1
|
Teng M, Guo J, Xu X, Ci X, Mo Y, Kohen Y, Ni Z, Chen S, Guo WY, Bakht M, Ku S, Sigouros M, Luo W, Macarios CM, Xia Z, Chen M, Ul Haq S, Yang W, Berlin A, van der Kwast T, Ellis L, Zoubeidi A, Zheng G, Ming J, Wang Y, Cui H, Lok BH, Raught B, Beltran H, Qin J, He HH. Circular RMST cooperates with lineage-driving transcription factors to govern neuroendocrine transdifferentiation. Cancer Cell 2025; 43:891-904.e10. [PMID: 40250444 DOI: 10.1016/j.ccell.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Circular RNA (circRNA) is a class of noncoding RNA with regulatory potentials. Its role in the transdifferentiation of prostate and lung adenocarcinoma into neuroendocrine prostate cancer (NEPC) and small cell lung cancer (SCLC) remains unexplored. Here, we identified circRMST as an exceptionally abundant circRNA predominantly expressed in NEPC and SCLC, with strong conservation between humans and mice. Functional studies using shRNA, siRNA, CRISPR-Cas13, and Cas9 consistently demonstrate that circRMST is essential for tumor growth and the expression of ASCL1, a master regulator of neuroendocrine fate. Genetic knockout of Rmst in NEPC genetic engineered mouse models prevents neuroendocrine transdifferentiation, maintaining tumors in an adenocarcinoma state. Mechanistically, circRMST physically interacts with lineage transcription factors NKX2-1 and SOX2. Loss of circRMST induces NKX2-1 protein degradation through autophagy-lysosomal pathway and alters the genomic binding of SOX2, collectively leading to the loss of ASCL1 transcription.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jiacheng Guo
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yakup Kohen
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zuyao Ni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wang Yuan Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Martin Bakht
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Shengyu Ku
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Ziting Xia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sami Ul Haq
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Theo van der Kwast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Himisha Beltran
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zheng H, Hua Y, Yang S, Liu V, Huang N, Li J, Kleeff J, Liao Q, Liu Q. Epigenetic modification and tumor immunity: Unraveling the interplay with the tumor microenvironment and its therapeutic vulnerability and implications. Cancer Lett 2025; 616:217587. [PMID: 40023391 DOI: 10.1016/j.canlet.2025.217587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In the ever-evolving arena of molecular biology, epigenetic modifications stand out as crucial determinants in the orchestration of cellular identity, function, and fate. This review analyzes the close relationship between epigenetics and tumor immunity, emphasizing the intricate interplay with the tumor microenvironment (TME). Rooted in the knowledge that the incidence of cancer correlates strongly with the biological and genetic age, we highlight DNA methylation as a cornerstone of the "epigenetic aging" process with close ties to tumorigenesis. The TME, with its diverse cellular and acellular constituents, is an active participant in tumor biology, further complicated by epigenetic alterations. These modifications, from DNA methylation to histone changes, not only shape the TME but are reciprocally influenced by it, reinforcing a cycle that propels malignancy. Through this exploration, we underline the importance of understanding this mutual relationship, as it holds significant implications for tumor growth, heterogeneity, and therapeutic resistance. Ultimately, this review illuminates the potential of harnessing epigenetic insights for innovative cancer therapeutic strategies, pointing towards a promising avenue for future cancer management.
Collapse
Affiliation(s)
- Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Vincent Liu
- Tsinghua University School of Basic Medical Sciences, Beijing, 100084, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jorg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Ahmed NA, Mohyeldin MM, Ebrahim HY, McGehee OC, Tarun MTI, El Sayed KA. (-)-Oleuropein as a Novel Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence Suppressor via Targeting PCSK9-LDLR Axis. Nutrients 2025; 17:1445. [PMID: 40362754 PMCID: PMC12073333 DOI: 10.3390/nu17091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Prostate cancer (PC) is among the most common malignancy in men. Several newly diagnosed patients have a locally advanced disease and distant metastasis at the initial diagnosis time. Castration-resistant PC (CRPC) patients have 100% recurrence incidence despite completing a therapeutic regimen, leading to high mortality. Androgen deprivation therapy and androgen inhibitors are initially effective, but resistance is inevitably developed. Epidemiological studies indicated that the Mediterranean diet, with high olive phenolic contents, is associated with a lower incidence of certain malignancies. This study aims at exploring the mCRPC progression and recurrence-suppressive and molecular effects of the major olive leaf phenolic glucoside (-)-oleuropein (OLE). Results: OLE downregulated the levels of proprotein convertase subtlisin/klexin type 9 (PCSK9) and normalized the low-density lipoprotein receptor (LDLR) in PC cells in vitro. Thus, a PCSK9-LDLR protein-protein interaction (PPI) in silico model was generated and used to assess OLE and its aglycone (OA) ability to bind at PCSK9 and thereby interfere with PCSK9-LDLR PPI. OLE perfectly filled the PCSK9 interface versus OA. Both OLE and OA showed virtual potential to interfere with PCSK9-LDLR PPI. OLE showed modest in vitro viability, migration, and clonogenicity suppressive effects on diverse human PC cell lines. OLE effectively suppressed mCRPC progression and recurrence in a nude mouse xenograft model. RNA-sequencing results proved the PCSK1, PCSK2, and PCSK9 downregulation in OLE-treated recurrent tumors versus vehicle control. Conclusions: Oleuropein is a novel lead useful for the control of mCRPC progression and the prevention of its recurrence via targeting PCSK9 expression and PPI with LDLR.
Collapse
Affiliation(s)
- Nehal A. Ahmed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (N.A.A.); (H.Y.E.); (O.C.M.); (M.T.I.T.)
| | - Mohamed M. Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Hassan Y. Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (N.A.A.); (H.Y.E.); (O.C.M.); (M.T.I.T.)
| | - Oliver C. McGehee
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (N.A.A.); (H.Y.E.); (O.C.M.); (M.T.I.T.)
| | - Md Towhidul Islam Tarun
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (N.A.A.); (H.Y.E.); (O.C.M.); (M.T.I.T.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (N.A.A.); (H.Y.E.); (O.C.M.); (M.T.I.T.)
| |
Collapse
|
4
|
Shen J, Lu L, Chen Z, Guo W, Wang S, Liu Z, Gong X, Qi Y, Jin R, Zhang C. Multi-omics analysis constructs a novel neuroendocrine prostate cancer classifier and classification system. Sci Rep 2025; 15:13901. [PMID: 40263498 PMCID: PMC12015331 DOI: 10.1038/s41598-025-96683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a subtype of prostate cancer (PCa) with poor prognosis and high heterogeneity, currently lacks accurate markers. This study aims to identify a robust NEPC classifier and provide new perspectives for resolving intra- tumoral heterogeneity. Multi-omics analysis included 19 bulk transcriptomics, 14 single-cell transcriptomics, 1 spatial transcriptomics, 16 published NE signatures and 10 cellular experiments combined with multiple machine learning algorithms to construct a novel NEPC classifier and classification. A comprehensive single-cell atlas of prostate cancer was created from 70 samples, comprising 196,309 cells, among which 9% were identified as NE cells. Within this framework and in combination with bulk transcriptomics, a total of 100 high-quality NE-specific feature genes were identified and differentiated into NEPup sig and NEPdown sig. The random forest (RF) algorithm proved to be the most effective classifier for NEPC, leading to the establishment of the NEP100 model, which demonstrated robust validation across various datasets. In clinical settings, the use of the NEP100 model can greatly improve the diagnostic and prognostic prediction of NEPC. Hierarchical clustering based on NEP100 revealed four distinct NEPC subtypes, designated VR_O, Prol_N, Prol_P, and EMT_Y, each of which presented unique biological characteristics. This allows us to select different targeted therapeutic strategies for different subtypes of phenotypic pathways. Notably, NEP100 expression correlated positively with neuroendocrine differentiation and disease progression, while the VR-NE phenotype dominated by VR_O cells indicated a propensity for treatment resistance. Furthermore, AMIGO2, a component of the NEP100 signature, was associated with chemotherapy resistance and a poor prognosis, indicating that it is a pivotal target for future therapeutic strategies. This study used multi-omics analysis combined with machine learning to construct a novel NEPC classifier and classification system. NEP100 provides a clinically actionable framework for NEPC diagnosis and subtyping.
Collapse
Affiliation(s)
- Junxiao Shen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Luyuan Lu
- Department of General Surgery, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zujie Chen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Guo
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shuwen Wang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ziqiao Liu
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuke Gong
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiming Qi
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ruyi Jin
- Department of Dermatology, NHC Key Laboratory of Immunodermatology, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, People's Republic of China
| | - Cheng Zhang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
5
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
6
|
Wang H, Zhang S, Pan Q, Guo J, Li N, Chen L, Xu J, Zhou J, Gu Y, Wang X, Zhang G, Lian Y, Zhang W, Lin N, Jin Z, Zang Y, Lan W, Cheng X, Tan M, Chen FX, Jiang J, Liu Q, Zheng M, Qin J. Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer. NATURE CANCER 2025; 6:629-646. [PMID: 40102673 DOI: 10.1038/s43018-025-00928-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
The transdifferentiation from adenocarcinoma to neuroendocrine prostate cancer (NEPC) in men confers antiandrogen therapy resistance. Here our analysis combining CRISPR‒Cas9 screening with single-cell RNA sequencing tracking of tumor transition demonstrated that antiandrogen-induced zinc finger MYND-type containing 8 (ZMYND8)-dependent epigenetic programming orchestrates NEPC transdifferentiation. Ablation of Zmynd8 prevents NEPC development, while ZMYND8 upregulation mediated by achaete-scute homolog 1 promotes NEPC differentiation. We show that forkhead box protein M1 (FOXM1) stabilizes ZMYND8 binding to chromatin regions characterized by H3K4me1-H3K14ac modification and FOXM1 targeting. Antiandrogen therapy releases the SWI/SNF chromatin remodeling complex from the androgen receptor, facilitating its interaction with ZMYND8-FOXM1 to upregulate critical neuroendocrine lineage regulators. We develop iZMYND8-34, a small molecule designed to inhibit ZMYND8's histone recognition, which effectively blocks NEPC development. These findings reveal the critical role of ZMYND8-dependent epigenetic programming induced by androgen deprivation therapy in orchestrating lineage fate. Targeting ZMYND8 emerges as a promising strategy for impeding NEPC development.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyu Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naiheng Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zige Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Minjia Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
7
|
Lee J, Lee Y. The role of transcription factors in prostate cancer progression. Mol Cells 2025; 48:100193. [PMID: 39938868 PMCID: PMC11907451 DOI: 10.1016/j.mocell.2025.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Prostate cancer is one of the most common malignancies in men, with most cases initially responding to androgen deprivation therapy. However, a significant number of patients eventually develop castration-resistant prostate cancer, an aggressive form of the disease. Although androgen receptor (AR) pathway inhibitors target AR signaling, and have extended survival in patients with castration-resistant prostate cancer, prolonged treatment can lead to the emergence of neuroendocrine prostate cancer (NEPC), a lethal subtype characterized by the expression of neuroendocrine markers and reduced AR activity. The transition from adenocarcinoma to NEPC is driven by lineage plasticity, wherein cancer cells adopt a neuroendocrine phenotype to evade treatment. Consequently, NEPC patients face poor clinical outcomes and limited effective treatment options. To improve outcomes, it is crucial to understand the molecular mechanisms driving NEPC development. In this review, we highlight the role of transcription factors in this process and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
8
|
Wang Y, Xue H, Zhu X, Lin D, Chen Z, Dong X, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang C, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404938. [PMID: 40091506 DOI: 10.1002/advs.202404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Prostate cancer (PCa) stands as a leading cause of cancer-related mortality among men, with treatment-induced neuroendocrine prostate cancer (NEPC) posing a challenge as an ARPI-resistant subtype. The role of transcription factors (TFs) in PCa progression and NEPC transdifferentiation remains inadequately understood, underscoring a critical gap in current research. In this study, an internal Z score-based approach is developed to identify lineage-specific TF profiles in prostatic adenocarcinoma and NEPC for a nuanced understanding of TF expression dynamics. Distinct TF profiles for adenocarcinoma and NEPC are unveiled, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs, validated across multiple cohorts. Gene Ontology is employed to validate their biological and functional roles in PCa progression. Implications are revealed in cell development, differentiation, and lineage determination. Knockdown experiments suggest that lineage-TFs are functionally important in maintaining lineage-specific cell proliferation. Additionally, a longitudinal study on NE transdifferentiation highlights dynamic TF expression shifts, proposing a three-phases hypothesis for PCa progression mechanisms. This study introduces a groundbreaking approach for deciphering the TF landscape in PCa, providing a molecular basis for adenocarcinoma to NEPC progression, and paving the way for innovative treatment strategies with potential impact on patient outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xiaohui Zhu
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Zheng Chen
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Junru Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingchen Shi
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yuchao Ni
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jonathan Cao
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Connie Kang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xinyao Pang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Yen-Yi Lin
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Christopher J Ong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| |
Collapse
|
9
|
Watanabe H, Inoue Y, Tsuchiya K, Asada K, Suzuki M, Ogawa H, Tanahashi M, Watanabe T, Matsuura S, Yasuda K, Ohnishi I, Imokawa S, Yasui H, Karayama M, Suzuki Y, Hozumi H, Furuhashi K, Enomoto N, Fujisawa T, Funai K, Shinmura K, Sugimura H, Inui N, Suda T. Lethal co-expression intolerance underlies the mutually exclusive expression of ASCL1 and NEUROD1 in SCLC cells. NPJ Precis Oncol 2025; 9:74. [PMID: 40082639 PMCID: PMC11906894 DOI: 10.1038/s41698-025-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Small cell lung cancer (SCLC) subtypes, defined by the expression of lineage-specific transcription factors (TFs), are thought to be mutually exclusive, with intra-tumoral heterogeneities. This study investigated the mechanism underlying this phenomenon with the aim of identifying a novel vulnerability of SCLC. We profiled the expression status of ASCL1, NEUROD1, POU2F3, and YAP1 in 151 surgically obtained human SCLC samples. On subtyping, a high degree of mutual exclusivity was observed between ASCL1 and NEUROD1 expression at the cell, but not tissue, level. Inducible co-expression models of all combinations of ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 using SCLC cell lines showed that some expression combinations, such as ASCL1 and NEUROD1, exhibited mutual repression and caused growth inhibition and apoptosis. Gene expression and ATAC-seq analyses of the ASCL1 and NEUROD1 co-expression models revealed that co-expression of ASCL1 in NEUROD1-driven cells, and of NEUROD1 in ASCL1-driven cells, both (although more efficiently by the former) reprogrammed the cell lineage to favor the ectopically expressed factor, with rewiring of chromatin accessibility. Mechanistically, co-expressed NEUROD1 in ASCL1-driven SCLC cells caused apoptosis by downregulating BCL2, likely in a MYC-independent manner. In conclusion, lethal co-expression intolerance underlies the mutual exclusivity between these pioneer TFs, ASCL1 and NEUROD1, in an SCLC cell. Further investigation is warranted to enable therapeutic targeting of this vulnerability.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiro Asada
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Makoto Suzuki
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takuya Watanabe
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Shun Matsuura
- Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
- Department of Pathology, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Ippei Ohnishi
- Division of Pathology, Iwata City Hospital, Iwata, Japan
| | - Shiro Imokawa
- Department of Respiratory Medicine, Iwata City Hospital, Iwata, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Li S, Song K, Sun H, Tao Y, Huang A, Bhatia V, Hanratty B, Patel RA, Long HW, Morrissey C, Haffner MC, Nelson PS, Graeber TG, Lee JK. Defined cellular reprogramming of androgen receptor-active prostate cancer to neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637904. [PMID: 40027790 PMCID: PMC11870442 DOI: 10.1101/2025.02.12.637904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) arises primarily through neuroendocrine transdifferentiation (NEtD) as an adaptive mechanism of therapeutic resistance. Models to define the functional effects of putative drivers of this process on androgen receptor (AR) signaling and NE cancer lineage programs are lacking. We adapted a genetically defined strategy from the field of cellular reprogramming to directly convert AR-active prostate cancer (ARPC) to AR-independent NEPC using candidate factors. We delineated critical roles of the pioneer factors ASCL1 and NeuroD1 in NEtD and uncovered their abilities to silence AR expression and signaling by remodeling chromatin at the somatically acquired AR enhancer and global AR binding sites with enhancer activity. We also elucidated the dynamic temporal changes in the transcriptomic and epigenomic landscapes of cells undergoing acute lineage conversion from ARPC to NEPC which should inform future therapeutic development. Further, we distinguished the activities of ASCL1 and NeuroD1 from the inactivation of RE-1 silencing transcription factor (REST), a master suppressor of a major neuronal gene program, in establishing a NEPC lineage state and in modulating the expression of genes associated with major histocompatibility complex class I (MHC I) antigen processing and presentation. These findings provide important, clinically relevant insights into the biological processes driving NEtD of prostate cancer.
Collapse
Affiliation(s)
- Shan Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kai Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Yong Tao
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arthur Huang
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Brian Hanratty
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Sipola J, Munzur AD, Kwan EM, Seo CCY, Hauk BJ, Parekh K, Liao YJ(R, Bernales CQ, Donnellan G, Bloise I, Fung E, Ng SWS, Wang G, Vandekerkhove G, Nykter M, Annala M, Maurice-Dror C, Chi KN, Herberts C, Wyatt AW, Takeda DY. Plasma Cell-Free DNA Chromatin Immunoprecipitation Profiling Depicts Phenotypic and Clinical Heterogeneity in Advanced Prostate Cancer. Cancer Res 2025; 85:791-807. [PMID: 39652574 PMCID: PMC11832346 DOI: 10.1158/0008-5472.can-24-2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Cell phenotype underlies prostate cancer presentation and treatment resistance and can be regulated by epigenomic features. However, the osteotropic tendency of prostate cancer limits access to metastatic tissue, meaning most prior insights into prostate cancer chromatin biology are from preclinical models that do not fully represent disease complexity. Noninvasive chromatin immunoprecipitation of histones in plasma cell-free DNA (cfDNA) in humans may enable the capture of disparate prostate cancer phenotypes. In this study, we analyzed activating promoter- and enhancer-associated H3K4me2 from cfDNA in metastatic prostate cancer enriched for divergent patterns of metastasis and diverse clinical presentation. H3K4me2 density across prostate cancer genes, accessible chromatin, and lineage-defining transcription factor-binding sites correlated strongly with ctDNA fraction-demonstrating capture of prostate cancer-specific biology and informing the development of a statistical framework to adjust for ctDNA fraction. Chromatin hallmarks mirrored synchronously measured clinicogenomic features: bone- versus liver-predominant disease, serum PSA, biopsy-confirmed histopathologic subtype, and RB1 deletions convergently indicated phenotype segregation along an axis of differential androgen receptor activity and neuroendocrine identity. Detection of lineage switching after sequential progression on systemic therapy in select patients indicates potential use for individualized resistance monitoring. Epigenomic footprints of metastasis-induced normal tissue destruction were evident in bulk cfDNA from two patients. Finally, a public epigenomic resource was generated using a distinct chromatin marker that has not been widely investigated in prostate cancer. These results provide insights into the adaptive molecular landscape of aggressive prostate cancer and endorse plasma cfDNA chromatin profiling as a biomarker source and biological discovery tool. Significance: Plasma cell-free chromatin immunoprecipitation sequencing enables phenotypic dissection of lethal prostate cancer and is a practical tool for biomarker discovery while overcoming prior limitations of access to relevant tissue and reliance on model systems.
Collapse
Affiliation(s)
- Joonatan Sipola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Asli D. Munzur
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medicine, School of Clinical Sciences; Monash University; Melbourne, Victoria, Australia
| | - Clara C. Y. Seo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin J. Hauk
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Yi Jou (Ruby) Liao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Cecily Q. Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Ingrid Bloise
- Instituto Brasileiro de Controle ao Cancer, Sao Paulo, Brazil
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sarah W. S. Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | | | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Xiang X, Tao X, Hua K, Jiang H, Ding J. Single-cell RNA sequencing reveals tumor heterogeneity in small cell neuroendocrine cervical carcinoma. Commun Biol 2025; 8:184. [PMID: 39910262 PMCID: PMC11799506 DOI: 10.1038/s42003-025-07605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025] Open
Abstract
Small cell neuroendocrine cervical carcinoma (SCNECC) is an aggressive gynecological malignancy with poor prognosis. The precision therapeutic strategies for SCNECC are severely limited by the complex tumor microenvironment. Here, we mapped the single-cell landscape of a total of six samples from matched SCNECC cancerous foci and normal adjacent cervical tissues. Through analysis of 68,455 high-quality cells, malignant epithelial cells were identified with increased neuroendocrine differentiation and reduced keratinization. Within four epithelial cell clusters, the key transcription factors ASCL1, NEUROD1, POU2F3, and YAP1 defined molecular subtypes. Transitional trajectory among subtypes characterized two distinct carcinogenesis pathways in SCNECC. The P-type SCNECC showed potentially enhanced immune infiltration over other subtypes. Intercellular communication analysis identified several immune checkpoints and differentially expressed signaling pathways among subtypes. Through western blotting, the TC-YIK cell line was identified as an N-type SCNECC cell with high expression of SLFN11 and mTOR. Based on immunohistochemical staining of malignant subtyping markers, a cohort of 66 SCNECC patients from our hospital were divided into five subtypes. We further combined YAP1 expression with other clinicopathological factors (Cox p < 0.05) to establish a prognostic nomogram. Overall, these findings provide clues for tumorigenesis, precision treatments and prognostic prediction in SCNECC.
Collapse
Affiliation(s)
- Xuesong Xiang
- Department of Gynecological Oncology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Xiang Tao
- Department of Pathology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Keqin Hua
- Department of Gynecological Oncology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
| | - Hua Jiang
- Department of Gynecological Oncology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
| | - Jingxin Ding
- Department of Gynecological Oncology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
| |
Collapse
|
13
|
Gokbayrak B, Altintas UB, Lingadahalli S, Morova T, Huang CCF, Ersoy Fazlioglu B, Pak Lok Yu I, Kalkan BM, Cejas P, Kung SHY, Fazli L, Kawamura A, Long HW, Acilan C, Onder TT, Bagci-Onder T, Lynch JT, Lack NA. Identification of selective SWI/SNF dependencies in enzalutamide-resistant prostate cancer. Commun Biol 2025; 8:169. [PMID: 39905188 PMCID: PMC11794516 DOI: 10.1038/s42003-024-07413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Enzalutamide is a potent second-generation antiandrogen commonly used to treat hormone-sensitive and castration-resistant prostate cancer (CRPC) patients. While initially effective, the disease almost always develops resistance. Given that many enzalutamide-resistant tumors lack specific somatic mutations, there is strong evidence that epigenetic factors can cause enzalutamide resistance. To explore how resistance arises, we systematically test all epigenetic modifiers in several models of castration-resistant and enzalutamide-resistant prostate cancer with a custom epigenetic CRISPR library. From this, we identify and validate SMARCC2, a core component of the SWI/SNF complex, that is selectivity essential in enzalutamide-resistant models. We show that the chromatin occupancy of SMARCC2 and BRG1 is expanded in enzalutamide resistance at regions that overlap with CRPC-associated transcription factors that are accessible in CRPC clinical samples. Overall, our study reveals a regulatory role for SMARCC2 in enzalutamide-resistant prostate cancer and supports the feasibility of targeting the SWI/SNF complex in late-stage PCa.
Collapse
Affiliation(s)
- Bengul Gokbayrak
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Umut Berkay Altintas
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Betul Ersoy Fazlioglu
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Batuhan M Kalkan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
- Translational Oncology Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ) and CIBERONC, La Paz University Hospital, Madrid, Spain
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Ceyda Acilan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tamer T Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tugba Bagci-Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - James T Lynch
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan A Lack
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey.
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Haffner MC, Morris MJ, Ding CKC, Sayar E, Mehra R, Robinson B, True LD, Gleave M, Lotan TL, Aggarwal R, Huang J, Loda M, Nelson PS, Rubin MA, Beltran H. Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clin Cancer Res 2025; 31:466-478. [PMID: 39589343 PMCID: PMC11790385 DOI: 10.1158/1078-0432.ccr-24-2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lineage plasticity and histologic transformation from prostate adenocarcinoma to neuroendocrine (NE) prostate cancer (NEPC) occur in up to 15% to 20% of patients with castration-resistant prostate cancer (CRPC) as a mechanism of treatment resistance and are associated with aggressive disease and poor prognosis. NEPC tumors typically display small cell carcinoma morphology with loss of androgen receptor (AR) expression and gain of NE lineage markers. However, there is a spectrum of phenotypes that are observed during the lineage plasticity process, and the clinical significance of mixed histologies or those that co-express AR and NE markers or lack all markers is not well defined. Translational research studies investigating NEPC have used variable definitions, making clinical trial design challenging. In this manuscript, we discuss the diagnostic workup of metastatic biopsies to help guide the reproducible classification of phenotypic CRPC subtypes. We recommend classifying CRPC tumors based on histomorphology (adenocarcinoma, small cell carcinoma, poorly differentiated carcinoma, other morphologic variant, or mixed morphology) and IHC markers with a priority for AR, NK3 homeobox 1, insulinoma-associated protein 1, synaptophysin, and cell proliferation based on Ki-67 positivity, with additional markers to be considered based on the clinical context. Ultimately, a unified workup of metastatic CRPC biopsies can improve clinical trial design and eventually practice.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Kuang C. Ding
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tamara L. Lotan
- Departments of Pathology, Urology, Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rahul Aggarwal
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
15
|
Lozada JR, Elliott A, Evans MG, Wacker J, Storey KM, Egusa EA, Zorko NA, Kumar A, Crymes A, Heath EI, Carneiro BA, Soares HP, Cichocki F, Miller JS, Lou E, Beltran H, Antonarakis ES, Ryan CJ, Hwang JH. Expression Patterns of DLL3 across Neuroendocrine and Non-neuroendocrine Neoplasms Reveal Broad Opportunities for Therapeutic Targeting. CANCER RESEARCH COMMUNICATIONS 2025; 5:318-326. [PMID: 39874041 PMCID: PMC11827001 DOI: 10.1158/2767-9764.crc-24-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
SIGNIFICANCE DLL3-targeted therapies have recently shown robust clinical efficacy in aggressive neuroendocrine cancers, positioning them to fulfill a great unmet need in these settings. Here, we examine the clinical and biological correlates of DLL3 expression in both neuroendocrine and non-neuroendocrine cancers. Our findings may stimulate the development and application of DLL3-targeted therapies, as well as other precision therapies, in neuroendocrine cancers and beyond.
Collapse
Affiliation(s)
- John R. Lozada
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Kathleen M. Storey
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emily A. Egusa
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | - Nicholas A. Zorko
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Anthony Crymes
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University Karmanos Cancer Institute, Detroit, Michigan
| | | | | | - Frank Cichocki
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emil Lou
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | | | - Emmanuel S. Antonarakis
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Charles J. Ryan
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Justin H. Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
16
|
Gu A, Li J, Li M, Liu Y. Patient-derived xenograft model in cancer: establishment and applications. MedComm (Beijing) 2025; 6:e70059. [PMID: 39830019 PMCID: PMC11742426 DOI: 10.1002/mco2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The patient-derived xenograft (PDX) model is a crucial in vivo model extensively employed in cancer research that has been shown to maintain the genomic characteristics and pathological structure of patients across various subtypes, metastatic, and diverse treatment histories. Various treatment strategies utilized in PDX models can offer valuable insights into the mechanisms of tumor progression, drug resistance, and the development of novel therapies. This review provides a comprehensive overview of the establishment and applications of PDX models. We present an overview of the history and current status of PDX models, elucidate the diverse construction methodologies employed for different tumors, and conduct a comparative analysis to highlight the distinct advantages and limitations of this model in relation to other in vivo models. The applications are elucidated in the domain of comprehending the mechanisms underlying tumor development and cancer therapy, which highlights broad applications in the fields of chemotherapy, targeted therapy, delivery systems, combination therapy, antibody-drug conjugates and radiotherapy. Furthermore, the combination of the PDX model with multiomics and single-cell analyses for cancer research has also been emphasized. The application of the PDX model in clinical treatment and personalized medicine is additionally emphasized.
Collapse
Affiliation(s)
- Ao Gu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiatong Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Yao Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
17
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
18
|
Constâncio V, Lobo J, Sequeira JP, Henrique R, Jerónimo C. Prostate cancer epigenetics - from pathophysiology to clinical application. Nat Rev Urol 2025:10.1038/s41585-024-00991-8. [PMID: 39820138 DOI: 10.1038/s41585-024-00991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decades, epigenetics, which is the study of changes in gene expression without altering the DNA sequence, has been recognized as a major driver of this disease. In the past 50 years, advancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancer, from initiation to progression, including localized disease, metastatic dissemination, castration resistance and neuroendocrine transdifferentiation. Substantial advances in the understanding of epigenetic mechanisms in the pathophysiology of prostate cancer have been carried out, but translating preclinical achievements into clinical practice remains challenging. Ongoing research and biomarker-oriented clinical trials are expected to increase the likelihood of successfully integrating epigenetics into prostate cancer clinical management.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
19
|
Lei X, Su Y, Lei R, Zhang D, Liu Z, Li X, Yang M, Pei J, Chi Y, Song L. Predictive and prognostic nomogram models for liver metastasis in colorectal neuroendocrine neoplasms: a large population study. Front Endocrinol (Lausanne) 2025; 15:1488733. [PMID: 39839478 PMCID: PMC11746099 DOI: 10.3389/fendo.2024.1488733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background In recent years, the incidence of patients with colorectal neuroendocrine neoplasms (CRNENs) has been continuously increasing. When diagnosed, most patients have distant metastases. Liver metastasis (LM) is the most common type of distant metastasis, and the prognosis is poor once it occurs. However, there is still a lack of large studies on the risk and prognosis of LM in CRNENs. This study aims to identify factors related to LM and prognosis and to develop a predictive model accordingly. Methods In this study, the Surveillance, Epidemiology, and End Results (SEER) database was used to collect clinical data from patients with CRNENs. The logistic regression analyses were conducted to identify factors associated with LM in patients with CRNENs. The patients with LM formed the prognostic cohort, and Cox regression analyses were performed to evaluate prognostic factors in patients with liver metastasis of colorectal neuroendocrine neoplasms (LM-CRNENs). Predictive and prognostic nomogram models were constructed based on the multivariate logistic and Cox analysis results. Finally, the capabilities of the nomogram models were verified through model assessment metrics, including the receiver operating characteristic (ROC) curves, calibration curve, and decision curve analysis (DCA) curve. Results This study ultimately encompassed a total of 10,260 patients with CRNENs. Among these patients, 501 cases developed LM. The result of multivariate logistic regression analyses indicated that histologic type, tumor grade, T stage, N stage, lung metastasis, bone metastasis, and tumor size were independent predictive factors for LM in patients with CRNENs (p < 0.05). Multivariate Cox regression analyses indicated that age, primary tumor site, histologic type, tumor grade, N stage, tumor size, chemotherapy, and surgery were independent prognostic factors (p < 0.05) for patients with LM-CRNENs. The predictive and prognostic nomogram models were established based on the independent factors of logistic and Cox analyses. The nomogram models can provide higher accuracy and efficacy in predicting the probability of LM in patients with CRNENs and the prognosis of patients with LM. Conclusion The factors associated with the occurrence of LM in CRNENs were identified. On the other hand, the relevant prognostic factors for patients with LM-CRNENs were also demonstrated. The nomogram models, based on independent factors, demonstrate greater efficiency and accuracy, promising to provide clinical interventions and decision-making support for patients.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanwei Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Lei
- Department of Endocrinology, Zhoukou First People‘s Hospital, Zhoukou, China
| | - Dongyang Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zimeng Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minjie Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaxin Pei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Chi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijie Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Neuroendocrine Tumor Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Lu X, Keo V, Cheng I, Xie W, Gritsina G, Wang J, Jin Q, Jin P, Yue F, Sanda MG, Corces V, Altemose N, Zhao JC, Yu J. Epigenetic remodeling and 3D chromatin reorganization governed by NKX2-1 drive neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626816. [PMID: 39677680 PMCID: PMC11643106 DOI: 10.1101/2024.12.04.626816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
Collapse
|
21
|
Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM, Cui CJ, Ganguli D, Zoubeidi A. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight 2024; 9:e185952. [PMID: 39470735 PMCID: PMC11623946 DOI: 10.1172/jci.insight.185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Lineage plasticity mediates resistance to androgen receptor pathway inhibitors (ARPIs) and progression from adenocarcinoma to neuroendocrine prostate cancer (NEPC), a highly aggressive and poorly understood subtype. Neuronal transcription factor ASCL1 has emerged as a central regulator of the lineage plasticity driving neuroendocrine differentiation. Here, we showed that ASCL1 was reprogrammed in ARPI-induced transition to terminal NEPC and identified that the ASCL1 binding pattern tailored the expression of lineage-determinant transcription factor combinations that underlie discrete terminal NEPC identity. Notably, we identified FOXA2 as a major cofactor of ASCL1 in terminal NEPC, which is highly expressed in ASCL1-driven NEPC. Mechanistically, FOXA2 and ASCL1 interacted and worked in concert to orchestrate terminal neuronal differentiation. We identified that prospero homeobox 1 was a target of ASCL1 and FOXA2. Targeting prospero homeobox 1 abrogated neuroendocrine characteristics and led to a decrease in cell proliferation in vitro and tumor growth in vivo. Our findings provide insights into the molecular conduit underlying the interplay between different lineage-determinant transcription factors to support the neuroendocrine identity and nominate prospero homeobox 1 as a potential target in ASCL1-high NEPC.
Collapse
Affiliation(s)
- Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Joshua M Scurll
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Kelly K, Scherer M, Braun MM, Lutsik P, Plass C. EpiCHAOS: a metric to quantify epigenomic heterogeneity in single-cell data. Genome Biol 2024; 25:305. [PMID: 39623476 PMCID: PMC11613708 DOI: 10.1186/s13059-024-03446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Epigenetic heterogeneity is a fundamental property of biological systems and is recognized as a potential driver of tumor plasticity and therapy resistance. Single-cell epigenomics technologies have been widely employed to study epigenetic variation between-but not within-cellular clusters. We introduce epiCHAOS: a quantitative metric of cell-to-cell heterogeneity, applicable to any single-cell epigenomics data type. After validation in synthetic datasets, we apply epiCHAOS to investigate global and region-specific patterns of epigenetic heterogeneity across diverse biological systems. EpiCHAOS provides an excellent approximation of stemness and plasticity in development and malignancy, making it a valuable addition to single-cell cancer epigenomics analyses.
Collapse
Affiliation(s)
- Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Michael Scherer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martina Maria Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona, Institute of Science and Technology (BIST), Barcelona, 08003, Spain
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford DB, Lee JK, Graeber TG, Shirihai OS, Witte ON. PGC-1α drives small cell neuroendocrine cancer progression toward an ASCL1-expressing subtype with increased mitochondrial capacity. Proc Natl Acad Sci U S A 2024; 121:e2416882121. [PMID: 39589879 PMCID: PMC11626175 DOI: 10.1073/pnas.2416882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Adenocarcinomas from multiple tissues can converge to treatment-resistant small cell neuroendocrine (SCN) cancers composed of ASCL1, POU2F3, NEUROD1, and YAP1 subtypes. We investigated how mitochondrial metabolism influences SCN cancer (SCNC) progression. Extensive bioinformatics analyses encompassing thousands of patient tumors and human cancer cell lines uncovered enhanced expression of proliferator-activatedreceptor gamma coactivator 1-alpha (PGC-1α), a potent regulator of mitochondrial oxidative phosphorylation (OXPHOS), across several SCNCs. PGC-1α correlated tightly with increased expression of the lineage marker Achaete-scute homolog 1, (ASCL1) through a positive feedback mechanism. Analyses using a human prostate tissue-based SCN transformation system showed that the ASCL1 subtype has heightened PGC-1α expression and OXPHOS activity. PGC-1α inhibition diminished OXPHOS, reduced SCNC cell proliferation, and blocked SCN prostate tumor formation. Conversely, PGC-1α overexpression enhanced OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate, and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting metabolic vulnerabilities in SCNCs across different tissues.
Collapse
Affiliation(s)
- Grigor Varuzhanyan
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jack Freeland
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Tian He
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Liang Wang
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gabriella A. Dibernardo
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Favour N. Esedebe
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
| | - Vipul Bhatia
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Mingqi Han
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC27710
| | - Sanaz Memarzadeh
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- The Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA90073
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - David B. Shackelford
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - John K. Lee
- Division of Hematology/Oncology, Department of Medicine University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- UCLA Metabolomics Center, University of California, Los Angeles, CA90095
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA90095
- University of California Los Angeles Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva8410501, Israel
| | - Owen N. Witte
- Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA90095
| |
Collapse
|
24
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
25
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
26
|
Rodarte KE, Heyman SN, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res 2024; 84:3522-3537. [PMID: 39264686 PMCID: PMC11534540 DOI: 10.1158/0008-5472.can-24-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.
Collapse
Affiliation(s)
- Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaked Nir Heyman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajal B. Shah
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, NC 27708, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Heimdörfer D, Artamonova N, Culig Z, Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J Cancer Res Clin Oncol 2024; 150:462. [PMID: 39412660 PMCID: PMC11485041 DOI: 10.1007/s00432-024-05983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related deaths among men. While adenocarcinoma of the prostate (adeno-PCa) is well-characterized, neuroendocrine prostate cancer (NEPC) remains poorly understood. Generally, NEPC is a rare but highly aggressive histological variant, however its limited patho-physiological understanding leads to insufficient treatment options associated with low survival rates for NEPC patients. Current treatments for NEPC, including platinum-based therapies, offer some efficacy, but there is a significant need for more targeted approaches. This review summarizes the molecular characteristics of NEPC in contrast to adeno-PCa, providing a comprehensive comparison. A significant portion of the discussion is dedicated to the tumor microenvironment (TME), which has recently been identified as a key factor in tumor progression. The TME includes various cells, signaling molecules, and the extracellular matrix surrounding the tumor, all of which play critical roles in cancer development and response to treatment. Understanding the TME's influence on NEPC could uncover new avenues for innovative treatment strategies, potentially improving outcomes for patients with this challenging variant of PCa.
Collapse
Affiliation(s)
- David Heimdörfer
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Nastasiia Artamonova
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
28
|
Liu S, Garcia-Marques FJ, Shen M, Bermudez A, Pitteri SJ, Stoyanova T. Ubiquitin C-terminal hydrolase L1 is a regulator of tumor growth and metastasis in double-negative prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:306-322. [PMID: 39584005 PMCID: PMC11578776 DOI: 10.62347/jnbr1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men worldwide. With heavy androgen deprivation therapies, prostate cancer may shift to androgen receptor negative and neuroendocrine negative subtype of castration resistant prostate cancer, defined as double-negative prostate cancer. Double-negative prostate cancer is associated with poor prognosis and disease mortality. The molecular mechanisms underlying the emergence of double-negative prostate cancer remain poorly understood. Here, we demonstrate that Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), is negatively correlated with androgen receptor levels in prostate cancer patients. UCH-L1 plays a functional role in tumorigenesis and metastasis in double-negative prostate cancer. Knock-down of UCH-L1 decreases double-negative prostate cancer colony formation in vitro and tumor growth in vivo. Moreover, decrease of UCH-L1 significantly delays cell migration in vitro and spontaneous metastasis and metastatic colonization in vivo. Proteomic analysis revealed that mTORC1 signaling, androgen response signaling and MYC targets are the top three decreased pathways upon UCH-L1 decrease. Further, treatment with LDN-57444, a UCH-L1 small molecule inhibitor, impairs double-negative prostate cancer cell colony formation, migration in vitro, and metastatic colonization in vivo. Our study reveals that UCH-L1 is an important regulator of double-negative prostate cancer tumor growth and progression, providing a promising therapeutic target for this subtype of metastatic prostate cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | | | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
- Department of Urology, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
29
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
30
|
Westaby D, Jiménez-Vacas JM, Figueiredo I, Rekowski J, Pettinger C, Gurel B, Lundberg A, Bogdan D, Buroni L, Neeb A, Padilha A, Taylor J, Zeng W, Das S, Hobern E, Riisnaes R, Crespo M, Miranda S, Ferreira A, Hanratty BP, Nava Rodrigues D, Bertan C, Seed G, Fenor de La Maza MDLD, Guo C, Carmichael J, Grochot R, Chandran K, Stavridi A, Varkaris A, Stylianou N, Hollier BG, Tunariu N, Balk SP, Carreira S, Yuan W, Nelson PS, Corey E, Haffner M, de Bono J, Sharp A. BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity. J Clin Invest 2024; 134:e179998. [PMID: 39286979 PMCID: PMC11405043 DOI: 10.1172/jci179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | | | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Arian Lundberg
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Buroni
- The Institute of Cancer Research, London, United Kingdom
| | - Antje Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Padilha
- The Institute of Cancer Research, London, United Kingdom
| | - Joe Taylor
- The Institute of Cancer Research, London, United Kingdom
| | - Wanting Zeng
- The Institute of Cancer Research, London, United Kingdom
| | - Souvik Das
- The Institute of Cancer Research, London, United Kingdom
| | - Emily Hobern
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Juliet Carmichael
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Rafael Grochot
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Khobe Chandran
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | - Andreas Varkaris
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nataly Stylianou
- Australian Prostate Cancer Research Centre–Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre–Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nina Tunariu
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Steven P. Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Peter S. Nelson
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Eva Corey
- University of Washington, Seattle, Washington, USA
| | - Michael Haffner
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
31
|
Shrestha R, Chesner LN, Zhang M, Zhou S, Foye A, Lundberg A, Weinstein AS, Sjöström M, Zhu X, Moreno-Rodriguez T, Li H, Alumkal JJ, Aggarwal R, Small EJ, Lupien M, Quigley DA, Feng FY. An Atlas of Accessible Chromatin in Advanced Prostate Cancer Reveals the Epigenetic Evolution during Tumor Progression. Cancer Res 2024; 84:3086-3100. [PMID: 38990734 DOI: 10.1158/0008-5472.can-24-0890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease that resists therapy targeting androgen signaling, the primary driver of prostate cancer. mCRPC resists androgen receptor (AR) inhibitors by amplifying AR signaling or by evolving into therapy-resistant subtypes that do not depend on AR. Elucidation of the epigenetic underpinnings of these subtypes could provide important insights into the drivers of therapy resistance. In this study, we produced chromatin accessibility maps linked to the binding of lineage-specific transcription factors (TF) by performing assay for transposase-accessible chromatin sequencing on 70 mCRPC tissue biopsies integrated with transcriptome and whole-genome sequencing. mCRPC had a distinct global chromatin accessibility profile linked to AR function. Analysis of TF occupancy across accessible chromatin revealed 203 TFs associated with mCRPC subtypes. Notably, ZNF263 was identified as a putative prostate cancer TF with a significant impact on gene activity in the double-negative subtype (AR- neuroendocrine-), potentially activating MYC targets. Overall, this analysis of chromatin accessibility in mCRPC provides valuable insights into epigenetic changes that occur during progression to mCRPC. Significance: Integration of a large cohort of transcriptome, whole-genome, and ATAC sequencing characterizes the chromatin accessibility changes in advanced prostate cancer and identifies therapy-resistant prostate cancer subtype-specific transcription factors that modulate oncogenic programs.
Collapse
Affiliation(s)
- Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Lisa N Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Alana S Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
32
|
Bhattacharya S, Harris HL, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele SM, Muders M, Batra SK, Ghosh PM, Datta K, Rowley MJ, Dutta S. Understanding the function of Pax5 in development of docetaxel-resistant neuroendocrine-like prostate cancers. Cell Death Dis 2024; 15:617. [PMID: 39183332 PMCID: PMC11345443 DOI: 10.1038/s41419-024-06916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small-cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts neurite-mediated cellular communication in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to docetaxel therapies. Moreover, t-NEPC-specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
MESH Headings
- Humans
- Male
- Docetaxel/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Antineoplastic Agents/pharmacology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dipanwita Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Subodh M Lele
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Muders
- MVZ Pathology Bethesda, Heerstrasse 219, Duisburg, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paramita M Ghosh
- Department of Urological Surgery, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
33
|
Li J, Huang K, McBride F, Sadagopan A, Gallant DS, Thakur M, Khanna P, Li B, Ge M, Weiss CN, Achom M, Xu Q, Huang K, Ryback BA, Gui M, Bar-Peled L, Viswanathan SR. TFE3 fusions direct an oncogenic transcriptional program that drives OXPHOS and unveils vulnerabilities in translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607311. [PMID: 39149323 PMCID: PMC11326252 DOI: 10.1101/2024.08.09.607311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic metabolism of most other renal cancers. This TFE3 fusion-driven OXPHOS program, together with heightened glutathione levels found in renal cancers, renders tRCCs sensitive to reductive stress - a metabolic stress state induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1a and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability to OXPHOS-dependent tRCC cells. Our study defines a distinctive tRCC-essential metabolic program driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy to counteract fusion-induced metabolic rewiring.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel. S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
34
|
Venkadakrishnan VB, Presser AG, Singh R, Booker MA, Traphagen NA, Weng K, Voss NCE, Mahadevan NR, Mizuno K, Puca L, Idahor O, Ku SY, Bakht MK, Borah AA, Herbert ZT, Tolstorukov MY, Barbie DA, Rickman DS, Brown M, Beltran H. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Nat Commun 2024; 15:6779. [PMID: 39117665 PMCID: PMC11310309 DOI: 10.1038/s41467-024-51156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam G Presser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole A Traphagen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Boston College, Chestnut Hill, MA, USA
| | - Nathaniel C E Voss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belmont Hill School, Belmont, MA, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard University, Cambridge, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashir A Borah
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Cacciatore A, Shinde D, Musumeci C, Sandrini G, Guarrera L, Albino D, Civenni G, Storelli E, Mosole S, Federici E, Fusina A, Iozzo M, Rinaldi A, Pecoraro M, Geiger R, Bolis M, Catapano CV, Carbone GM. Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer. Nat Commun 2024; 15:6672. [PMID: 39107274 PMCID: PMC11303763 DOI: 10.1038/s41467-024-50908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a frequently occurring disease with adverse clinical outcomes and limited therapeutic options. Here, we identify methionine adenosyltransferase 2a (MAT2A) as a critical driver of the androgen-indifferent state in ERG fusion-positive CRPC. MAT2A is upregulated in CRPC and cooperates with ERG in promoting cell plasticity, stemness and tumorigenesis. RNA, ATAC and ChIP-sequencing coupled with histone post-translational modification analysis by mass spectrometry show that MAT2A broadly impacts the transcriptional and epigenetic landscape. MAT2A enhances H3K4me2 at multiple genomic sites, promoting the expression of pro-tumorigenic non-canonical AR target genes. Genetic and pharmacological inhibition of MAT2A reverses the transcriptional and epigenetic remodeling in CRPC models and improves the response to AR and EZH2 inhibitors. These data reveal a role of MAT2A in epigenetic reprogramming and provide a proof of concept for testing MAT2A inhibitors in CRPC patients to improve clinical responses and prevent treatment resistance.
Collapse
MESH Headings
- Male
- Humans
- Transcriptional Regulator ERG/genetics
- Transcriptional Regulator ERG/metabolism
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Epigenesis, Genetic/drug effects
- Animals
- Androgens/metabolism
- Epigenome
- Mice
- Histones/metabolism
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Alessia Cacciatore
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carola Musumeci
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, 6500, Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Storelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Federici
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Alessio Fusina
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marta Iozzo
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
36
|
Cheng S, Li L, Yeh Y, Shi Y, Franco O, Corey E, Yu X. Unveiling novel double-negative prostate cancer subtypes through single-cell RNA sequencing analysis. NPJ Precis Oncol 2024; 8:171. [PMID: 39095562 PMCID: PMC11297170 DOI: 10.1038/s41698-024-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into cancer heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising publicly available cohorts and data generated by our research team, and established the Human Prostate Single cell Atlas (HuPSA) and Mouse Prostate Single cell Atlas (MoPSA) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution re-classified human PCa specimens, validating the presence of these novel subtypes. We then developed a user-friendly web application, "HuPSA-MoPSA" ( https://pcatools.shinyapps.io/HuPSA-MoPSA/ ), for visualizing gene expression across all newly established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA.
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
| | - Lin Li
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Yunshin Yeh
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA, USA
| | - Yingli Shi
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Omar Franco
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA.
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
- Department of Urology, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
37
|
Varuzhanyan G, Chen CC, Freeland J, He T, Tran W, Song K, Wang L, Cheng D, Xu S, Dibernardo GA, Esedebe FN, Bhatia V, Han M, Abt ER, Park JW, Memarzadeh S, Shackelford D, Lee JK, Graeber T, Shirihai O, Witte O. PGC-1α drives small cell neuroendocrine cancer progression towards an ASCL1-expressing subtype with increased mitochondrial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588489. [PMID: 38645232 PMCID: PMC11030384 DOI: 10.1101/2024.04.09.588489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adenocarcinomas from multiple tissues can evolve into lethal, treatment-resistant small cell neuroendocrine (SCN) cancers comprising multiple subtypes with poorly defined metabolic characteristics. The role of metabolism in directly driving subtype determination remains unclear. Through bioinformatics analyses of thousands of patient tumors, we identified enhanced PGC-1α-a potent regulator of oxidative phosphorylation (OXPHOS)-in various SCN cancers (SCNCs), closely linked with neuroendocrine differentiation. In a patient-derived prostate tissue SCNC transformation system, the ASCL1-expressing neuroendocrine subtype showed elevated PGC-1α expression and increased OXPHOS activity. Inhibition of PGC-1α and OXPHOS reduced the proliferation of SCN lung and prostate cancer cell lines and blocked SCN prostate tumor formation. Conversely, enhancing PGC- 1α and OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting novel metabolic vulnerabilities in SCNCs across different tissues. STATEMENT OF SIGNIFICANCE Our study provides functional evidence that metabolic reprogramming can directly impact cancer phenotypes and establishes PGC-1α-induced mitochondrial metabolism as a driver of SCNC progression and lineage determination. These mechanistic insights reveal common metabolic vulnerabilities across SCNCs originating from multiple tissues, opening new avenues for pan-SCN cancer therapeutic strategies.
Collapse
|
38
|
Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 2024; 12:1435546. [PMID: 39105169 PMCID: PMC11298428 DOI: 10.3389/fcell.2024.1435546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, Vestec, Czechia
| | | |
Collapse
|
39
|
Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, Wadosky KM, Patel RA, Sayar E, Karthaus WR, Kates DH, Chaudhary O, Xu T, Masilionis I, Mazutis L, Chaligné R, Obradovic A, Linkov I, Barlas A, Jungbluth AA, Rekhtman N, Silber J, Manova-Todorova K, Watson PA, True LD, Morrissey C, Scher HI, Rathkopf DE, Morris MJ, Goodrich DW, Choi J, Nelson PS, Haffner MC, Sawyers CL. Single-cell analysis of treatment-resistant prostate cancer: Implications of cell state changes for cell surface antigen-targeted therapies. Proc Natl Acad Sci U S A 2024; 121:e2322203121. [PMID: 38968122 PMCID: PMC11252802 DOI: 10.1073/pnas.2322203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/09/2024] [Indexed: 07/07/2024] Open
Abstract
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.
Collapse
MESH Headings
- Male
- Humans
- Single-Cell Analysis/methods
- Animals
- Mice
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Antigens, Surface/metabolism
- Antigens, Surface/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/metabolism
- Adenocarcinoma/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Gene Expression Regulation, Neoplastic
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
Collapse
Affiliation(s)
- Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | | | | | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY14263
| | - Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Wouter R. Karthaus
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - D. Henry Kates
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Aleksandar Obradovic
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Irina Linkov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Afsar Barlas
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNY10065
| | - Achim A. Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Joachim Silber
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNY10065
| | - Philip A. Watson
- Research Outreach and Compliance, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Howard I. Scher
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Dana E. Rathkopf
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Michael J. Morris
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY14263
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- HHMI, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
40
|
Jasmine S, Mandl A, Krueger TEG, Dalrymple SL, Antony L, Dias J, Celatka CA, Tapper AE, Kleppe M, Kanayama M, Jing Y, Speranzini V, Wang YZ, Luo J, Trock BJ, Denmeade SR, Carducci MA, Mattevi A, Rienhoff HY, Isaacs JT, Brennen WN. Characterization of structural, biochemical, pharmacokinetic, and pharmacodynamic properties of the LSD1 inhibitor bomedemstat in preclinical models. Prostate 2024; 84:909-921. [PMID: 38619005 PMCID: PMC11184632 DOI: 10.1002/pros.24707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.
Collapse
Affiliation(s)
- Sumer Jasmine
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adel Mandl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy E. G. Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan L. Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Dias
- Imago Biosciences Inc., A Subsidiary of Merck & Co, Inc., San Francisco, California, USA
| | - Cassandra A. Celatka
- Imago Biosciences Inc., A Subsidiary of Merck & Co, Inc., San Francisco, California, USA
| | - Amy E. Tapper
- Imago Biosciences Inc., A Subsidiary of Merck & Co, Inc., San Francisco, California, USA
| | - Maria Kleppe
- Imago Biosciences Inc., A Subsidiary of Merck & Co, Inc., San Francisco, California, USA
| | - Mayuko Kanayama
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuezhou Jing
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yuzhuo Z. Wang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, Vancouver Prostate Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Jun Luo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bruce J. Trock
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Carducci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hugh Y. Rienhoff
- Imago Biosciences Inc., A Subsidiary of Merck & Co, Inc., San Francisco, California, USA
| | - John T. Isaacs
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W. Nathaniel Brennen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Pan B, Yan S, Yuan L, Xiang H, Ju M, Xu S, Jia W, Li J, Zhao Q, Zheng M. Multiomics sequencing and immune microenvironment characteristics define three subtypes of small cell neuroendocrine carcinoma of the cervix. J Pathol 2024; 263:372-385. [PMID: 38721894 DOI: 10.1002/path.6290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Small cell cervical carcinoma (SCCC) is the most common neuroendocrine tumor in the female genital tract, with an unfavorable prognosis and lacking an evidence-based therapeutic approach. Until now, the distinct subtypes and immune characteristics of SCCC combined with genome and transcriptome have not been described. We performed genomic (n = 18), HPV integration (n = 18), and transcriptomic sequencing (n = 19) of SCCC samples. We assessed differences in immune characteristics between SCCC and conventional cervical cancer, and other small cell neuroendocrine carcinomas, through bioinformatics analysis and immunohistochemical assays. We stratified SCCC patients through non-negative matrix factorization and described the characteristics of these distinct types. We further validated it using multiplex immunofluorescence (n = 77) and investigated its clinical prognostic effect. We confirmed a high frequency of PIK3CA and TP53 alterations and HPV18 integrations in SCCC. SCCC and other small cell carcinoma had similar expression signatures and immune cell infiltration patterns. Comparing patients with SCCC to those with conventional cervical cancer, the former presented immune excluded or 'desert' infiltration. The number of CD8+ cells in the invasion margin of SCCC patients predicted favorable clinical outcomes. We identified three transcriptome subtypes: an inflamed phenotype with high-level expression of genes related to the MHC-II complex (CD74) and IFN-α/β (SCCC-I), and two neuroendocrine subtypes with high-level expression of ASCL1 or NEUROD1, respectively. Combined with multiple technologies, we found that the neuroendocrine groups had more TP53 mutations and SCCC-I had more PIK3CA mutations. Multiplex immunofluorescence validated these subtypes and SCCC-I was an independent prognostic factor of overall survival. These results provide insights into SCCC tumor heterogeneity and potential therapies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shumei Yan
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Linjing Yuan
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shijie Xu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Weihua Jia
- Biobank of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Qi Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
42
|
Choo N, Keerthikumar S, Ramm S, Ashikari D, Teng L, Niranjan B, Hedwards S, Porter LH, Goode DL, Simpson KJ, Taylor RA, Risbridger GP, Lawrence MG. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J Pathol 2024; 263:242-256. [PMID: 38578195 DOI: 10.1002/path.6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daisaku Ashikari
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Linda Teng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shelley Hedwards
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| |
Collapse
|
43
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
44
|
Ajkunic A, Sayar E, Roudier MP, Patel RA, Coleman IM, De Sarkar N, Hanratty B, Adil M, Zhao J, Zaidi S, True LD, Sperger JM, Cheng HH, Yu EY, Montgomery RB, Hawley JE, Ha G, Persse T, Galipeau P, Lee JK, Harmon SA, Corey E, Lang JM, Sawyers CL, Morrissey C, Schweizer MT, Gulati R, Nelson PS, Haffner MC. Assessment of TROP2, CEACAM5 and DLL3 in metastatic prostate cancer: Expression landscape and molecular correlates. NPJ Precis Oncol 2024; 8:104. [PMID: 38760413 PMCID: PMC11101486 DOI: 10.1038/s41698-024-00599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.
Collapse
Affiliation(s)
- Azra Ajkunic
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jimmy Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Heather H Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan Y Yu
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert B Montgomery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica E Hawley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Thomas Persse
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Patricia Galipeau
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, NCI, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Michael T Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
45
|
Cheng S, Li L, Yeh Y, Shi Y, Franco O, Corey E, Yu X. Unveiling Novel Double-Negative Prostate Cancer Subtypes Through Single-Cell RNA Sequencing Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553009. [PMID: 38746150 PMCID: PMC11092429 DOI: 10.1101/2023.08.11.553009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into disease heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising both publicly available cohorts and data generated by our research team, and established the HuPSA (Human Prostate Single cell Atlas) and the MoPSA (Mouse Prostate Single cell Atlas) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression, and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution allowed for the re-classification of human PCa specimens, validating the presence of these novel subtypes. Leveraging these findings, we developed a user-friendly web application, "HuPSA-MoPSA" (https://pcatools.shinyapps.io/HuPSA-MoPSA/), for visualizing gene expression across all newly-established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Yunshin Yeh
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA
| | - Yingli Shi
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Omar Franco
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
46
|
Pal Choudhuri S, Girard L, Lim JYS, Wise JF, Freitas B, Yang D, Wong E, Hamilton S, Chien VD, Kim YJ, Gilbreath C, Zhong J, Phat S, Myers DT, Christensen CL, Mazloom-Farsibaf H, Stanzione M, Wong KK, Hung YP, Farago AF, Meador CB, Dyson NJ, Lawrence MS, Wu S, Drapkin BJ. Acquired Cross-Resistance in Small Cell Lung Cancer due to Extrachromosomal DNA Amplification of MYC Paralogs. Cancer Discov 2024; 14:804-827. [PMID: 38386926 PMCID: PMC11061613 DOI: 10.1158/2159-8290.cd-23-0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here, we present a preclinical system that recapitulates acquired cross-resistance, developed from 51 patient-derived xenograft (PDX) models. Each model was tested in vivo against three clinical regimens: cisplatin plus etoposide, olaparib plus temozolomide, and topotecan. These drug-response profiles captured hallmark clinical features of SCLC, such as the emergence of treatment-refractory disease after early relapse. For one patient, serial PDX models revealed that cross-resistance was acquired through MYC amplification on extrachromosomal DNA (ecDNA). Genomic and transcriptional profiles of the full PDX panel revealed that MYC paralog amplifications on ecDNAs were recurrent in relapsed cross-resistant SCLC, and this was corroborated in tumor biopsies from relapsed patients. We conclude that ecDNAs with MYC paralogs are recurrent drivers of cross-resistance in SCLC. SIGNIFICANCE SCLC is initially chemosensitive, but acquired cross-resistance renders this disease refractory to further treatment and ultimately fatal. The genomic drivers of this transformation are unknown. We use a population of PDX models to discover that amplifications of MYC paralogs on ecDNA are recurrent drivers of acquired cross-resistance in SCLC. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jillian F. Wise
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Braeden Freitas
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Di Yang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victor D. Chien
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yoon Jung Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Collin Gilbreath
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - David T. Myers
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | | | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Marcello Stanzione
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Yin P. Hung
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna F. Farago
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Catherine B. Meador
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Benjamin J. Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
47
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, Wadosky KM, Patel RA, Sayar E, Karthaus WR, Henry Kates D, Chaudhary O, Xu T, Masilionis I, Mazutis L, Chaligné R, Obradovic A, Linkov I, Barlas A, Jungbluth A, Rekhtman N, Silber J, Manova–Todorova K, Watson PA, True LD, Morrissey CM, Scher HI, Rathkopf D, Morris MJ, Goodrich DW, Choi J, Nelson PS, Haffner MC, Sawyers CL. Single Cell Analysis of Treatment-Resistant Prostate Cancer: Implications of Cell State Changes for Cell Surface Antigen Targeted Therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588340. [PMID: 38645034 PMCID: PMC11030323 DOI: 10.1101/2024.04.09.588340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.
Collapse
Affiliation(s)
- Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Wouter R. Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC). School of Life Sciences. EPFL, 1015 Lausanne, Switzerland
| | - D. Henry Kates
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aleksandar Obradovic
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joachim Silber
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katia Manova–Todorova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip A. Watson
- Research Outreach and Compliance, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Colm M. Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Howard I. Scher
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Rathkopf
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J. Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
49
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
50
|
Wang Z, Zeng S, Xu C. Re: Mingxiao Feng, Andres Matoso, Gabriel Epstein, et al. Identification of Lineage-specific Transcriptional Factor-defined Molecular Subtypes in Small Cell Bladder Cancer. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2023.05.023. Eur Urol 2024; 85:e113-e114. [PMID: 37919193 DOI: 10.1016/j.eururo.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|