1
|
Ortega P, Bournique E, Li J, Sanchez A, Santiago G, Harris BR, Striepen J, Maciejowski J, Green AM, Buisson R. Mechanism of DNA replication fork breakage and PARP1 hyperactivation during replication catastrophe. SCIENCE ADVANCES 2025; 11:eadu0437. [PMID: 40238882 DOI: 10.1126/sciadv.adu0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) inhibition triggers a surge in origin firing, resulting in increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe. However, the mechanism by which unprotected ssDNA breaks remains unclear. Here, we reveal that APOBEC3B is the key enzyme targeting unprotected ssDNA at replication forks, initiating a reaction cascade that induces fork collapse and poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Mechanistically, we demonstrate that uracils generated by APOBEC3B at replication forks are removed by UNG2, resulting in abasic sites that are subsequently cleaved by APE1 endonuclease. Moreover, we show that APE1-mediated DNA cleavage is the critical enzymatic step for PARP1 hyperactivation in cells, regardless of how abasic sites are generated on DNA. Last, we demonstrate that APOBEC3B-induced PARP1 trapping and DNA double-strand breaks drive cell sensitivity to ATR inhibition, creating a context of synthetic lethality when coupled with PARP inhibitors.
Collapse
Affiliation(s)
- Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Brooke R Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Hedger A, Myint W, Lee JM, Suchenski Loustaunau D, Balachandran V, Shaqra A, Kurt Yilmaz N, Watts J, Matsuo H, Schiffer C. Next generation APOBEC3 inhibitors: optimally designed for potency and nuclease stability. Nucleic Acids Res 2025; 53:gkaf234. [PMID: 40156866 PMCID: PMC11954526 DOI: 10.1093/nar/gkaf234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
APOBEC3 (or A3) enzymes have emerged as potential therapeutic targets due to their role in introducing heterogeneity in viruses and cancer, often leading to drug resistance. Inhibiting these enzymes has remained elusive as initial phosphodiester (PO)-linked DNA-based inhibitors lack cellular stability and potency. We have enhanced both potency and nuclease stability of 2'-deoxyzebularine (dZ) substrate-based oligonucleotide inhibitors targeting two critical A3s: A3A and A3G. While replacing the phosphate backbone with phosphorothioate (PS) linkages increased nuclease stability, fully PS-modified inhibitors lost potency (up to three-fold) due to the structural constraints of the active site. For both enzymes, mixed PO/PS backbones enhanced potency (up to nine-fold), while also vastly improving nuclease resistance. We also strategically introduced 2'-fluoro sugar modifications, creating the first nanomolar inhibitor of A3G-CTD2. With hairpin-structured inhibitors containing optimized PS patterns and locked nucleic acid (LNA) sugar modifications, we characterize the first single-digit nanomolar inhibitor targeting A3A. These extremely potent A3A inhibitors were highly resistant to nuclease degradation and crucially, restricted A3A deamination in cellulo. Overall, our optimally designed A3 oligonucleotide inhibitors show improved potency and stability compared to previous inhibitors targeting these critical enzymes, toward realizing the therapeutic potential of A3 inhibition.
Collapse
Affiliation(s)
- Adam K Hedger
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Diego Suchenski Loustaunau
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Vanivilasini Balachandran
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Jonathan K Watts
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
3
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
4
|
Devenport JM, Tran T, Harris BR, Fingerman D, DeWeerd RA, Elkhidir LH, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen MM, Green AM. APOBEC3A drives ovarian cancer metastasis by altering epithelial-mesenchymal transition. JCI Insight 2025; 10:e186409. [PMID: 40059825 PMCID: PMC11949045 DOI: 10.1172/jci.insight.186409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. We observed an association between high levels of APOBEC3-mediated mutagenesis and poor overall survival in primary HGSOC. We experimentally addressed this correlation by modeling A3A expression in HGSOC, and this resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo, which was dependent on catalytic activity of A3A. A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, providing a mechanism for their increased metastatic potential. Inhibition of key EMT factors TWIST1 and IL-6 resulted in mitigation of A3A-dependent metastatic phenotypes. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious effect of A3A-driven EMT in HGSOC.
Collapse
Affiliation(s)
| | | | | | - Dylan Fingerman
- Department of Pediatrics
- Cancer Biology Graduate Program, and
| | | | | | - Danielle LaVigne
- Department of Pediatrics
- Molecular Genetics and Genomics Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine Fuh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Lulu Sun
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, and
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Siteman Cancer Center, and
| | - Abby M. Green
- Department of Pediatrics
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yunquan He
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yueyang Yu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Sichong Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Ruiwen Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Jieyu Guo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Qingjun Jiang
- Department of Vascular & Endovascular SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Xiuling Zhi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Xinhong Wang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Dan Meng
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| |
Collapse
|
6
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
7
|
Swanson J, Tonne J, Sangsuwannukul T, Thompson J, Kendall B, Liseth O, Metko M, Vile R. APOBEC3B expression in 293T viral producer cells drives mutations in chimeric antigen receptors and reduces CAR T cell efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200873. [PMID: 39403625 PMCID: PMC11472098 DOI: 10.1016/j.omton.2024.200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are a clinically approved therapy for blood cancers. To produce clinical-grade CAR T cells, a retroviral or lentiviral vector is used to deliver the CAR and associated genes to patient T cells. Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) enzymes are known to be upregulated after transfection and retroviral infection and to deaminate cytidine to uracil in nucleic acids, resulting in cytidine-to-thymine mutations in DNA. Here, we hypothesized that APOBEC3 enzymes, induced during the production of CAR T cells, impact the efficacy of the resulting CAR T cells. We demonstrated that APOBEC3 family member APOBEC3B was upregulated at the RNA and protein levels after transfection of HEK293T cells with plasmids to make lentivirus, and that APOBEC3 signature mutations were present in the CAR construct. APOBEC3B overexpression in HEK293T cells led to further mutations in the resulting CAR T cells, and significantly decreased CAR T cell killing. APOBEC3B knockout in HEK293T cells led to reduced mutations in the CAR construct and significantly increased in CAR T cell killing. These results suggest that generation of CAR-expressing viruses from producer cell lines deficient in genome-modifying proteins such as APOBEC3B could enhance the quality of CAR T cell production.
Collapse
Affiliation(s)
- Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Olivia Liseth
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Kim K, Maji UJ, Shim KY, Yeo IC, Jeong CB. Detection of the jellyfish Chrysaora pacifica by RPA-CRISPR-Cas12a environmental DNA (eDNA) assay and its evaluation through field validation and comparative eDNA analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176945. [PMID: 39423898 DOI: 10.1016/j.scitotenv.2024.176945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Climate-driven environmental changes and anthropogenic activities can result in the proliferation of non-indigenous aquatic species such as jellyfish that may cause envenomation and various ecological disruptions. Here we developed a two-step RPA-CRISPR-Cas12a eDNA assay, consisting of target eDNA amplification followed by a CRISPR-Cas12 reaction, for the early detection of Chrysaora pacifica, a jellyfish species often considered non-indigenous to South Korea. The assay demonstrated high sensitivity, with a detection limit of two copies COI/μL for eDNA derived from C. pacifica, using target specific RPA primers and crRNA sequences. Field validation of the assay using eDNA samples from Jinhae Bay collected over eight months of time-series monitoring, revealed temporal distribution of the jellyfish which correlated with results of digital polymerase chain reaction (dPCR) and eDNA metabarcoding. The C. pacifica eDNA assays were also corroborated (R-square 0.7891) by reports from a citizen science-based jellyfish-monitoring program operated by the National Institute of Fisheries Science, South Korea. Our RPA-CRISPR-Cas eDNA assay can therefore, be an efficient alternative to traditional tools for the early detection of outbreaks of non-indigenous or harmful species in marine ecosystems.
Collapse
Affiliation(s)
- Kyuhyeong Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Usha Jyoti Maji
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Kyu-Young Shim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - In-Cheol Yeo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
9
|
Sanchez A, Buisson R. An in vitro cytidine deaminase assay to monitor APOBEC activity on DNA. Methods Enzymol 2024; 713:201-219. [PMID: 40250954 PMCID: PMC12083365 DOI: 10.1016/bs.mie.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
APOBEC enzymes promote the deamination of cytosine (C) to uracil (U) in DNA to defend cells against viruses but also serve as a predominant source of mutations in cancer genomes. This protocol describes an assay to monitor APOBEC deaminase activity in vitro on a synthetic DNA oligonucleotide. The method described here focuses specifically on APOBEC3B to illustrate the different steps of the assay. However, the protocol can be applied to monitor the DNA deaminase activity of any other member of the APOBEC family, such as APOBEC3A. This assay involves preparing APOBEC3B-expressing cell extract or purifying APOBEC3B by immunoprecipitation, followed by incubation with a single-stranded DNA containing a TpC motif. The deaminated cytosine is then removed by recombinant Uracil DNA Glycosylase present in the reaction to form an abasic site. The abasic site creates a weakness in the DNA's backbone, causing the DNA to be cleaved under high temperatures and alkaline conditions. Denaturing gel electrophoresis is used to separate cleaved DNA from full-length DNA, enabling the quantification of the percentage of deamination induced by APOBEC3B. This protocol can be used to determine the presence of APOBEC and the regulation of APOBEC activity in specific cell lines, to study substrate preference targeted by different members of the APOBEC family and different APOBEC mutants, or to determine the efficiency and specificity of inhibitor compounds against APOBEC enzymes.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States; Center for Virus Research, University of California Irvine, Irvine, California, United States
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States; Center for Virus Research, University of California Irvine, Irvine, California, United States; Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, California, United States.
| |
Collapse
|
10
|
Garcia NMG, Becerra JN, McKinney BJ, DiMarco AV, Wu F, Fitzgibbon M, Alvarez JV. APOBEC3 activity promotes the survival and evolution of drug-tolerant persister cells during acquired resistance to EGFR inhibitors in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.02.547443. [PMID: 37461590 PMCID: PMC10350004 DOI: 10.1101/2023.07.02.547443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of p63 in gefitinib-resistant cells reduces the expression of the ΔNp63 target genes IL1α/β and sensitizes these cells to the third-generation EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.
Collapse
Affiliation(s)
- Nina Marie G Garcia
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Jessica N Becerra
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Brock J McKinney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Ashley V DiMarco
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Feinan Wu
- Genomics and Bioinformatics, Fred Hutchinson Cancer Center
| | | | - James V Alvarez
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| |
Collapse
|
11
|
Ortega P, Bournique E, Li J, Sanchez A, Santiago G, Harris BR, Green AM, Buisson R. ATR safeguards replication forks against APOBEC3B-induced toxic PARP1 trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623607. [PMID: 39605722 PMCID: PMC11601322 DOI: 10.1101/2024.11.14.623607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ATR is the master safeguard of genomic integrity during DNA replication. Acute inhibition of ATR with ATR inhibitor (ATRi) triggers a surge in origin firing, leading to increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe. However, the mechanism by which unprotected ssDNA breaks remains unclear. Here, we reveal that APOBEC3B is the key enzyme targeting unprotected ssDNA at replication forks, triggering a reaction cascade that induces fork collapse and PARP1 hyperactivation. Mechanistically, we demonstrate that uracils generated by APOBEC3B at replication forks are removed by UNG2, creating abasic sites that are subsequently cleaved by APE1 endonuclease. Moreover, we demonstrate that APE1-mediated DNA cleavage is the critical enzymatic step for PARP1 trapping and hyperactivation in cells, regardless of how abasic sites are generated on DNA. Finally, we show that APOBEC3B-induced toxic PARP1 trapping in response to ATRi drives cell sensitivity to ATR inhibition, creating to a context of synthetic lethality when combined with PARP inhibitors. Together, these findings reveal the mechanisms that cause replication forks to break during replication catastrophe and explain why ATRi-treated cells are particularly sensitive to PARP inhibitors.
Collapse
Affiliation(s)
- Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Brooke R. Harris
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Abby M. Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Oh S, Santiago G, Manjunath L, Li J, Bouin A, Semler BL, Buisson R. A CRISPR-Cas9 knockout screening identifies IRF2 as a key driver of OAS3/RNase L-mediated RNA decay during viral infection. Proc Natl Acad Sci U S A 2024; 121:e2412725121. [PMID: 39475651 PMCID: PMC11551408 DOI: 10.1073/pnas.2412725121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
OAS-RNase L is a double-stranded RNA-induced antiviral pathway triggered in response to diverse viral infections. Upon activation, OAS-RNase L suppresses virus replication by promoting the decay of host and viral RNAs and inducing translational shutdown. However, whether OASs and RNase L are the only factors involved in this pathway remains unclear. Here, we develop CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that uses translation levels as a readout and identifies IRF2 as a key regulator of OAS3. Mechanistically, we demonstrate that IRF2 promotes basal expression of OAS3 in unstressed cells, allowing a rapid activation of RNase L following viral infection. Furthermore, IRF2 works in concert with the interferon response through STAT2 to further enhance OAS3 expression. We propose that IRF2-induced RNase L is critical in enabling cells to mount a rapid antiviral response immediately after viral infection, serving as the initial line of defense. This rapid response provides host cells the necessary time to activate additional antiviral signaling pathways, forming secondary defense waves.
Collapse
Affiliation(s)
- Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| | - Alexis Bouin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697
| |
Collapse
|
13
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Devenport JM, Tran T, Harris BR, Fingerman DF, DeWeerd RA, Elkhidir L, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen M, Green AM. APOBEC3A drives metastasis of high-grade serous ovarian cancer by altering epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620297. [PMID: 39553968 PMCID: PMC11565781 DOI: 10.1101/2024.10.25.620297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer, and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. Through analysis of genome sequencing from primary HGSOC, we observed an association between high levels of APOBEC3 mutagenesis and poor overall survival. We experimentally addressed this correlation by modeling A3A activity in HGSOC cell lines and mouse models which resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo . A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal-transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, and providing a mechanism for their increased metastatic potential. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious impact of A3A-driven EMT in HGSOC.
Collapse
|
15
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
16
|
Covino DA, Farina I, Catapano L, Sozzi S, Spadaro F, Cecchetti S, Purificato C, Gauzzi MC, Fantuzzi L. Induction of the antiviral factors APOBEC3A and RSAD2 upon CCL2 neutralization in primary human macrophages involves NF-κB, JAK/STAT, and gp130 signaling. J Leukoc Biol 2024; 116:876-889. [PMID: 38798090 DOI: 10.1093/jleuko/qiae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The CCL2/CC chemokine receptor 2 axis plays key roles in the pathogenesis of HIV-1 infection. We previously reported that exposure of monocyte-derived macrophages to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at postentry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, including APOBEC3A and RSAD2. This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in monocyte-derived macrophages. Through a combination of pharmacologic inhibition, quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-κB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IκB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of IκB kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of monocyte-derived macrophages to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interference with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 upregulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.
Collapse
Affiliation(s)
- Daniela Angela Covino
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Iole Farina
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Catapano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia Sozzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Serena Cecchetti
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Cristina Gauzzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
17
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Fallatah MMJ, Demir Ö, Law F, Lauinger L, Baronio R, Hall L, Bournique E, Srivastava A, Metzen LT, Norman Z, Buisson R, Amaro RE, Kaiser P. Pyrimidine Triones as Potential Activators of p53 Mutants. Biomolecules 2024; 14:967. [PMID: 39199355 PMCID: PMC11352488 DOI: 10.3390/biom14080967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
p53 is a crucial tumor suppressor in vertebrates that is frequently mutated in human cancers. Most mutations are missense mutations that render p53 inactive in suppressing tumor initiation and progression. Developing small-molecule drugs to convert mutant p53 into an active, wild-type-like conformation is a significant focus for personalized cancer therapy. Prior research indicates that reactivating p53 suppresses cancer cell proliferation and tumor growth in animal models. Early clinical evidence with a compound selectively targeting p53 mutants with substitutions of tyrosine 220 suggests potential therapeutic benefits of reactivating p53 in patients. This study identifies and examines the UCI-1001 compound series as a potential corrector for several p53 mutations. The findings indicate that UCI-1001 treatment in p53 mutant cancer cell lines inhibits growth and reinstates wild-type p53 activities, including DNA binding, target gene activation, and induction of cell death. Cellular thermal shift assays, conformation-specific immunofluorescence staining, and differential scanning fluorometry suggest that UCI-1001 interacts with and alters the conformation of mutant p53 in cancer cells. These initial results identify pyrimidine trione derivatives of the UCI-1001 series as candidates for p53 corrector drug development.
Collapse
Affiliation(s)
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Fiona Law
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Roberta Baronio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Hall
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Elodie Bournique
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Ambuj Srivastava
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Landon Tyler Metzen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zane Norman
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rémi Buisson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Ubhi T, Zaslaver O, Quaile AT, Plenker D, Cao P, Pham NA, Békési A, Jang GH, O'Kane GM, Notta F, Moffat J, Wilson JM, Gallinger S, Vértessy BG, Tuveson DA, Röst HL, Brown GW. Cytidine deaminases APOBEC3C and APOBEC3D promote DNA replication stress resistance in pancreatic cancer cells. NATURE CANCER 2024; 5:895-915. [PMID: 38448522 DOI: 10.1038/s43018-024-00742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zaslaver
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Quaile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Plenker
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Xilis Inc., Durham, NC, USA
| | - Pinjiang Cao
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angéla Békési
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - David A Tuveson
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Dennis M, Hurley A, Bray N, Cordero C, Ilagan J, Mertz TM, Roberts SA. Her2 amplification, Rel-A, and Bach1 can influence APOBEC3A expression in breast cancer cells. PLoS Genet 2024; 20:e1011293. [PMID: 38805570 PMCID: PMC11161071 DOI: 10.1371/journal.pgen.1011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
APOBEC-induced mutations occur in 50% of sequenced human tumors, with APOBEC3A (A3A) being a major contributor to mutagenesis in breast cancer cells. The mechanisms that cause A3A activation and mutagenesis in breast cancers are still unknown. Here, we describe factors that influence basal A3A mRNA transcript levels in breast cancer cells. We found that basal A3A mRNA correlates with A3A protein levels and predicts the amount of APOBEC signature mutations in a panel of breast cancer cell lines, indicating that increased basal transcription may be one mechanism leading to breast cancer mutagenesis. We also show that alteration of ERBB2 expression can drive A3A mRNA levels, suggesting the enrichment of the APOBEC mutation signature in Her2-enriched breast cancer could in part result from elevated A3A transcription. Hierarchical clustering of transcripts in primary breast cancers determined that A3A mRNA was co-expressed with other genes functioning in viral restriction and interferon responses. However, reduction of STAT signaling via inhibitors or shRNA in breast cancer cell lines had only minor impact on A3A abundance. Analysis of single cell RNA-seq from primary tumors indicated that A3A mRNA was highest in infiltrating immune cells within the tumor, indicating that correlations of A3A with STAT signaling in primary tumors may be result from higher immune infiltrates and are not reflective of STAT signaling controlling A3A expression in breast cancer cells. Analysis of ATAC-seq data in multiple breast cancer cell lines identified two transcription factor sites in the APOBEC3A promoter region that could promote A3A transcription. We determined that Rel-A, and Bach1, which have binding sites in these peaks, elevated basal A3A expression. Our findings highlight a complex and variable set of transcriptional activators for A3A in breast cancer cells.
Collapse
Affiliation(s)
- Madeline Dennis
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Alyssa Hurley
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Nicholas Bray
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Jose Ilagan
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Tony M. Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
21
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
22
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
23
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
24
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
25
|
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. SCIENCE ADVANCES 2024; 10:eadk2771. [PMID: 38241374 PMCID: PMC10798555 DOI: 10.1126/sciadv.adk2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.
Collapse
Affiliation(s)
- Ajinkya S. Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Parasvi S. Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Coxon M, Dennis MA, Dananberg A, Collins C, Wilson H, Meekma J, Savenkova M, Ng D, Osbron C, Mertz T, Goodman A, Duttke S, Maciejowski J, Roberts S. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 2023; 5:zcad058. [PMID: 38155930 PMCID: PMC10753533 DOI: 10.1093/narcan/zcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.
Collapse
Affiliation(s)
- Margo Coxon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Madeline A Dennis
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Collins
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Jordyn Meekma
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Daniel Ng
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Tony M Mertz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
27
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
28
|
Gao N, Guan G, Xu G, Wu H, Xie C, Mo Z, Deng H, Xiao S, Deng Z, Peng L, Lu F, Zhao Q, Gao Z. Integrated HBV DNA and cccDNA maintain transcriptional activity in intrahepatic HBsAg-positive patients with functional cure following PEG-IFN-based therapy. Aliment Pharmacol Ther 2023; 58:1086-1098. [PMID: 37644711 DOI: 10.1111/apt.17670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroclearance marks regression of hepatitis B virus (HBV) infection. However, more than one-fifth of patients with functional cure following pegylated interferon-based therapy may experience HBsAg seroreversion. The mechanisms causing the HBV relapse remain unclear. AIM To investigate the level and origin of HBV transcripts in patients with functional cure and their role in predicting relapse. METHODS Liver tissue obtained from patients with functional cure, as well as uncured and treatment-naïve HBeAg-negative patients with chronic hepatitis B (CHB) were analysed for intrahepatic HBV markers. HBV capture and RNA sequencing were used to detect HBV integration and chimeric transcripts. RESULTS Covalently closed circular DNA (cccDNA) levels and the proportion of HBsAg-positive hepatocytes in functionally cured patients were significantly lower than those in uncured and treatment-naïve HBeAg-negative patients. Integrated HBV DNA and chimeric transcripts declined in functionally cured patients compared to uncured patients. HBsAg-positive hepatocytes present in 25.5% of functionally cured patients, while intrahepatic HBV RNA remained in 72.2%. The levels of intrahepatic HBV RNA, integrated HBV DNA, and chimeric transcripts were higher in functionally cured patients with intrahepatic HBsAg than in those without. The residual intrahepatic HBsAg in functionally cured patients was mainly derived from transcriptionally active integrated HBV DNA; meanwhile, trace transcriptional activity of cccDNA could also remain. Two out of four functionally cured patients with intrahepatic HBsAg and trace active cccDNA experienced HBV relapse. CONCLUSION Integrated HBV DNA and cccDNA maintain transcriptional activity and maybe involved in HBsAg seroreversion in intrahepatic HBsAg-positive patients with functional cure and linked to virological relapse.
Collapse
Affiliation(s)
- Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong, China
| | - Haishi Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuying Xiao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Wick C, Moghadasi SA, Becker JT, Fanunza E, Oh S, Bournique E, Buisson R, Harris RS. Mitochondrial double-stranded RNA triggers induction of the antiviral DNA deaminase APOBEC3A and nuclear DNA damage. J Biol Chem 2023; 299:105073. [PMID: 37474103 PMCID: PMC10457583 DOI: 10.1016/j.jbc.2023.105073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
APOBEC3A is an antiviral DNA deaminase often induced by virus infection. APOBEC3A is also a source of cancer mutation in viral and nonviral tumor types. It is therefore critical to identify factors responsible for APOBEC3A upregulation. Here, we test the hypothesis that leaked mitochondrial (mt) double-stranded (ds)RNA is recognized as foreign nucleic acid, which triggers innate immune signaling, APOBEC3A upregulation, and DNA damage. Knockdown of an enzyme responsible for degrading mtdsRNA, the exoribonuclease polynucleotide phosphorylase, results in mtdsRNA leakage into the cytosol and induction of APOBEC3A expression. APOBEC3A upregulation by cytoplasmic mtdsRNA requires RIG-I, MAVS, and STAT2 and is likely part of a broader type I interferon response. Importantly, although mtdsRNA-induced APOBEC3A appears cytoplasmic by subcellular fractionation experiments, its induction triggers an overt DNA damage response characterized by elevated nuclear γ-H2AX staining. Thus, mtdsRNA dysregulation may induce APOBEC3A and contribute to observed genomic instability and mutation signatures in cancer.
Collapse
Affiliation(s)
- Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
30
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA Features Impact APOBEC3A and APOBEC3B Deaminase Activity and Shape Tumor Mutational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551499. [PMID: 37577509 PMCID: PMC10418229 DOI: 10.1101/2023.08.02.551499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets singlestranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have been fully established, and the specific influence of the DNA sequence on APOBEC3A APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B selectively targets DNA stem-loop structures, and they are distinct from those subjected deamination by APOBEC3A. We develop Oligo-seq, a novel in vitro sequencing-based to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A an APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
|
31
|
Isozaki H, Sakhtemani R, Abbasi A, Nikpour N, Stanzione M, Oh S, Langenbucher A, Monroe S, Su W, Cabanos HF, Siddiqui FM, Phan N, Jalili P, Timonina D, Bilton S, Gomez-Caraballo M, Archibald HL, Nangia V, Dionne K, Riley A, Lawlor M, Banwait MK, Cobb RG, Zou L, Dyson NJ, Ott CJ, Benes C, Getz G, Chan CS, Shaw AT, Gainor JF, Lin JJ, Sequist LV, Piotrowska Z, Yeap BY, Engelman JA, Lee JJK, Maruvka YE, Buisson R, Lawrence MS, Hata AN. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 2023; 620:393-401. [PMID: 37407818 PMCID: PMC10804446 DOI: 10.1038/s41586-023-06303-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.
Collapse
Affiliation(s)
- Hideko Isozaki
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ammal Abbasi
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Naveed Nikpour
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Sunwoo Oh
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Susanna Monroe
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Wenjia Su
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Heidie Frisco Cabanos
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Nicole Phan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Pégah Jalili
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Daria Timonina
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Samantha Bilton
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Varuna Nangia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Kristin Dionne
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Amanda Riley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Matthew Lawlor
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Rosemary G Cobb
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cyril Benes
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Chang S Chan
- Department of Medicine, Rutgers Robert Wood Johnson Medical School and Center for Systems and Computational Biology, Rutgers Cancer Institute, New Brunswick, NJ, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Justin F Gainor
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beow Y Yeap
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jake June-Koo Lee
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yosef E Maruvka
- Faculty of Biotechnology and Food Engineering, Lorey Loki Center for Life Science and Engineering, Technion, Haifa, Israel
| | - Rémi Buisson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Granadillo Rodríguez M, Wong L, Chelico L. Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Front Genome Ed 2023; 5:1196697. [PMID: 37324648 PMCID: PMC10267419 DOI: 10.3389/fgeed.2023.1196697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
APOBEC3 (A3) enzymes deaminate cytosine to uracil in viral single-stranded DNA as a mutagenic barrier for some viruses. A3-induced deaminations can also occur in human genomes resulting in an endogenous source of somatic mutations in multiple cancers. However, the roles of each A3 are unclear since few studies have assessed these enzymes in parallel. Thus, we developed stable cell lines expressing A3A, A3B, or A3H Hap I using non-tumorigenic MCF10A and tumorigenic MCF7 breast epithelial cells to assess their mutagenic potential and cancer phenotypes in breast cells. The activity of these enzymes was characterized by γH2AX foci formation and in vitro deamination. Cell migration and soft agar colony formation assays assessed cellular transformation potential. We found that all three A3 enzymes had similar γH2AX foci formation, despite different deamination activities in vitro. Notably, in nuclear lysates, the in vitro deaminase activity of A3A, A3B, and A3H did not require digestion of cellular RNA, in contrast to that of A3B and A3H in whole-cell lysates. Their similar activities in cells, nonetheless, resulted in distinct phenotypes where A3A decreased colony formation in soft agar, A3B decreased colony formation in soft agar after hydroxyurea treatment, and A3H Hap I promoted cell migration. Overall, we show that in vitro deamination data do not always reflect cell DNA damage, all three A3s induce DNA damage, and the impact of each is different.
Collapse
|
33
|
Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive Analyses Reveal Effects on Tumor Immune Infiltration and Immunotherapy Response of APOBEC Mutagenesis and Its Molecular Mechanisms in Esophageal Squamous Cell Carcinoma. Int J Biol Sci 2023; 19:2551-2571. [PMID: 37215984 PMCID: PMC10197887 DOI: 10.7150/ijbs.83824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated A3A exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, A3A is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
34
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
35
|
Stewart JA, Damania B. Human DNA tumor viruses evade uracil-mediated antiviral immunity. PLoS Pathog 2023; 19:e1011252. [PMID: 36996040 PMCID: PMC10062561 DOI: 10.1371/journal.ppat.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Jessica A. Stewart
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
36
|
Manjunath L, Oh S, Ortega P, Bouin A, Bournique E, Sanchez A, Martensen PM, Auerbach AA, Becker JT, Seldin M, Harris RS, Semler BL, Buisson R. APOBEC3B drives PKR-mediated translation shutdown and protects stress granules in response to viral infection. Nat Commun 2023; 14:820. [PMID: 36781883 PMCID: PMC9925369 DOI: 10.1038/s41467-023-36445-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Double-stranded RNA produced during viral replication and transcription activates both protein kinase R (PKR) and ribonuclease L (RNase L), which limits viral gene expression and replication through host shutoff of translation. In this study, we find that APOBEC3B forms a complex with PABPC1 to stimulate PKR and counterbalances the PKR-suppressing activity of ADAR1 in response to infection by many types of viruses. This leads to translational blockage and the formation of stress granules. Furthermore, we show that APOBEC3B localizes to stress granules through the interaction with PABPC1. APOBEC3B facilitates the formation of protein-RNA condensates with stress granule assembly factor (G3BP1) by protecting mRNA associated with stress granules from RNAse L-induced RNA cleavage during viral infection. These results not only reveal that APOBEC3B is a key regulator of different steps of the innate immune response throughout viral infection but also highlight an alternative mechanism by which APOBEC3B can impact virus replication without editing viral genomes.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pia Møller Martensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ashley A Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Jordan T Becker
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Li L, Sun J, Liu N, Yu R, Zhang J, Pang J, Ou Q, Yin Y, Cui J, Yao X, Zhao R, Shao Y, Yuan S, Yu J. Clinical Outcome-Related Cancer Pathways and Mutational Signatures in Patients With Unresectable Esophageal Squamous Cell Carcinoma Treated With Chemoradiotherapy. Int J Radiat Oncol Biol Phys 2023; 115:382-394. [PMID: 36167753 DOI: 10.1016/j.ijrobp.2022.07.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Definitive chemoradiotherapy (dCRT) is a standard-of-care for locally advanced unresectable esophageal squamous cell carcinoma (ESCC). However, even in individuals treated with the same dCRT regimen, differences in the local control rate and radiation-induced thoracic toxicity exist (radiation-induced esophagitis [RIE]). METHODS AND MATERIALS Here, we describe a comprehensive genomic evaluation of pretreatment tumor tissue samples from 183 patients with ESCC using targeted sequencing of 474 cancer-related genes. The association between endpoints (progression-free survival [PFS], overall survival, locoregional relapse-free survival, distant metastasis-free survival), toxicity (RIE) and genomic features, including altered pathways and the mutational signature, was analyzed. An independent cohort of 84 stage II-III patients with ESCC was used for validation. RESULTS Gene alterations in the cell cycle pathway were identified in 87% of cases. Other frequently altered pathways included PI3K-AKT (45.9%), NOTCH (38.3%), NRF2 (36.6%), RKT-RAS (28.4%), and homologous recombination repair (HRR; 20.2%). HRR pathway alterations correlated with shortened PFS (mutation vs wild-type: 9.00 vs 14.40 months, hazard ratio, 2.10; 95% confidence interval, 1.29-3.44), while altered RTK-RAS pathways were correlated with worse overall survival in patients with ESCC treated with chemoradiotherapy (mutation vs wild-type: 23.70 vs 33.50 months; hazard ratio, 1.65; 95% confidence interval, 1.01-2.69). Furthermore, enrichment of apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures (signatures 2 and 13) was identified in ESCC tumors with altered HRR pathways. High APOBEC signatures and an altered HRR pathway were correlated with poor prognoses in dCRT-treated ESCC. Moreover, the APOBEC signature and/or the presence of HRR pathway alterations were associated with poor PFS and overall survival, which was validated in an independent whole exome sequence cohort. Notably, the altered HRR pathway was also associated with high-grade RIE toxicity in patients with ESCC. CONCLUSIONS Collectively, our results support the use of comprehensive genomic profiling to guide treatment and minimize RIE in patients with ESCC.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ruoying Yu
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Junli Zhang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Jiaohui Pang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Ying Yin
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinfeng Cui
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuling Yao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ranran Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuanghu Yuan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
38
|
Betlej G, Błoniarz D, Lewińska A, Wnuk M. Non-targeting siRNA-mediated responses are associated with apoptosis in chemotherapy-induced senescent skin cancer cells. Chem Biol Interact 2023; 369:110254. [PMID: 36343682 DOI: 10.1016/j.cbi.2022.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
It is widely accepted that siRNA transfection can promote some off-target effects in the genome; however, little is known about how the cells can respond to the presence of non-viral dsRNA. In the present study, non-targeting control siRNA (NTC-siRNA) was used to evaluate its effects on the activity of pathogen and host-derived nucleic acid-associated signaling pathways such as cGAS-STING, RIG-I, MDA5 and NF-κB in A431 skin cancer cells and BJ fibroblasts. NTC-siRNA treatment promoted cytotoxicity in cancer cells. Furthermore, NTC-siRNA-treated doxorubicin-induced senescent cancer cells were more prone to apoptotic cell death compared to untreated doxorubicin-induced senescent cancer cells. NTC-siRNA stimulated the levels of NF-κB, APOBECs, ALY, LRP8 and phosphorylated STING that suggested the involvement of selected components of nucleic acid sensing pathways in NTC-siRNA-mediated cell death response in skin cancer cells. NTC-siRNA-mediated apoptosis in cancer cells was not associated with IFN-β-based pro-inflammatory response and TRDMT1-based adaptive response. In contrast, in NTC-siRNA-treated fibroblasts, an increase in the levels of RIG-I and IFN-β was not accompanied by affected cell viability. We propose that the use of NTC-siRNA in genetic engineering may provoke a number of unexpected effects that should be carefully monitored. In our experimental settings, NTC-siRNA promoted the elimination of doxorubicin-induced senescent cancer cells that may have implications in skin cancer therapies.
Collapse
Affiliation(s)
- Gabriela Betlej
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
39
|
Petljak M, Green AM, Maciejowski J, Weitzman MD. Addressing the benefits of inhibiting APOBEC3-dependent mutagenesis in cancer. Nat Genet 2022; 54:1599-1608. [PMID: 36280735 PMCID: PMC9700387 DOI: 10.1038/s41588-022-01196-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.
Collapse
Affiliation(s)
- Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
40
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
41
|
Guanxinping Tablets Inhibit ET-1-Induced Proliferation and Migration of MOVAS by Suppressing Activated PI3K/Akt/NF- κB Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9485463. [PMID: 35685734 PMCID: PMC9173997 DOI: 10.1155/2022/9485463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Background/Aim Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of atherosclerosis (AS). Therefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important means for the prevention and inhibition of AS. The clinical effects of Guanxinping (GXP) tablets and preliminary clinical research on the topic have proved that GXP can effectively treat coronary heart disease, but its underlying mechanism remains unclear. This study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle (MOVAS) cells and to explore the underlying mechanism. Methods MOVAS cells were divided into two major groups: physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time, atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group. Results In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells. Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6), IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. There was no significant difference between the high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion Our findings revealed that GXP was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.
Collapse
|
42
|
Abstract
APOBEC3A, CRISPR programmable RNA base editors, or other enzymes can edit RNA transcripts at specific locations or hotspots. Precise quantification of these RNA-editing events is crucial to determine the activity and efficiency of these enzymes in cells. We have developed a quick method to quantify RNA-editing activity using digital PCR, a sensitive and quantitative technique to detect rare mutations by micro-partitioning bulk PCR reactions. This assay allows rapid absolute quantification of RNA editing events in cell lines or patient samples. For complete details on the use and execution of this protocol, please refer to Jalili et al. (2020) and Oh et al. (2021).
Collapse
Affiliation(s)
- Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
44
|
Liu W, Deng Y, Li Z, Chen Y, Zhu X, Tan X, Cao G. Cancer Evo-Dev: A Theory of Inflammation-Induced Oncogenesis. Front Immunol 2021; 12:768098. [PMID: 34880864 PMCID: PMC8645856 DOI: 10.3389/fimmu.2021.768098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a prerequisite for the development of cancers. Here, we present the framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-Dev) based on the current understanding of inflammation-related carcinogenesis, especially hepatocarcinogenesis induced by chronic infection with hepatitis B virus. The interaction between genetic predispositions and environmental exposures, such as viral infection, maintains chronic non-resolving inflammation. Pollution, metabolic syndrome, physical inactivity, ageing, and adverse psychosocial exposure also increase the risk of cancer via inducing chronic low-grade smoldering inflammation. Under the microenvironment of non-resolving inflammation, pro-inflammatory factors facilitate the generation of somatic mutations and viral mutations by inducing the imbalance between the mutagenic forces such as cytidine deaminases and mutation-correcting forces including uracil-DNA glycosylase. Most cells with somatic mutations and mutated viruses are eliminated in survival competition. Only a small percentage of mutated cells survive, adapt to the hostile environment, retro-differentiate, and function as cancer-initiating cells via altering signaling pathways. These cancer-initiating cells acquire stem-ness, reprogram metabolic patterns, and affect the microenvironment. The carcinogenic process follows the law of "mutation-selection-adaptation". Chronic physical activity reduces the levels of inflammation via upregulating the activity and numbers of NK cells and lymphocytes and lengthening leukocyte telomere; downregulating proinflammatory cytokines including interleukin-6 and senescent lymphocytes especially in aged population. Anti-inflammation medication reduces the occurrence and recurrence of cancers. Targeting cancer stemness signaling pathways might lead to cancer eradication. Cancer Evo-Dev not only helps understand the mechanisms by which inflammation promotes the development of cancers, but also lays the foundation for effective prophylaxis and targeted therapy of various cancers.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yifan Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoqiong Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|