-liquid composite without spaced imino groups (PIL-TiO2) and TiO2, respectively.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Jie Jin
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Huan Yan
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Guosheng Zhou
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Yangrui Xu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Liguang Tang
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Xinlin Liu
- School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Jiangsu, Nanjing, PR China
| | - Ziyang Lu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 212013, Jiangsu, Zhenjiang, PR China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Jiangsu, Suzhou, PR China
| |
Collapse
|
45
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
46
|
Paez-Amieva Y, Martín-Martínez JM. Dynamic Non-Covalent Exchange Intrinsic Self-Healing at 20 °C Mechanism of Polyurethane Induced by Interactions among Polycarbonate Soft Segments. Polymers (Basel) 2024; 16:924. [PMID: 38611182 PMCID: PMC11013852 DOI: 10.3390/polym16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Two polyurethanes (PUs) were similarly synthesized by reacting a cycloaliphatic isocyanate with 1,4-butanediol and two polyols of different nature (polyester, polycarbonate diol) with molecular weights of 1000 Da. Only the PU synthesized with polycarbonate diol polyol (YCD) showed intrinsic self-healing at 20 °C. For assessing the mechanism of intrinsic self-healing of YCD, a structural characterization by molecular weights determination, infrared and X-ray photoelectronic spectroscopies, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, and dynamic mechanical thermal analysis was carried out. The experimental evidence concluded that the self-healing at 20 °C of YCD was due to dynamic non-covalent exchange interactions among the polycarbonate soft segments. Therefore, the chemical nature of the polyol played a key role in developing PUs with intrinsic self-healing at 20 °C.
Collapse
|
47
|
Wu H, Wang H, Luo M, Yuan Z, Chen Y, Jin B, Wu W, Ye B, Zhang H, Wu J. Mechanically robust, self-reporting and healable polyurethane elastomers by incorporating symmetric/asymmetric chain extenders. MATERIALS HORIZONS 2024; 11:1548-1559. [PMID: 38263896 DOI: 10.1039/d3mh01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Self-healing elastomers usually show poor mechanical properties and environmental stability, and they cannot self-report mechanical/chemical damage. Herein, an innovative design strategy is reported that combines symmetric/asymmetric chain extenders to create large yet disordered hard domains within polyurethane (PU) elastomers, enabling the integration of mechanical robustness and self-reporting and self-healing capabilities to overcome both mechanical and chemical damage. Specifically, large yet disordered hard domains were created by governing the molar contents of asymmetric fluorescent 2-(4-aminophenyl)-5-aminobenzimidazole (PABZ) and symmetric 4-aminophenyl disulfide (APDS). Such a structural feature led to a small free-volume fraction, prominent strain-induced crystallization (SIC), and high energy of dissipation, enabling the PU elastomer to display outstanding mechanical strength (60.7 MPa) and toughness (177.9 MJ m-3). Meanwhile, the loose stacking of disordered hard domains imposed small restriction on network chains and imparted the network with high relaxation dynamics, leading to high healing efficiency (97.8%). More importantly, the fluorescence intensity was stimulus-responsive and thus the PU elastomer could self-report mechanical/chemical damage and healing processes. The PU elastomer also showed potential application prospects in information encoding and encryption. Furthermore, selecting polydimethylsiloxane as one of the soft segments could effectively endow the PU elastomer with intrinsic hydrophobicity. Therefore, this work provides valuable guidance for designing multi-functional materials with anti-counterfeiting, self-reporting, and healing properties as well as high mechanical properties and hydrophobicity.
Collapse
Affiliation(s)
- Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Mi Luo
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Biqiang Jin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenqiang Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
48
|
Niu W, Li Z, Liang F, Zhang H, Liu X. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318434. [PMID: 38234012 DOI: 10.1002/anie.202318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Supramolecular polymer networks (SPNs), crosslinked by noncovalent bonds, have emerged as reorganizable and recyclable polymeric materials with unique functionality. However, poor stability is an imperative challenge faced by SPNs, because SPNs are susceptible to heat, water, and/or solvents due to the dynamic and reversible nature of noncovalent bonds. Herein, the design of a noncovalent cooperative network (NCoN) to simultaneously stabilize and reinforce SPNs is reported, resulting in an ultrastable, superrobust, and recyclable SPN. The NCoN is constructed by multiplying the H-bonding sites and tuning the conformation/geometry of the H-bonding segment to optimize the multivalence cooperativity of H-bonds. The rationally designed H-bonding segment with high conformational compliance favors the formation of tightly packed H-bond arrays comprising higher-density and stronger H-bonds. Consequently, the H-bonded crosslinks in the NCoN display a covalent crosslinking effect but retain on-demand dynamics and reversibility. The resultant ultrastable SPN not only displays remarkable resistance to heat up to 120 °C, water soaking, and a broad spectrum of solvents, but also possesses a superhigh true stress at break (1.1 GPa) and an ultrahigh toughness (406 MJ m-3 ). Despite the covalent-network-like stability, the SPN is recyclable through activating its reversibility in a high-polarity solvent heated to a threshold temperature.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fengli Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
49
|
Lee M, Kwak H, Eom Y, Park SA, Sakai T, Jeon H, Koo JM, Kim D, Cha C, Hwang SY, Park J, Oh DX. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. NATURE MATERIALS 2024; 23:414-423. [PMID: 38182810 DOI: 10.1038/s41563-023-01760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.
Collapse
Affiliation(s)
- Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Dowan Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-Do, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
50
|
Tang B, Pauls M, Bannwarth C, Hecht S. Photoswitchable Quadruple Hydrogen-Bonding Motif. J Am Chem Soc 2024; 146:45-50. [PMID: 38033296 DOI: 10.1021/jacs.3c10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Multiple hydrogen-bonding motifs serve as important building blocks for molecular recognition and self-assembly. Herein, a photoswitchable quadruple hydrogen-bonding motif featuring near-complete, reversible, and thermostable conversion between DADA and AADD arrays associated with an alteration of their dimerization constants by over 3 orders of magnitude is reported. The system is based on a diarylethene featuring a ureidopyrimidin-4-ol moiety, which upon photoinduced ring closure and associated loss of aromaticity undergoes enol-keto tautomerization to a ureidopyrimidinone moiety. The latter causes a transformation of the hydrogen-bonding arrays and significantly weakens the free energy of dimerization in the case of the closed isomer. This photoswitchable quadruple hydrogen-bonding motif should allow us to spatially and temporarily direct self-assembly and supramolecular polymerization processes by light.
Collapse
Affiliation(s)
- Bohan Tang
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Mike Pauls
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Department of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|