1
|
Qian N, Zhao Z, El Khoury E, Gao X, Canela C, Shen Y, Shi L, Shi L, Hu F, Wei L, Min W. Illuminating life processes by vibrational probes. Nat Methods 2025; 22:928-944. [PMID: 40360917 DOI: 10.1038/s41592-025-02689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Vibration of chemical bonds can serve as imaging contrast. Vibrational probes, synergized with major advances in chemical bond imaging instruments, have recently flourished and proven valuable in illuminating life processes. Here, we review how the development of vibrational probes with optimal biocompatibility, enhanced sensitivity, multichromatic colors and diverse functionality has extended chemical bond imaging beyond the prevalent label-free paradigm into various novel applications such as imaging metabolites, metabolic imaging, drug imaging, super-multiplex imaging, vibrational profiling and vibrational sensing. These advancements in vibrational probes have greatly facilitated understanding living systems, a new field of vibrational chemical biology.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Carli Canela
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yihui Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Xu W, Zhu W, Xia Y, Hu S, Liao G, Xu Z, Shen A, Hu J. Raman spectroscopy for cell analysis: Retrospect and prospect. Talanta 2025; 285:127283. [PMID: 39616760 DOI: 10.1016/j.talanta.2024.127283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025]
Abstract
Cell analysis is crucial to contemporary biomedical research, as it plays a pivotal role in elucidating life processes and advancing disease diagnosis and treatment. Raman spectroscopy, harnessing distinctive molecular vibrational data, provides a non-destructive method for cell analysis. This review surveys the progress of Raman spectroscopy in cellular analysis, emphasizing its utility in identifying individual cells, monitoring biomolecules, and assessing intracellular environments. A significant focus is placed on the novel application of triple-bond molecules as Raman tags, which enhance imaging capabilities by creating a distinctive signature with minimal background noise. The summary of Raman spectroscopy studies provides a forward-looking perspective on its applications.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Yukang Xia
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Shun Hu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Guangfu Liao
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China.
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Aiguo Shen
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Jiming Hu
- Institute of Analytical Biomedicine, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Zhang W, Jiang H, Han L, Liu J, Wang J, He F, Tian L. POSA for fast, amplified and multiplexed protein imaging. Nat Commun 2025; 16:2300. [PMID: 40055357 PMCID: PMC11889252 DOI: 10.1038/s41467-025-57589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Fluorescent π-conjugated polymers (FCPs) are known for their superior brightness but are still unavailable for highly multiplexed molecular imaging in single cells as they are hydrophobic and lack targeting capability toward biomolecules. Herein, we develop a π-conjugated polymer-based amplification (POSA) method to achieve highly multiplexed signal amplification. Optical amplification by virtue of the high brightness of FCPs makes POSA a simple and quick signal amplification technique that can spatially resolve the distribution of multiplexed proteins in single cells, with a 28- to 126-fold signal amplification effect. By this POSA method, we demonstrate that the high brightness of FCPs can be used to strengthen the images of subcellular biomolecules and showcase the phenomenon of optical amplification of FCPs at the cellular level. Additionally, with its sensitivity, ease of use, and quick imaging features, the POSA technique proves to be a valuable tool for advanced biological research.
Collapse
Affiliation(s)
- Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong, China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong, China
| | - Liang Han
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong, China
| | - Jie Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Feng He
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Liu J, Wang Y, Zhang X, Huang M, Li G. Direct lysis combined with amplification-free CRISPR/Cas12a-SERS genosensor for ultrafast and on-site identification of meat authenticity. Mikrochim Acta 2025; 192:187. [PMID: 39998577 DOI: 10.1007/s00604-024-06932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025]
Abstract
A novel direct lysis method combined with amplification-free CRISPR/Cas12a-SERS genosensor was for the first time developed to rapidly and sensitively identify meat adulteration. Notably, polystyrene (PS) microspheres, with distinct shrinking and swelling properties, were dexterously employed to encapsulate biological-silent Raman reporter 4-mercaptobenzonitrile (4-MBN) and act as a controlled-release signal probe. Target DNA activated the trans-cleavage activity of CRISPR/Cas12a towards ssDNA linked with PS microsphere to liberate the signal probe, which was able to release numerous Raman reporters after treatment with THF solution, resulting in high signal amplification. Through this platform, trace target DNA was deftly transformed into a sensitive Raman signal and could be on-site determined through a portable Raman equipment. Under optimized conditions, this strategy displayed good linearity in the range 1-450 ng/μL (R2 = 0.9943) and favorable sensitivity with limit of detection as low as 0.23 ng/μL without any pre-amplification. Moreover, it exhibited good applicability to on-site identification of commercial meat samples in complicated food matrix. In addition, DNA extraction by direct lysis and amplification-free detection realized ultrafast meat adulteration determination within 35 min from sampling to result. This method possessed great potential in rapid and on-site accurate determination of meat authenticity.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yu Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xinyue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mingquan Huang
- Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
5
|
Qi K, Zhuang Q, Zhou Q, Lin D, Liu L, Qu J, Hu R. SERS-Encoded Nanoprobes Based on Silver-Coated Gold Nanorods for Cell Sorting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405061. [PMID: 39530621 DOI: 10.1002/smll.202405061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Optically-encoded probes have great potential for applications in the fields of biosensing and imaging. By employing specific encoding methods, these probes enable the detection of multiple target molecules and high-resolution imaging within the same sample. Among the various encoding methods, surface-enhanced Raman scattering (SERS) spectral encoding stands out due to its extremely narrow linewidth. Compared to fluorescence spectral encoding, SERS encoding significantly reduces crosstalk between adjacent peaks, thereby achieving a larger encoding capacity and enabling multi-channel parallel analysis. This article presents the design and construction of two novel sets of SERS-encoded probes based on noble metal core-shell nanostructures. Two different encoding strategies are successfully applied to encode the SERS spectra of the probes: 1D encoding based on the wavenumber of characteristic peaks in the SERS spectrum, and 2D encoding combining both wavenumber and intensity of characteristic peaks in the SERS spectrum. In addition, this study also demonstrates the potential application of 1D encoded probes in cell sorting. These studies verify the feasibility of applying these two encoding methods to SERS core-shell probes and provide new insights into the construction of optically encoded probes.
Collapse
Affiliation(s)
- Kang Qi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qiaowei Zhuang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingsong Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Moradi Kalarde F, Ciccarello F, Sánchez Muñoz C, Feist J, Galland C. Photon antibunching in single-molecule vibrational sum-frequency generation. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:59-73. [PMID: 39840390 PMCID: PMC11744459 DOI: 10.1515/nanoph-2024-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/07/2024] [Indexed: 01/23/2025]
Abstract
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence (g (2)(0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules. On the one hand, we delineate the regime in which the device should operate in order to preserve the second-order coherence of the mid-infrared source, as required in quantum applications. On the other hand, we show that an anharmonic molecular potential can lead to antibunching of the upconverted photons under coherent, Poisson-distributed mid-infrared and visible drives. Our results therefore open a path toward bright and tunable source of indistinguishable single photons by leveraging "vibrational blockade" in a resonantly and parametrically driven molecule, without the need for strong light-matter coupling.
Collapse
Affiliation(s)
- Fatemeh Moradi Kalarde
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Inria Paris-Saclay and CPHT, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Francesco Ciccarello
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Center of Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Carlos Sánchez Muñoz
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006Madrid, Spain
| | - Johannes Feist
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christophe Galland
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Center of Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
7
|
Jiang Y, Chen Y, Shang J, Yu M, Weng B, Liu J, Liu X, Wang F. On-Site Multiply Stimulated Self-Confinement of an Integrated DNA Cascade Circuit for Highly Reliable Intracellular Imaging of miRNA and In Situ Interrogation of the Relevant Regulatory Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406545. [PMID: 39282814 DOI: 10.1002/smll.202406545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Artificial DNA circuits represent a versatile yet promising toolbox for in situ monitoring and concomitant regulation of diverse biological events within live cells. Nonetheless, their performance is significantly impeded by the diffusion-dominated slow reaction kinetics and the uncontrollable off-target activation. Herein, a self-localized cascade (SLC) circuit is reported for the robust and efficient microRNA (miRNA) analysis in living cells. The SLC circuit consists of the cell-specific localization module and the analyte-specific signal amplification module. By integrating the reaction probes of these two modules, the complexity of the system is reduced to realize the responsive co-localization of circuitry probes and the simultaneous cascade signal amplification. Taking advantage of the specifically activated, self-localized, and cascade design, the SLC circuit successfully achieves the robust miRNA-21 (miR-21) imaging and the accurate cells differentiation. Moreover, the reverse regulation mechanism is successfully explored between messenger RNA (mRNA) and miRNA through the engineered SLC circuit and further elucidates the underlying signaling pathways between them. Therefore, the SLC circuit provides a powerful tool for the sensitive detection of intracellular biomolecules and the study of the corresponding cell regulatory mechanisms.
Collapse
Affiliation(s)
- Yuqian Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Benrui Weng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Nishiyama R, Furuya K, Tamura T, Nakao R, Peterson W, Hiramatsu K, Ding T, Goda K. Fourier Transform Coherent Anti-Stokes Raman Scattering Spectroscopy: A Comprehensive Review. Anal Chem 2024; 96:18322-18336. [PMID: 39436740 DOI: 10.1021/acs.analchem.4c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Fourier transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy is a powerful spectroscopic method that combines the principles of Fourier transform spectroscopy with coherent anti-Stokes Raman scattering (CARS). This method stands out in spectroscopy for its ability to rapidly acquire coherent Raman spectra, achieving an impressive rate of over 10 000 spectra per second. The method involves scanning the optical delay between two femtosecond pulses; the initial pulse induces a vibrational coherence in the sample, while the subsequent pulse probes this coherence over increasing delays. The anti-Stokes scattering intensity generated is modulated by the vibrational dynamics of the sample, enabling the retrieval of Raman spectra through Fourier transformation. Over the past two decades, FT-CARS spectroscopy has undergone substantial evolution, paving the way for its application in a wide array of fields, including material analysis and flow cytometry. In this comprehensive Review, we explore the fundamental principles and diverse applications of FT-CARS spectroscopy and delve into the potential future advances and challenges associated with this emerging method.
Collapse
Affiliation(s)
- Ryo Nishiyama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kei Furuya
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsu Tamura
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuji Nakao
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Walker Peterson
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Tianben Ding
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Wang Z, Ma A, Chen Y. An Amplification-Free Digital Assay Based on Primer Exchange Reaction-Mediated Botryoidal-Like Fluorescent Polystyrene Dots to Detect Multiple Pathogenic Bacteria. ACS NANO 2024; 18:31174-31187. [PMID: 39485393 DOI: 10.1021/acsnano.4c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiple and ultrasensitive detection of pathogenic bacteria is critical but remains a challenge. Here, we introduce a digital assay for multiplexed and target DNA amplification-free detection of pathogenic bacteria using botryoidal-like fluorescent polystyrene dots (PS-dots), which were first prepared through the hybridization reaction between primer exchange reaction chains and polystyrene nanospheres that encapsulated polymer dots for signal preamplification. The pathogenic bacteria's DNA was cleavaged by the argonaute (Ago) protein-mediated multiple and precise cleavage reactions, where the obtained target sequences bridged the magnetic beads (MBs) and botryoidal-like PS-dots via a hybridization reaction, and the fluorescent MB-botryoidal PS-dot complexes were utilized as digital probes based on colors and sizes for digital encoding. An artificial-intelligence-fluorescent microsphere counting algorithm was applied to identify and count the fluorescent MBs for digital readout. This digital assay combined the ultrabright botryoidal-like PS-dots with Clostridium butyricum Ago's precise enzyme cleavage properties, achieving simultaneous detection of three pathogenic bacteria with a linearity range from 102 to 106 CFU/mL without target DNA amplification within 1.5 h. This digital assay has also been applied to detect aquatic and clinical samples with accepted accuracy (98%), which offers an avenue for a next-generation multiplexed digital platform for pathogenic bacteria analysis.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Chen Y, Huang Z, Cai E, Zhong S, Li H, Ju W, Yang J, Chen W, Tang C, Wang P. Novel Vibrational Proteins. Anal Chem 2024; 96:16481-16486. [PMID: 39434664 DOI: 10.1021/acs.analchem.4c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Genetically encoded green fluorescent protein (GFP) and its brighter and redder variants have tremendously revolutionized modern molecular biology and life science by enabling direct visualization of gene regulated protein functions on microscopic and nanoscopic scales. However, the current fluorescent proteins (FPs) only emit a few colors with an emission width of about 30-50 nm. Here, we engineer novel vibrational proteins (VPs) that undergo much finer vibrational transitions and emit rather narrow vibrational spectra (0.1-0.3 nm, roughly 3-10 cm-1). In response to an amber stop codon (UAG), a terminal alkyne bearing an unnatural amino acid (UAA, pEtF) is directly incorporated in place of Tyr64 in the chromophore of pr-Kaede by genetic code expansion. Essentially, the UAA64 further conjugates into a large π system with the contiguous two editable amino acid residues (His63 and Gly65), resulting in a programmable Raman resonance shift of the embedded alkyne. In the proof-of-concept experiment, we constructed a series of novel pEtF-VP mutants and observed fine Raman shifts of the alkynyl group in different chromophores. The genetically encoded novel VPs, could potentially label tens of proteins in the future.
Collapse
Affiliation(s)
- Yage Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiliang Huang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Erli Cai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuchen Zhong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | - Wei Ju
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Science, Center for Quantitate Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Changping Laboratory, Beijing 102206, China
- Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| |
Collapse
|
11
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 PMCID: PMC11887860 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
12
|
Li Y, Sun Y, Shi L. Viewing 3D spatial biology with highly-multiplexed Raman imaging: from spectroscopy to biotechnology. Chem Commun (Camb) 2024. [PMID: 39041798 DOI: 10.1039/d4cc02319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Understansding complex biological systems requires the simultaneous characterization of a large number of interacting components in their native 3D environment with high spatial resolution. Highly-multiplexed Raman imaging is an emerging general strategy for detecting biomarkers with scalable multiplexity and ultra-sensitivity based on a series of stimulated Raman scattering (SRS) techniques. Here we review recent advances in highly-multiplexed Raman imaging and how they contribute to the technological revolution in 3D spatial biology, focusing on the developmental pathway from spectroscopy study to biotechnology invention. We envision highly-multiplexed Raman imaging is taking off, which will greatly facilitate our understanding in biological and medical research fields.
Collapse
Affiliation(s)
- Yingying Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yuchen Sun
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Yin L, Huo B, Xia L, Li G. On-Chip Capture, Raman-Silent Polymer Labeling, and Digital Mapping Analysis of Escherichia coli O157:H7 in Beverages All-in-One. Anal Chem 2024; 96:11036-11043. [PMID: 38934556 DOI: 10.1021/acs.analchem.4c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Escherichia coli O157:H7 is one of the most susceptible foodborne pathogens, easily causing food poisoning and other health risks. It is of great significance to establish a quantitative method with higher sensitivity and less time consumption for foodborne pathogens analysis. The Raman-silent signal has a good performance for avoiding interference from the food matrix so as to achieve accurate signal differentiation. In this work, we presented a preparation-mapping all-in-one method for digital mapping analysis. We prepared a functionalized Raman-silent polymer label of Escherichia coli O157:H7, which was captured on a porous 4-mercaptophenylboric acid@Ag foam chip. To improve accuracy and widen the detection range, a digital mapping quantitative strategy was employed in data extraction and processing. By transfer mapping information into digitized statistical results, the limitation of obtaining reproducible intensity values just by randomly selected spots on the substrate can be addressed. With a wide linear range of 1.0 × 101-1.0 × 105 CFU mL-1 and a limit of detection of 4.4 CFU mL-1, this all-in-one method had good sensitivity performance. Also, this method achieved good precision and selectivity in a series of experiments and was successfully applied to the analysis of beverage samples.
Collapse
Affiliation(s)
- Linhua Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Fujioka H, Murao Y, Okinaka M, John Spratt S, Shou J, Kawatani M, Kojima R, Tachibana R, Urano Y, Ozeki Y, Kamiya M. Cyano-Hydrol green derivatives: Expanding the 9-cyanopyronin-based resonance Raman vibrational palette. Bioorg Med Chem Lett 2024; 106:129757. [PMID: 38636718 DOI: 10.1016/j.bmcl.2024.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.
Collapse
Affiliation(s)
- Hiroyoshi Fujioka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuta Murao
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Momoko Okinaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Spencer John Spratt
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Jingwen Shou
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Kawatani
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Tachibana
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Ozeki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Autonomous Systems Meterialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
15
|
Huang X, Xue Z, Zhang D, Lee HJ. Pinpointing Fat Molecules: Advances in Coherent Raman Scattering Microscopy for Lipid Metabolism. Anal Chem 2024; 96:7945-7958. [PMID: 38700460 DOI: 10.1021/acs.analchem.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Xiangjie Huang
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Zexin Xue
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Tamura T, McCann PC, Nishiyama R, Hiramatsu K, Goda K. Fluorescence-Encoded Time-Domain Coherent Raman Spectroscopy in the Visible Range. J Phys Chem Lett 2024:4940-4947. [PMID: 38686981 DOI: 10.1021/acs.jpclett.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Fluorescence-encoded vibrational spectroscopy has attracted increasing attention by virtue of its high sensitivity and high chemical specificity. We recently demonstrated fluorescence-encoded time-domain coherent Raman spectroscopy (FLETCHERS), which enables low-frequency vibrational spectroscopy of low-concentration fluorophores using near-infrared (800-900 nm) light excitation. However, the feasibility of this study was constrained by the scarcity of excitable molecules in the near-infrared range. Consequently, the broader applicability of FLETCHERS has not been investigated. Here we extend the capabilities of FLETCHERS into the visible range by employing a noncollinear optical parametric amplifier as a light source, significantly enhancing its versatility. Specifically, we use the method, which we refer to as visible FLETCHERS (vFLETCHERS), to individually acquire Raman spectra from five visible fluorophores that have absorption peaks in the 600-700 nm region. These results not only confirm the versatility of vFLETCHERS for a wide range of molecules but also allude to its widespread applicability in biological research through highly sensitive supermultiplexed imaging.
Collapse
Affiliation(s)
- Tetsu Tamura
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Phillip C McCann
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Nishiyama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Center for Spectrochemisty, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles 90095, California, United States
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
17
|
Yang Y, Bai X, Hu F. Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control. Nat Commun 2024; 15:2578. [PMID: 38519503 PMCID: PMC10959996 DOI: 10.1038/s41467-024-46904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Optical imaging with photo-controllable probes has greatly advanced biological research. With superb chemical specificity of vibrational spectroscopy, stimulated Raman scattering (SRS) microscopy is particularly promising for super-multiplexed optical imaging with rich chemical information. Functional SRS imaging in response to light has been recently demonstrated, but multiplexed SRS imaging with reversible photocontrol remains unaccomplished. Here, we create a multiplexing palette of photoswitchable polyynes with 16 Raman frequencies by coupling asymmetric diarylethene with super-multiplexed Carbow (Carbow-switch). Through optimization of both electronic and vibrational spectroscopy, Carbow-switch displays excellent photoswitching properties under visible light control and SRS response with large frequency change and signal enhancement. Reversible and spatial-selective multiplexed SRS imaging of different organelles are demonstrated in living cells. We further achieve photo-selective time-lapse imaging of organelle dynamics during oxidative stress and protein phase separation. The development of Carbow-switch for photoswitchable SRS microscopy will open up new avenues to study complex interactions and dynamics in living cells with high spatiotemporal precision and multiplexing capability.
Collapse
Affiliation(s)
- Yueli Yang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Xueyang Bai
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
18
|
Nishiyama R, Furuya K, McCann P, Kacenauskaite L, Laursen BW, Flood AH, Hiramatsu K, Goda K. Boosting the Brightness of Raman Tags Using Cyanostar Macrocycles. Anal Chem 2023; 95:12835-12841. [PMID: 37589955 DOI: 10.1021/acs.analchem.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Raman probes have received growing attention for their potential use in super-multiplex biological imaging and flow cytometry applications that cannot be achieved using fluorescent probes. However, obtaining strong Raman scattering signals from small Raman probes has posed a challenge that holds back their practical implementation. Here, we present new types of Raman-active nanoparticles (Rdots) that incorporate ionophore macrocycles, known as cyanostars, to act as ion-driven and structure-directing spacers to address this problem. These macrocycle-enhanced Rdots (MERdots) exhibit sharper and higher electronic absorption peaks than Rdots. When combined with resonant broadband time-domain Raman spectroscopy, these MERdots show a ∼3-fold increase in Raman intensity compared to conventional Rdots under the same particle concentration. Additionally, the detection limit on the concentration of MERdots is improved by a factor of 2.5 compared to that of Rdots and a factor of 430 compared to that of Raman dye molecules in solution. The compact size of MERdots (26 nm in diameter) and their increased Raman signal intensity, along with the broadband capabilities of time-domain resonant Raman spectroscopy, make them promising candidates for a wide range of biological applications.
Collapse
Affiliation(s)
- Ryo Nishiyama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kei Furuya
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Phillip McCann
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Bo W Laursen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Amar H Flood
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Center for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
19
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
20
|
Wang H, Lee D, Wei L. Toward the Next Frontiers of Vibrational Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:3-17. [PMID: 37122829 PMCID: PMC10131268 DOI: 10.1021/cbmi.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Chemical imaging based on vibrational contrasts can extract molecular information entangled in complex biological systems. To this end, nonlinear Raman scattering microscopy, mid-infrared photothermal (MIP) microscopy, and atomic force microscopy (AFM)-based force-detected photothermal microscopies are emerging with better chemical sensitivity, molecular specificity, and spatial resolution than conventional vibrational methods. Their utilization in bioimaging applications has provided biological knowledge in unprecedented detail. This Perspective outlines key methodological developments, bioimaging applications, and recent technical innovations of the three techniques. Representative biological demonstrations are also highlighted to exemplify the unique advantages of obtaining vibrational contrasts. With years of effort, these three methods compose an expanding vibrational bioimaging toolbox to tackle specific bioimaging needs, benefiting many biological investigations with rich information in both label-free and labeling manners. Each technique will be discussed and compared in the outlook, leading to possible future directions to accommodate growing needs in vibrational bioimaging.
Collapse
Affiliation(s)
- Haomin Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dongkwan Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Jeong JE, Sutton JJ, Ryu HS, Kang M, Tay EJ, Nguyen TL, Gordon KC, Shim SH, Woo HY. Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping. ACS NANO 2023; 17:4800-4812. [PMID: 36863001 DOI: 10.1021/acsnano.2c11240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this study, we synthesized a series of truxene-based conjugated Raman probes to show structure-specific Raman fingerprint patterns with a common 532 nm light source. The subsequent polymer dot (Pdot) formation of the Raman probes efficiently suppressed fluorescence via aggregation-induced quenching and improved the dispersion stability of particles without leakage of Raman probes or particle agglomeration for more than 1 year. Additionally, the Raman signal amplified by electronic resonance and increased probe concentration exhibited over 103 times higher relative Raman intensities versus 5-ethynyl-2'-deoxyuridine, enabling successful Raman imaging. Finally, multiplex Raman mapping was demonstrated with a single 532 nm laser using six Raman-active and biocompatible Pdots as barcodes for live cells. Resonant Raman-active Pdots may suggest a simple, robust, and efficient way for multiplex Raman imaging using a standard Raman spectrometer, suggesting the broad applicability of our strategy.
Collapse
Affiliation(s)
- Ji-Eun Jeong
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Joshua J Sutton
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minsu Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Elliot J Tay
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Thanh Luan Nguyen
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Keith C Gordon
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
23
|
Einhaus J, Rochwarger A, Mattern S, Gaudillière B, Schürch CM. High-multiplex tissue imaging in routine pathology-are we there yet? Virchows Arch 2023; 482:801-812. [PMID: 36757500 PMCID: PMC10156760 DOI: 10.1007/s00428-023-03509-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sven Mattern
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brice Gaudillière
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Nishiyama R, Hiramatsu K, Kawamura S, Dodo K, Furuya K, de Pablo JG, Takizawa S, Min W, Sodeoka M, Goda K. Color-scalable flow cytometry with Raman tags. PNAS NEXUS 2023; 2:pgad001. [PMID: 36845353 PMCID: PMC9950787 DOI: 10.1093/pnasnexus/pgad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Flow cytometry is an indispensable tool in biology and medicine for counting and analyzing cells in large heterogeneous populations. It identifies multiple characteristics of every single cell, typically via fluorescent probes that specifically bind to target molecules on the cell surface or within the cell. However, flow cytometry has a critical limitation: the color barrier. The number of chemical traits that can be simultaneously resolved is typically limited to several due to the spectral overlap between fluorescence signals from different fluorescent probes. Here, we present color-scalable flow cytometry based on coherent Raman flow cytometry with Raman tags to break the color barrier. This is made possible by combining a broadband Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) flow cytometer, resonance-enhanced cyanine-based Raman tags, and Raman-active dots (Rdots). Specifically, we synthesized 20 cyanine-based Raman tags whose Raman spectra are linearly independent in the fingerprint region (400 to 1,600 cm-1). For highly sensitive detection, we produced Rdots composed of 12 different Raman tags in polymer nanoparticles whose detection limit was as low as 12 nM for a short FT-CARS signal integration time of 420 µs. We performed multiplex flow cytometry of MCF-7 breast cancer cells stained by 12 different Rdots with a high classification accuracy of 98%. Moreover, we demonstrated a large-scale time-course analysis of endocytosis via the multiplex Raman flow cytometer. Our method can theoretically achieve flow cytometry of live cells with >140 colors based on a single excitation laser and a single detector without increasing instrument size, cost, or complexity.
Collapse
Affiliation(s)
- Ryo Nishiyama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Shintaro Kawamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan,RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan,RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kei Furuya
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | - Wei Min
- Department of Chemistry, Columbia University, New York , NY 10027, USA
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan,RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | | |
Collapse
|
25
|
Zhou X, Zhao L, Zhang K, Yang C, Li S, Kang X, Li G, Wang Q, Ji H, Wu M, Liu J, Qin Y, Wu L. Ultrabright AIEdots with tunable narrow emission for multiplexed fluorescence imaging. Chem Sci 2022; 14:113-120. [PMID: 36605751 PMCID: PMC9769110 DOI: 10.1039/d2sc04862k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
AIEgen doped fluorescent nanodots (AIEdots) have attracted lots of attention, due to their superior characteristics as fluorescent probes, such as excellent photostability, large Stokes shift, high brightness and tunable emission. Unfortunately, most of the currently available AIEdots exhibit broad emission bandwidth, which limits their applications in multiplexed fluorescence imaging and detection. In this work, the strategy of designing and fabricating narrow emissive AIEdots (NE-AIEdots) with tunable wavelengths was presented by constructing a light-harvesting system with high energy transfer efficiency. Efficient intra-particle energy transfer from highly doped AIEgens, serving as the light-harvesting antenna, to the lightly doped narrow emissive fluorophore, resulted in high brightness and narrow emission. The emission band of NE-AIEdots with the full-width-at-half-maximum varied from 18 to 36 nm was 3-6.3 times narrower than that of traditional AIEdots. The single-particle brightness of NE-AIEdots was over 5-times that of commercial quantum dots under the same excitation and collection conditions. Taking advantage of the superior performance of these NE-AIEdots, multiplexed fluorescence imaging of lymph nodes in living mice was realized, which supported the future applications of NE-AIEdots for in vivo multiplexed labeling and clinical surgery.
Collapse
Affiliation(s)
- Xiaobo Zhou
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Lingfeng Zhao
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Ke Zhang
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Chaojie Yang
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Shijie Li
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Xiaoxia Kang
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Guo Li
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Qi Wang
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Haiwei Ji
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Mingmin Wu
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Jinxia Liu
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Yuling Qin
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| | - Li Wu
- School of Public Health, Nantong UniversityNantong 226019JiangsuChina
| |
Collapse
|
26
|
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
28
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
29
|
Abstract
As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
30
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
31
|
Li M, Tian S, Meng F, Yin M, Yue Q, Wang S, Bu W, Luo L. Continuously Multiplexed Ultrastrong Raman Probes by Precise Isotopic Polymer Backbone Doping for Multidimensional Information Storage and Encryption. NANO LETTERS 2022; 22:4544-4551. [PMID: 35604007 DOI: 10.1021/acs.nanolett.2c01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman-based super multiplexing has attracted great interest in imaging, biological analysis, identity security, and information storage. It still remains a great challenge to synthesize a large number of different Raman-active molecules to fulfill the Raman color palette. Here, we report a facile and systematic strategy to construct continuously multiplexed ultrastrong Raman probes. By precisely incorporating different ratios of 13C isotope into the backbone of poly(deca-4,6-diynedioic acid) (PDDA), we can obtain a library of PDDAs with tunable double-bond Raman frequencies and adjustable intensity ratios of two triple-bond (13C≡13C and 12C≡12C) Raman peaks, while retaining the ultrastrong Raman signals and physicochemical properties of the polymer. We also demonstrate the successful application of 13C-doped PDDAs as security inks to generate a novel 3D matrix barcode system for information encryption and high-density data storage. The isotopically doped PDDA series herein pave a new way to advance Raman-based super multiplexing for diverse applications.
Collapse
Affiliation(s)
- Mengyang Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qiang Yue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wenting Bu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
32
|
Hu J, Yu X, Zhuang X, Sun Y, Wang J, Ren H, Zhang S, Zhang Y, Qiu H, Hu Y. Construction of an enzyme-free biosensor utilizing CuO nanoparticles enriched in DNA polymer to catalyze a click chemistry reaction for SERS detection of the p53 gene. Anal Chim Acta 2022; 1222:339958. [DOI: 10.1016/j.aca.2022.339958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/01/2022]
|
33
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
34
|
Du J, Wei L. Multicolor Photoactivatable Raman Probes for Subcellular Imaging and Tracking by Cyclopropenone Caging. J Am Chem Soc 2021; 144:777-786. [PMID: 34913693 DOI: 10.1021/jacs.1c09689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photoactivatable probes, with high-precision spatial and temporal control, have largely advanced bioimaging applications, particularly for fluorescence microscopy. While emerging Raman probes have recently pushed the frontiers of Raman microscopy for noninvasive small-molecule imaging and supermultiplex optical imaging with superb sensitivity and specificity, photoactivatable Raman probes remain less explored. Here, we report the first general design of multicolor photoactivatable alkyne Raman probes based on cyclopropenone caging for live-cell imaging and tracking. The fast photochemically generated alkynes from cyclopropenones enable background-free Raman imaging with desired photocontrollable features. We first synthesized and spectroscopically characterized a series of model cyclopropenones and identified the suitable light-activating scaffold. We further engineered the scaffold for enhanced chemical stability in a live-cell environment and improved Raman sensitivity. Organelle-targeting probes were then generated to achieve targeted imaging of mitochondria, lipid droplets, endoplasmic reticulum, and lysosomes. Multiplexed photoactivated imaging and tracking at both subcellular and single-cell levels was next demonstrated to monitor the dynamic migration and interactions of the cellular contents. We envision that this general design of multicolor photoactivatable Raman probes would open up new ways for spatial-temporal controlled profiling and interrogations in complex biological systems with high information throughput.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
35
|
Zhu W, Cai E, Li H, Wang P, Shen A, Popp J, Hu J. Precise Encoding of Triple‐Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Zhu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Er‐Li Cai
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Hao‐Zheng Li
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Ai‐Guo Shen
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
- School of Printing and Packaging Wuhan University Wuhan 430072 P. R. China
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute for Photonic Technology Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Ji‐Ming Hu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
- Center of Analysis and Testing Wuhan University Wuhan 430074 P. R. China
| |
Collapse
|
36
|
Chirizzi C, Morasso C, Caldarone AA, Tommasini M, Corsi F, Chaabane L, Vanna R, Bombelli FB, Metrangolo P. A Bioorthogonal Probe for Multiscale Imaging by 19F-MRI and Raman Microscopy: From Whole Body to Single Cells. J Am Chem Soc 2021; 143:12253-12260. [PMID: 34320323 PMCID: PMC8397317 DOI: 10.1021/jacs.1c05250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Molecular imaging
techniques are essential tools for better investigating
biological processes and detecting disease biomarkers with improvement
of both diagnosis and therapy monitoring. Often, a single imaging
technique is not sufficient to obtain comprehensive information at
different levels. Multimodal diagnostic probes are key tools to enable
imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging
at the cellular level with a single probe is still challenging. Fluorinated
(19F) probes have been increasingly showing promising potentialities
for in vivo cell tracking by 19F-MRI.
Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman
imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated
molecule, to exhibit a remarkable intense Raman signal distinct from
cell and tissue fingerprints. Therefore, PERFECTA combines in a single
molecule excellent characteristics for both macroscopic in
vivo19F-MRI, across the whole body, and microscopic
imaging at tissue and cellular levels by Raman imaging.
Collapse
Affiliation(s)
- Cristina Chirizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy
| | | | - Matteo Tommasini
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Via G. B. Grassi 74, 20157 Milan, Italy
| | - Linda Chaabane
- Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), Neuroscience Division, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
37
|
Shou J, Oda R, Hu F, Karasawa K, Nuriya M, Yasui M, Shiramizu B, Min W, Ozeki Y. Super-multiplex imaging of cellular dynamics and heterogeneity by integrated stimulated Raman and fluorescence microscopy. iScience 2021; 24:102832. [PMID: 34381966 PMCID: PMC8333161 DOI: 10.1016/j.isci.2021.102832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
Observing multiple molecular species simultaneously with high spatiotemporal resolution is crucial for comprehensive understanding of complex, dynamic, and heterogeneous biological systems. The recently reported super-multiplex optical imaging breaks the “color barrier” of fluorescence to achieve multiplexing number over six in living systems, while its temporal resolution is limited to several minutes mainly by slow color tuning. Herein, we report integrated stimulated Raman and fluorescence microscopy with simultaneous multimodal color tunability at high speed, enabling super-multiplex imaging covering diverse molecular contrasts with temporal resolution of seconds. We highlight this technique by demonstrating super-multiplex time-lapse imaging and image-based cytometry of live cells to investigate the dynamics and cellular heterogeneity of eight intracellular components simultaneously. Our technique provides a powerful tool to elucidate spatiotemporal organization and interactions in biological systems. Integrated SRS and fluorescence microscopy with fast tunability has been developed Eight-color live-cell imaging can be conducted with a temporal resolution of seconds Super-multiplex time-lapse imaging reveals complex organelle interactions Super-multiplex image-based cytometry accesses high-dimensional heterogeneity
Collapse
Affiliation(s)
- Jingwen Shou
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Robert Oda
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Molecular Biosciences and Bioengineering, The University of Hawaii, Manoa, 1955 East West Road, Honolulu, Hawaii 96822, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, Hawaii 96813, USA
- Department of Pharmacology School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Corresponding author
| | - Keiko Karasawa
- Department of Pharmacology School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Bruce Shiramizu
- Department of Molecular Biosciences and Bioengineering, The University of Hawaii, Manoa, 1955 East West Road, Honolulu, Hawaii 96822, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, Hawaii 96813, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, New York 10027, USA
- Corresponding author
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
- Corresponding author
| |
Collapse
|
38
|
Zhu W, Cai EL, Li HZ, Wang P, Shen AG, Popp J, Hu JM. Precise Encoding of Triple-Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angew Chem Int Ed Engl 2021; 60:21846-21852. [PMID: 34227191 DOI: 10.1002/anie.202106136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Indexed: 11/08/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy in combination with innovative tagging strategies offers great potential as a universal high-throughput biomedical imaging tool. Here, we report rationally tailored small molecular monomers containing triple-bond units with large Raman scattering cross-sections, which can be polymerized at the nanoscale for enhancement of SRS contrast with smaller but brighter optical nanotags with artificial fingerprint output. From this, a class of triple-bond rich polymer nanoparticles (NPs) was engineered by regulating the relative dosages of three chemically different triple-bond monomers in co-polymerization. The bonding strategy allowed for 15 spectrally distinguishable triple-bond combinations. These accurately structured nano molecular aggregates, rather than long-chain macromolecules, could establish a universal method for generating small-sized biological SRS imaging tags with high sensitivity for high-throughput multi-color biomedical imaging.
Collapse
Affiliation(s)
- Wei Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Er-Li Cai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Hao-Zheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Ai-Guo Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,School of Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,Center of Analysis and Testing, Wuhan University, Wuhan, 430074, P. R. China
| |
Collapse
|
39
|
Chen C, Zhao Z, Qian N, Wei S, Hu F, Min W. Multiplexed live-cell profiling with Raman probes. Nat Commun 2021; 12:3405. [PMID: 34099708 PMCID: PMC8184955 DOI: 10.1038/s41467-021-23700-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Single-cell multiparameter measurement has been increasingly recognized as a key technology toward systematic understandings of complex molecular and cellular functions in biological systems. Despite extensive efforts in analytical techniques, it is still generally challenging for existing methods to decipher a large number of phenotypes in a single living cell. Herein we devise a multiplexed Raman probe panel with sharp and mutually resolvable Raman peaks to simultaneously quantify cell surface proteins, endocytosis activities, and metabolic dynamics of an individual live cell. When coupling it to whole-cell spontaneous Raman micro-spectroscopy, we demonstrate the utility of this technique in 14-plexed live-cell profiling and phenotyping under various drug perturbations. In particular, single-cell multiparameter measurement enables powerful clustering, correlation, and network analysis with biological insights. This profiling platform is compatible with live-cell cytometry, of low instrument complexity and capable of highly multiplexed measurement in a robust and straightforward manner, thereby contributing a valuable tool for both basic single-cell biology and translation applications such as high-content cell sorting and drug discovery.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Tang Y, Zhuang Y, Zhang S, Smith ZJ, Li Y, Mu X, Li M, He C, Zheng X, Pan F, Gao T, Zhang L. Azo-Enhanced Raman Scattering for Enhancing the Sensitivity and Tuning the Frequency of Molecular Vibrations. ACS CENTRAL SCIENCE 2021; 7:768-780. [PMID: 34079895 PMCID: PMC8161494 DOI: 10.1021/acscentsci.1c00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 05/14/2023]
Abstract
Raman scattering provides stable narrow-banded signals that potentially allow for multicolor microscopic imaging. The major obstacle for the applications of Raman spectroscopy and microscopy is the small cross section of Raman scattering that results in low sensitivity. Here, we report a new concept of azo-enhanced Raman scattering (AERS) by designing the intrinsic molecular structures using resonance Raman and concomitant fluorescence quenching strategies. Based on the selection of vibrational modes and the enhancing unit of azobenzenes, we obtained a library of AERS molecules with specific Raman signals in the fingerprint and silent frequency regions. The spectral characterization and molecular simulation revealed that the azobenzene unit conjugated to the vibrational modes significantly enhanced Raman signals due to the mechanism of extending the conjugation system, coupling the electronic-vibrational transitions, and improving the symmetry of vibrational modes. The nonradiative decay of azobenzene from the excited state quenched the commitment fluorescence, thus providing a clean background for identifying Raman scattering. The most sensitive AERS molecules produced Raman signals of more than 4 orders of magnitude compared to 5-ethynyl-2'-deoxyuridine (EdU). In addition, a frequency tunability of 10 distinct Raman bands was achieved by selecting different types of vibrational modes. This methodology of AERS allows for designing small-molecule Raman probes to visualize various entities in complex systems by multicolor spontaneous Raman imaging. It will open new prospects to explore innovative applications of AERS in interdisciplinary research fields.
Collapse
Affiliation(s)
- Yuchen Tang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yongpeng Zhuang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J. Smith
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuee Li
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xijiao Mu
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mengna Li
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Caili He
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xingxing Zheng
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Fangfang Pan
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|