1
|
Heo K, Ho TSY, Zeng X, Turnes BL, Arab M, Jayakar S, Chen K, Kimourtzis G, Condro MC, Fazzari E, Song X, Tabitha Hees J, Xu Z, Chen X, Barrett LB, Perrault L, Pandey R, Zhang K, Bhaduri A, He Z, Kornblum HI, Hubbs J, Woolf CJ. Non-muscle myosin II inhibition at the site of axon injury increases axon regeneration. Nat Commun 2025; 16:2975. [PMID: 40140393 PMCID: PMC11947156 DOI: 10.1038/s41467-025-58303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Motor axon regeneration following peripheral nerve injury is critical for motor recovery but therapeutic interventions enhancing this are not available. We conduct a phenotypic screen on human motor neurons and identified blebbistatin, a non-muscle myosin II inhibitor, as the most effective neurite outgrowth promotor. Despite its efficacy in vitro, its poor bioavailability limits in vivo application. We, therefore, utilize a blebbistatin analog, NMIIi2, to explore its therapeutic potential for promoting axon regeneration. Local NMIIi2 application directly to injured axons enhances regeneration in human motor neurons. Furthermore, following a sciatic nerve crush injury in male mice, local NMIIi2 administration to the axonal injury site facilitates motor neuron regeneration, muscle reinnervation, and functional recovery. NMIIi2 also promotes axon regeneration in sensory, cortical, and retinal ganglion neurons. These findings highlight the therapeutic potential of topical NMII inhibition for treating axon damage.
Collapse
Affiliation(s)
- Keunjung Heo
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tammy Szu-Yu Ho
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Xiangsunze Zeng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bruna Lenfers Turnes
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maryam Arab
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Georgios Kimourtzis
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Michael C Condro
- Intellectual and Developmental Disabilities Research Center and the Departments of Psychiatry, Pharmacology and Pediatrics, University of California, Los Angeles, CA, USA
| | - Elisa Fazzari
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Xuan Song
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - J Tabitha Hees
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Zhuqiu Xu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Xirui Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lee B Barrett
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Laura Perrault
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Roshan Pandey
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kathleen Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center and the Departments of Psychiatry, Pharmacology and Pediatrics, University of California, Los Angeles, CA, USA
| | - Jed Hubbs
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Karekal A, Mandawe R, Chun C, Byri SK, Cheline D, Ortiz S, Hochman S, Wilkinson KA. Optogenetic methods to stimulate gamma motor neuron axons ex vivo. Exp Physiol 2025. [PMID: 39898428 DOI: 10.1113/ep092359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
It is challenging to stimulate gamma motor neurons, which are important regulators of muscle spindle afferent function, without also recruiting alpha motor neurons. Here, we test the feasibility of stimulating gamma motor neuron axons using optogenetics in two transgenic mouse lines. We used an ex vivo muscle-nerve preparation in adult mice to monitor muscle spindle afferent firing, which should increase in response to gamma motor neuron-induced lengthening of the sensory region of the muscle spindle. A force transducer measured alpha motor neuron-mediated twitch contractions. Blue LED light (470 nm; 1-5 mW) was delivered via a light guide to the sciatic nerve. We confirmed that the more slowly conducting gamma motor neurons were recruited first in mice expressing channelrhodopsin 2 in choline acetyltransferase-positive motor neurons, whereas alpha motor neurons required higher optical intensities, enabling co-activation of alpha and gamma motor neurons depending on light intensity. However, this approach cannot isolate gamma motor neuron activity completely. Cre-dependent channelrhodopsin 2 optoactivation using the putative gamma motor neuron marker neuronal PAS domain protein 1 (Npas1) also increased muscle spindle afferent firing rates and caused only small twitch contractions. This provides functional validation that Npas1 is present primarily in gamma motor neurons and can be used to manipulate gamma motor neurons independently. We propose optogenetic stimulation as a promising tool to manipulate gamma motor neuron activity.
Collapse
Affiliation(s)
- Apoorva Karekal
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Remie Mandawe
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Cameron Chun
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Sai Kiran Byri
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Danitza Cheline
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Serena Ortiz
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Shawn Hochman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine A Wilkinson
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| |
Collapse
|
3
|
Garbarino MC, Pisani A, Biggiogera M, Mazzarello P. Camillo Golgi's contributions to the anatomic basis of sensitivity in tendons. J Neural Transm (Vienna) 2025; 132:287-293. [PMID: 39460774 PMCID: PMC11785679 DOI: 10.1007/s00702-024-02826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 10/28/2024]
Abstract
Between 1878 and 1880 Camillo Golgi, professor of Histology and General Pathology at the University of Pavia, studied the termination of the nerves inside the tendons, near their muscular insertion. He defined two fundamental categories of corpuscles. The first type, which he called muscle-tendon terminal organs, was morphologically characterized by spindle structures which at one end seemed to relate to the muscle fibers while at the other end they gradually merged with the tendon bundles. Golgi discovered that these structures received from one to four myelinated nerve fibers, which lost their myelin sheath as they entered the bundle, within which they divided dichotically, ending in a large number of terminal arborizations that had the appearance of reticular intertwines. In the superficial thickness of the tendon, near the muscle, Golgi also noticed a second category of corpuscles, which he described as claviform bodies or formations similar to Pacinian bodies. In 1890 Vittorio Mazzoni precisely defined their morphological characteristics. These corpuscles were later called Golgi muscle-tendon organs and Golgi-Mazzoni corpuscles. On the basis of their position and histological appearance, Golgi also correctly hypothesized their physiological role: to be receptors of muscular tension for the muscle-tendon organs and transducers of sensitivity to touch and pressure for the Golgi-Mazzoni corpuscles.
Collapse
Affiliation(s)
- Maria Carla Garbarino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Museum System, University of Pavia, Pavia, Italy.
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Italy, Pavia
| | - Marco Biggiogera
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Mazzarello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Museum System, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. SCIENCE ADVANCES 2025; 11:eads6660. [PMID: 39772670 PMCID: PMC11708877 DOI: 10.1126/sciadv.ads6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, we observed impairments in proprioceptor end-organ structure and a marked reduction in skeletal muscle myofiber size that were absent in NaV1.1cKO mice. We attribute the differential contributions of NaV1.1 and NaV1.6 to distinct cellular localization patterns. Collectively, we provide evidence that NaVs uniquely shape neural signaling within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Yan Y, Antolin N, Zhou L, Xu L, Vargas IL, Gomez CD, Kong G, Palmisano I, Yang Y, Chadwick J, Müller F, Bull AMJ, Lo Celso C, Primiano G, Servidei S, Perrier JF, Bellardita C, Di Giovanni S. Macrophages excite muscle spindles with glutamate to bolster locomotion. Nature 2025; 637:698-707. [PMID: 39633045 PMCID: PMC11735391 DOI: 10.1038/s41586-024-08272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The stretch reflex is a fundamental component of the motor system that orchestrates the coordinated muscle contractions underlying movement. At the heart of this process lie the muscle spindles (MS), specialized receptors finely attuned to fluctuations in tension within intrafusal muscle fibres. The tension variation in the MS triggers a series of neuronal events including an initial depolarization of sensory type Ia afferents that subsequently causes the activation of motoneurons within the spinal cord1,2. This neuronal cascade culminates in the execution of muscle contraction, underscoring a presumed closed-loop mechanism between the musculoskeletal and nervous systems. By contrast, here we report the discovery of a new population of macrophages with exclusive molecular and functional signatures within the MS that express the machinery for synthesizing and releasing glutamate. Using mouse intersectional genetics with optogenetics and electrophysiology, we show that activation of MS macrophages (MSMP) drives proprioceptive sensory neuron firing on a millisecond timescale. MSMP activate spinal circuits, motor neurons and muscles by means of a glutamate-dependent mechanism that excites the MS. Furthermore, MSMP respond to neural and muscle activation by increasing the expression of glutaminase, enabling them to convert the uptaken glutamine released by myocytes during muscle contraction into glutamate. Selective silencing or depletion of MSMP in hindlimb muscles disrupted the modulation of the stretch reflex for force generation and sensory feedback correction, impairing locomotor strategies in mice. Our results have identified a new cellular component, the MSMP, that directly regulates neural activity and muscle contraction. The glutamate-mediated signalling of MSMP and their dynamic response to sensory cues introduce a new dimension to our understanding of sensation and motor action, potentially offering innovative therapeutic approaches in conditions that affect sensorimotor function.
Collapse
Affiliation(s)
- Yuyang Yan
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Nuria Antolin
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Luming Zhou
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Luyang Xu
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Irene Lisa Vargas
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Guiping Kong
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Yi Yang
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica Chadwick
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Franziska Müller
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Anthony M J Bull
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Cristina Lo Celso
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Carmelo Bellardita
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Simone Di Giovanni
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
6
|
Lu T, Wang M, Zhou W, Ni Q, Yue Y, Wang W, Shi Y, Liu Z, Li C, Hong B, Zhou X, Zhong S, Wang K, Zeng B, Zhang J, Wang W, Zhang X, Wu Q, Wang X. Decoding transcriptional identity in developing human sensory neurons and organoid modeling. Cell 2024; 187:7374-7393.e28. [PMID: 39536745 DOI: 10.1016/j.cell.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/03/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Dorsal root ganglia (DRGs) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) units. Additionally, we identify a human-enriched NTRK3+/DCC+ nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways in vivo, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.
Collapse
Affiliation(s)
- Tian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | | | - Wei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Yingchao Shi
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Bei Hong
- Changping Laboratory, Beijing 102206, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kaikai Wang
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Bo Zeng
- Changping Laboratory, Beijing 102206, China
| | - Jun Zhang
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China.
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
7
|
Li Q, Tan T, Wang B, Yan Z. Avian-inspired embodied perception in biohybrid flapping-wing robotics. Nat Commun 2024; 15:9099. [PMID: 39438483 PMCID: PMC11496644 DOI: 10.1038/s41467-024-53517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Avian feather intricate adaptable architecture to wing deformations has catalyzed interest in feathered flapping-wing aircraft with high maneuverability, agility, and stealth. Yet, to mimic avian integrated somatic sensation within stringent weight constraints, remains challenging. Here, we propose an avian-inspired embodied perception approach for biohybrid flapping-wing robots. Our feather-piezoelectric mechanoreceptor leverages feather-based vibration structures and flexible piezoelectric materials to refine and augment mechanoreception via coupled oscillator interactions and robust microstructure adhesion. Utilizing convolutional neural networks with the grey wolf optimizer, we develop tactile perception of airflow velocity and wing flapping frequency proprioception. This method also senses pitch angle via airflow direction and detects wing morphology through feather collisions. Our low-weight, accurate perception of flapping-wing robot flight states is validated by motion capture. This investigation constructs a biomechanically integrated embodied perception system in flapping-wing robots, which holds significant promise in reflex-based control of complex flight maneuvers and natural bird flight surveillance.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Tan
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Benlong Wang
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhimiao Yan
- State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609982. [PMID: 39253497 PMCID: PMC11383322 DOI: 10.1101/2024.08.27.609982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by complete loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, loss of proprioceptive feedback caused non-cell-autonomous impairments in proprioceptor end-organs and skeletal muscle that were absent in NaV1.1cKO mice. We attribute the differential contribution of NaV1.1 and NaV1.6 in proprioceptor function to distinct cellular localization patterns. Collectively, these data provide the first evidence that NaV subtypes uniquely shape neurotransmission within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Sun Y, Fede C, Zhao X, Del Felice A, Pirri C, Stecco C. Quantity and Distribution of Muscle Spindles in Animal and Human Muscles. Int J Mol Sci 2024; 25:7320. [PMID: 39000428 PMCID: PMC11242712 DOI: 10.3390/ijms25137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Muscle spindles have unique anatomical characteristics that can be directly affected by the surrounding tissues under physiological and pathological conditions. Understanding their spatial distribution and density in different muscles is imperative to unravel the complexity of motor function. In the present study, the distribution and number/density of muscle spindles in human and animal muscles were reviewed. We identified 56 articles focusing on muscle spindle distribution; 13 articles focused on human muscles and 43 focused on animal muscles. The results demonstrate that spindles are located at the nerve entry points and along distributed vessels and they relate to the intramuscular connective tissue. Muscles' deep layers and middle segments are the main topographic distribution areas. Eleven articles on humans and thirty-three articles on animals (totaling forty-four articles) focusing on muscle spindle quantity and density were identified. Hand and head muscles, such as the pronator teres/medial pterygoid muscle/masseter/flexor digitorum, were most commonly studied in the human studies. For animals, whole-body musculature was studied. The present study summarized the spindle quantity in 77 human and 189 animal muscles. We identified well-studied muscles and any as-yet unfound data. The current data fail to clarify the relationship between quantity/density and muscle characteristics. The intricate distribution of the muscle spindles and their density and quantity throughout the body present some unique patterns or correlations, according to the current data. However, it remains unclear whether muscles with fine motor control have more muscle spindles since the study standards are inconsistent and data on numerous muscles are missing. This study provides a comprehensive and exhaustive approach for clinicians and researchers to determine muscle spindle status.
Collapse
Affiliation(s)
- Yunfeng Sun
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Caterina Fede
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Xiaoxiao Zhao
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
- Section of Neurology, Department of Neuroscience, University of Padova, 35122 Padova, Italy
| | - Carmelo Pirri
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Carla Stecco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| |
Collapse
|
10
|
Slongo EGR, Bressan EVR, Santos JPRD, Vendrametto JP, Carvalho ARD, Bertolini GRF. Effect of whole-body vibration frequency on objective physical function outcomes in healthy young adults: Randomized clinical trial. J Bodyw Mov Ther 2024; 39:598-605. [PMID: 38876693 DOI: 10.1016/j.jbmt.2024.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Whole-body vibration (WBV) is used to improve muscle function but is important to know if doses can affect the objective function outcomes. OBJECTIVE To compare the effect of two frequencies of WBV on objective physical function outcomes in healthy young adults. METHODS Forty-two volunteers were randomized into three groups: sham group (SG), and WBV groups with 30 (F30) and 45 Hz (F45). A 6-week WBV intervention protocol was applied by a vibrating platform twice a week, with the platform turn-off for SG and with two frequencies according to group, 30 or 45 Hz. The objective physical functions outcomes assessed were the proprioceptive accuracy, measured by proprioceptive tests, and quasi-static and dynamic balances, measured by Sensory Organization Test (SOT) and Y Balance Test, respectively. The outcomes were assessed before and after the WBV intervention. We used in the results comparisons, by GzLM test, the deltas percentage. RESULTS After the intervention, no statistical differences were observed in percentage deltas for any outcomes (proprioceptive accuracy, quasi-static and dynamic balances). CONCLUSION Objective physical function outcomes, after the 6-week WBV protocol, did not present statistically significant results in any of the intervention groups (F30 or F45) and SG.
Collapse
|
11
|
Zhou C, Zhu L, Liu Z, Tong Y, Xu Y, Jiang L, Li X. Whole body vibration training promotes proprioceptive pathway for the treatment of stress urinary incontinence in rats. Transl Androl Urol 2024; 13:657-666. [PMID: 38855607 PMCID: PMC11157409 DOI: 10.21037/tau-23-675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/31/2024] [Indexed: 06/11/2024] Open
Abstract
Background Stress urinary incontinence (SUI) is the most ubiquitous form of urinary incontinence in women. The therapeutic management of patients with SUI is challenging. The aim of this study is to evaluate the efficacy of whole body vibration training (WBVT) for SUI. Methods Thirty-five female rats were randomly divided into a sham group (Sham group, n=5), SUI + WBVT group (n=15) and SUI + whole body rest group (SUI + WBR group, n=15). The SUI + WBVT group was trained as follows: frequency 30 Hz, amplitude four mm, one min/repeat, four min rest, repeated 10 times, five days/week. After the intervention, five rats were taken on the 7th, 14th and 21st day to observe the urodynamic changes, levator ani muscle and dorsal root ganglia (DRG) morphology, and to observe the expression of neurotrophic factor-3/tyrosine protein kinase C (NT-3/TrkC) by Western blot. Results The urodynamic results showed that the difference in bladder leak point pressure/abdominal leak point pressure (BLPP/ALPP) between the Sham group and the SUI + WBR group was statistically significant (P<0.001) on 7th day, indicating successful modeling. The BLPP/ALPP of the SUI + WBVT group and the SUI + WBR group improved on 7th, 14th, and 21st day, and the BLPP/ALPP of SUI + WBVT group was higher than the SUI + WBR group. Compared with the Sham group, pathological changes appeared in the muscle shuttles in the SUI + WBVT group and SUI + WBR group. Western blot showed a gradual up-regulation of NT-3/TrkC. Conclusions WBVT can be used to treat SUI by affecting the expression of NT-3/TrkC, improving the structural morphology of the proprioceptors, and restoring the urinary control function. This study provides evidence for the clinical practice of WBVT. Future studies could further refine the behavioral and electrophysiological aspects of the assessment.
Collapse
Affiliation(s)
- Chengyu Zhou
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoxue Liu
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yao Tong
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Xu
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Li Jiang
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
- Postdoctoral Research Station of Basic Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xuhong Li
- Department of Rehabilitation Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory Electro-Thermal Actuator through the Laser-Induced Graphene Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310612. [PMID: 38087883 DOI: 10.1002/smll.202310612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 05/25/2024]
Abstract
The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuyang Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Qin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Pan
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
13
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
14
|
Bornstein B, Watkins B, Passini FS, Blecher R, Assaraf E, Sui XM, Brumfeld V, Tsoory M, Kröger S, Zelzer E. The mechanosensitive ion channel ASIC2 mediates both proprioceptive sensing and spinal alignment. Exp Physiol 2024; 109:135-147. [PMID: 36951012 PMCID: PMC10988735 DOI: 10.1113/ep090776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Fabian S. Passini
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ronen Blecher
- Orthopedic DepartmentAssuta Ashdod University Hospital, Ashdod, Israel, affiliated to Ben Gurion University of the NegevBeer ShebaIsrael
| | - Eran Assaraf
- Department of Orthopedic SurgeryShamir Medical Center, Assaf HaRofeh Campus, Zeffifin, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Xiao Meng Sui
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Michael Tsoory
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Elazar Zelzer
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
15
|
Housley SN, Gardolinski EA, Nardelli P, Reed J, Rich MM, Cope TC. Mechanosensory encoding in ex vivo muscle-nerve preparations. Exp Physiol 2024; 109:35-44. [PMID: 37119460 PMCID: PMC10613129 DOI: 10.1113/ep090763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.
Collapse
Affiliation(s)
- Stephen N. Housley
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | | | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - J'Ana Reed
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
- W.H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
16
|
Lee C, Chen C. Role of proprioceptors in chronic musculoskeletal pain. Exp Physiol 2024; 109:45-54. [PMID: 37417654 PMCID: PMC10988698 DOI: 10.1113/ep090989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Proprioceptors are non-nociceptive low-threshold mechanoreceptors. However, recent studies have shown that proprioceptors are acid-sensitive and express a variety of proton-sensing ion channels and receptors. Accordingly, although proprioceptors are commonly known as mechanosensing neurons that monitor muscle contraction status and body position, they may have a role in the development of pain associated with tissue acidosis. In clinical practice, proprioception training is beneficial for pain relief. Here we summarize the current evidence to sketch a different role of proprioceptors in 'non-nociceptive pain' with a focus on their acid-sensing properties.
Collapse
Affiliation(s)
- Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Chih‐Cheng Chen
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic, Biomedical Translational Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
17
|
Banks RW. There and back again: 50 years of wandering through terra incognita fusorum. Exp Physiol 2024; 109:6-16. [PMID: 36628601 PMCID: PMC10988739 DOI: 10.1113/ep090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
This paper is in two parts: 'There', which is a review of some of the major advances in the study of spindle structure and function during the past 50 years, serving as an introduction to the symposium entitled 'Mechanotransduction, Muscle Spindles and Proprioception' held in Munich in July 2022; and 'And Back Again', presenting new quantitative morphological results on the equatorial nuclei of intrafusal muscle fibres and of the primary sensory ending in relationship to passive stretch of the spindle.
Collapse
Affiliation(s)
- Robert W. Banks
- Department of BiosciencesUniversity of DurhamDurhamUK
- Biophysical Sciences InstituteUniversity of DurhamDurhamUK
| |
Collapse
|
18
|
Kröger S. Experimental Physiology special issue: 'Mechanotransduction, muscle spindles and proprioception'. Exp Physiol 2024; 109:1-5. [PMID: 38160398 PMCID: PMC10988673 DOI: 10.1113/ep091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
| |
Collapse
|
19
|
de Nooij JC, Zampieri N. The making of a proprioceptor: a tale of two identities. Trends Neurosci 2023; 46:1083-1094. [PMID: 37858440 DOI: 10.1016/j.tins.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Proprioception, the sense of body position in space, has a critical role in the control of posture and movement. Aside from skin and joint receptors, the main sources of proprioceptive information in tetrapods are mechanoreceptive end organs in skeletal muscle: muscle spindles (MSs) and Golgi tendon organs (GTOs). The sensory neurons that innervate these receptors are divided into subtypes that detect discrete aspects of sensory information from muscles with different biomechanical functions. Despite the importance of proprioceptive neurons in motor control, the developmental mechanisms that control the acquisition of their distinct functional properties and positional identity are not yet clear. In this review, we discuss recent findings on the development of mouse proprioceptor subtypes and challenges in defining them at the molecular and functional level.
Collapse
Affiliation(s)
- Joriene C de Nooij
- Department of Neurology, Division of Translational Neurobiology, Vagelos College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA; Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
20
|
Valdes K, Manalang KC, Leach C. Proprioception: An evidence-based review. J Hand Ther 2023; 37:S0894-1130(23)00142-4. [PMID: 39492292 DOI: 10.1016/j.jht.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Proprioception is an essential sensory function of the body. Proprioception is defined as one's awareness of their body's position and movement through space. It contributes to both the conscious and unconscious awareness of limb and trunk position and movement. The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. PURPOSE The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. STUDY DESIGN This narrative literature review examines studies that determine proprioceptive systems and their implication for rehabilitation. METHODS Relevant study data were extracted as part of this review. RESULTS Types of proprioceptive interventions can include active or passive movement training, somatosensory stimulation training, force reproduction, and somatosensory discrimination training. Joint position sense error is the most widely used objective measure of proprioception. CONCLUSIONS Therapists should consider using a standardized measure to ascertain proprioceptive deficits in their patients following upper extremity injury or disease to determine the deficits and measure change. There are a variety of interventions that can be used in hand rehabilitation to restore proprioceptive acuity, and active movement interventions have been found to be the most effective.
Collapse
Affiliation(s)
- Kristin Valdes
- Occupational Therapy Department, Touro University Nevada, Henderson, NV, USA.
| | | | - Christen Leach
- Occupational Therapy Department, Touro University Nevada, Henderson, NV, USA
| |
Collapse
|
21
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Cheng YR, Chi CH, Lee CH, Lin SH, Min MY, Chen CC. Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors. Int J Mol Sci 2023; 24:12783. [PMID: 37628964 PMCID: PMC10454156 DOI: 10.3390/ijms241612783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Proprioceptors are low-threshold mechanoreceptors involved in perceiving body position and strain bearing. However, the physiological response of proprioceptors to fatigue- and muscle-acidosis-related disturbances remains unknown. Here, we employed whole-cell patch-clamp recordings to probe the effect of mild acidosis on the mechanosensitivity of the proprioceptive neurons of dorsal root ganglia (DRG) in mice. We cultured neurite-bearing parvalbumin-positive (Pv+) DRG neurons on a laminin-coated elastic substrate and examined mechanically activated currents induced through substrate deformation-driven neurite stretch (SDNS). The SDNS-induced inward currents (ISDNS) were indentation depth-dependent and significantly inhibited by mild acidification (pH 7.2~6.8). The acid-inhibiting effect occurred in neurons with an ISDNS sensitive to APETx2 (an ASIC3-selective antagonist) inhibition, but not in those with an ISNDS resistant to APETx2. Detailed subgroup analyses revealed ISDNS was expressed in 59% (25/42) of Parvalbumin-positive (Pv+) DRG neurons, 90% of which were inhibited by APETx2. In contrast, an acid (pH 6.8)-induced current (IAcid) was expressed in 76% (32/42) of Pv+ DRG neurons, 59% (21/32) of which were inhibited by APETx2. Together, ASIC3-containing channels are highly heterogenous and differentially contribute to the ISNDS and IAcid among Pv+ proprioceptors. In conclusion, our findings highlight the importance of ASIC3-containing ion channels in the physiological response of proprioceptors to acidic environments.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Hung Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
23
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
26
|
Kissane RWP, Charles JP, Banks RW, Bates KT. The association between muscle architecture and muscle spindle abundance. Sci Rep 2023; 13:2830. [PMID: 36806712 PMCID: PMC9938265 DOI: 10.1038/s41598-023-30044-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Across the human body, skeletal muscles have a broad range of biomechanical roles that employ complex proprioceptive control strategies to successfully execute a desired movement. This information is derived from peripherally located sensory apparatus, the muscle spindle and Golgi tendon organs. The abundance of these sensory organs, particularly muscle spindles, is known to differ considerably across individual muscles. Here we present a comprehensive data set of 119 muscles across the human body including architectural properties (muscle fibre length, mass, pennation angle and physiological cross-sectional area) and statistically test their relationships with absolute spindle number and relative spindle abundance (the residual value of the linear regression of the log-transformed spindle number and muscle mass). These data highlight a significant positive relationship between muscle spindle number and fibre length, emphasising the importance of fibre length as an input into the central nervous system. However, there appears to be no relationship between muscles architecturally optimised to function as displacement specialists and their provision of muscle spindles. Additionally, while there appears to be regional differences in muscle spindle abundance, independent of muscle mass and fibre length, our data provide no support for the hypothesis that muscle spindle abundance is related to anatomical specialisation.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - James P Charles
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Robert W Banks
- Department of Biosciences and Biophysical Sciences Institute, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
27
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
28
|
Arbat-Plana A, Bolívar S, Navarro X, Udina E, Alvarez FJ. Massive Loss of Proprioceptive Ia Synapses in Rat Spinal Motoneurons after Nerve Crush Injuries in the Postnatal Period. eNeuro 2023; 10:ENEURO.0436-22.2023. [PMID: 36759186 PMCID: PMC9948128 DOI: 10.1523/eneuro.0436-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Peripheral nerve injuries (PNIs) induce the retraction from the ventral horn of the synaptic collaterals of Ia afferents injured in the nerve, effectively removing Ia synapses from α-motoneurons. The loss of Ia input impairs functional recovery and could explain, in part, better recovery after PNIs with better Ia synaptic preservation. Synaptic losses correlate with injury severity, speed, and efficiency of muscle reinnervation and requires ventral microglia activation. It is unknown whether this plasticity is age dependent. In neonates, axotomized motoneurons and sensory neurons undergo apoptosis, but after postnatal day 10 most survive. The goal of this study was to analyze vesicular glutamate transporter 1 (VGluT1)-labeled Ia synapses (which also include II afferents) after nerve crush in 10 day old rats, a PNI causing little Ia/II synapse loss in adult rats. We confirmed fast and efficient reinnervation of leg muscles; however, a massive number of VGluT1/Ia/II synapses were permanently lost. This synapse loss was similar to that after more severe nerve injuries involving full transection in adults. In adults, disappearance of ventrally directed Ia/II collaterals targeting α-motoneurons was associated with a prolonged microglia reaction and a CCR2 mechanism that included infiltration of CCR2 blood immune cells. By contrast, microgliosis after P10 injuries was fast, resolved in about a week, and there was no evidence of peripheral immune cell infiltration. We conclude that VGluT1/Ia/II synapse loss in young animals differs in mechanism, perhaps associated with higher microglia synaptic pruning activity at this age and results in larger losses after milder nerve injuries.
Collapse
Affiliation(s)
- Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
- Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Sara Bolívar
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
- Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Esther Udina
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | | |
Collapse
|
29
|
Dionisi C, Chazalon M, Rai M, Keime C, Imbault V, Communi D, Puccio H, Schiffmann SN, Pandolfo M. Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain Commun 2023; 5:fcad007. [PMID: 36865673 PMCID: PMC9972525 DOI: 10.1093/braincomms/fcad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/28/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.
Collapse
Affiliation(s)
| | | | - Myriam Rai
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France
| | - Virginie Imbault
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - David Communi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France,Institut NeuroMyoGene (INMG) UMR5310—INSERM U1217, Faculté de Médecine, Université Claude Bernard—Lyon I, 69008 Lyon, France
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB-Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Massimo Pandolfo
- Correspondence to: Massimo Pandolfo Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute 3801 University Street, Montreal, Quebec H3A 2B4, Canada E-mail:
| |
Collapse
|
30
|
Liu C, Wong PY, Chow SKH, Cheung WH, Wong RMY. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J Orthop Translat 2023; 38:76-83. [PMID: 36381246 PMCID: PMC9619139 DOI: 10.1016/j.jot.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Bornstein B, Heinemann-Yerushalmi L, Krief S, Adler R, Dassa B, Leshkowitz D, Kim M, Bewick G, Banks RW, Zelzer E. Molecular characterization of the intact mouse muscle spindle using a multi-omics approach. eLife 2023; 12:81843. [PMID: 36744866 PMCID: PMC9931388 DOI: 10.7554/elife.81843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular MedicineBerlinGermany,Team of syncytial cell biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Guy Bewick
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Robert W Banks
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
32
|
Dietrich S, Company C, Song K, Lowenstein ED, Riedel L, Birchmeier C, Gargiulo G, Zampieri N. Molecular identity of proprioceptor subtypes innervating different muscle groups in mice. Nat Commun 2022; 13:6867. [PMID: 36369193 PMCID: PMC9652284 DOI: 10.1038/s41467-022-34589-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate. We identified and validated molecular signatures associated with proprioceptors innervating back (Tox, Epha3), abdominal (C1ql2), and hindlimb (Gabrg1, Efna5) muscles. We also found that proprioceptor muscle identity precedes acquisition of receptor character and comprise programs controlling wiring specificity. These findings indicate that muscle-type identity is a fundamental aspect of proprioceptor subtype differentiation that is acquired during early development and includes molecular programs involved in the control of muscle target specificity.
Collapse
Affiliation(s)
- Stephan Dietrich
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carlos Company
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kun Song
- grid.263817.90000 0004 1773 1790Brain Research Center and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Elijah David Lowenstein
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Levin Riedel
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Gaetano Gargiulo
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Niccolò Zampieri
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
33
|
MS and GTO proprioceptor subtypes in the molecular genetic era: Opportunities for new advances and perspectives. Curr Opin Neurobiol 2022; 76:102597. [DOI: 10.1016/j.conb.2022.102597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
|
34
|
Watkins B, Schuster HM, Gerwin L, Schoser B, Kröger S. The effect of methocarbamol and mexiletine on murine muscle spindle function. Muscle Nerve 2022; 66:96-105. [PMID: 35373353 DOI: 10.1002/mus.27546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS The muscle relaxant methocarbamol and the antimyotonic drug mexiletine are widely used for the treatment of muscle spasms, myotonia, and pain syndromes. To determine whether these drugs affect muscle spindle function, we studied their effect on the resting discharge and on stretch-induced action potential frequencies of proprioceptive afferent neurons. METHODS Single unit action potential frequencies of proprioceptive afferents from muscle spindles in the murine extensor digitorum longus muscle of adult C57BL/6J mice were recorded under resting conditions and during ramp-and-hold stretches. Maximal tetanic force of the same muscle after direct stimulation was determined. High-resolution confocal microscopy analysis was performed to determine the distribution of Nav 1.4 channels, a potential target for both drugs. RESULTS Methocarbamol and mexiletine inhibited the muscle spindle resting discharge in a dose-dependent manner with IC50 values around 300 μM and 6 μM, respectively. With increasing concentrations of both drugs, the response to stretch was also affected, with the static sensitivity first followed by the dynamic sensitivity. At high concentrations, both drugs completely blocked muscle spindle afferent output. Both drugs also reversibly reduced the specific force of the extensor digitorum longus muscle after tetanic stimulation. Finally, we present evidence for the presence and specific localization of the voltage-gated sodium channel Nav 1.4 in intrafusal fibers. DISCUSSION In this study we demonstrate that both muscle relaxants affect muscle spindle function, suggesting impaired proprioception as a potential side effect of both drugs. Moreover, our results provide additional evidence of a peripheral activity of methocarbamol and mexiletine.
Collapse
Affiliation(s)
- Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Hedwig M Schuster
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Laura Gerwin
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Benedikt Schoser
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Nagel M, Chesler AT. PIEZO2 ion channels in proprioception. Curr Opin Neurobiol 2022; 75:102572. [PMID: 35689908 DOI: 10.1016/j.conb.2022.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022]
Abstract
PIEZO2 is a stretch-gated ion channel that is expressed at high levels in somatosensory neurons. Humans with rare mutations in the PIEZO2 gene have profound mechanosensory deficits that include a loss of the sense of proprioception. These striking phenotypes match those seen in conditional knockout mouse models demonstrating the highly conserved function for this gene. Here, we review the ramifications of loss of PIEZO2 function on normal daily activities and what studies like these have revealed about proprioception at the molecular and cellular level. Additionally, we highlight recent work that has uncovered the surprising functional and molecular diversity of proprioceptors. Together, these findings pioneer a path toward determining how the detection of mechanosensory input from muscles and tendons is used to control posture and refine motor performance.
Collapse
Affiliation(s)
- Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Kissane RWP, Charles JP, Banks RW, Bates KT. Skeletal muscle function underpins muscle spindle abundance. Proc Biol Sci 2022; 289:20220622. [PMID: 35642368 PMCID: PMC9156921 DOI: 10.1098/rspb.2022.0622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Muscle spindle abundance is highly variable within and across species, but we currently lack any clear picture of the mechanistic causes or consequences of this variation. Previous use of spindle abundance as a correlate for muscle function implies a mechanical underpinning to this variation, but these ideas have not been tested. Herein, we use integrated medical imaging and subject-specific musculoskeletal models to investigate the relationship between spindle abundance, muscle architecture and in vivo muscle behaviour in the human locomotor system. These analyses indicate that muscle spindle number is tightly correlated with muscle fascicle length, absolute fascicle length change, velocity of fibre lengthening and active muscle forces during walking. Novel correlations between functional indices and spindle abundance are also recovered, where muscles with a high abundance predominantly function as springs, compared to those with a lower abundance mostly functioning as brakes during walking. These data demonstrate that muscle fibre length, lengthening velocity and fibre force are key physiological signals to the central nervous system and its modulation of locomotion, and that muscle spindle abundance may be tightly correlated to how a muscle generates work. These insights may be combined with neuromechanics and robotic studies of motor control to help further tease apart the functional drivers of muscle spindle composition.
Collapse
Affiliation(s)
- Roger W. P. Kissane
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - James P. Charles
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Robert W. Banks
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Karl T. Bates
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
37
|
Wilkinson KA. Molecular determinants of mechanosensation in the muscle spindle. Curr Opin Neurobiol 2022; 74:102542. [PMID: 35430481 PMCID: PMC9815952 DOI: 10.1016/j.conb.2022.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Collapse
|
38
|
Mercado-Perez A, Beyder A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:283-296. [PMID: 35022607 PMCID: PMC9059832 DOI: 10.1038/s41575-021-00561-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
The primary function of the gut is to procure nutrients. Synchronized mechanical activities underlie nearly all its endeavours. Coordination of mechanical activities depends on sensing of the mechanical forces, in a process called mechanosensation. The gut has a range of mechanosensory cells. They function either as specialized mechanoreceptors, which convert mechanical stimuli into coordinated physiological responses at the organ level, or as non-specialized mechanosensory cells that adjust their function based on the mechanical state of their environment. All major cell types in the gastrointestinal tract contain subpopulations that act as specialized mechanoreceptors: epithelia, smooth muscle, neurons, immune cells, and others. These cells are tuned to the physical properties of the surrounding tissue, so they can discriminate mechanical stimuli from the baseline mechanical state. The importance of gastrointestinal mechanosensation has long been recognized, but the latest discoveries of molecular identities of mechanosensors and technical advances that resolve the relevant circuitry have poised the field to make important intellectual leaps. This Review describes the mechanical factors relevant for normal function, as well as the molecules, cells and circuits involved in gastrointestinal mechanosensing. It concludes by outlining important unanswered questions in gastrointestinal mechanosensing.
Collapse
Affiliation(s)
- Arnaldo Mercado-Perez
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
39
|
de Nooij JC. Influencers in the Somatosensory System: Extrinsic Control of Sensory Neuron Phenotypes. Neuroscientist 2022:10738584221074350. [DOI: 10.1177/10738584221074350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatosensory neurons in dorsal root ganglia (DRG) comprise several main subclasses: high threshold nociceptors/thermoceptors, high- and low-threshold mechanoreceptors, and proprioceptors. Recent years have seen an explosion in the identification of molecules that underlie the functional diversity of these sensory modalities. They also have begun to reveal the developmental mechanisms that channel the emergence of this subtype diversity, solidifying the importance of peripheral instructive signals. Somatic sensory neurons collectively serve numerous essential physiological and protective roles, and as such, an increased understanding of the processes that underlie the specialization of these sensory subtypes is not only biologically interesting but also clinically relevant.
Collapse
|
40
|
Muñoz-Vergara D, Schreiber KL, Langevin H, Yeh GY, Zhu Y, Rist P, Wayne PM. The Effects of a Single Bout of High- or Moderate-Intensity Yoga Exercise on Circulating Inflammatory Mediators: A Pilot Feasibility Study. Glob Adv Health Med 2022; 11:2164957X221145876. [PMID: 36583069 PMCID: PMC9793102 DOI: 10.1177/2164957x221145876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background There is a knowledge gap in the physiological effects of short-term yoga exercise interventions. Objective To evaluate the feasibility of a randomized controlled trial (RCT) assessing the acute effects of a yoga exercise protocol practiced at 2 intensities (high or moderate) on temporal responses of a battery of systemic circulatory cytokines in healthy yoga-naïve adults. Methods This study was a three-arm, pre-post pilot-RCT employing a single bout of yoga exercise intervention. Groups were high-intensity yoga (HY, n = 10), moderate-intensity yoga (MY, n = 10), and a sedentary, no-intervention control group (CON, n = 10). Blood samples were collected at baseline and post-intervention at 6 timepoints (0-, 30-, 60-, 120-, 180-minutes, and 24-hours post-intervention) and were processed with a pre-defined inflammatory panel of 13 cytokines. Heart rate (HR) was assessed with a Polar H10® device. The PROMIS Pain intensity Questionnaire was used to assess body soreness. Results We demonstrate feasibility of recruitment, randomization, and retention of participants based upon predetermined metrics, including: proportion of eligible to enrolled participants (55%); recruitment period (11-months); participant retention (97%); completion rate for questionnaires (99%); completion of physiological measures (98%); and adherence to the yoga exercise protocol (88%). Cytokine levels over time were heterogeneous within and between groups. Responses of a subset of cytokines were positively correlated with 1 another in high- and moderate-intensity yoga exercise groups but not in the control group. Median values for HR were 91 (IQR: 71-95) in the HY, 95 (IQR: 88-100) in the MY, and 73 (IQR: 72-75) in the CON. Pre-post changes in body soreness after the yoga exercise intervention were most evident in the HY group. Conclusion Along with observed trends in select cytokines, findings encourage a more definitive trial aimed at understanding the short-term effects of yoga exercise on inflammatory immune markers and pain in sedentary healthy adults. Clinicaltrials.gov ID# NCT04444102.
Collapse
Affiliation(s)
- Dennis Muñoz-Vergara
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Dennis Muñoz-Vergara, DVM, MS, MPH,
Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth
Ave, Boston, MA 02215, USA.
| | - Kristin L. Schreiber
- Department of Anesthesiology,
Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| | - Helene Langevin
- National Center for Complementary
and Integrative Health (NCCIH), National Institute of Health
(NIH), Bethesda, MD, USA
| | - Gloria Y. Yeh
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of General Medicine and
Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yehui Zhu
- Department of Radiology, A. A.
Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General
Hospital, Boston, MA, USA
| | - Pamela Rist
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| | - Peter M. Wayne
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Walters MC, Ladle DR. Calcium homeostasis in parvalbumin DRG neurons is altered after sciatic nerve crush and sciatic nerve transection injuries. J Neurophysiol 2021; 126:1948-1958. [PMID: 34758279 PMCID: PMC8715049 DOI: 10.1152/jn.00707.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined postinjury calcium transients in a subpopulation of dorsal root ganglion (DRG) neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex vivo preparations of animals at one of three postsurgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days postinjury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.NEW & NOTEWORTHY This study examines calcium homeostasis after peripheral nerve injury in dorsal root ganglion (DRG) neurons expressing parvalbumin, a group of large-diameter afferents primarily consisting of proprioceptors, using two-photon calcium imaging in the intact DRG. Our findings identify aberrant calcium homeostasis as an additional source of sensory neuron dysfunction following peripheral nerve injury, uncover differences between two injury models, and track how these changes develop and resolve over the course of recovery.
Collapse
Affiliation(s)
- Marie C Walters
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
43
|
Banks RW, Ellaway PH, Prochazka A, Proske U. Secondary endings of muscle spindles: Structure, reflex action, role in motor control and proprioception. Exp Physiol 2021; 106:2339-2366. [PMID: 34676617 DOI: 10.1113/ep089826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the topic of this review? We describe the structure and function of secondary sensory endings of muscle spindles, their reflex action and role in motor control and proprioception. What advances does it highlight? In most mammalian skeletal muscles, secondary endings of spindles are more or much more numerous than primary endings but are much less well studied. By focusing on secondary endings in this review, we aim to redress the balance, draw attention to what is not known and stimulate future research. ABSTRACT Kinaesthesia and the control of bodily movement rely heavily on the sensory input from muscle spindles. Hundreds of these sensory structures are embedded in mammalian muscles. Each spindle has one or more sensory endings and its own complement of small muscle fibres that are activated by the CNS via fusimotor neurons, providing efferent control of sensory responses. Exactly how the CNS wields this influence remains the subject of much fascination and debate. There are two types of sensory endings, primary and secondary, with differing development, morphology, distribution and responsiveness. Spindle primary endings have received more attention than secondaries, although the latter usually outnumber them. This review focuses on the secondary endings. Their location within the spindle, their response properties, the projection of their afferents within the CNS and their reflex actions all suggest that secondaries have certain separate roles from the primaries in proprioception and motor control. Specifically, spindle secondaries seem more adapted than primaries to signalling slow and maintained changes in the relative position of bodily segments, thereby contributing to position sense, postural control and static limb positioning. By highlighting, in this way, the roles of secondary endings, a final aim of the review is to broaden understanding of muscle spindles more generally and of the important contributions they make to both sensory and motor mechanisms.
Collapse
Affiliation(s)
- Robert W Banks
- Department of Biosciences, Durham University, Durham, UK.,Biophysical Sciences Institute, Durham University, Durham, UK
| | - Peter H Ellaway
- Department of Brain Sciences, Imperial College London, London, UK
| | - Arthur Prochazka
- Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | - Uwe Proske
- School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
The cellular and molecular basis of somatosensory neuron development. Neuron 2021; 109:3736-3757. [PMID: 34592169 DOI: 10.1016/j.neuron.2021.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.
Collapse
|
45
|
Dallmann CJ, Karashchuk P, Brunton BW, Tuthill JC. A leg to stand on: computational models of proprioception. CURRENT OPINION IN PHYSIOLOGY 2021; 22:100426. [PMID: 34595361 PMCID: PMC8478261 DOI: 10.1016/j.cophys.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dexterous motor control requires feedback from proprioceptors, internal mechanosensory neurons that sense the body's position and movement. An outstanding question in neuroscience is how diverse proprioceptive feedback signals contribute to flexible motor control. Genetic tools now enable targeted recording and perturbation of proprioceptive neurons in behaving animals; however, these experiments can be challenging to interpret, due to the tight coupling of proprioception and motor control. Here, we argue that understanding the role of proprioceptive feedback in controlling behavior will be aided by the development of multiscale models of sensorimotor loops. We review current phenomenological and structural models for proprioceptor encoding and discuss how they may be integrated with existing models of posture, movement, and body state estimation.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Pierre Karashchuk
- Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Shadrach JL, Gomez-Frittelli J, Kaltschmidt JA. Proprioception revisited: where do we stand? CURRENT OPINION IN PHYSIOLOGY 2021; 21:23-28. [PMID: 34222735 DOI: 10.1016/j.cophys.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Originally referred to as 'muscle sense', the notion that skeletal muscle held a peripheral sensory function was first described early in the 19th century. Foundational experiments by Sherrington in the early 20th century definitively demonstrated that proprioceptors contained within skeletal muscle, tendons, and joints are innervated by sensory neurons and play an important role in the control of movement. In this review, we will highlight several recent advances in the ongoing effort to further define the molecular diversity underlying the proprioceptive sensorimotor system. Together, the work summarized here represents our current understanding of sensorimotor circuit formation during development and the mechanisms that regulate the integration of proprioceptive feedback into the spinal circuits that control locomotion in both normal and diseased states.
Collapse
Affiliation(s)
- Jennifer L Shadrach
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|