1
|
Teng X, Gui L, Liang W, Liu T, Chen J, Liu Y, Li Q, Zeng J, Liang Y, Li L. Efficient Separation-Free and Wash-Free Immunoassay for Sensitive Detection of Biomarkers Based on the Distance-Driven Chemiluminescent Technique. Anal Chem 2025; 97:6661-6669. [PMID: 40108884 DOI: 10.1021/acs.analchem.4c06593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The wash-free method represents a promising strategy for enhancing the detection efficiency of automated chemiluminescent (CL) immunoassay analyzers. Herein, a novel separation-free and wash-free immunoassay was developed for the first time based on the distance-driven CL technique. In the CL immunoassay, the well-designed Au-Co metal nanoclusters (NCs) exhibited excellent peroxidase-like activity and good stability, allowing for efficient catalysis of luminol or its analogue (ABEI)-H2O2 system even at low concentrations. Furthermore, the large specific surface area of Au-Co NCs facilitated the accommodation of a greater number of antibodies, thereby enhancing the capture of antigens and achieving dual amplification of the CL signal. The distance-driven CL technique relied on the formation of sandwich-type immunocomplexes. Upon the generation of hydroxyl radicals and superoxide anion radicals through the catalytic decomposition of H2O2 by Au-Co NCs, the ABEI within sandwich-type immunocomplexes could efficiently react with these radicals, leading to a significant enhancement in CL signals. Furthermore, C-reactive protein (CRP) was chosen as the model analyte to evaluate the practicability of the proposed immunoassay. Notably, the proposed immunoassay presented high sensitivity, selectivity, reproducibility, and stability, successfully determining CRP in serum samples with recoveries of 96.55-106.29%. Accordingly, the proposed strategy with the advantage of separation-free, wash-free, and reliable characteristics could drastically simplify the detection operation steps and enhance the detection efficiency, which would make significant advances in the revolution of traditional CL immunoassay.
Collapse
Affiliation(s)
- Xu Teng
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Lingyan Gui
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Weiyuan Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Tao Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Jiuyang Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yue Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Qiguang Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Jun Zeng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
2
|
Zhang L, Zhao P, Liu Y, Shi N, Zhou Y, Peng S, Sun T, Zhang M, Wu Y, Yang X, Wen Y, Shi G, Gao X, Luo L. Detection of TNF-α using the established ab-MPs-CLIA. Talanta 2025; 285:127301. [PMID: 39637773 DOI: 10.1016/j.talanta.2024.127301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Tumor necrosis factor alpha (TNF-α) is a key cytokine in inflammation and immune responses, making its rapid and accurate detection essential for disease diagnosis and management. In this study, we developed a highly sensitive chemiluminescence immunoassay (CLIA) using antibody-coated magnetic particles (Ab-MPs-CLIA) for TNF-α detection. From nine candidate antibodies, we identified an optimal pair through epitope competition and affinity assessments, significantly improving assay performance. The Ab-MPs-CLIA achieved a detection limit of 0.25 pg/mL, 6.8 times more sensitive than Siemens commercial kits, with a broad linear range of 9.2-1077 pg/mL. The method demonstrated excellent stability, both under accelerated conditions at 37 °C for 7 days and long-term storage at 4 °C for 12 months. It showed no cross-reactivity with common interfering substances in human serum, ensuring high specificity. Notably, the entire process, from sample preparation to result, takes just 25 min, compared to 3-4 h for both ELISA and RIA, and CLIA typically offers 10-100 times higher sensitivity than these methods. These advantages make the Ab-MPs-CLIA an ideal option for clinical laboratories, providing superior sensitivity, specificity, broader dynamic range, and greater operational efficiency than existing TNF-α detection technologies.
Collapse
Affiliation(s)
- Liang Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shangde Peng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tieqiang Sun
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yahui Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Hunan Normal University School of Medicine, Changsha, Hunan Province, 410081, China
| | - Xuechen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yan Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Gang Shi
- Kangpu Biotechnology (Beijing) Co., Ltd., Beijing, 100102, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
3
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Matilda S, Rai AJ, Welc-Falęciak R, Pawełczyk A, Blanton LS, Chrdle A, Fořtová A, Růžek D, Nasrallah GK, Abu-Raddadi LJ, Al-Sadeq DW, Abdallah MAA, Lilleri D, Fornara C, D'Angelo P, Furione M, Söderlund-Venermo M, Hedman K, Chochlakis D, Makridaki E, Ntoula A, Psaroulaki A, Escárcega-Ávila A, Rajasekaran JJ. A customizable multiplex protein microarray for antibody testing and its application for tick-borne and other infectious diseases. Sci Rep 2025; 15:2527. [PMID: 39833196 PMCID: PMC11747503 DOI: 10.1038/s41598-024-84467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Tick-borne infections are the most common vector-borne diseases in the USA. Ticks harbor and transmit several infections with Lyme disease being the most common tickborne infection in the US and Europe. Lack of awareness about tick populations, specific diagnostic tests, and overlapping signs and symptoms of tick-borne infections can often lead to misdiagnosis affecting treatment and the prevalence data reported especially for non-Lyme tick-borne infections. The diagnostic tests currently available for tick-borne diseases are severely limited in their ability to provide accurate results and cannot detect multiple pathogens in a single run. The multiplex protein microarray developed at Vibrant was designed to detect multiple serological antibodies thereby detecting exposure to multiple pathogens simultaneously. Our microarray in its present form can accommodate 400 antigens (molecules that can bind to specific antibodies) and can multiplex across antigen types, whole cell lysates, recombinant proteins, and peptides. A designed array containing multiple antigens of several microbes including Borrelia burgdorferi, the Lyme disease spirochete, was manufactured and evaluated. The immunoglobulin M (IgM) and G (IgG) responses against several tick-borne microbes and other infectious agents were analyzed for analytical and clinical performance. The microarray improved IgM and IgG sensitivities and specificities of individual microbes when compared with the respective gold standards. The testing was also performed in a single run in comparison to multiple runs needed for comparable testing standards. In summary, our study presents a flexible multiplex microarray platform that can provide quick results with high sensitivity and specificity for evaluating exposure to varied infectious agents especially tick-borne pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, USA
| | | | | | - Alex J Rai
- Irving Medical Center, Department of Pathology & Cell Biology, Columbia University, New York, USA
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, Diagnostic Laboratory of Parasitic Diseases and Zoonotic Infections, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Lucas S Blanton
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Aleš Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
| | | | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gheyath K Nasrallah
- Biomedical Sciences Department, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Laith J Abu-Raddadi
- Biomedical Sciences Department, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Duaa W Al-Sadeq
- Biomedical Sciences Department, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Daniele Lilleri
- Microbiologia E Virologia, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Chiara Fornara
- Microbiologia E Virologia, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Piera D'Angelo
- Microbiologia E Virologia, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Milena Furione
- Microbiologia E Virologia, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | | | - Klaus Hedman
- University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Dimosthenis Chochlakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 70013, Heraklion, Crete, Greece
| | - Eirini Makridaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 70013, Heraklion, Crete, Greece
| | - Artemis Ntoula
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 70013, Heraklion, Crete, Greece
| | - Anna Psaroulaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 70013, Heraklion, Crete, Greece
| | - Angélica Escárcega-Ávila
- Laboratory of Biotechnology at, Institute of Biomedical Science, University of Ciudad Juárez, Ciudad Juárez, Mexico
| | | |
Collapse
|
4
|
Yang J, Zhu B, Zhang J, Liang SH, Shen S, Ran C. Half-Curcumin-Based Chemiluminescence Probes and Their Applications in Detecting Quasi-Stable Oxidized Proteins. Angew Chem Int Ed Engl 2024; 63:e202409896. [PMID: 38980957 PMCID: PMC11421953 DOI: 10.1002/anie.202409896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the reactive oxygen species (ROS)/reactive nitrogen species (RNS) reactions, particularly quasi-stable oxidized products, have been much less explored. In this report, we observed that half-curcumins could generate chemiluminescence (CL). In contrast to other chemiluminescence scaffolds, the distinguishing feature of a half-curcumin is the formation of a carbanion intermediate of its acetylacetone moiety, opening unique avenues for applications. In this study, we designed a series of half-curcumins CRANAD-Xs and found that CRANAD-164 could be used to detect quasi-stable oxidized proteins (QSOP) in vivo and in patient serum samples. We illustrated that CRANAD-164 could be used to monitor the responses of taurine, an amino acid with newly reported anti-aging capacity, in an inflammatory mouse model. Remarkably, we further demonstrated that the QSOP levels were much higher in the disease serum samples, including Alzheimer's disease (AD), compared to the samples from healthy controls. Moreover, our results revealed that the sera chemiluminescence intensities were higher in aged healthy controls compared to young healthy subjects, suggesting that CRANAD-164 can be used to monitor the increase of QSOP during aging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Jing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, United States
| | - Shiqian Shen
- Massachusetts General Hospital Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| |
Collapse
|
5
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Dong Y, Guo C, Wang J, Ye C, Min Q. Recent Advances in DNA Nanotechnology-Based Sensing Platforms for Rapid Virus Detection. Chembiochem 2024; 25:e202400230. [PMID: 38825565 DOI: 10.1002/cbic.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments. The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jialing Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Zhou Y, Wei Y, Zhang J, Shi X, Ma L, Yuan R. Highly Specific Aptamer-Antibody Birecognized Sandwich Module for Ultrasensitive Detection of a Low Molecular Weight Compound. Anal Chem 2024; 96:11326-11333. [PMID: 38953527 DOI: 10.1021/acs.analchem.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Zhou
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuying Wei
- Guangxi Zhuang Autonomous Region Grain and Oil Quality Inspection Center, Nanning 530031, P. R. China
| | - Jia Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
10
|
Aldoukhi AH, Bilalis P, Alhattab DM, Valle-Pérez AU, Susapto HH, Pérez-Pedroza R, Backhoff-García E, Alsawaf SM, Alshehri S, Boshah H, Alrashoudi AA, Aljabr WA, Alaamery M, Alrashed M, Hasanato RM, Farzan RA, Alsubki RA, Moretti M, Abedalthagafi MS, Hauser CAE. Fusing Peptide Epitopes for Advanced Multiplex Serological Testing for SARS-CoV-2 Antibody Detection. ACS BIO & MED CHEM AU 2024; 4:37-52. [PMID: 38404747 PMCID: PMC10885102 DOI: 10.1021/acsbiomedchemau.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 02/27/2024]
Abstract
The tragic COVID-19 pandemic, which has seen a total of 655 million cases worldwide and a death toll of over 6.6 million seems finally tailing off. Even so, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise, the severity of which cannot be predicted in advance. This is concerning for the maintenance and stability of public health, since immune evasion and increased transmissibility may arise. Therefore, it is crucial to continue monitoring antibody responses to SARS-CoV-2 in the general population. As a complement to polymerase chain reaction tests, multiplex immunoassays are elegant tools that use individual protein or peptide antigens simultaneously to provide a high level of sensitivity and specificity. To further improve these aspects of SARS-CoV-2 antibody detection, as well as accuracy, we have developed an advanced serological peptide-based multiplex assay using antigen-fused peptide epitopes derived from both the spike and the nucleocapsid proteins. The significance of the epitopes selected for antibody detection has been verified by in silico molecular docking simulations between the peptide epitopes and reported SARS-CoV-2 antibodies. Peptides can be more easily and quickly modified and synthesized than full length proteins and can, therefore, be used in a more cost-effective manner. Three different fusion-epitope peptides (FEPs) were synthesized and tested by enzyme-linked immunosorbent assay (ELISA). A total of 145 blood serum samples were used, compromising 110 COVID-19 serum samples from COVID-19 patients and 35 negative control serum samples taken from COVID-19-free individuals before the outbreak. Interestingly, our data demonstrate that the sensitivity, specificity, and accuracy of the results for the FEP antigens are higher than for single peptide epitopes or mixtures of single peptide epitopes. Our FEP concept can be applied to different multiplex immunoassays testing not only for SARS-CoV-2 but also for various other pathogens. A significantly improved peptide-based serological assay may support the development of commercial point-of-care tests, such as lateral-flow-assays.
Collapse
Affiliation(s)
- Ali H. Aldoukhi
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Dana M. Alhattab
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Hepi H. Susapto
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Rosario Pérez-Pedroza
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Emiliano Backhoff-García
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sarah M. Alsawaf
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Salwa Alshehri
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Hattan Boshah
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Abdulelah A. Alrashoudi
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Waleed A. Aljabr
- Research
Centre, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Manal Alaamery
- Developmental
Medicine Department, King Abdullah International Medical Research
Center, King Abdulaziz Medical City, Ministry of National Guard-Health
Affairs, King Saud Bin Abdulaziz University
for Health Sciences, Riyadh 11426, Saudi Arabia
- KACST-BWH
Centre of Excellence for Biomedicine, Joint Centers of Excellence
Program, King Abdulaziz City for Science
and Technology (KACST), Riyadh 12371, Saudi Arabia
- Saudi
Human Genome Project (SHGP), Satellite Lab at King Abdulaziz Medical
City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz City for Science and Technology (KACST), Riyadh 11426, Saudi Arabia
| | - May Alrashed
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rana M. Hasanato
- Department
of Pathology and Laboratory Medicine, King
Saud University, Riyadh 11433, Saudi Arabia
| | - Raed A. Farzan
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Roua A. Alsubki
- Department
of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Chair
of Medical and Molecular Genetics Research, King Saud University, Riyadh 11433, Saudi Arabia
| | - Manola Moretti
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| | - Malak S. Abedalthagafi
- Pathology and Laboratory Medicine, Emory
School of Medicine, Atlanta, Georgia 30329, United States
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological and Environmental Science
and Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational
Bioscience Research Center (CBRC), King
Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
- Red Sea
Research Center, Division of Biological and Environmental
Science and Engineering (BESE), King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Zhou YH, Xu C, Tao Y, Gu M, Zhou G, Zhou W, Jin Y, Xie J, Xu B, Zhou W, Chen J, Shi W. Incidence of SARS-CoV-2 infection in children shortly after ending zero-COVID-19 policy in China on December 7, 2022: a cross-sectional, multicenter, seroepidemiological study. Front Public Health 2023; 11:1283158. [PMID: 38026391 PMCID: PMC10666904 DOI: 10.3389/fpubh.2023.1283158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background China discontinued the zero-COVID-19 policy on December 7, 2022, and then COVID-19 surged mid-December 2022 through mid-January 2023. However, the actual incidence was unknown. This study aimed to estimate the incidence of SARS-CoV-2 infection in children shortly after ending the zero-COVID-19 policy. Methods This multicenter cross-sectional study included 1,065 children aged 8 months to 12 years from seven hospitals at six regions across Jiangsu province, based on the convenience sampling, from February 10 to March 10, 2023. Group I comprised 324 children aged 8 months-2 years without COVID-19 vaccination, group II consisted of 338 preschool children aged 3-5 years with varied vaccination history, and group III contained 403 primary school children aged 6-12 years with mostly vaccinated. The COVID-19 vaccines were composed of inactivated SARS-CoV-2. In addition, 96 children's sera collected in 2014 were included as negative controls. IgG and IgM antibodies against nucleocapsid (N) and subunit 1 of spike (S1) of SARS-CoV-2 (anti-N/S1) were measured with commercial kits (YHLO Biotech, Shenzhen, China). Results None of the 96 children (5.1 ± 3.5 years; 58.3% boys) in 2014 was positive for anti-N/S1 IgG or IgM. Of the 1,065 children (5.0 ± 3.5 years; 56.0% boys), 988 (92.8%) were anti-N/S1 IgG positive but none was anti-N/S1 IgM positive. The positive rate of anti-N/S1 IgG in Group I, II, and III was 90.4, 88.5, and 98.3%, respectively, with significantly higher in group III than in groups I and II (p < 0.0001). The median antibody titers in group III (381.61 AU/ml) were much higher than that in group I (38.34 AU/ml) and II (51.88 AU/ml; p < 0.0001). Conclusion More than 90% children experienced SARS-CoV-2 infection shortly after ending zero-COVID-19 policy in China, much higher than estimated infections by other studies. The widespread SARS-CoV-2 infection in unvaccinated children should be influential on the policy of COVID-19 vaccination in children in the future.
Collapse
Affiliation(s)
- Yi-Hua Zhou
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Chenyu Xu
- Department of Obstetrics and Gynecology, Zhenjiang Fourth People’s Hospital, Zhenjiang, Jiangsu, China
| | - Yue Tao
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Meng Gu
- Department of Clinical Laboratory, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou Children's Hospital, Changzhou, Jiangsu, China
| | - Guiping Zhou
- Department of Clinical Laboratory, Yixing Second People’s Hospital, Yixing, Jiangsu, China
| | - Wei Zhou
- Department of Clinical Laboratory, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yue Jin
- Department of Clinical Laboratory, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Jun Xie
- Department of Clinical Laboratory, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| | - Biyun Xu
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wensan Zhou
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Junhao Chen
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
12
|
Pietiäinen V, Polso M, Migh E, Guckelsberger C, Harmati M, Diosdi A, Turunen L, Hassinen A, Potdar S, Koponen A, Sebestyen EG, Kovacs F, Kriston A, Hollandi R, Burian K, Terhes G, Visnyovszki A, Fodor E, Lacza Z, Kantele A, Kolehmainen P, Kakkola L, Strandin T, Levanov L, Kallioniemi O, Kemeny L, Julkunen I, Vapalahti O, Buzas K, Paavolainen L, Horvath P, Hepojoki J. Image-based and machine learning-guided multiplexed serology test for SARS-CoV-2. CELL REPORTS METHODS 2023; 3:100565. [PMID: 37671026 PMCID: PMC10475844 DOI: 10.1016/j.crmeth.2023.100565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.
Collapse
Affiliation(s)
- Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Minttu Polso
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ede Migh
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Christian Guckelsberger
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
- Finnish Center for Artificial Intelligence, Espoo, Finland
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Maria Harmati
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Akos Diosdi
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Edina Gyukity Sebestyen
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ferenc Kovacs
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Single-Cell Technologies Ltd., Szeged, Hungary
| | - Andras Kriston
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Single-Cell Technologies Ltd., Szeged, Hungary
| | - Reka Hollandi
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Terhes
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Adam Visnyovszki
- 1 Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter Fodor
- Department of Sports Physiology, Institute of Sports and Health Sciences, University of Physical Education, Budapest, Hungary
| | - Zsombor Lacza
- Department of Sports Physiology, Institute of Sports and Health Sciences, University of Physical Education, Budapest, Hungary
| | - Anu Kantele
- Meilahti Infectious Diseases and Vaccine Research Center (MeiVac), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | | | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Lajos Kemeny
- HCEMM-USZ Skin Research Group, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Krisztina Buzas
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Immunology, Faculty of Medicine, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Peter Horvath
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Single-Cell Technologies Ltd., Szeged, Hungary
| | - Jussi Hepojoki
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Pathology, Zürich, Switzerland
| |
Collapse
|
13
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
14
|
Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. J Clin Med 2023; 12:3190. [PMID: 37176630 PMCID: PMC10179128 DOI: 10.3390/jcm12093190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous investigations have demonstrated significant and long-lasting neurological manifestations of COVID-19. It has been suggested that as many as four out of five patients who sustained COVID-19 will show one or several neurological symptoms that can last months after the infection has run its course. Neurological symptoms are most common in people who are less than 60 years of age, while encephalopathy is more common in those over 60. Biological mechanisms for these neurological symptoms need to be investigated and may include both direct and indirect effects of the virus on the brain and spinal cord. Individuals with Alzheimer's disease (AD) and related dementia, as well as persons with Down syndrome (DS), are especially vulnerable to COVID-19, but the biological reasons for this are not clear. Investigating the neurological consequences of COVID-19 is an urgent emerging medical need, since close to 700 million people worldwide have now had COVID-19 at least once. It is likely that there will be a new burden on healthcare and the economy dealing with the long-term neurological consequences of severe SARS-CoV-2 infections and long COVID, even in younger generations. Interestingly, neurological symptoms after an acute infection are strikingly similar to the symptoms observed after a mild traumatic brain injury (mTBI) or concussion, including dizziness, balance issues, anosmia, and headaches. The possible convergence of biological pathways involved in both will be discussed. The current review is focused on the most commonly described neurological symptoms, as well as the possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045-0511, USA
| |
Collapse
|
15
|
Qian C, Li J, Pang Z, Xie H, Wan C, Li S, Wang X, Xiao Y, Feng X, Li Y, Chen P, Liu BF. Hand-powered centrifugal micropipette-tip with distance-based quantification for on-site testing of SARS-CoV-2 virus. Talanta 2023; 258:124466. [PMID: 36963148 PMCID: PMC10023210 DOI: 10.1016/j.talanta.2023.124466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
This paper proposed a hand-powered centrifugal micropipette-tip strategy, termed HCM, for all-in-one immunoassay combined with a distance-based readout for portable quantitative detection of SARS-CoV-2. The target SARS-CoV-2 virus antigen triggers the binding of multiple monoclonal antibody-coated red latex nanobeads, forming larger complexes. Following incubation and centrifugation, the formed aggregated complexes settle at the bottom of the tip, while free red nanobeads remain suspended in the solution. The HCM enables sensitive (1 ng/mL) and reliable quantification of SARS-CoV-2 within 25 min. With the advantages of free washing, free fabrication, free instrument, and without the optical device, the proposed low-cost and easy-to-use HCM immunoassay shows great potential for quantitative POC diagnostics for SARS-CoV-2.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Shan Y, Wang B, Huang H, Yan K, Li W, Wang S, Liu F. Portable high-throughput multimodal immunoassay platform for rapid on-site COVID-19 diagnostics. Anal Chim Acta 2023; 1238:340634. [PMID: 36464448 PMCID: PMC9671405 DOI: 10.1016/j.aca.2022.340634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a causal agent of Coronavirus Disease 2019 (COVID-19) has led to the global pandemic. Though the real-time reverse transcription polymerase chain reaction (RT-PCR) acting as a gold-standard method has been widely used for COVID-19 diagnostics, it can hardly support rapid on-site applications or monitor the stage of disease development as well as to identify the infection and immune status of rehabilitation patients. To suit rapid on-site COVID-19 diagnostics under various application scenarios with an all-in-one device and simple detection reagents, we propose a high-throughput multimodal immunoassay platform with fluorescent, colorimetric, and chemiluminescent immunoassays on the same portable device and a multimodal reporter probe using quantum dot (QD) microspheres modified with horseradish peroxidase (HRP) coupled with goat anti-human IgG. The recombinant nucleocapsid protein fixed on a 96-well plate works as the capture probe. In the condition with the target under detection, both reporter and capture probes can be bound by such target. When illuminated by excitation light, fluorescence signals from QD microspheres can be collected for target quantification often at a fast speed. Additionally, when pursuing simple detection without using any sensing devices, HRP-catalyzed TMB colorimetric immunoassay is employed; and when pursuing highly sensitive detection, HRP-catalyzed luminol chemiluminescent immunoassay is established. Verified by the anti-SARS-CoV-2 N humanized antibody, the sensitivities of colorimetric, fluorescent, and chemiluminescent immunoassays are respectively 20, 80, and 640 times more sensitive than that of the lateral flow colloidal gold immunoassay strip. Additionally, such a platform can simultaneously detect multiple samples at the same time thus supporting high-throughput sensing; and all these detecting operations can be implemented on-site within 50 min relying on field-operable processing and field-portable devices. Such a high-throughput multimodal immunoassay platform can provide a new all-in-one solution for rapid on-site diagnostics of COVID-19 for different detecting purposes.
Collapse
Affiliation(s)
- Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Bin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Keding Yan
- Advanced Institute of Micro-Nano Intelligent Sensing (AIMNIS), School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710032, China
| | - Wenzhi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China.
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; OptiX+ Laboratory, Wuxi, Jiangsu, China.
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
17
|
Mostafa M, Barhoum A, Sehit E, Gewaid H, Mostafa E, Omran MM, Abdalla MS, Abdel-Haleem FM, Altintas Z, Forster RJ. Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and RNA sequencing. Trends Analyt Chem 2022; 157:116750. [PMID: 36060607 PMCID: PMC9425703 DOI: 10.1016/j.trac.2022.116750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/15/2022]
Abstract
Rapid, highly sensitive, and accurate virus circulation monitoring techniques are critical to limit the spread of the virus and reduce the social and economic burden. Therefore, point-of-use diagnostic devices have played a critical role in addressing the outbreak of COVID-19 (SARS-CoV-2) viruses. This review provides a comprehensive overview of the current techniques developed for the detection of SARS-CoV-2 in various body fluids (e.g., blood, urine, feces, saliva, tears, and semen) and considers the mutations (i.e., Alpha, Beta, Gamma, Delta, Omicron). We classify and comprehensively discuss the detection methods depending on the biomarker measured (i.e., surface antigen, antibody, and nucleic acid) and the measurement techniques such as lateral flow immunoassay (LFIA), enzyme-linked immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), microarray analysis, clustered regularly interspaced short palindromic repeats (CRISPR) and biosensors. Finally, we addressed the challenges of rapidly identifying emerging variants, detecting the virus in the early stages of infection, the detection sensitivity, selectivity, and specificity, and commented on how these challenges can be overcome in the future.
Collapse
Affiliation(s)
- Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Ahmed Barhoum
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 V209, Dublin, Ireland
| | - Ekin Sehit
- Institute of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
| | - Hossam Gewaid
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St, Dublin, D02R590, Ireland
| | - Eslam Mostafa
- Borg Pharmaceutical Industries, Refaat Hassan St, Al Abageyah, El-Khalifa, Cairo Governorate, 16, Egypt
| | - Mohamed M Omran
- Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Mohga S Abdalla
- Chemistry Department, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Fatehy M Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, 12613, Giza, Egypt
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
| | - Robert J Forster
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 V209, Dublin, Ireland
| |
Collapse
|
18
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
19
|
Bhuiyan NH, Uddin MJ, Lee J, Hong JH, Shim JS. An Internet-of-Disease System for COVID-19 Testing Using Saliva by an AI-Controlled Microfluidic ELISA Device. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101690. [PMID: 35942252 PMCID: PMC9349700 DOI: 10.1002/admt.202101690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Throughout coronavirus disease (COVID-19) outbreaks, the centers for disease control and prevention (CDCP) of a country require monitoring of particular territories to provide public health guidance. In this work, the Internet of Diseases (IoD) is suggested for continuous real-time monitoring of infectious diseases for public health. Because converging information and communication technologies (ICTs) with point-of-care (POC) devices to enable the IoD for continuous real-time health monitoring and processing of clinical records are crucial, an IoD platform associating a lab-on-a-chip (LOC) device to diagnose severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) from oropharyngeal saliva samples have been developed and uploaded the resulted diagnostic data into a cloud-based system to be connected with CDCP. Moreover, a choropleth IoD map to visualize provincial infection rate is proposed along with the IoD platform. The developed platform is applied for the quantification of SARS-CoV-2 N-protein antigen with a LOD as low as 0.013 ng mL-1 and the infection rate of various provinces is projected with the IoD map successfully. Thus, the proposed IoD system has the potential to become an imperative tool for the disease control and prevention centers to restrain COVID-19 outbreaks by identifying the severity of particular regions.
Collapse
Affiliation(s)
- Nabil Hossain Bhuiyan
- Bio‐IT Convergence LaboratoryDepartment of Electronic Convergence EngineeringKwangWoon UniversitySeoul01897Republic of Korea
| | - Md. Jalal Uddin
- Bio‐IT Convergence LaboratoryDepartment of Electronic Convergence EngineeringKwangWoon UniversitySeoul01897Republic of Korea
- BioGeneSys Inc., 20 Kwangwoon‐roNowon‐guSeoul01897Republic of Korea
| | - Joowon Lee
- Bio‐IT Convergence LaboratoryDepartment of Electronic Convergence EngineeringKwangWoon UniversitySeoul01897Republic of Korea
| | - Jun Hyeok Hong
- Bio‐IT Convergence LaboratoryDepartment of Electronic Convergence EngineeringKwangWoon UniversitySeoul01897Republic of Korea
| | - Joon Sub Shim
- Bio‐IT Convergence LaboratoryDepartment of Electronic Convergence EngineeringKwangWoon UniversitySeoul01897Republic of Korea
- BioGeneSys Inc., 20 Kwangwoon‐roNowon‐guSeoul01897Republic of Korea
| |
Collapse
|
20
|
Malic L, Brassard D, Da Fonte D, Nassif C, Mounier M, Ponton A, Geissler M, Shiu M, Morton KJ, Veres T. Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. LAB ON A CHIP 2022; 22:3157-3171. [PMID: 35670202 DOI: 10.1039/d2lc00242f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Testing for SARS-CoV-2 is one of the most important assets in COVID-19 management and mitigation. At the onset of the pandemic, SARS-CoV-2 testing was uniquely performed in central laboratories using RT-qPCR. RT-qPCR relies on trained personnel operating complex instrumentation, while time-to-result can be lengthy (e.g., 24 to 72 h). Now, two years into the pandemic, with the surge in cases driven by the highly transmissible Omicron variant, COVID-19 testing capabilities have been stretched to their limit worldwide. Rapid antigen tests are playing an increasingly important role in quelling outbreaks by expanding testing capacity outside the realm of clinical laboratories. These tests can be deployed in settings where repeat and rapid testing is essential, but they often come at the expense of limited accuracy and sensitivity. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) provides a number of advantages to SARS-CoV-2 testing in standard laboratories and at the point-of-need. In contrast to RT-qPCR, RT-LAMP is performed at a constant temperature, which circumvents the need for thermal cycling and translates into a shorter analysis time (e.g., <1 h). In addition, RT-LAMP is compatible with colorimetric detection, facilitating visualization and read-out. However, even with these benefits, RT-LAMP is not yet clinically deployed at its full capacity. Lack of automation and integration of sample preparation, such as RNA extraction, limits the sensitivity and specificity of the method. Furthermore, the need for cold storage of reagents complicates its use at the point of need. The developments presented in this work address these limitations: We describe a fully automated SARS-CoV-2 detection method using RT-LAMP, which also includes up-front lysis and extraction of viral RNA, performed on a centrifugal platform with active pneumatic pumping, a disposable, all-polymer-based microfluidic cartridge and lyophilized reagents. We demonstrate that the limit of detection of the RT-LAMP assay itself is 0.2 copies per μL using N and E genes as target sequences. When combined with integrated RNA extraction, the assay sensitivity is 0.5 copies per μL, which is highly competitive to RT-qPCR. We tested the automated assay using 12 clinical swab specimens from patients and were able to distinguish positive and negative samples for SARS-CoV-2 within 60 min, thereby obtaining 100% agreement with RT-qPCR results.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - André Ponton
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Matthew Shiu
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Keith J Morton
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
21
|
Chen H, Li S, Wang J, He S, Wang D, Qian Z, Hu D, Qi F, Hu K, Luo C, Wang J. Simultaneous measurement of the antibody responses against SARS-CoV-2 and its multiple variants by a phage display mediated immuno-multiplex quantitative PCR-based assay. Front Microbiol 2022; 13:968036. [PMID: 36071962 PMCID: PMC9441900 DOI: 10.3389/fmicb.2022.968036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
To combat the continued pandemic of COVID-19, multiplex serological assays have been developed to comprehensively monitor the humoral immune response and help to design new vaccination protocols to different SARS-CoV-2 variants. However, multiplex beads and stably transfected cell lines require stringent production and storage conditions, and assays based on flow cytometry is time-consuming and its application is therefore restricted. Here, we describe a phage display system to distinguish the differences of immune response to antigenic domains of multiple SARS-CoV-2 variants simultaneously. Compared with linear peptides, the recombinant antigens displayed on the phage surface have shown some function that requires the correct folding to form a stable structure, and the binding efficiency between the recombinant phage and existing antibodies is reduced by mutations on antigens known to be important for antigen–antibody interaction. By using Phage display mediated immuno-multiplex quantitative PCR (Pi-mqPCR), the binding efficiency between the antibody and antigens of different SARS-CoV-2 variants can be measured in one amplification reaction. Overall, these data show that this assay is a valuable tool to evaluate the humoral response to the same antigen of different SARS-CoV-2 variants or antigens of different pathogens. Combined with high-throughput DNA sequencing technology, this phage display system can be further applied in monitoring humoral immune response in a large population before and after vaccination.
Collapse
Affiliation(s)
- Hanyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Hu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Keping Hu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Andes Antibody Technology Hengshui LL Company, Hengshui City, China
| | - Chenyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chenyi Luo,
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
- Jianxun Wang,
| |
Collapse
|
22
|
Li X, Ma J, Zhang Y, Xu L, Gu C, Wei G, Zhang X, Jiang T, Zhou J. Reusable dual-functional SERS sensor based on gold nanoflowers-modified red phosphorus nanoplates for ultrasensitive immunoassay and degradation of CA19-9. Biosens Bioelectron 2022; 207:114148. [DOI: 10.1016/j.bios.2022.114148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
|
23
|
Saraf S, Zhu X, Shrestha R, Bonny TS, Baker OR, Beck EJ, Fernandez RE, Eby Y, Akinde O, Ruff JE, Caturegli P, Redd AD, Bloch EM, Quinn TC, Tobian AAR, Laeyendecker O. Differential antibody production by symptomatology in SARS-CoV-2 convalescent individuals. PLoS One 2022; 17:e0264298. [PMID: 35679259 PMCID: PMC9182712 DOI: 10.1371/journal.pone.0264298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
The association between COVID-19 symptoms and antibody responses against SARS-CoV-2 is poorly characterized. We analyzed antibody levels in individuals with known SARS-CoV-2 infection to identify potential antibody-symptom associations. Convalescent plasma from 216 SARS-CoV-2 RNA+ individuals with symptomatology information were tested for the presence of IgG to the spike S1 subunit (Euroimmun ELISA), IgG to receptor binding domain (RBD, CoronaCHEK rapid test), and for IgG, IgA, and IgM to nucleocapsid (N, Bio-Rad ELISA). Logistic regression was used to estimate the odds of having a COVID-19 symptom from the antibody response, adjusting for sex and age. Cough strongly associated with antibodies against S1 (adjusted odds ratio [aOR] = 5.33; 95% CI from 1.51 to 18.86) and RBD (aOR = 4.36; CI 1.49, 12.78). In contrast, sore throat significantly associated with the absence of antibodies to S1 and N (aOR = 0.25; CI 0.08, 0.80 and aOR = 0.31; 0.11, 0.91). Similarly, lack of symptoms associated with the absence of antibodies to N and RBD (aOR = 0.16; CI 0.03, 0.97 and aOR = 0.16; CI 0.03, 1.01). Cough appeared to be correlated with a seropositive result, suggesting that SARS-CoV-2 infected individuals exhibiting lower respiratory symptoms generate a robust antibody response. Conversely, those without symptoms or limited to a sore throat while infected with SARS-CoV-2 were likely to lack a detectable antibody response. These findings strongly support the notion that severity of infection correlates with robust antibody response.
Collapse
Affiliation(s)
- Sharada Saraf
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ruchee Shrestha
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Tania S. Bonny
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Owen R. Baker
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Evan J. Beck
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reinaldo E. Fernandez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Yolanda Eby
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Olivia Akinde
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica E. Ruff
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew D. Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas C. Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Impact of ChAdOx1 nCoV-19 (Covishield™) Vaccination: How Long Will It Persist? Int J Microbiol 2022; 2022:4729844. [PMID: 35685779 PMCID: PMC9173867 DOI: 10.1155/2022/4729844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
An increase in COVID-19 immunization coverage has been linked to a decrease in the average case fatality rate. As a result, further research is needed to determine the persistence and duration of vaccine-induced protective antibodies in order to assess the effectiveness of COVID-19 vaccinations. The present study aimed to determine the COVID-19 IgG antibodies among healthcare workers (HCWs) before and after the ChAdOx1 nCoV-19 (Covishield™) vaccination. A total of 150 HCWs who had received the Covishield™ vaccine were assessed after obtaining written informed consent. Blood samples were drawn at three time points, namely, within one week prior to first dose of vaccination, prior to second dose of vaccination (28–33 days after the first dose of vaccination), and 90–95 days after the second dose of vaccination for detecting neutralizing antibodies, i.e., IgG antibodies by ELISA. The overall baseline seropositivity among the HCWs was found to be 28% (n = 42), assessed by the sample collected prior to first dose of COVID-19 vaccination. The seroconversion rate was reported to be 80% (n = 120) one month after the first dosage and increased to 92.7% (n = 139) three months later. Additionally, there was a significant gradual increase in the IgG concentrations postvaccination in majority of the study participants. In those HCWs who had prior history of SARS-CoV-2 infection, significantly higher antibody level was observed compared to antibody-naive individuals. Fever, pain or swelling at the site of injection, and headache were the most frequently reported adverse events following vaccination among the study participants. Regardless of prior SARS-CoV-2 positivity, two doses of the CovishieldTM vaccine elicited a protective neutralizing antibody response that lasted for three months after the second dose of vaccination.
Collapse
|
25
|
All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens Bioelectron 2022; 202:113974. [PMID: 35032920 PMCID: PMC8741628 DOI: 10.1016/j.bios.2022.113974] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.
Collapse
|
26
|
Esteban I, Bergero G, Alves C, Bronstein M, Ziegler V, Wood C, Caballero MT, Wappner D, Libster R, Perez Marc G, Polack FP. Asymptomatic COVID-19 in the elderly: dementia and viral clearance as risk factors for disease progression. Gates Open Res 2022; 5:143. [PMID: 35441127 PMCID: PMC8987012 DOI: 10.12688/gatesopenres.13357.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infected individuals ≥60 years old have the highest hospitalization rates and represent >80% fatalities. Within this population, those in long-term facilities represent >50% of the total COVID-19 related deaths per country. Among those without symptoms, the rate of pre-symptomatic illness is unclear, and potential predictors of progression for symptom development are unknown. Our objective was to delineate the natural evolution of asymptomatic SARS-CoV-2 infection in elders and identify determinants of progression. METHODS We established a medical surveillance team monitoring 63 geriatric institutions in Buenos Aires, Argentina during June-July 2020. When an index COVID-19 case emerged, we tested all other eligible asymptomatic elders ≥75 or >60 years old with at least 1 comorbidity. SARS-CoV-2 infected elders were followed for 28 days. Disease was diagnosed when any COVID-19 manifestation occurred. SARS-CoV-2 load at enrollment, shedding on day 15, and antibody responses were also studied. RESULTS After 28 days of follow-up, 74/113(65%) SARS-CoV-2-infected elders remained asymptomatic. 54% of pre-symptomatic patients developed hypoxemia and ten pre-symptomatic patients died. Dementia was the only clinical risk factor associated with disease(OR 2.41(95%CI=1.08, 5.39). In a multivariable logistic regression model, dementia remained as risk factor for COVID-19 severe disease. Furthermore, dementia status showed a statistically significant different trend when assessing the cumulative probability of developing COVID-19 symptoms(log-rank p=0.027). On day 15, SARS-CoV-2 was detectable in 30% of the asymptomatic group while in 61% of the pre-symptomatic(p=0.012). No differences were observed among groups in RT-PCR mean cycle threshold at enrollment(p=0.391) and in the rates of antibody seropositivity(IgM and IgG against SARS-CoV-2). CONCLUSIONS In summary, 2/3 of our cohort of SARS-CoV-2 infected elders from vulnerable communities in Argentina remained asymptomatic after 28 days of follow-up with high mortality among those developing symptoms. Dementia and persistent SARS-CoV-2 shedding were associated with progression from asymptomatic to symptomatic infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauricio T. Caballero
- INFANT Foundation, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Wappner
- iTrials, Buenos Aires, Argentina
- Swiss Medical Group, Buenos Aires, Argentina
| | - Romina Libster
- INFANT Foundation, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| | - Gonzalo Perez Marc
- Hospital Militar Central, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| | - Fernando P. Polack
- INFANT Foundation, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| |
Collapse
|
27
|
Zhai B, Clarke K, Bauer DL, Moehling Geffel KK, Kupul S, Schratz LJ, Nowalk MP, McElroy AK, McLachlan JB, Zimmerman RK, Alcorn JF. SARS-CoV-2 Antibody Response Is Associated with Age and Body Mass Index in Convalescent Outpatients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1711-1718. [PMID: 35321882 PMCID: PMC8976825 DOI: 10.4049/jimmunol.2101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 has had an unprecedented global impact on human health. Understanding the Ab memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum Ab concentrations, microneutralization activity, and enumerated SARS-CoV-2-specific B cells in convalescent human blood specimens. Serum Ab concentrations were variable, allowing for stratification of the cohort into high and low responders. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein-specific B cells correlated with serum Ab concentration. Serum Ab concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest Ab level. These data suggest that young adult outpatients did not generate as robust Ab memory, compared with older adults. Body mass index was also positively correlated with serum Ab levels. Multivariate analyses showed that participant age and body mass index were independently associated with Ab levels. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding Ab memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.
Collapse
Affiliation(s)
- Bo Zhai
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Karen Clarke
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | | | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Lucas J Schratz
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - M Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anita K McElroy
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Biotechnological Perspectives to Combat the COVID-19 Pandemic: Precise Diagnostics and Inevitable Vaccine Paradigms. Cells 2022; 11:cells11071182. [PMID: 35406746 PMCID: PMC8997755 DOI: 10.3390/cells11071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause for the ongoing global public health emergency. It is more commonly known as coronavirus disease 2019 (COVID-19); the pandemic threat continues to spread aroundthe world with the fluctuating emergence of its new variants. The severity of COVID-19 ranges from asymptomatic to serious acute respiratory distress syndrome (ARDS), which has led to a high human mortality rate and disruption of socioeconomic well-being. For the restoration of pre-pandemic normalcy, the international scientific community has been conducting research on a war footing to limit extremely pathogenic COVID-19 through diagnosis, treatment, and immunization. Since the first report of COVID-19 viral infection, an array of laboratory-based and point-of-care (POC) approaches have emerged for diagnosing and understanding its status of outbreak. The RT-PCR-based viral nucleic acid test (NAT) is one of the rapidly developed and most used COVID-19 detection approaches. Notably, the current forbidding status of COVID-19 requires the development of safe, targeted vaccines/vaccine injections (shots) that can reduce its associated morbidity and mortality. Massive and accelerated vaccination campaigns would be the most effective and ultimate hope to end the COVID-19 pandemic. Since the SARS-CoV-2 virus outbreak, emerging biotechnologies and their multidisciplinary approaches have accelerated the understanding of molecular details as well as the development of a wide range of diagnostics and potential vaccine candidates, which are indispensable to combating the highly contagious COVID-19. Several vaccine candidates have completed phase III clinical studies and are reported to be effective in immunizing against COVID-19 after their rollout via emergency use authorization (EUA). However, optimizing the type of vaccine candidates and its route of delivery that works best to control viral spread is crucial to face the threatening variants expected to emerge over time. In conclusion, the insights of this review would facilitate the development of more likely diagnostics and ideal vaccines for the global control of COVID-19.
Collapse
|
29
|
Funari R, Fukuyama H, Shen AQ. Nanoplasmonic multiplex biosensing for COVID-19 vaccines. Biosens Bioelectron 2022; 208:114193. [PMID: 35421841 PMCID: PMC8968208 DOI: 10.1016/j.bios.2022.114193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The ongoing emergence of severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2) variants requires swift actions in identifying specific antigens and optimizing vaccine development to maximize the humoral response of the patient. Measuring the specificity and the amount of antibody produced by the host immune system with high throughput and accuracy is critical to develop timely diagnostics and therapeutic strategies. Motivated by finding an easy-to-use and cost-effective alternative to existing serological methodologies for multiplex analysis, we develop a proof-of-concept multiplex nanoplasmonic biosensor to capture the humoral response in serums against multiple antigens. Nanoplasmonic sensing relies on the wavelength shift of the localized surface plasmon resonance (LSPR) peak of gold nanostructures upon binding interactions between the antibodies and the immobilized antigens. Here the antigens are first immobilized on different sensing areas by using a mono-biotinylation system based on the high affinity interaction between biotin and streptavidin. We then validate the multiplex platform by detecting the presence of 3 monoclonal antibodies against 3 antigens (2 different hemagglutinins (HAs) from influenza viruses, and the SARS-CoV-2 Spike RBD (receptor binding domain)). We also measure the humoral response in murine sera collected before and after its immunization with the SARS-CoV-2 Spike protein, in good agreement with the results obtained by the ELISA assay. Our nanoplasmonic assays have successfully demonstrated multiple serum antibody profiling, which can be further integrated with microfluidics as an effective high throughput screening platform in future studies for the ongoing SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan; Dipartimento di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy.
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiations, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan; INSERM EST, Strasbourg Cedex 2, 67037, France.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
30
|
Zhou Y, Yuan S, To KKW, Xu X, Li H, Cai JP, Luo C, Hung IFN, Chan KH, Yuen KY, Li YF, Chan JFW, Sun H. Multiplex metal-detection based assay (MMDA) for COVID-19 diagnosis and identification of disease severity biomarkers. Chem Sci 2022; 13:3216-3226. [PMID: 35414865 PMCID: PMC8926254 DOI: 10.1039/d1sc05852e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.![]()
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong Special Administrative Region China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong Special Administrative Region China.,Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong Special Administrative Region China
| | - Xiaohan Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ivan Fan-Ngai Hung
- Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong Special Administrative Region China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong Special Administrative Region China.,Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong Special Administrative Region China.,Academician Workstation of Hainan Province, Hainan Medical University Haikou Hainan China.,The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Beijing Metallomics Facility, National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China .,Department of Clinical Microbiology, and Infection Control, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong Province China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong Special Administrative Region China.,Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong Special Administrative Region China.,Academician Workstation of Hainan Province, Hainan Medical University Haikou Hainan China.,The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
31
|
Dobaño C, Alonso S, Vidal M, Jiménez A, Rubio R, Santano R, Barrios D, Pons Tomas G, Melé Casas M, Hernández García M, Girona-Alarcón M, Puyol L, Baro B, Millat-Martínez P, Ajanovic S, Balanza N, Arias S, Rodrigo Melero N, Carolis C, García-Miquel A, Bonet-Carné E, Claverol J, Cubells M, Fortuny C, Fumadó V, Codina A, Bassat Q, Muñoz-Almagro C, Fernández de Sevilla M, Gratacós E, Izquierdo L, García-García JJ, Aguilar R, Jordan I, Moncunill G. Multiplex Antibody Analysis of IgM, IgA and IgG to SARS-CoV-2 in Saliva and Serum From Infected Children and Their Close Contacts. Front Immunol 2022; 13:751705. [PMID: 35154094 PMCID: PMC8828491 DOI: 10.3389/fimmu.2022.751705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 affects children to a lesser extent than adults but they can still get infected and transmit SARS-CoV-2 to their contacts. Field deployable non-invasive sensitive diagnostic techniques are needed to evaluate the infectivity dynamics of SARS-CoV-2 in pediatric populations and guide public health interventions, particularly if this population is not fully vaccinated. We evaluated the utility of high-throughput Luminex assays to quantify saliva IgM, IgA and IgG antibodies against five SARS-CoV-2 spike (S) and nucleocapsid (N) antigens in a contacts and infectivity longitudinal study in 122 individuals (52 children and 70 adults). We compared saliva versus serum/plasma samples in infected children and adults diagnosed by weekly RT-PCR over 35 days (n=62), and those who consistently tested negative over the same follow up period (n=60), in the Summer of 2020 in Barcelona, Spain. Saliva antibody levels in SARS-CoV-2 RT-PCR positive individuals were significantly higher than in negative individuals and correlated with those measured in sera/plasmas. Asymptomatic infected individuals had higher levels of anti-S IgG than symptomatic individuals, suggesting a protective anti-disease role for antibodies. Higher anti-S IgG and IgM levels in serum/plasma and saliva, respectively, in infected children compared to infected adults could also be related to stronger clinical immunity in them. Among infected children, males had higher levels of saliva IgG to N and RBD than females. Despite overall correlation, individual clustering analysis suggested that responses that may not be detected in blood could be patent in saliva, and vice versa. In conclusion, measurement of SARS-CoV-2-specific saliva antibodies should be considered as a complementary non-invasive assay to serum/plasma to determine COVID-19 prevalence and transmission in pediatric populations before and after vaccination campaigns.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Rubio
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Pons Tomas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Melé Casas
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - María Hernández García
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Mònica Girona-Alarcón
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Puyol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Barbara Baro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Sara Ajanovic
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aleix García-Miquel
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Elisenda Bonet-Carné
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Marta Cubells
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain
| | - Claudia Fortuny
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Victoria Fumadó
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Infectious Diseases Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Biobank Hospital Sant Joan de Déu, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Molecular Microbiology Department, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Mariona Fernández de Sevilla
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Eduard Gratacós
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| | - Juan José García-García
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Jordan
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues, Spain.,Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
32
|
Zattoni IF, Huergo LF, Gerhardt ECM, Nardin JM, Dos Santos AMF, de Moraes Rego FG, Picheth G, Moure VR, Valdameri G. Multiplexed flow cytometric approach for detection of anti-SARS-CoV-2 IgG, IgM and IgA using beads covalently coupled to the nucleocapsid protein. Lett Appl Microbiol 2022; 74:863-872. [PMID: 35148433 PMCID: PMC9115257 DOI: 10.1111/lam.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Flow cytometry has emerged as a promising technique for detection of SARS‐CoV‐2 antibodies. In this study, we developed an innovative strategy for simultaneous detection of immunoglobulin G (IgG), IgM and IgA. The SARS‐CoV‐2 nucleocapsid protein was covalently bound to functional beads surface applying sulpho‐SMCC chemistry. BUV395 anti‐IgG, BB515 anti‐IgM, biotinylated anti‐IgA1/IgA2 and BV421 streptavidin were used as fluorophore conjugated secondary antibodies. Serum and antibodies reaction conditions were optimized for each antibody isotype detection and a multiplexed detection assay was developed. This new cell‐free assay efficiently discriminate COVID‐19 negative and positive samples. The simultaneous detection of IgG, IgM and IgA showed a sensitivity of 88·5–96·2% and specificity of 100%. This novel strategy opens a new avenue for flow cytometry‐based diagnosis.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Luciano F Huergo
- Setor Litoral, Federal University of Paraná, 83260-000, Matinhos, PR, Brazil
| | - Edileusa C M Gerhardt
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, 80060-000, Curitiba, PR, Brazil
| | | | | | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| |
Collapse
|
33
|
A multiplex serological assay for the characterization of IgG immune response to SARS-CoV-2. PLoS One 2022; 17:e0262311. [PMID: 35025936 PMCID: PMC8757954 DOI: 10.1371/journal.pone.0262311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
In the fight against SARS-COV-2, the development of serological assays based on different antigenic domains represent a versatile tool to get a comprehensive picture of the immune response or differentiate infection from vaccination beyond simple diagnosis. Here we use a combination of the Nucleoprotein (NP), the Spike 1 (S1) and Spike 2 (S2) subunits, and the receptor binding domain (RBD) and N-terminal domain (NTD) of the Spike antigens from the CoViDiag® multiplex IgG assay, to follow the immune response to SARS-CoV-2 infection over a long time period and depending on disease severity. Using a panel of 209 sera collected from 61 patients up to eight months after infection, we observed that most patients develop an immune response against multiple viral epitope, but anti-S2 antibodies seemed to last longer. For all the tested IgGs, we have found higher responses for hospitalized patients than for non-hospitalized ones. Moreover the combination of the five different IgG responses increased the correlation to the neutralizing antibody titers than if considered individually. Multiplex immunoassays have the potential to improve diagnostic performances, especially for ancient infection or mild form of the disease presenting weaker antibody responses. Also the combined detection of anti-NP and anti-Spike-derived domains can be useful to differentiate vaccination from viral infection and accurately assess the antibody potential to neutralize the virus.
Collapse
|
34
|
Baldwin J, Piplani S, Sakala IG, Honda-Okubo Y, Li L, Petrovsky N. Rapid development of analytical methods for evaluating pandemic vaccines: a COVID-19 perspective. Bioanalysis 2021; 13:1805-1826. [PMID: 34645288 PMCID: PMC8516068 DOI: 10.4155/bio-2021-0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccines are key in charting a path out of the COVID-19 pandemic. However, development of new vaccines is highly dependent on availability of analytical methods for their design and evaluation. This paper highlights the challenges presented in having to rapidly develop vaccine analytical tools during an ongoing pandemic, including the need to address progressive virus mutation and adaptation which can render initial assays unreliable or redundant. It also discusses the potential of new computational modeling techniques to model and analyze key viral proteins and their attributes to assist vaccine production and assay design. It then reviews the current range of analytical tools available for COVID-19 vaccine application, ranging from in vitro assays for immunogen characterization to assays to measure vaccine responses in vivo. Finally, it provides a future perspective for COVID-19 vaccine analytical tools and attempts to predict how the field might evolve over the next 5-10 years.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide, 5046, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, 5042, Australia
| |
Collapse
|
35
|
Liu Z, Skowron K, Grudlewska-Buda K, Wiktorczyk-Kapischke N. The existence, spread, and strategies for environmental monitoring and control of SARS-CoV-2 in environmental media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148949. [PMID: 34252782 PMCID: PMC8262394 DOI: 10.1016/j.scitotenv.2021.148949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is the most influential infectious disease to emerge in the early 21st century. The outbreak of COVID-19 has caused a great many deaths and has had a negative impact on the world's economic development. The etiological agent of COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2, which is highly infectious and variable, can be transmitted through different environmental media (gaseous, liquid, and solid). There are many unanswered questions surrounding this virus. This review summarizes the current knowledge on the latest global COVID-19 epidemic situation, SARS-CoV-2 variants, the progress in SARS-CoV-2 vaccine use, and the existence and spread of SARS-CoV-2 in gaseous, liquid, and solid media, with particular emphasis on the prevention and control of further spread of the disease. This review aims to help people worldwide to become more familiar with the transmission characteristics of SARS-CoV-2 in environmental media, so as targeted measures to fight the epidemic, reduce deaths, and restore the economy can be implemented under the pressure of global SARS-CoV-2 vaccine shortages.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
36
|
Zhai B, Clarke K, Bauer DL, Kupul S, Schratz LJ, Nowalk MP, McElroy AK, McLachlan JB, Zimmerman RK, Alcorn JF. SARS-CoV-2 Antibody Response is Associated with Age in Convalescent Outpatients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34790986 DOI: 10.1101/2021.11.08.21265888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 has had an unprecedented global impact on human health. Understanding the antibody memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum antibody concentrations, microneutralization activity, and enumerated SARS-CoV-2 specific B cells in convalescent blood specimens. Serum antibody concentrations were variable, allowing for stratification of the cohort into high and low responders. Serum antibody concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest antibody level. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein specific B cells correlated with serum antibody concentration. These data suggest that young adult outpatients did not generate as robust antibody memory, compared with older adults. Further, serum antibody concentration or neutralizing activity trended but did not significantly correlate with the number of SARS-CoV-2 memory B cells. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding antibody memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.
Collapse
|
37
|
Karachaliou M, Moncunill G, Espinosa A, Castaño-Vinyals G, Jiménez A, Vidal M, Santano R, Barrios D, Puyol L, Carreras A, Mayer L, Rubio R, Cortés B, Pleguezuelos V, O'Callaghan-Gordo C, Fossati S, Rivas I, Casabonne D, Vrijheid M, Izquierdo L, Aguilar R, Basagaña X, Garcia-Aymerich J, de Cid R, Dobaño C, Kogevinas M. Infection induced SARS-CoV-2 seroprevalence and heterogeneity of antibody responses in a general population cohort study in Catalonia Spain. Sci Rep 2021; 11:21571. [PMID: 34732749 PMCID: PMC8566562 DOI: 10.1038/s41598-021-00807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Sparse data exist on the complex natural immunity to SARS-CoV-2 at the population level. We applied a well-validated multiplex serology test in 5000 participants of a general population study in Catalonia in blood samples collected from end June to mid November 2020. Based on responses to fifteen isotype-antigen combinations, we detected a seroprevalence of 18.1% in adults (n = 4740), and modeled extrapolation to the general population of Catalonia indicated a 15.3% seroprevalence. Antibodies persisted up to 9 months after infection. Immune profiling of infected individuals revealed that with increasing severity of infection (asymptomatic, 1-3 symptoms, ≥ 4 symptoms, admitted to hospital/ICU), seroresponses were more robust and rich with a shift towards IgG over IgA and anti-spike over anti-nucleocapsid responses. Among seropositive participants, lower antibody levels were observed for those ≥ 60 years vs < 60 years old and smokers vs non-smokers. Overweight/obese participants vs normal weight had higher antibody levels. Adolescents (13-15 years old) (n = 260) showed a seroprevalence of 11.5%, were less likely to be tested seropositive compared to their parents and had dominant anti-spike rather than anti-nucleocapsid IgG responses. Our study provides an unbiased estimate of SARS-CoV-2 seroprevalence in Catalonia and new evidence on the durability and heterogeneity of post-infection immunity.
Collapse
Affiliation(s)
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ana Espinosa
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | | | - Alfons Jiménez
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Rebeca Santano
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Diana Barrios
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Laura Puyol
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Anna Carreras
- Genomes for Life-GCAT Lab, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Leonie Mayer
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Rocío Rubio
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Beatriz Cortés
- Genomes for Life-GCAT Lab, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - Cristina O'Callaghan-Gordo
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Ioar Rivas
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Delphine Casabonne
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer (UNIC-Molecular), Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Hospitalet De Llobregat, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 08036, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
| |
Collapse
|
38
|
Esteban I, Bergero G, Alves C, Bronstein M, Ziegler V, Wood C, Caballero MT, Wappner D, Libster R, Perez Marc G, Polack FP. Asymptomatic COVID-19 in the elderly: dementia and viral clearance as risk factors for disease progression. Gates Open Res 2021; 5:143. [PMID: 35441127 PMCID: PMC8987012 DOI: 10.12688/gatesopenres.13357.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infected individuals ≥60 years old have the highest hospitalization rates and represent >80% fatalities. Within this population, those in long-term facilities represent >50% of the total COVID-19 related deaths per country. Among those without symptoms, the rate of pre-symptomatic illness is unclear, and potential predictors of progression for symptom development are unknown. Our objective was to delineate the natural evolution of asymptomatic SARS-CoV-2 infection in elders and identify determinants of progression. METHODS We established a medical surveillance team monitoring 63 geriatric institutions. When an index COVID-19 case emerged, we tested all other eligible asymptomatic elders ≥75 or >60 years old with at least 1 comorbidity. SARS-CoV-2 infected elders were followed for 28 days. Disease was diagnosed when any COVID-19 manifestation occurred. SARS-CoV-2 load at enrollment, shedding on day 15, and antibody responses were also studied. RESULTS After 28 days of follow-up, 74/113(65%) SARS-CoV-2-infected elders remained asymptomatic. 21/39(54%) pre-symptomatic patients developed hypoxemia and ten pre-symptomatic patients died(median day 13.5,IQR 12). Dementia was the only clinical risk factor associated with disease(OR 2.41(95%CI=1.08, 5.39). In a multivariable logistic regression model, dementia remained as a risk factor for COVID-19 severe disease. Furthermore, dementia status showed a statistically significant different trend when assessing the cumulative probability of developing COVID-19 symptoms(log-rank p=0.027). On day 15, SARS-CoV-2 was detectable in 30% of the asymptomatic group while in 61% of the pre-symptomatic(p=0.012). No differences were observed among groups in RT-PCR mean cycle threshold at enrollment(p=0.391) and in the rates of antibody seropositivity(IgM and IgG against SARS-CoV-2 nucleocapsid protein). CONCLUSIONS In summary, 2/3 of our cohort of SARS-CoV-2 infected elders from vulnerable communities in Argentina remained asymptomatic after 28 days of follow-up with high mortality among those developing symptoms. Dementia and persistent SARS-CoV-2 shedding were associated with progression from asymptomatic to symptomatic infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauricio T. Caballero
- INFANT Foundation, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Wappner
- iTrials, Buenos Aires, Argentina
- Swiss Medical Group, Buenos Aires, Argentina
| | - Romina Libster
- INFANT Foundation, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| | - Gonzalo Perez Marc
- Hospital Militar Central, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| | - Fernando P. Polack
- INFANT Foundation, Buenos Aires, Argentina
- iTrials, Buenos Aires, Argentina
| |
Collapse
|
39
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
40
|
The fall in antibody response to SARS-CoV-2: a longitudinal study of asymptomatic to critically ill patients up to 10 months after recovery. J Clin Microbiol 2021; 59:e0113821. [PMID: 34379530 PMCID: PMC8525561 DOI: 10.1128/jcm.01138-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to assess the long-term dynamics and factors associated with the serological response against the severe acute respiratory syndrome coronavirus 2 after primary infection. A prospective longitudinal study was conducted with monthly serological follow-up during the first 4 months, and then at 6, 8, and 10 months after the disease onset of all recovered adult in- and outpatients with coronavirus disease 2019 (COVID-19) attending Udine Hospital (Italy) during the first wave (from March to May 2020). A total of 546 individuals were included (289 female, mean age 53.1 years), mostly with mild COVID-19 (370, 68.3%). Patients were followed for a median of 302 days (interquartile range, 186 to 311). The overall seroconversion rate within 2 months was 32% for IgM and 90% for IgG. Seroreversion was observed in 90% of patients for IgM at 4 months and in 47% for IgG at 10 months. Older age, number of symptoms at acute onset, and severity of acute COVID-19 were all independent predictors of long-term immunity both for IgM (β, linear regression coefficient, 1.10, P = 0.001; β 5.15 P = 0.014; β 43.84 P = 0.021, respectively) and for IgG (β 1.43 P < 0.001; β 10.46 P < 0.001; β 46.79 P < 0.001, respectively), whereas the initial IgG peak was associated only with IgG duration (β 1.12, P < 0.001). IgM antibodies disappeared at 4 months, and IgG antibodies declined in about half of patients 10 months after acute COVID-19. These effects varied depending on the intensity of the initial antibody response, age, and burden of acute COVID-19.
Collapse
|
41
|
Ibrahim EH, Alshahrani MY, Ghramh HA, Kilany M. Antibody profile in symptomatic/asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected Saudi persons. Saudi J Biol Sci 2021; 28:4677-4682. [PMID: 33967583 PMCID: PMC8091802 DOI: 10.1016/j.sjbs.2021.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected persons could be symptomatic or asymptomatic. Asymptomatic and symptomatic patients can transmit SARS-CoV-2. This study aimed to study the humoral immune response in Saudis who are Covid-19 symptomatic and asymptomatic patients. We created three types of enzyme-linked immunosorbant assays (ELISAs) to reveal IgG and IgM antibodies (Abs) against SARS-CoV-2. The developed ELISAs were designed to detect Abs against SARS-CoV-2 N, S and N + S proteins. A number of Covid-19 symptomatic (1 5 3) and asymptomatic (84) RT-PCR-confirmed patient sera were used to evaluate the ELISAs and to determine the IgG and IgM antibody profile in those patients. The sensitivity and specificity of these ELISAs were evaluated using pre-Covid-19 pandemic serum samples. The results revealed the existence of anti-SARS-CoV-2 IgG and IgM Abs in Covid-19 symptomatic and asymptomatic Saudi persons. The use of SARS-CoV-2 N and S proteins in the same ELISA greatly increased the detectability of infection. In conclusion, the Covid-19 symptomatic and asymptomatic Saudi persons demonstrated both IgG and IgM antibody profile with higher titer in symptomatic patients. The use of N + S proteins as antibody capture antigens greatly increased the ELISA sensitivity.
Collapse
Affiliation(s)
- Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
42
|
Lew TTS, Aung KMM, Ow SY, Amrun SN, Sutarlie L, Ng LFP, Su X. Epitope-Functionalized Gold Nanoparticles for Rapid and Selective Detection of SARS-CoV-2 IgG Antibodies. ACS NANO 2021; 15:12286-12297. [PMID: 34133128 PMCID: PMC8231658 DOI: 10.1021/acsnano.1c04091] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 05/02/2023]
Abstract
Rapid and inexpensive immunodiagnostic assays to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion are essential for conducting large-scale COVID-19 epidemiological surveillance and profiling humoral responses against SARS-CoV-2 infections or immunizations. Herein, a colorimetic serological assay to detect SARS-CoV-2 IgGs in patients' plasma was developed using short antigenic epitopes conjugated to gold nanoparticles (AuNPs). Four immunodominant linear B-cell epitopes, located on the spike (S) and nucleocapsid (N) proteins of SARS-CoV-2, were characterized for their IgG binding affinity and used as highly specific biological motifs on the nanoparticle to recognize target antibodies. Specific bivalent binding between SARS-CoV-2 antibodies and epitope-functionalized AuNPs trigger nanoparticle aggregation, which manifests as a distinct optical transition in the AuNPs' plasmon characteristics within 30 min of antibody introduction. Co-immobilization of two epitopes improved the assay sensitivity relative to single-epitope AuNPs with a limit of detection of 3.2 nM, commensurate with IgG levels in convalescent COVID-19-infected patients. A passivation strategy was further pursued to preserve the sensing response in human plasma medium. When tested against 35 clinical plasma samples of varying illness severity, the optimized nanosensor assay can successfully identify SARS-CoV-2 infection with 100% specificity and 83% sensitivity. As the epitopes are conserved within the circulating COVID-19 variants, the proposed platform holds great potential to serve as a cost-effective and highly specific alternative to classical immunoassays employing recombinant viral proteins. These epitope-enabled nanosensors further expand the serodiagnostic toolbox for COVID-19 epidemiological study, humoral response monitoring, or vaccine efficiency assessment.
Collapse
Affiliation(s)
- Tedrick Thomas Salim Lew
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Khin Moh Moh Aung
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Sian Yang Ow
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Laboratories (A*STAR ID
Laboratories), Agency for Science, Technology and Research
(A*STAR), Singapore 138648, Singapore
| | - Laura Sutarlie
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Laboratories (A*STAR ID
Laboratories), Agency for Science, Technology and Research
(A*STAR), Singapore 138648, Singapore
- National Institute of Health Research, Health Protection
Research Unit in Emerging and Zoonotic Infections, University of
Liverpool, Liverpool L69 7BE, United Kingdom
- Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool CH64 7TE,
United Kingdom
| | - Xiaodi Su
- Institute of Materials Research and
Engineering, Agency for Science, Technology and Research (A*STAR), 2
Fusionopolis Way, Singapore 138634, Singapore
- Department of Chemistry, National
University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore
117543, Singapore
| |
Collapse
|
43
|
Hober S, Hellström C, Olofsson J, Andersson E, Bergström S, Jernbom Falk A, Bayati S, Mravinacova S, Sjöberg R, Yousef J, Skoglund L, Kanje S, Berling A, Svensson AS, Jensen G, Enstedt H, Afshari D, Xu LL, Zwahlen M, von Feilitzen K, Hanke L, Murrell B, McInerney G, Karlsson Hedestam GB, Lendel C, Roth RG, Skoog I, Svenungsson E, Olsson T, Fogdell-Hahn A, Lindroth Y, Lundgren M, Maleki KT, Lagerqvist N, Klingström J, Da Silva Rodrigues R, Muschiol S, Bogdanovic G, Arroyo Mühr LS, Eklund C, Lagheden C, Dillner J, Sivertsson Å, Havervall S, Thålin C, Tegel H, Pin E, Månberg A, Hedhammar M, Nilsson P. Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay. Clin Transl Immunology 2021; 10:e1312. [PMID: 34295471 PMCID: PMC8288725 DOI: 10.1002/cti2.1312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Objective The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
Collapse
|
44
|
COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nat Commun 2021; 12:3991. [PMID: 34183681 PMCID: PMC8239026 DOI: 10.1038/s41467-021-24285-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.
Collapse
|
45
|
Reiners N, Schnurra C, Trawinski H, Kannenberg J, Hermsdorf T, Aebischer A, Schöneberg T, Reiche S, Jassoy C. Performance of a SARS CoV-2 antibody ELISA based on simultaneous measurement of antibodies against the viral nucleoprotein and receptor-binding domain. Eur J Clin Microbiol Infect Dis 2021; 40:2645-2649. [PMID: 34085159 PMCID: PMC8175097 DOI: 10.1007/s10096-021-04284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
SARS CoV-2 antibody assays measure antibodies against the viral nucleoprotein (NP) or spike protein. The study examined if testing of antibodies against both antigens increases the diagnostic sensitivity. Sera (N=98) from infected individuals were tested with ELISAs based on the NP, receptor-binding domain (RBD), or both proteins. The AUROCs were 0.958 (NP), 0.991 (RBD), and 0.992 (NP/RBD). The RBD- and NP/RBD-based ELISAs showed better performance than the NP-based assay. Simultaneous testing for antibodies against NP and RBD increased the number of true and false positives. If maximum diagnostic sensitivity is required, the NP/RBD-based ELISA is preferable. Otherwise, the RBD-based ELISA is sufficient.
Collapse
Affiliation(s)
- Nina Reiners
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Carolin Schnurra
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Henning Trawinski
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital, Leipzig, Germany
| | - Judith Kannenberg
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Thomas Hermsdorf
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
46
|
Ali J, Elahi SN, Ali A, Waseem H, Abid R, Mohamed MM. Unveiling the Potential Role of Nanozymes in Combating the COVID-19 Outbreak. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1328. [PMID: 34069866 PMCID: PMC8157354 DOI: 10.3390/nano11051328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak is considered as one of the biggest public health challenges and medical emergencies of the century. A global health emergency demands an urgent development of rapid diagnostic tools and advanced therapeutics for the mitigation of COVID-19. To cope with the current crisis, nanotechnology offers a number of approaches based on abundance and versatile functioning. Despite major developments in early diagnostics and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is still a need to find effective nanomaterials with low cost, high stability and easy use. Nanozymes are nanomaterials with innate enzyme-like characteristics and exhibit great potential for various biomedical applications such as disease diagnosis and anti-viral agents. Overall the potential and contribution of nanozymes in the fight against SARS-CoV-2 infection i.e., rapid detection, inhibition of the virus at various stages, and effective vaccine development strategies, is not fully explored. This paper discusses the utility and potential of nanozymes from the perspective of COVID-19. Moreover, future research directions and potential applications of nanozymes are highlighted to overcome the challenges related to early diagnosis and therapeutics development for the SARS-CoV-2. We anticipate the current perspective will play an effective role in the existing response to the COVID-19 crisis.
Collapse
Affiliation(s)
- Jafar Ali
- Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
| | - Saira Naveed Elahi
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
| | - Asghar Ali
- FMH College of Medicine & Dentistry, Lahore, Punjab 54000, Pakistan;
| | - Hassan Waseem
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
| | - Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
| | - Mohamed M. Mohamed
- Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
47
|
Tsitsilonis OE, Paraskevis D, Lianidou E, Terpos E, Akalestos A, Pierros V, Kostaki EG, Kastritis E, Moutsatsou P, Politou M, Scorilas A, Sphicopoulos T, Thomaidis N, Trougakos IP, Tsakris A, Voulgaris N, Daskalaki CC, Evangelakou Z, Fouki C, Gianniou DD, Gumeni S, Kostopoulos IV, Manola MS, Orologas-Stavrou N, Panteli C, Papanagnou ED, Rousakis P, Sklirou AD, Smilkou S, Stergiopoulou D, Tsiodras S, Dimopoulos MA, Sfikakis PP. SARS-CoV-2 Infection Is Asymptomatic in Nearly Half of Adults with Robust Anti-Spike Protein Receptor-Binding Domain Antibody Response. Vaccines (Basel) 2021; 9:207. [PMID: 33801380 PMCID: PMC7998869 DOI: 10.3390/vaccines9030207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Between June and November 2020, we assessed plasma antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein in 4996 participants (aged 18-82 years, 34.5% men) from the National and Kapodistrian University of Athens. The weighted overall prevalence was 1.6% and monthly prevalence correlated with viral RNA-confirmed SARS-CoV-2 infections in Greece, in the same period. Notably, 49% of seropositive cases reported no history of SARS-CoV-2 infection-related clinical symptoms and 33% were unsuspected of their previous infection. Additionally, levels of anti-SARS-CoV-2 antibodies against the spike-protein receptor-binding domain were similar between symptomatic and asymptomatic individuals, irrespective of age and gender. Using Food and Drug Administration Emergency Use Authorization-approved assays, these results support the need for such studies on pandemic evaluation and highlight the development of robust humoral immune responses even among asymptomatic individuals. The high percentage of unsuspected/asymptomatic active cases, which may contribute to community transmission for more days than that of cases who are aware and self-isolate, underscores the necessity of measures across the population for the efficient control of the pandemic.
Collapse
Affiliation(s)
- Ourania E. Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, NKUA, 11527 Athens, Greece; (E.G.K.); (C.F.)
| | - Evi Lianidou
- Department of Chemistry, NKUA, 15771 Athens, Greece; (E.L.); (N.T.); (S.S.); (D.S.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, NKUA, 11528 Athens, Greece; (E.T.); (E.K.); (M.-A.D.)
| | | | - Vassilios Pierros
- Department of Informatics and Telecommunications, NKUA, 15784 Athens, Greece; (V.P.); (T.S.)
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, NKUA, 11527 Athens, Greece; (E.G.K.); (C.F.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, NKUA, 11528 Athens, Greece; (E.T.); (E.K.); (M.-A.D.)
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, School of Medicine, University General Hospital Attikon, NKUA, 12462 Haidari, Greece;
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieio Hospital, School of Medicine, NKUA, 11528 Athens, Greece;
| | - Andreas Scorilas
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Thomas Sphicopoulos
- Department of Informatics and Telecommunications, NKUA, 15784 Athens, Greece; (V.P.); (T.S.)
| | - Nikolaos Thomaidis
- Department of Chemistry, NKUA, 15771 Athens, Greece; (E.L.); (N.T.); (S.S.); (D.S.)
| | - Ioannis P. Trougakos
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | | | | | - Christina C. Daskalaki
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Zoi Evangelakou
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Christina Fouki
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, NKUA, 11527 Athens, Greece; (E.G.K.); (C.F.)
| | - Despoina D. Gianniou
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Sentiljana Gumeni
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Ioannis V. Kostopoulos
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Maria S. Manola
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Nikolaos Orologas-Stavrou
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Chrysanthi Panteli
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Eleni-Dimitra Papanagnou
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Pantelis Rousakis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Aimilia D. Sklirou
- Department of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.S.); (I.P.T.); (C.C.D.); (Z.E.); (D.D.G.); (S.G.); (I.V.K.); (M.S.M.); (N.O.-S.); (C.P.); (E.-D.P.); (P.R.); (A.D.S.)
| | - Stavroula Smilkou
- Department of Chemistry, NKUA, 15771 Athens, Greece; (E.L.); (N.T.); (S.S.); (D.S.)
| | | | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, School of Medicine, University Hospital Attikon, NKUA, 12462 Haidari, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, NKUA, 11528 Athens, Greece; (E.T.); (E.K.); (M.-A.D.)
| | - Petros P. Sfikakis
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, NKUA, 15772 Athens, Greece;
| |
Collapse
|