1
|
Montague EC, Ozcan B, Sefton E, Wulkan F, Alibhai FJ, Laflamme MA. Human pluripotent stem cell-based cardiac repair: Lessons learned and challenges ahead. Adv Drug Deliv Rev 2025; 222:115594. [PMID: 40334814 DOI: 10.1016/j.addr.2025.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and hPSC-derived cardiac progenitors (hPSC-CPs) represents a promising strategy for regenerating hearts damaged by myocardial infarction (MI). After nearly two decades of experience testing these cell populations in various small- and large-animal MI models, multiple clinical trials have recently been initiated. In this review, we consider the principal lessons learned from preclinical experience with hPSC-CMs and -CPs, focusing on three conclusions that have been supported by the majority of reported transplantation studies. First, hPSC-CMs and -CPs stably engraft in injured hearts and partially remuscularize the infarct scar, but more progress is needed to improve graft cell retention and survival. Second, the transplantation of hPSC-CMs and -CPs has been found to improve contractile function in infarcted hearts, but the mechanistic basis for these effects remains incompletely elucidated. Third, the graft tissue formed by these cells can integrate and activate synchronously with host myocardium, but this capacity for electromechanical integration has been associated with an elevated risk of graft-related arrhythmias. Here, we summarize the preclinical evidence supporting these three observations, identify the relevant gaps and barriers to translation, and summarize ongoing efforts to improve the safety and efficacy of hPSC-CM- and -CP-based regenerative therapies.
Collapse
Affiliation(s)
- E Coulter Montague
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Elana Sefton
- Department of Biomedical Engineering, University of Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kargaran PK, Garmany A, Garmany R, Stutzman MJ, Sadeghian M, Ackerman MJ, Perez-Terzic CM, Terzic A, Behfar A. Maturation of human induced pluripotent stem cell-derived cardiomyocytes promoted by Brachyury priming. Sci Rep 2025; 15:14399. [PMID: 40275010 PMCID: PMC12022343 DOI: 10.1038/s41598-025-97676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiac differentiation of human induced pluripotent stem cells is readily achievable, yet derivation of mature cardiomyocytes has been a recognized limitation. Here, a mesoderm priming approach was engineered to boost the maturation of cardiomyocyte progeny derived from pluripotent stem cells under standard cardiac differentiation conditions. Functional and structural hallmarks of maturity were assessed through multiparametric evaluation of cardiomyocytes derived from induced pluripotent stem cells following transfection of the mesoderm transcription factor Brachyury prior to initiation of lineage differentiation. Transfection with Brachyury resulted in earlier induction of a cardiopoietic state as hallmarked by early upregulation of the cardiac-specific transcription factors NKX2.5, GATA4, TBX20. Enhanced sarcomere maturity following Brachyury conditioning was documented by an increase in the proportion of cells expressing the ventricular isoform of myosin light chain and an increase in sarcomere length. Mesoderm primed cells displayed increased reliance on mitochondrial respiration as determined by increased mitochondrial size and a greater basal oxygen consumption rate. Further, Brachyury priming drove maturation of calcium handling enabling transfected cells to maintain calcium transient morphology at higher external field stimulation rates and augmented both calcium release and sequestration kinetics. In addition, transfected cells displayed a more mature action potential morphology with increased depolarization and repolarization kinetics. Derived cells transfected with Brachyury demonstrated increased toxicity response to doxorubicin as determined by a compromise in calcium transient morphology. Thus, Brachyury pre-treatment here achieved a streamlined strategy to promote maturity of human pluripotent stem cell-derived cardiomyocytes establishing a generalizable platform ready for deployment.
Collapse
Affiliation(s)
- Parisa K Kargaran
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Armin Garmany
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ramin Garmany
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Stutzman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Maryam Sadeghian
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Windland Smith Rice Sudden Death Genomics Laboratory, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Wen H, Chandrasekaran P, Jin A, Pankin J, Lu M, Liberti DC, Zepp JA, Jain R, Morrisey EE, Michki SN, Frank DB. A spatiotemporal cell atlas of cardiopulmonary progenitor cell allocation during development. Cell Rep 2025; 44:115513. [PMID: 40178979 DOI: 10.1016/j.celrep.2025.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The heart and lung co-orchestrate their development during organogenesis. The mesoderm surrounding both the developing heart and anterior foregut endoderm provides instructive cues guiding cardiopulmonary development. Additionally, it serves as a source of cardiopulmonary progenitor cells (CPPs) expressing Wnt2 that give rise to both cardiac and lung mesodermal cell lineages. Despite the mesoderm's critical importance to both heart and lung development, mechanisms guiding CPP specification are unclear. To address this, we lineage traced Wnt2+ CPPs at E8.5 and performed single-cell RNA sequencing on collected progeny across the developmental lifespan. Using computational analyses, we created a CPP-derived cell atlas that revealed a previously underappreciated spectrum of CPP-derived cell lineages, including all lung mesodermal lineages, ventricular cardiomyocytes, and epicardial and pericardial cells. By integrating spatial mapping with computational cell trajectory analysis and transcriptional profiling, we have provided a potential molecular and cellular roadmap for cardiopulmonary development.
Collapse
Affiliation(s)
- Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Josh Pankin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvia N Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA.
| | - David B Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Li W, Luo X, Strano A, Arun S, Gamm O, Poetsch MS, Hasse M, Steiner RP, Fischer K, Pöche J, Ulbricht Y, Lesche M, Trimaglio G, El-Armouche A, Dahl A, Mirtschink P, Guan K, Schubert M. Comprehensive promotion of iPSC-CM maturation by integrating metabolic medium with nanopatterning and electrostimulation. Nat Commun 2025; 16:2785. [PMID: 40118846 PMCID: PMC11928738 DOI: 10.1038/s41467-025-58044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
The immaturity of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a major limitation for their use in drug screening to identify pro-arrhythmogenic or cardiotoxic molecules. Here, we demonstrate an approach that combines lipid-enriched maturation medium with a high concentration of calcium, nanopatterning of culture surfaces and electrostimulation to generate iPSC-CMs with advanced electrophysiological, structural and metabolic phenotypes. Systematic testing reveals that electrostimulation is the key driver of enhanced mitochondrial development and metabolic maturation and improved electrophysiological properties of iPSC-CMs. Increased calcium concentration strongly promotes electrophysiological maturation, while nanopatterning primarily facilitates sarcomere organisation with minor effect on electrophysiological properties. Transcriptome analysis reveals that activation of HMCES and TFAM targets contributes to mitochondrial development, whereas downregulation of MAPK/PI3K and SRF targets is associated with iPSC-CM polyploidy. These findings provide mechanistic insights into iPSC-CM maturation, paving the way for pharmacological responses that more closely resemble those of adult CMs.
Collapse
Affiliation(s)
- Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Anna Strano
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Shakthi Arun
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Gamm
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Marcel Hasse
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Robert-Patrick Steiner
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Konstanze Fischer
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Jessie Pöche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Ying Ulbricht
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Giulia Trimaglio
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Yamada T, Trentesaux C, Brunger JM, Xiao Y, Stevens AJ, Martyn I, Kasparek P, Shroff NP, Aguilar A, Bruneau BG, Boffelli D, Klein OD, Lim WA. Synthetic organizer cells guide development via spatial and biochemical instructions. Cell 2025; 188:778-795.e18. [PMID: 39706189 PMCID: PMC12027307 DOI: 10.1016/j.cell.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/10/2024] [Accepted: 11/08/2024] [Indexed: 12/23/2024]
Abstract
In vitro development relies primarily on treating progenitor cells with media-borne morphogens and thus lacks native-like spatial information. Here, we engineer morphogen-secreting organizer cells programmed to self-assemble, via cell adhesion, around mouse embryonic stem (ES) cells in defined architectures. By inducing the morphogen WNT3A and its antagonist DKK1 from organizer cells, we generated diverse morphogen gradients, varying in range and steepness. These gradients were strongly correlated with morphogenetic outcomes: the range of minimum-maximum WNT activity determined the resulting range of anterior-to-posterior (A-P) axis cell lineages. Strikingly, shallow WNT activity gradients, despite showing truncated A-P lineages, yielded higher-resolution tissue morphologies, such as a beating, chambered cardiac-like structure associated with an endothelial network. Thus, synthetic organizer cells, which integrate spatial, temporal, and biochemical information, provide a powerful way to systematically and flexibly direct the development of ES or other progenitor cells in different directions within the morphogenetic landscape.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Coralie Trentesaux
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan M Brunger
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yini Xiao
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam J Stevens
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Iain Martyn
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Petr Kasparek
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neha P Shroff
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angelica Aguilar
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA 90048, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA 90048, USA.
| | - Wendell A Lim
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Piven OO, Vaičiulevičiūtė R, Bernotiene E, Dobrzyn P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol (Oxf) 2025; 241:e14271. [PMID: 39801134 DOI: 10.1111/apha.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes. Therefore, special attention is given to the potential of synthetic biology, in particular the CRISPR system, for the targeted conversion of only certain subpopulations of fibroblasts into cardiomyocytes. However, obtaining functionally and metabolically mature cardiomyocytes remains a challenge despite the range of recently developed approaches. In this review, we summarized current knowledge on the function and diversity of human cardiac fibroblasts and alternative cell sources for in vitro human cardiomyocyte models. We examined in detail the transcription factors that initiate cardiomyogenic reprogramming and their interactions. Additionally, we critically analyzed the strategies used for the metabolic and physiological maturation of induced cardiomyocytes.
Collapse
Affiliation(s)
- Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raminta Vaičiulevičiūtė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech University, Vilnius, Lithuania
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Liu T, Chen X, Sun Q, Li J, Wang Q, Wei P, Wang W, Li C, Wang Y. Valerenic acid attenuates pathological myocardial hypertrophy by promoting the utilization of multiple substrates in the mitochondrial energy metabolism. J Adv Res 2025; 68:241-256. [PMID: 38373650 PMCID: PMC11785575 DOI: 10.1016/j.jare.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Valerenic acid (VA) is a unique and biologically active component in Valeriana officinalis L., which has been reported to have a regulatory effect on the cardiovascular system. However, its therapeutic effects on pathological myocardial hypertrophy (PMH) and the underlying mechanisms are undefined. OBJECTIVES Our study aims to elucidate how VA improves PMH, and preliminarily discuss its mechanism. METHODS The efficacy of VA on PMH was confirmed by in vivo and in vitro experiments and the underlying mechanism was investigated by molecular dynamics (MD) simulations and specific siRNA interference. RESULTS VA enhanced cardiomyocyte fatty acid oxidation (FAO), inhibited hyper-activated glycolysis, and improved the unbalanced pyruvate-lactate axis. VA could significantly improve impaired mitochondrial function and reduce the triglyceride (TG) in the hypertrophic myocardium while reducing the lactate (LD) content. Molecular mechanistic studies showed that VA up-regulated the expression of peroxisome proliferator-activated receptor-α (PPARα) and downstream FAO-related genes including CD36, CPT1A, EHHADH, and MCAD. VA reduced the expression of ENO1 and PDK4, the key enzymes in glycolysis. Meanwhile, VA improved the pyruvate-lactate axis and promoted the aerobic oxidation of pyruvate by inhibiting LDAH and MCT4. MD simulations confirmed that VA can bind with the F273 site of PPARα, which proposes VA as a potential activator of the PPARα. CONCLUSION Our results demonstrated that VA might be a potent activator for the PPARα-mediated pathway. VA directly targets the PPARα and subsequently promotes energy metabolism to attenuate PMH, which can be applied as a potentially effective drug for the treatment of HF.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junjun Li
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangdong 510006, China..
| | - Yong Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
8
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
10
|
Siddique AB, Williams KA, Swami NS. Nanogrooved Elastomeric Diaphragm Arrays for Assessment of Cardiomyocytes under Synergistic Effects of Circular Mechanical Stimuli and Electrical Conductivity to Enhance Intercellular Communication. ACS Biomater Sci Eng 2025; 11:672-681. [PMID: 39679605 PMCID: PMC11733923 DOI: 10.1021/acsbiomaterials.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Cardiovascular diseases remain the leading cause of mortality, necessitating advancements in in vitro cardiac tissue engineering platforms for improved disease modeling, drug screening, and regenerative therapies. The chief challenge to recapitulating the beating behavior of cardiomyocytes is creation of the circular stress profile experienced by hollow organs in the natural heart due to filling pressure and integrated strategies for intercellular communication to promote cell-to-cell connections. We present a platform featuring addressable arrays of nanogrooved polydimethylsiloxane (PDMS) diaphragms for cell alignment and circular mechanical stimulation, with embedded silver nanowires (AgNWs) for electrical cues, so that cardiomyocyte functionality can be assessed under these synergistic influences. Central to our innovation is a two-layer PDMS diaphragm design that electrically isolates the liquid metal (EGaIn) strain sensor in the bottom layer to enable detection and control of mechanical stimulation from conductive portions of embedded AgNWs in the top layer that supports cardiomyocyte culture and communication. In this manner, through localized detection and control of the circular mechanical stimulation, the essential role of multiaxial stretching on cardiomyocyte function is elucidated based on their contractility, sarcomere length, and connexin-43 expression. This in vitro platform can potentially transform cardiac tissue engineering, drug screening, and precision medicine approaches.
Collapse
Affiliation(s)
- Abdullah-Bin Siddique
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Keith A. Williams
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan S. Swami
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
11
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Jones LS, Filippi M, Michelis MY, Balciunaite A, Yasa O, Aviel G, Narciso M, Freedrich S, Generali M, Tzahor E, Katzschmann RK. Multidirectional Filamented Light Biofabrication Creates Aligned and Contractile Cardiac Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404509. [PMID: 39373330 DOI: 10.1002/advs.202404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Indexed: 10/08/2024]
Abstract
Biofabricating 3D cardiac tissues that mimic the native myocardial tissue is a pivotal challenge in tissue engineering. In this study, we fabricate 3D cardiac tissues with controlled, multidirectional cellular alignment and directed or twisting contractility. We show that multidirectional filamented light can be used to biofabricate high-density (up to 60 × 106 cells mL-1) tissues, with directed uniaxial contractility (3.8x) and improved cell-to-cell connectivity (1.6x gap junction expression). Furthermore, by using multidirectional light projection, we can partially overcome cell-induced light attenuation, and fabricate larger tissues with multidirectional cellular alignment. For example, we fabricate a tri-layered myocardium-like tissue and a bi-layered tissue with torsional contractility. The approach provides a new strategy to rapidly fabricate aligned cardiac tissues relevant to regenerative medicine and biohybrid robotics.
Collapse
Affiliation(s)
- Lewis S Jones
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Mike Yan Michelis
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Aiste Balciunaite
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Gal Aviel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Maria Narciso
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, 8600, Switzerland
- Experimental Continuum Mechanics, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Susanne Freedrich
- ETH Phenomics Center, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, 8952, Switzerland
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
13
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Wu SD, Weller H, Vossmeyer T, Hsu SH. Motion Sensing by a Highly Sensitive Nanogold Strain Sensor in a Biomimetic 3D Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56599-56610. [PMID: 39253872 PMCID: PMC11503636 DOI: 10.1021/acsami.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Recent advancements in flexible electronics have highlighted their potential in biomedical applications, primarily due to their human-friendly nature. This study introduces a new flexible electronic system designed for motion sensing in a biomimetic three-dimensional (3D) environment. The system features a self-healing gel matrix (chitosan-based hydrogel) that effectively mimics the dynamics of the extracellular matrix (ECM), and is integrated with a highly sensitive thin-film resistive strain sensor, which is fabricated by incorporating a cross-linked gold nanoparticle (GNP) thin film as the active conductive layer onto a biocompatible microphase-separated polyurethane (PU) substrate through a clean, rapid, and high-precision contact printing method. The GNP-PU strain sensor demonstrates high sensitivity (a gauge factor of ∼50), good stability, and waterproofing properties. The feasibility of detecting small motion was evaluated by sensing the beating of human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte spheroids embedded in the gel matrix. The integration of these components exemplifies a proof-of-concept for using flexible electronics comprising self-healing hydrogel and thin-film nanogold in cardiac sensing and offers promising insights into the development of next-generation biomimetic flexible electronic devices.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- Fraunhofer
Center for Applied Nanotechnology CAN, Grindelallee 117, Hamburg 20146, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Shan-hui Hsu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Cellular and System Medicine, National
Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
15
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
16
|
Kobayashi H, Tohyama S, Ichimura H, Ohashi N, Chino S, Soma Y, Tani H, Tanaka Y, Yang X, Shiba N, Kadota S, Haga K, Moriwaki T, Morita-Umei Y, Umei TC, Sekine O, Kishino Y, Kanazawa H, Kawagishi H, Yamada M, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Circulation 2024; 150:611-621. [PMID: 38666382 DOI: 10.1161/circulationaha.123.064876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/21/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Noburo Ohashi
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Xiao Yang
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Kotaro Haga
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Taijun Moriwaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
- Kanagawa Institute of Industrial Science and Technology, Japan (Y.M.-U.)
| | - Tomohiko C Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology (H. Kawagishi, M.Y.), Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Takafumi Naito
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine (K.N., T.N.), Shinshu University, Matsumoto, Japan
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (K.N., T.N.)
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery (H.I., N.O., S.C., Y.T., T.S.), Shinshu University, Matsumoto, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine (H. Kobayashi, K.K.), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- School of Medicine, Department of Regenerative Science and Medicine (H.I., Y.T., X.Y., N.S., S.K., Y. Shiba), Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences (S.K., H. Kawagishi, K.K., Y. Shiba), Shinshu University, Matsumoto, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (S.T., Y. Soma, H.T., K.H., T.M., Y.M.-U., T.C.U., O.S., Y.K., H. Kanazawa, K.F.)
| |
Collapse
|
17
|
Liu L, Li C, Yu L, Wang Y, Pan X, Huang J. Deciphering the role of SMARCA4 in cardiac disorders: Insights from single-cell studies on dilated cardiomyopathy and coronary heart disease. Cell Signal 2024; 119:111150. [PMID: 38552892 DOI: 10.1016/j.cellsig.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) and coronary heart disease (CHD) stand as two of the foremost causes of mortality. However, the comprehensive comprehension of the regulatory mechanisms governing DCM and CHD remains limited, particularly from the vantage point of single-cell transcriptional analysis. METHOD We used the GSE121893 dataset from the GEO database, analyzing single-cell expressions with tools like DropletUtils, Seurat, and Monocle. We also utilized the GSVA package for comparing gene roles in DCM and CHD, Finally, we conducted qRT-PCR and Western blot analyses to measure the expression levels of SMARCA4, Col1A1, Col3A1 and α-SMA, and the role of SMARCA4 on fibroblasts were explored by EdU and Transwell assay. RESULTS Our analysis identified six cell types in heart tissue, with fibroblasts showing the most interaction with other cells. DEGs in fibroblasts were linked to muscle development and morphogenesis. Pseudotime analysis revealed the dynamics of fibroblast changes in both the normal and disease groups and many transcription factors (TFs) potentially involved in this process. Among these TFs, SMARCA4 which was translated into protein BRG1, showed the most significantly difference. In vivo experiments have demonstrated that SMARCA4 indeed promoted fibroblasts proliferation and migration. CONCLUSION This study provides a clearer understanding of cell-type dynamics in heart diseases, emphasizing the role of fibroblasts and the significance of SMARCA4 in their function. Our results offer insights into the cellular mechanisms underlying DCM and CHD, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chengban Li
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
18
|
Chen EZ, Kannan S, Murphy S, Farid M, Kwon C. Protocol for quantifying stem-cell-derived cardiomyocyte maturity using transcriptomic entropy score. STAR Protoc 2024; 5:103083. [PMID: 38781077 PMCID: PMC11145390 DOI: 10.1016/j.xpro.2024.103083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The inability to quantify cardiomyocyte (CM) maturation remains a significant barrier to evaluating the effects of ongoing efforts to produce adult-like CMs from pluripotent stem cells (PSCs). Here, we present a protocol to quantify stem-cell-derived CM maturity using a single-cell RNA sequencing-based metric "entropy score." We describe steps for generating an entropy score using customized R code. This tool can be used to quantify maturation levels of PSC-CMs and potentially other cell types. For complete details on the use and execution of this protocol, please refer to Kannan et al.1.
Collapse
Affiliation(s)
- Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Michael Farid
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA; Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine; Baltimore, MD, USA.
| |
Collapse
|
19
|
Saotome H, Yatsuka Y, Minowa O, Shinotsuka K, Tsuchida K, Hirose H, Dai K, Tokuno H, Hayakawa T, Hiranuma H, Hasegawa A, Nakatomi I, Okazaki A, Okazaki Y. Microstripe pattern substrate consisting of alternating planar and nanoprotrusive regions improved hiPSC-derived cardiomyocytes' unidirectional alignment and functional properties. Biomed Mater 2024; 19:045031. [PMID: 38815609 DOI: 10.1088/1748-605x/ad525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
The alignment of each cell in human myocardium is considered critical for the efficient movement of cardiac tissue. We investigated 96-well microstripe-patterned plates to align human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), which resemble fetal myocardium. The aligned CMs (ACMs) cultured on the microstripe-patterned plates exhibited pathology, motor function, gene expression, and drug response that more closely resembled those of adult cells than did unaligned CMs cultured on a flat plate (FCMs). We used these ACMs to evaluate drug side effects and efficacy, and to determine whether these were similar to adult-like responses. When CMs from patients with hypertrophic cardiomyopathy (HCMs) were seeded and cultured on the microstripe-patterned plates or layered on top of the ACMs, both sets of HCMs showed increased heart rate and synchronized contractions, indicating improved cardiac function. It is suggested that the ACMs could be used for drug screening as cells representative of adult-like CMs and be transplanted in the form of a cell sheet for regenerative treatment of heart failure.
Collapse
Affiliation(s)
- Hideo Saotome
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Osamu Minowa
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei Shinotsuka
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Katsuharu Tsuchida
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hitomi Hirose
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kotaro Dai
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Hisako Tokuno
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Tomohiro Hayakawa
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Next Generation Medical Business Development Division, Sysmex Corporation, Kobe, Japan
| | - Hidenori Hiranuma
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Akari Hasegawa
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Ichiro Nakatomi
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Atsuko Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
20
|
Htet M, Lei S, Bajpayi S, Gangrade H, Arvanitis M, Zoitou A, Murphy S, Chen EZ, Koleini N, Lin BL, Kwon C, Tampakakis E. A transcriptional enhancer regulates cardiac maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:666-684. [PMID: 39196225 DOI: 10.1038/s44161-024-00484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/02/2024] [Indexed: 08/29/2024]
Abstract
Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.
Collapse
Grants
- K99 HL155840 NHLBI NIH HHS
- 2023- MSCRFL-5984 Maryland Stem Cell Research Fund (MSCRF)
- 5K08HL166690 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA34660077 American Heart Association (American Heart Association, Inc.)
- TPA1058685 American Heart Association (American Heart Association, Inc.)
- T32HL007227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL-145135 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL156947 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL145135 NHLBI NIH HHS
- MSCRFD-6139 Maryland Stem Cell Research Fund (MSCRF)
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Harshi Gangrade
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean Murphy
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Navid Koleini
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Brian Leei Lin
- Department of Cell Biology, Neurobiology, and Anatomy and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chulan Kwon
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Bliley JM, Stang MA, Behre A, Feinberg AW. Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes. Stem Cells Transl Med 2024; 13:425-435. [PMID: 38502194 PMCID: PMC11092277 DOI: 10.1093/stcltm/szae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
The ultimate goal of cardiac tissue engineering is to generate new muscle to repair or replace the damaged heart. This requires advances in stem cell technologies to differentiate billions of cardiomyocytes, together with advanced biofabrication approaches such as 3D bioprinting to achieve the requisite structure and contractile function. In this concise review, we cover recent progress in 3D bioprinting of cardiac tissue using pluripotent stem cell-derived cardiomyocytes, key design criteria for engineering aligned cardiac tissues, and ongoing challenges in the field that must be addressed to realize this goal.
Collapse
Affiliation(s)
- Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maria A Stang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne Behre
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Deogharia M, Venegas-Zamora L, Agrawal A, Shi M, Jain AK, McHugh KJ, Altamirano F, Marian AJ, Gurha P. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc Res 2024; 120:630-643. [PMID: 38230606 PMCID: PMC11074792 DOI: 10.1093/cvr/cvae014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
AIMS Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| | - Leslye Venegas-Zamora
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
| | - Akanksha Agrawal
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
| | - Miusi Shi
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
- Department of Chemistry, Rice University, Houston, 6500 Main Street, Houston, TX 77030, USA
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| |
Collapse
|
23
|
Hamidzada H, Pascual-Gil S, Wu Q, Kent GM, Massé S, Kantores C, Kuzmanov U, Gomez-Garcia MJ, Rafatian N, Gorman RA, Wauchop M, Chen W, Landau S, Subha T, Atkins MH, Zhao Y, Beroncal E, Fernandes I, Nanthakumar J, Vohra S, Wang EY, Sadikov TV, Razani B, McGaha TL, Andreazza AC, Gramolini A, Backx PH, Nanthakumar K, Laflamme MA, Keller G, Radisic M, Epelman S. Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways. NATURE CARDIOVASCULAR RESEARCH 2024; 3:567-593. [PMID: 39086373 PMCID: PMC11290557 DOI: 10.1038/s44161-024-00471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2024] [Indexed: 08/02/2024]
Abstract
Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.
Collapse
Affiliation(s)
- Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
| | - Simon Pascual-Gil
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Gregory M. Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ON
| | - M. Juliana Gomez-Garcia
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | | | | | - Wenliang Chen
- Scientific Research Center, the Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Tasnia Subha
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael H. Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Yimu Zhao
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Erika Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Jared Nanthakumar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Erika Y. Wang
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States
| | | | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, United States
- Department of Cardiology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States
| | - Tracy L. McGaha
- Department of Immunology, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Ana C. Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON
- Mitochondrial Innovation Initiative, Toronto, ON
| | - Anthony Gramolini
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
| | - Peter H. Backx
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
- Department of Biology, York University, Toronto, ON
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Milica Radisic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, ON
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| |
Collapse
|
24
|
Han X, Qu L, Yu M, Ye L, Shi L, Ye G, Yang J, Wang Y, Fan H, Wang Y, Tan Y, Wang C, Li Q, Lei W, Chen J, Liu Z, Shen Z, Li Y, Hu S. Thiamine-modified metabolic reprogramming of human pluripotent stem cell-derived cardiomyocyte under space microgravity. Signal Transduct Target Ther 2024; 9:86. [PMID: 38584163 PMCID: PMC10999445 DOI: 10.1038/s41392-024-01791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
During spaceflight, the cardiovascular system undergoes remarkable adaptation to microgravity and faces the risk of cardiac remodeling. Therefore, the effects and mechanisms of microgravity on cardiac morphology, physiology, metabolism, and cellular biology need to be further investigated. Since China started constructing the China Space Station (CSS) in 2021, we have taken advantage of the Shenzhou-13 capsule to send human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to the Tianhe core module of the CSS. In this study, hPSC-CMs subjected to space microgravity showed decreased beating rate and abnormal intracellular calcium cycling. Metabolomic and transcriptomic analyses revealed a battery of metabolic remodeling of hPSC-CMs in spaceflight, especially thiamine metabolism. The microgravity condition blocked the thiamine intake in hPSC-CMs. The decline of thiamine utilization under microgravity or by its antagonistic analog amprolium affected the process of the tricarboxylic acid cycle. It decreased ATP production, which led to cytoskeletal remodeling and calcium homeostasis imbalance in hPSC-CMs. More importantly, in vitro and in vivo studies suggest that thiamine supplementation could reverse the adaptive changes induced by simulated microgravity. This study represents the first astrobiological study on the China Space Station and lays a solid foundation for further aerospace biomedical research. These data indicate that intervention of thiamine-modified metabolic reprogramming in human cardiomyocytes during spaceflight might be a feasible countermeasure against microgravity.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Liujia Shi
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Guangfu Ye
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hao Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxia Liu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
26
|
Rapöhn M, Cyganek L, Voigt N, Hasenfuß G, Lehnart SE, Wegener JW. Noninvasive analysis of contractility during identical maturations revealed two phenotypes in ventricular but not in atrial iPSC-CM. Am J Physiol Heart Circ Physiol 2024; 326:H599-H611. [PMID: 38180453 PMCID: PMC11221812 DOI: 10.1152/ajpheart.00527.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into atrial and ventricular cardiomyocytes to allow for personalized drug screening. A hallmark of differentiation is the manifestation of spontaneous beating in a two-dimensional (2-D) cell culture. However, an outstanding observation is the high variability in this maturation process. We valued that contractile parameters change during differentiation serving as an indicator of maturation. Consequently, we recorded noninvasively spontaneous motion activity during the differentiation of male iPSC toward iPSC cardiomyocytes (iPSC-CMs) to further analyze similar maturated iPSC-CMs. Surprisingly, our results show that identical differentiations into ventricular iPSC-CMs are variable with respect to contractile parameters resulting in two distinct subpopulations of ventricular-like cells. In contrast, differentiation into atrial iPSC-CMs resulted in only one phenotype. We propose that the noninvasive and cost-effective recording of contractile activity during maturation using a smartphone device may help to reduce the variability in results frequently reported in studies on ventricular iPSC-CMs.NEW & NOTEWORTHY Differentiation of induced pluripotent stem cells (iPSCs) into iPSC-derived cardiomyocytes (iPSC-CMs) exhibits a high variability in mature parameters. Here, we monitored noninvasively contractile parameters of iPSC-CM during full-time differentiation using a smartphone device. Our results show that parallel maturations of iPSCs into ventricular iPSC-CMs, but not into atrial iPSC-CMs, resulted in two distinct subpopulations of iPSC-CMs. These findings suggest that our cost-effective method may help to compare iPSC-CMs at the same maturation level.
Collapse
Affiliation(s)
- Marcel Rapöhn
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Department of Pharmacology and Toxicology, University Medical Center of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Jörg W Wegener
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| |
Collapse
|
27
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
28
|
Hu S, Li Z, Liu H, Cao W, Meng Y, Liu C, He S, Lin Q, Shang M, Lin F, Yi N, Wang H, Sachinidis A, Ying Q, Li L, Peng L. Kcnh2 deletion is associated with rat embryonic development defects via destruction of KCNH2‑integrin β1 complex. Int J Mol Med 2024; 53:14. [PMID: 38063256 PMCID: PMC10760793 DOI: 10.3892/ijmm.2023.5338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.5‑7 weeks post‑conception) suggested that potassium voltage‑gated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin β1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin β1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 β (GSK‑3β)/β‑catenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.
Collapse
Affiliation(s)
- Sangyu Hu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhigang Li
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Huan Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenze Cao
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yilei Meng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Chang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Siyu He
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Qin Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Mengyue Shang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fang Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Na Yi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Hanrui Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Agapios Sachinidis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology, Working Group Sachinidis, Center for Molecular Medicine, D-50931 Cologne, Germany
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Li
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Department of Medical Genetics Tongji University School of Medicine, Shanghai 200331, P.R. China
| | - Luying Peng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Institute of Medical Genetics, Tongji University, Shanghai 200331, P.R. China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Department of Medical Genetics Tongji University School of Medicine, Shanghai 200331, P.R. China
| |
Collapse
|
29
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Selvakumar D, Clayton ZE, Prowse A, Dingwall S, Kim SK, Reyes L, George J, Shah H, Chen S, Leung HHL, Hume RD, Tjahjadi L, Igoor S, Skelton RJP, Hing A, Paterson H, Foster SL, Pearson L, Wilkie E, Marcus AD, Jeyaprakash P, Wu Z, Chiu HS, Ongtengco CFJ, Mulay O, McArthur JR, Barry T, Lu J, Tran V, Bennett R, Kotake Y, Campbell T, Turnbull S, Gupta A, Nguyen Q, Ni G, Grieve SM, Palpant NJ, Pathan F, Kizana E, Kumar S, Gray PP, Chong JJH. Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:145-165. [PMID: 39196193 PMCID: PMC11358004 DOI: 10.1038/s44161-023-00419-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/26/2023] [Indexed: 08/29/2024]
Abstract
Preclinical data have confirmed that human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can remuscularize the injured or diseased heart, with several clinical trials now in planning or recruitment stages. However, because ventricular arrhythmias represent a complication following engraftment of intramyocardially injected PSC-CMs, it is necessary to provide treatment strategies to control or prevent engraftment arrhythmias (EAs). Here, we show in a porcine model of myocardial infarction and PSC-CM transplantation that EAs are mechanistically linked to cellular heterogeneity in the input PSC-CM and resultant graft. Specifically, we identify atrial and pacemaker-like cardiomyocytes as culprit arrhythmogenic subpopulations. Two unique surface marker signatures, signal regulatory protein α (SIRPA)+CD90-CD200+ and SIRPA+CD90-CD200-, identify arrhythmogenic and non-arrhythmogenic cardiomyocytes, respectively. Our data suggest that modifications to current PSC-CM-production and/or PSC-CM-selection protocols could potentially prevent EAs. We further show that pharmacologic and interventional anti-arrhythmic strategies can control and potentially abolish these arrhythmias.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Prowse
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Steve Dingwall
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Sul Ki Kim
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Leila Reyes
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Jacob George
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Haisam Shah
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Siqi Chen
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Halina H L Leung
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Robert D Hume
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Laurentius Tjahjadi
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Rhys J P Skelton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alfred Hing
- Department of Cardiothoracic Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hugh Paterson
- Sydney Imaging, Core Research Facility, the University of Sydney, Sydney, New South Wales, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Lachlan Pearson
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Emma Wilkie
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alan D Marcus
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Prajith Jeyaprakash
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Zhixuan Wu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Han Shen Chiu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Cherica Felize J Ongtengco
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Onkar Mulay
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey R McArthur
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Tony Barry
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Vu Tran
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Richard Bennett
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Samual Turnbull
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anunay Gupta
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Guiyan Ni
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Faculty of Medicine and Health, Charles Perkins Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Faraz Pathan
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
- Sydney Medical School, Charles Perkins Centre Nepean, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Peter P Gray
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - James J H Chong
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
32
|
Forghani P, Rashid A, Armand LC, Wolfson D, Liu R, Cho HC, Maxwell JT, Jo H, Salaita K, Xu C. Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2024; 14:2243. [PMID: 38278855 PMCID: PMC10817987 DOI: 10.1038/s41598-024-52453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous potential for basic research and translational application. However, these cells structurally and functionally resemble fetal cardiomyocytes, which is a major limitation of these cells. Microgravity can significantly alter cell behavior and function. Here we investigated the effect of simulated microgravity on hiPSC-CM maturation. Following culture under simulated microgravity in a random positioning machine for 7 days, 3D hiPSC-CMs had increased mitochondrial content as detected by a mitochondrial protein and mitochondrial DNA to nuclear DNA ratio. The cells also had increased mitochondrial membrane potential. Consistently, simulated microgravity increased mitochondrial respiration in 3D hiPSC-CMs, as indicated by higher levels of maximal respiration and ATP content, suggesting improved metabolic maturation in simulated microgravity cultures compared with cultures under normal gravity. Cells from simulated microgravity cultures also had improved Ca2+ transient parameters, a functional characteristic of more mature cardiomyocytes. In addition, these cells had improved structural properties associated with more mature cardiomyocytes, including increased sarcomere length, z-disc length, nuclear diameter, and nuclear eccentricity. These findings indicate that microgravity enhances the maturation of hiPSC-CMs at the structural, metabolic, and functional levels.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Aysha Rashid
- Biomolecular Chemistry, Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Lawrence C Armand
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - David Wolfson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Rui Liu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Hanjoong Jo
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Khalid Salaita
- Biomolecular Chemistry, Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Strohm EM, Callaghan NI, Ding Y, Latifi N, Rafatian N, Funakoshi S, Fernandes I, Reitz CJ, Di Paola M, Gramolini AO, Radisic M, Keller G, Kolios MC, Simmons CA. Noninvasive Quantification of Contractile Dynamics in Cardiac Cells, Spheroids, and Organs-on-a-Chip Using High-Frequency Ultrasound. ACS NANO 2024; 18:314-327. [PMID: 38147684 DOI: 10.1021/acsnano.3c06325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-based models that mimic in vivo heart physiology are poised to make significant advances in cardiac disease modeling and drug discovery. In these systems, cardiomyocyte (CM) contractility is an important functional metric, but current measurement methods are inaccurate and low-throughput or require complex setups. To address this need, we developed a standalone noninvasive, label-free ultrasound technique operating at 40-200 MHz to measure the contractile kinetics of cardiac models, ranging from single adult CMs to 3D microtissue constructs in standard cell culture formats. The high temporal resolution of 1000 fps resolved the beat profile of single mouse CMs paced at up to 9 Hz, revealing limitations of lower speed optical based measurements to resolve beat kinetics or characterize aberrant beats. Coupling of ultrasound with traction force microscopy enabled the measurement of the CM longitudinal modulus and facile estimation of adult mouse CM contractile forces of 2.34 ± 1.40 μN, comparable to more complex measurement techniques. Similarly, the beat rate, rhythm, and drug responses of CM spheroid and microtissue models were measured, including in configurations without optical access. In conclusion, ultrasound can be used for the rapid characterization of CM contractile function in a wide range of commonly studied configurations ranging from single cells to 3D tissue constructs using standard well plates and custom microdevices, with applications in cardiac drug discovery and cardiotoxicity evaluation.
Collapse
Affiliation(s)
- Eric M Strohm
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
| | - Neal I Callaghan
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Yu Ding
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Neda Latifi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
| | - Naimeh Rafatian
- Toronto General Hospital Research Institute, Toronto, M5G 2C4, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Cristine J Reitz
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michelle Di Paola
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
- Toronto General Hospital Research Institute, Toronto, M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, M5B 2K3, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Center for Heart Research, Toronto, M5G 1M1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| |
Collapse
|
34
|
Al-attar R, Jargstorf J, Romagnuolo R, Jouni M, Alibhai FJ, Lampe PD, Solan JL, Laflamme MA. Casein Kinase 1 Phosphomimetic Mutations Negatively Impact Connexin-43 Gap Junctions in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Biomolecules 2024; 14:61. [PMID: 38254663 PMCID: PMC10813327 DOI: 10.3390/biom14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Collapse
Affiliation(s)
- Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Joseph Jargstorf
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Mariam Jouni
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Joell L. Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
35
|
Volmert B, Kiselev A, Juhong A, Wang F, Riggs A, Kostina A, O'Hern C, Muniyandi P, Wasserman A, Huang A, Lewis-Israeli Y, Panda V, Bhattacharya S, Lauver A, Park S, Qiu Z, Zhou C, Aguirre A. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat Commun 2023; 14:8245. [PMID: 38086920 PMCID: PMC10716495 DOI: 10.1038/s41467-023-43999-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pluripotent stem cell-derived organoids can recapitulate significant features of organ development in vitro. We hypothesized that creating human heart organoids by mimicking aspects of in utero gestation (e.g., addition of metabolic and hormonal factors) would lead to higher physiological and anatomical relevance. We find that heart organoids produced using this self-organization-driven developmental induction strategy are remarkably similar transcriptionally and morphologically to age-matched human embryonic hearts. We also show that they recapitulate several aspects of cardiac development, including large atrial and ventricular chambers, proepicardial organ formation, and retinoic acid-mediated anterior-posterior patterning, mimicking the developmental processes found in the post-heart tube stage primitive heart. Moreover, we provide proof-of-concept demonstration of the value of this system for disease modeling by exploring the effects of ondansetron, a drug administered to pregnant women and associated with congenital heart defects. These findings constitute a significant technical advance for synthetic heart development and provide a powerful tool for cardiac disease modeling.
Collapse
Affiliation(s)
- Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ashlin Riggs
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Colin O'Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron Wasserman
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda Huang
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan Lewis-Israeli
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Vishal Panda
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Adam Lauver
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
36
|
Fernandes I, Funakoshi S, Hamidzada H, Epelman S, Keller G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat Commun 2023; 14:8183. [PMID: 38081833 PMCID: PMC10713677 DOI: 10.1038/s41467-023-43312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiac fibroblasts play an essential role in the development of the heart and are implicated in disease progression in the context of fibrosis and regeneration. Here, we establish a simple organoid culture platform using human pluripotent stem cell-derived epicardial cells and ventricular cardiomyocytes to study the development, maturation, and heterogeneity of cardiac fibroblasts under normal conditions and following treatment with pathological stimuli. We demonstrate that this system models the early interactions between epicardial cells and cardiomyocytes to generate a population of fibroblasts that recapitulates many aspects of fibroblast behavior in vivo, including changes associated with maturation and in response to pathological stimuli associated with cardiac injury. Using single cell transcriptomics, we show that the hPSC-derived organoid fibroblast population displays a high degree of heterogeneity that approximates the heterogeneity of populations in both the normal and diseased human heart. Additionally, we identify a unique subpopulation of fibroblasts possessing reparative features previously characterized in the hearts of model organisms. Taken together, our system recapitulates many aspects of human cardiac fibroblast specification, development, and maturation, providing a platform to investigate the role of these cells in human cardiovascular development and disease.
Collapse
Affiliation(s)
- Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network Toronto, Toronto, ON, M5G1L7, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, M5G1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G1L7, Canada
- Peter Munk Cardiac Centre, University Health Networ, Toronto, ON, M5G1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, M5G1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
37
|
Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, Skarnes WC, Ludwig B, Chapple PJ, Guasti L, Storr HL, Bornstein SR, Breault DT. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100627. [PMID: 37924815 PMCID: PMC10694497 DOI: 10.1016/j.crmeth.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Ariane Eceiza
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Maria Malyukov
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Kleiton Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexandra Rodrigues Da Costa
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shamma Qarin
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Takuya Matsumoto
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ryuji Morizane
- Harvard Stem Cell Institute, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - William C Skarnes
- Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Barbara Ludwig
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Paul J Chapple
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefan R Bornstein
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany; Division of Endocrinology, Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
38
|
Venegas-Zamora L, Fiedler M, Perez W, Altamirano F. Bridging the Translational Gap in Heart Failure Research: Using Human iPSC-derived Cardiomyocytes to Accelerate Therapeutic Insights. Methodist Debakey Cardiovasc J 2023; 19:5-15. [PMID: 38028973 PMCID: PMC10655754 DOI: 10.14797/mdcvj.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Heart failure (HF) remains a leading cause of death worldwide, with increasing prevalence and burden. Despite extensive research, a cure for HF remains elusive. Traditionally, the study of HF's pathogenesis and therapies has relied heavily on animal experimentation. However, these models have limitations in recapitulating the full spectrum of human HF, resulting in challenges for clinical translation. To address this translational gap, research employing human cells, especially cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs), offers a promising solution. These cells facilitate the study of human genetic and molecular mechanisms driving cardiomyocyte dysfunction and pave the way for research tailored to individual patients. Further, engineered heart tissues combine hiPSC-CMs, other cell types, and scaffold-based approaches to improve cardiomyocyte maturation. Their tridimensional architecture, complemented with mechanical, chemical, and electrical cues, offers a more physiologically relevant environment. This review explores the advantages and limitations of conventional and innovative methods used to study HF pathogenesis, with a primary focus on ischemic HF due to its relative ease of modeling and clinical relevance. We emphasize the importance of a collaborative approach that integrates insights obtained in animal and hiPSC-CMs-based models, along with rigorous clinical research, to dissect the mechanistic underpinnings of human HF. Such an approach could improve our understanding of this disease and lead to more effective treatments.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Houston Methodist Research Institute, Houston, Texas, US
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Matthew Fiedler
- Houston Methodist Research Institute, Houston, Texas, US
- Weill Cornell Graduate School of Medical Sciences, New York, New York, US
| | - William Perez
- Houston Methodist Research Institute, Houston, Texas, US
| | - Francisco Altamirano
- Houston Methodist Research Institute, Houston, Texas, US
- Weill Cornell Medical College, New York, New York, US
| |
Collapse
|
39
|
Fujiwara Y, Miki K, Deguchi K, Naka Y, Sasaki M, Sakoda A, Narita M, Imaichi S, Sugo T, Funakoshi S, Nishimoto T, Imahashi K, Yoshida Y. ERRγ agonist under mechanical stretching manifests hypertrophic cardiomyopathy phenotypes of engineered cardiac tissue through maturation. Stem Cell Reports 2023; 18:2108-2122. [PMID: 37802074 PMCID: PMC10679535 DOI: 10.1016/j.stemcr.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Engineered cardiac tissue (ECT) using human induced pluripotent stem cell-derived cardiomyocytes is a promising tool for modeling heart disease. However, tissue immaturity makes robust disease modeling difficult. Here, we established a method for modeling hypertrophic cardiomyopathy (HCM) malignant (MYH7 R719Q) and nonmalignant (MYBPC3 G115∗) pathogenic sarcomere gene mutations by accelerating ECT maturation using an ERRγ agonist, T112, and mechanical stretching. ECTs treated with T112 under 10% elongation stimulation exhibited more organized and mature characteristics. Whereas matured ECTs with the MYH7 R719Q mutation showed broad HCM phenotypes, including hypertrophy, hypercontraction, diastolic dysfunction, myofibril misalignment, fibrotic change, and glycolytic activation, matured MYBPC3 G115∗ ECTs displayed limited phenotypes, which were primarily observed only under our new maturation protocol (i.e., hypertrophy). Altogether, ERRγ activation combined with mechanical stimulation enhanced ECT maturation, leading to a more accurate manifestation of HCM phenotypes, including non-cardiomyocyte activation, consistent with clinical observations.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Kenji Miki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Center for Organ Engineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Kohei Deguchi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Naka
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Masako Sasaki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Ayaka Sakoda
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Megumi Narita
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan
| | - Sachiko Imaichi
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Shunsuke Funakoshi
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | | | - Kenichi Imahashi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan.
| |
Collapse
|
40
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
41
|
Dong Z, Chen D, Zheng S, Wang Z, Li D, Xiao Y, Sun S, Ye L, Qiu L, Hu Y, Hong H. Volume overload impedes the maturation of sarcomeres and T-tubules in the right atria: a potential cause of atrial arrhythmia following delayed atrial septal defect closure. Front Physiol 2023; 14:1237187. [PMID: 37908335 PMCID: PMC10614073 DOI: 10.3389/fphys.2023.1237187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction: Adult patients with atrial septal defects (ASD), the most common form of adult congenital heart disease, often die of arrhythmias, and the immaturity of cardiomyocytes contributes significantly to arrhythmias. ASD typically induces a left-to-right shunt, which then leads to the right atrium (RA) volume overload (VO). Whether or not VO contributes to RA cardiomyocyte immaturity and thereby causes arrhythmias in adult patients with ASD remains unclear. Methods: Here, we developed the first neonatal RA VO mouse model by creating a fistula between the inferior vena cava and abdominal aorta on postnatal day 7. RA VO was confirmed by increases in the mean flow velocity, mean pressure gradient, and velocity time integral across the tricuspid valve, and an increase in the RA diameter and RA area middle section. Results: We found that VO decreased the regularity and length of sarcomeres, and decreased the T-element density, regularity, and index of integrity of T-tubules in RA cardiomyocytes, suggesting that the two most important maturation hallmarks (sarcomere and T-tubules) of RA cardiomyocytes were impaired by VO. Accordingly, the calcium handling capacity of cardiomyocytes from postnatal day 21 (P21) RA was decreased by VO. VO caused a significant elongation of the PR interval. The expression of connexin 43 (Cx43) was decreased in RA VO. Moreover, gene ontology (GO) analysis of the downregulated genes in RA demonstrated that there was an abundance of enriched terms associated with sarcomeres and T-tubules exposed to VO. The results were further verified by qRT-PCR. Conclusions: In conclusion, the first neonatal RA VO mouse model was developed; furthermore, using this neonatal RA VO mouse model, we revealed that VO impeded RA sarcomere and T-tubule maturation, which may be the underlying causes of atrial arrhythmias in adult patients with ASD.
Collapse
Affiliation(s)
- Zhuoya Dong
- Department of Pediatric Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Dian Chen
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Debao Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijuan Sun
- Department of Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Hu
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haifa Hong
- Department of Pediatric Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Tu WB, Christofk HR, Plath K. Nutrient regulation of development and cell fate decisions. Development 2023; 150:dev199961. [PMID: 37260407 PMCID: PMC10281554 DOI: 10.1242/dev.199961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Collapse
Affiliation(s)
- William B. Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Arulsamy K, Lu F, Keating EM, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Hill LD, Kyoung Song M, Trembley MA, Wang P, Gianeselli M, Prondzynski M, Bortolin RH, Bezzerides VJ, Chen K, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. NATURE CARDIOVASCULAR RESEARCH 2023; 2:881-898. [PMID: 38344303 PMCID: PMC10854392 DOI: 10.1038/s44161-023-00334-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/21/2023] [Indexed: 02/15/2024]
Abstract
Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Carlos Perez-Cervantes
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Kulandai Arulsamy
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Hill
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Mi Kyoung Song
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Michael A. Trembley
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Matteo Gianeselli
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Christine E. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Ivan P. Moskowitz
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
44
|
Park KH, He X, Jiang L, Zhu H, Liang J, Wang Y, Ma J. Activation of MG53 Enhances Cell Survival and Engraftment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Injured Hearts. Stem Cell Rev Rep 2023; 19:2420-2428. [PMID: 37477774 PMCID: PMC10579131 DOI: 10.1007/s12015-023-10596-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Our previous studies demonstrated that MG53 protein can protect the myocardium, but its use as a therapeutic is challenging due to its short half-life in blood circulation. This study aimed to investigate the cardioprotective role of MG53 on human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) in the context of myocardial ischemia/reperfusion (I/R). METHODS In vitro: HiPSC-CMs were transfected with adenoviral MG53 (HiPSC-CMsMG53), in which the expression of MG53 can be controlled by doxycycline (Dox), and the cells were then exposed to H2O2 to mimic ischemia/reperfusion injury. In vivo: HiPSC-CMsMG53 were transplanted into the peri-infarct region in NSG™ mice after I/R. After surgery, mice were treated with Dox (+ Dox) to activate MG53 expression (sucrose as a control of -Dox) and then assessed by echocardiography and immunohistochemistry. RESULTS MG53 can be expressed in HiPSC-CMMG53 and released into the culture medium after adding Dox. The cell survival rate of HiPSC-CMMG53 was improved by Dox under the H2O2 condition. After 14 and 28 days of ischemia/reperfusion (I/R), transplanted HiPSC-CMsMG53 + Dox significantly improved heart function, including ejection fraction (EF) and fractional shortening (FS) in mice, compared to HiPSC-CMsMG53-Dox, and reduced the size of the infarction. Additionally, HiPSC-CMMG53 + Dox mice demonstrated significant engraftment in the myocardium as shown by staining human nuclei-positive cells. In addition, the cell survival-related AKT signaling was found to be more active in HiPSC-CMMG53 + Dox transplanted mice's myocardium compared to the HiPSC-CMMG53-Dox group. Notably, the Dox treatment did not cause harm to other organs. CONCLUSION Inducible MG53 expression is a promising approach to enhance cell survival and engraftment of HiPSC-CMs for cardiac repair.
Collapse
Affiliation(s)
- Ki Ho Park
- Division of Surgical Sciences, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hua Zhu
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
45
|
Tanaka Y, Kadota S, Zhao J, Kobayashi H, Okano S, Izumi M, Honda Y, Ichimura H, Shiba N, Uemura T, Wada Y, Chuma S, Nakada T, Tohyama S, Fukuda K, Yamada M, Seto T, Kuwahara K, Shiba Y. Mature human induced pluripotent stem cell-derived cardiomyocytes promote angiogenesis through alpha-B crystallin. Stem Cell Res Ther 2023; 14:240. [PMID: 37679796 PMCID: PMC10486094 DOI: 10.1186/s13287-023-03468-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat heart diseases; however, the optimal maturity of hiPSC-CMs for effective regenerative medicine remains unclear. We aimed to investigate the benefits of long-term cultured mature hiPSC-CMs in injured rat hearts. METHODS Cardiomyocytes were differentiated from hiPSCs via monolayer culturing, and the cells were harvested on day 28 or 56 (D28-CMs or D56-CMs, respectively) after differentiation. We transplanted D28-CMs or D56-CMs into the hearts of rat myocardial infarction models and examined cell retention and engraftment via in vivo bioluminescence imaging and histological analysis. We performed transcriptomic sequencing analysis to elucidate the genetic profiles before and after hiPSC-CM transplantation. RESULTS Upregulated expression of mature sarcomere genes in vitro was observed in D56-CMs compared with D28-CMs. In vivo bioluminescence imaging studies revealed increased bioluminescence intensity of D56-CMs at 8 and 12 weeks post-transplantation. Histological and immunohistochemical analyses showed that D56-CMs promoted engraftment and maturation in the graft area at 12 weeks post-transplantation. Notably, D56-CMs consistently promoted microvessel formation in the graft area from 1 to 12 weeks post-transplantation. Transcriptomic sequencing analysis revealed that compared with the engrafted D28-CMs, the engrafted D56-CMs enriched genes related to blood vessel regulation at 12 weeks post-transplantation. As shown by transcriptomic and western blot analyses, the expression of a small heat shock protein, alpha-B crystallin (CRYAB), was significantly upregulated in D56-CMs compared with D28-CMs. Endothelial cell migration was inhibited by small interfering RNA-mediated knockdown of CRYAB when co-cultured with D56-CMs in vitro. Furthermore, CRYAB overexpression enhanced angiogenesis in the D28-CM grafts at 4 weeks post-transplantation. CONCLUSIONS Long-term cultured mature hiPSC-CMs promoted engraftment, maturation and angiogenesis post-transplantation in infarcted rat hearts. CRYAB, which was highly expressed in D56-CMs, was identified as an angiogenic factor from mature hiPSC-CMs. This study revealed the benefits of long-term culture, which may enhance the therapeutic potential of hiPSC-CMs.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satomi Okano
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Iryo Sosei University, Iwaki, 970-8551, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yuko Wada
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tsutomu Nakada
- Division of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto, 390-8621, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Koichiro Kuwahara
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, 390-8621, Japan.
| |
Collapse
|
46
|
Engel JL, Zhang X, Lu DR, Vila OF, Arias V, Lee J, Hale C, Hsu YH, Li CM, Wu RS, Vedantham V, Ang YS. Single Cell Multi-Omics of an iPSC Model of Human Sinoatrial Node Development Reveals Genetic Determinants of Heart Rate and Arrhythmia Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547335. [PMID: 37425707 PMCID: PMC10327193 DOI: 10.1101/2023.07.01.547335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cellular heterogeneity within the sinoatrial node (SAN) is functionally important but has been difficult to model in vitro , presenting a major obstacle to studies of heart rate regulation and arrhythmias. Here we describe a scalable method to derive sinoatrial node pacemaker cardiomyocytes (PCs) from human induced pluripotent stem cells that recapitulates differentiation into distinct PC subtypes, including SAN Head, SAN Tail, transitional zone cells, and sinus venosus myocardium. Single cell (sc) RNA-sequencing, sc-ATAC-sequencing, and trajectory analyses were used to define epigenetic and transcriptomic signatures of each cell type, and to identify novel transcriptional pathways important for PC subtype differentiation. Integration of our multi-omics datasets with genome wide association studies uncovered cell type-specific regulatory elements that associated with heart rate regulation and susceptibility to atrial fibrillation. Taken together, these datasets validate a novel, robust, and realistic in vitro platform that will enable deeper mechanistic exploration of human cardiac automaticity and arrhythmia.
Collapse
|
47
|
Rebs S, Streckfuss-Bömeke K. How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1222986. [PMID: 39086669 PMCID: PMC11285589 DOI: 10.3389/fmmed.2023.1222986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%-40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
49
|
Kant RJ, Dwyer KD, Lee JH, Polucha C, Kobayashi M, Pyon S, Soepriatna AH, Lee J, Coulombe KLK. Patterned Arteriole-Scale Vessels Enhance Engraftment, Perfusion, and Vessel Branching Hierarchy of Engineered Human Myocardium for Heart Regeneration. Cells 2023; 12:1698. [PMID: 37443731 PMCID: PMC10340601 DOI: 10.3390/cells12131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 μm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kareen L. K. Coulombe
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (R.J.K.)
| |
Collapse
|
50
|
Yap L, Chong LY, Tan C, Adusumalli S, Seow M, Guo J, Cai Z, Loo SJ, Lim E, Tan RS, Grishina E, Soong PL, Lath N, Ye L, Petretto E, Tryggvason K. Pluripotent stem cell-derived committed cardiac progenitors remuscularize damaged ischemic hearts and improve their function in pigs. NPJ Regen Med 2023; 8:26. [PMID: 37236990 DOI: 10.1038/s41536-023-00302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.
Collapse
Affiliation(s)
- Lynn Yap
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| | - Li Yen Chong
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Clarissa Tan
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Swarnaseetha Adusumalli
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Millie Seow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Jing Guo
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Zuhua Cai
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Sze Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Eric Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | | | - Poh Loong Soong
- Ternion Biosciences, Singapore, 574329, Singapore
- Cardiovascular Disease Translational Research Program, Yong Loo Lin School of Medicine, NUS, Singapore, 169609, Singapore
| | - Narayan Lath
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama, Birmingham, 35233, England
| | - Enrico Petretto
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Karl Tryggvason
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore.
- Department of Medicine Duke University, Durham, NC, 27710, USA.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|