1
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Cardamone F, Piva A, Löser E, Eichenberger B, Romero-Mulero MC, Zenk F, Shields EJ, Cabezas-Wallscheid N, Bonasio R, Tiana G, Zhan Y, Iovino N. Chromatin landscape at cis-regulatory elements orchestrates cell fate decisions in early embryogenesis. Nat Commun 2025; 16:3007. [PMID: 40148291 PMCID: PMC11950382 DOI: 10.1038/s41467-025-57719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The establishment of germ layers during early development is crucial for body formation. The Drosophila zygote serves as a model for investigating these transitions in relation to the chromatin landscape. However, the cellular heterogeneity of the blastoderm embryo poses a challenge for gaining mechanistic insights. Using 10× Multiome, we simultaneously analyzed the in vivo epigenomic and transcriptomic states of wild-type, E(z)-, and CBP-depleted embryos during zygotic genome activation at single-cell resolution. We found that pre-zygotic H3K27me3 safeguards tissue-specific gene expression by modulating cis-regulatory elements. Furthermore, we demonstrate that CBP is essential for cell fate specification functioning as a transcriptional activator by stabilizing transcriptional factors binding at key developmental genes. Surprisingly, while CBP depletion leads to transcriptional arrest, chromatin accessibility continues to progress independently through the retention of stalled RNA Polymerase II. Our study reveals fundamental principles of chromatin-mediated gene regulation essential for establishing and maintaining cellular identities during early embryogenesis.
Collapse
Affiliation(s)
- Francesco Cardamone
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School of Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Annamaria Piva
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eva Löser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bastian Eichenberger
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fides Zenk
- Epigenomics of Neurodevelopment, Brain Mind Institute, School of Life Sciences, EPFL - Ecole Polytechnique Federal Lusanne, Ecublens, Switzerland
| | - Emily J Shields
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Laboratory of Stem Cell Biology and Ageing, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
3
|
Jiang X, Xu W, Sun J, Lin J, Lin Z, Lian X, Liao S, Luo S, Liu Y, Wang S. Trps1 regulates mouse zygotic genome activation and preimplantation embryo development via the PDE4D/AKT/CREB signaling pathway. Cell Biol Toxicol 2025; 41:48. [PMID: 39979480 PMCID: PMC11842480 DOI: 10.1007/s10565-025-09999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Despite zygotic genome activation (ZGA) is crucial for early embryonic development, its regulatory mechanism is still unclear in mammals. In the present study, we demonstrate that TRPS1, a maternal factor, plays an essential role in mouse early embryogenesis by regulating the transition from 2-cell to 4-cell embryos during preimplantation development. The absence of Trps1 could leads to impaired ZGA through AKT/CREB signaling pathway. Furthermore, our findings suggest that TRPS1 may modulate the transcription of Pde4d to influence AKT and CREB phosphorylation. Interestingly, compared to Trps1 knockdown alone, co-injection of Trps1 siRNA and Pde4d mRNA significantly enhances the development rate of 4-cell embryos. Collectively, these results indicate a negative involvement of Trps1 in mouse preimplantation embryo development by targeting the PDE4D/AKT/CREB pathway to regulate ZGA.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Jianmin Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xiuli Lian
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shumin Liao
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Shanshan Luo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
4
|
Shen Y, Liu K, Liu J, Shen J, Ye T, Zhao R, Zhang R, Song Y. TBP bookmarks and preserves neural stem cell fate memory by orchestrating local chromatin architecture. Mol Cell 2025; 85:413-429.e10. [PMID: 39662469 DOI: 10.1016/j.molcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Mitotic bookmarking has been posited as an important strategy for cells to faithfully propagate their fate memory through cell generations. However, the physiological significance and regulatory mechanisms of mitotic bookmarking in neural development remain unexplored. Here, we identified TATA-binding protein (TBP) as a crucial mitotic bookmarker for preserving the fate memory of Drosophila neural stem cells (NSCs). Phosphorylation by the super elongation complex (SEC) is important for TBP to retain as discrete foci at mitotic chromosomes of NSCs to effectively transmit their fate memory. TBP depletion leads to drastic NSC loss, whereas TBP overexpression enhances the ability of SEC to induce neural progenitor dedifferentiation and tumorigenesis. Importantly, TBP achieves its mitotic retention through recruiting the chromatin remodeler EP400, which in turn increases local chromatin accessibility via depositing H2A.Z. Thus, local chromatin remodeling ensures mitotic bookmarking, which may represent a general principle underlying the preservation of cell fate memory.
Collapse
Affiliation(s)
- Yuying Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kun Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingwen Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tongtong Ye
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runxiang Zhao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Rulan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
6
|
Alfonso-Gonzalez C, Hilgers V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol 2024; 34:1018-1028. [PMID: 38531762 DOI: 10.1016/j.tcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwigs University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
7
|
Xiao Y, Zhang Y, Hu Y, Zhang X, Tan J, Yao S, Wang X, Qin Y. Advances in the study of posttranslational modifications of histones in head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:165. [PMID: 39574168 PMCID: PMC11580233 DOI: 10.1186/s13148-024-01785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is notably complex. Early symptoms are often subtle, and effective early screening methods are currently lacking. The tumors associated with HNSCC develop rapidly, exhibit high aggressiveness, and respond poorly to existing treatments, leading to low survival rates and poor prognosis. Numerous studies have demonstrated that histone posttranslational modifications (HPTMs), including acetylation, methylation, phosphorylation, and ubiquitination, play a critical role in the occurrence and progression of HNSCC. Moreover, targeting histone posttranslationally modified molecules with specific drugs has shown potential in enhancing therapeutic outcomes and improving prognosis, underscoring their significant clinical value. This review aims to summarize the role of histone posttranslational modifications in the pathogenesis and progression of HNSCC and to discuss their clinical significance, thereby providing insights into novel therapeutic approaches and drug development for this malignancy.
Collapse
Affiliation(s)
- Yuyang Xiao
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yikai Zhang
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yuyang Hu
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xupeng Zhang
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Jiaqi Tan
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, 410013, Hunan Province, China
| | - Xingwei Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Yuexiang Qin
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China.
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
8
|
Dai A, Lan W, Lyu Y, Zhou X, Mi X, Tang T, Liufu Z. MicroRNA-mediated network redundancy is constrained by purifying selection and contributes to expression robustness in Drosophila melanogaster. Commun Biol 2024; 7:1431. [PMID: 39496904 PMCID: PMC11535065 DOI: 10.1038/s42003-024-07162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional, non-coding regulatory RNAs that function coordinately with transcription factors (TFs) in gene regulatory networks. TFs and their targets are often co-regulated by miRNAs, forming composite feedforward circuits (cFFCs) with varying degrees of redundancy, primarily mediated by miRNAs. However, the maintenance of miRNA-mediated regulatory redundancy and its impact on gene expression evolution remain elusive. By integrating ChIP-seq data from ENCODE and miRNA targeting from TargetScanFly, we quantified miRNA-mediated cFFC redundancy in Drosophila melanogaster embryos and larvae, revealing more than three quarters of miRNA targets are involved in redundant cFFCs. Higher cFFC redundancy, where more miRNAs target the same gene within a cFFC, is correlated with stronger purifying selection, reduced expression divergence between species, and increased expression stability under heat shock stress. Redundant cFFCs primarily regulate older or broadly expressed young genes. These findings highlight the role of miRNA-mediated cFFC redundancy in enhancing gene expression robustness through natural selection.
Collapse
Affiliation(s)
- Aimei Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wenqi Lan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Xuanyi Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xin Mi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Zhongqi Liufu
- State Key Laboratory of Genetic Resources and Evolution / Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
9
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
10
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
11
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
12
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
13
|
Kawaguchi T, Hashimoto M, Nakagawa R, Minami R, Ikawa M, Nakayama JI, Ueda J. Comprehensive posttranslational modifications in the testis-specific histone variant H3t protein validated in tagged knock-in mice. Sci Rep 2024; 14:21305. [PMID: 39266663 PMCID: PMC11393354 DOI: 10.1038/s41598-024-72362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
During the development of multicellular organisms and cell differentiation, the chromatin structure in the cell nucleus undergoes extensive changes, and the nucleosome structure is formed by a combination of various histone variants. Histone variants with diverse posttranslational modifications are known to play crucial roles in different regulatory functions. We have previously reported that H3t, a testis-specific histone variant, is essential for spermatogenesis. To elucidate the function of this chromatin molecule in vivo, we generated knock-in mice with a FLAG tag attached to the carboxyl terminus of H3t. In the present study, we evaluated the utility of the generated knock-in mice and comprehensively analyzed posttranslational modifications of canonical H3 and H3t using mass spectrometry. Herein, we found that H3t-FLAG was incorporated into spermatogonia and meiotic cells in the testes, as evidenced by immunostaining of testicular tissue. According to the mass spectrometry analysis, the overall pattern of H3t-FLAG posttranslational modification was comparable to that of the control H3, while the relative abundances of certain specific modifications differed between H3t-FLAG and the control bulk H3. The generated knock-in mice could be valuable for analyzing the function of histone variants in vivo.
Collapse
Affiliation(s)
- Takayuki Kawaguchi
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
| | - Michihiro Hashimoto
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Ryunosuke Minami
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan.
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan.
| |
Collapse
|
14
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
15
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
16
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
17
|
Flury V, Groth A. Safeguarding the epigenome through the cell cycle: a multitasking game. Curr Opin Genet Dev 2024; 85:102161. [PMID: 38447236 DOI: 10.1016/j.gde.2024.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark. https://twitter.com/@ValeFlury
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
Zhou Y, Panhale A, Shvedunova M, Balan M, Gomez-Auli A, Holz H, Seyfferth J, Helmstädter M, Kayser S, Zhao Y, Erdogdu NU, Grzadzielewska I, Mittler G, Manke T, Akhtar A. RNA damage compartmentalization by DHX9 stress granules. Cell 2024; 187:1701-1718.e28. [PMID: 38503283 DOI: 10.1016/j.cell.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.
Collapse
Affiliation(s)
- Yilong Zhou
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Amol Panhale
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mirela Balan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Herbert Holz
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Martin Helmstädter
- EMcore, Renal Division, Department of Medicine, University Freiburg, Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Séverine Kayser
- EMcore, Renal Division, Department of Medicine, University Freiburg, Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Yuling Zhao
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iga Grzadzielewska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
19
|
Halblander FN, Meng FW, Murphy PJ. Anp32e protects against accumulation of H2A.Z at Sox motif containing promoters during zebrafish gastrulation. Dev Biol 2024; 507:34-43. [PMID: 38159623 PMCID: PMC10922954 DOI: 10.1016/j.ydbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z binding during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation and developmental genes become precociously active. Accordingly, H2A.Z accumulation occurs most extensively at Sox motif-associated genes, including many which are normally activated following gastrulation. Altogether, our results provide compelling evidence for a mechanism in which Anp32e preferentially restricts H2A.Z accumulation at Sox motifs to regulate the initial phases of developmental differentiation in zebrafish.
Collapse
Affiliation(s)
- Fabian N Halblander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Fanju W Meng
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Patrick J Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
20
|
Becker PB. Cell-free genomics: transcription factor interactions in reconstituted naïve embryonic chromatin. Biochem Soc Trans 2024; 52:423-429. [PMID: 38329186 DOI: 10.1042/bst20230878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.
Collapse
Affiliation(s)
- Peter B Becker
- Biomedical Center, Molecular Biology Division, Faculty of Medicine, LMU, Munich, Germany
| |
Collapse
|
21
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
22
|
Murphy PJ, Berger F. The chromatin source-sink hypothesis: a shared mode of chromatin-mediated regulations. Development 2023; 150:dev201989. [PMID: 38771301 PMCID: PMC10629678 DOI: 10.1242/dev.201989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 11/05/2023]
Abstract
We propose that several chromatin-mediated regulatory processes are dominated by source-sink relationships in which factors operate as 'sources' to produce or provide a resource and compete with each other to occupy separate 'sinks'. In this model, large portions of genomic DNA operate as 'sinks', which are filled by 'sources', such as available histone variants, covalent modifications to histones, the readers of these modifications and non-coding RNAs. Competing occupation for the sinks by different sources leads to distinct states of genomic equilibrium in differentiated cells. During dynamic developmental events, such as sexual reproduction, we propose that dramatic and rapid reconfiguration of source-sink relationships modifies chromatin states. We envision that re-routing of sources could occur by altering the dimensions of the sink, by reconfiguration of existing sink occupation or by varying the size of the source, providing a central mechanism to explain a plethora of epigenetic phenomena, which contribute to phenotypic variegation, zygotic genome activation and nucleolar dominance.
Collapse
Affiliation(s)
- Patrick J. Murphy
- University of Rochester, Department of Biomedical Genetics and Department of Biology, 601 Elmwood Ave., Rochester NY 14620, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter; Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
23
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
24
|
Jin M, Zhao L, Yang H, Zhao J, Ma H, Chen Y, Zhang J, Luo Y, Zhang Y, Liu J. A long non-coding RNA essential for early embryonic development improves somatic cell nuclear transfer somatic cell nuclear transfer efficiency in goats. Reproduction 2023; 166:285-297. [PMID: 37490350 PMCID: PMC10502959 DOI: 10.1530/rep-23-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In brief Early embryonic development in goats is a complex and an important process. This study identified a novel long non-coding RNA (lncRNA), lncRNA3720, that appears to affect early embryonic development in goats through histone variants. Abstract Although abundant lncRNAs have been found to be highly expressed in early embryos, the functions and mechanisms of most lncRNAs in regulating embryonic development remain unclear. This study was conducted to identify the key lncRNAs during embryonic genome activation (EGA) for promoting embryonic development after somatic cell nuclear transfer (SCNT) in goats. We screened and characterized lncRNAs from transcriptome data of in vitro-fertilized, two-cell (IVF-2c) and eight-cell embryos (IVF-8c) and eight-cell SCNT embryos (SCNT-8c). We obtained 12 differentially expressed lncRNAs that were highly expressed in IVF-8c embryos compared to IVF-2c and less expressed in SCNT-8c embryos. After target gene prediction, expression verification, and functional deletion experiments, we found that the expression level of lncRNA3720 affected the early embryonic development in goats. We cloned full-length lncRNA3720 and over-expressed it in goat fetal fibroblasts (GFFs). We identified histone variants by analyzing the transcriptome data from both GFFs and embryos. Gene annotation of the gene library and the literature search revealed that histone variants may have important roles in early embryo development, so we selected them as the potential target genes for lncRNA3720. Lastly, we compensated for the low expression of lncRNA3720 in SCNT embryos by microinjection and showed that the development rate and quality of SCNT embryos were significantly improved. We speculate that lncRNA3720 is a key promoter of embryonic development in goats by interacting with histone variants.
Collapse
Affiliation(s)
- Miaomiao Jin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lu Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yan Luo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Zhou CY, Heald R. Principles of genome activation in the early embryo. Curr Opin Genet Dev 2023; 81:102062. [PMID: 37339553 PMCID: PMC11419330 DOI: 10.1016/j.gde.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
A major hurdle in an embryo's life is the initiation of its own transcriptional program, a process termed Zygotic Genome Activation (ZGA). In many species, ZGA is intricately timed, with bulk transcription initiating at the end of a series of reductive cell divisions when cell cycle duration increases. At the same time, major changes in genome architecture give rise to chromatin states that are permissive to RNA polymerase II activity. Yet, we still do not understand the series of events that trigger gene expression at the right time and in the correct sequence. Here we discuss new discoveries that deepen our understanding of how zygotic genes are primed for transcription, and how these events are regulated by the cell cycle and nuclear import. Finally, we speculate on the evolutionary basis of ZGA timing as an exciting future direction for the field.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Nie X, Xu Q, Xu C, Chen F, Wang Q, Qin D, Wang R, Gao Z, Lu X, Yang X, Wu Y, Gu C, Xie W, Li L. Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation. Nat Commun 2023; 14:4275. [PMID: 37460529 DOI: 10.1038/s41467-023-39924-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Zygotic genome activation (ZGA) is essential for early embryonic development. However, the regulation of ZGA remains elusive in mammals. Here we report that a maternal factor TDP-43, a nuclear transactive response DNA-binding protein, regulates ZGA through RNA Pol II and is essential for mouse early embryogenesis. Maternal TDP-43 translocates from the cytoplasm into the nucleus at the early two-cell stage when minor to major ZGA transition occurs. Genetic deletion of maternal TDP-43 results in mouse early embryos arrested at the two-cell stage. TDP-43 co-occupies with RNA Pol II as large foci in the nucleus and also at the promoters of ZGA genes at the late two-cell stage. Biochemical evidence indicates that TDP-43 binds Polr2a and Cyclin T1. Depletion of maternal TDP-43 caused the loss of Pol II foci and reduced Pol II binding on chromatin at major ZGA genes, accompanied by defective ZGA. Collectively, our results suggest that maternal TDP-43 is critical for mouse early embryonic development, in part through facilitating the correct RNA Pol II configuration and zygotic genome activation.
Collapse
Affiliation(s)
- Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Gao
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinai Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Alfonso-Gonzalez C, Legnini I, Holec S, Arrigoni L, Ozbulut HC, Mateos F, Koppstein D, Rybak-Wolf A, Bönisch U, Rajewsky N, Hilgers V. Sites of transcription initiation drive mRNA isoform selection. Cell 2023; 186:2438-2455.e22. [PMID: 37178687 PMCID: PMC10228280 DOI: 10.1016/j.cell.2023.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Ivano Legnini
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Sarah Holec
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Laura Arrigoni
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany
| | - Fernando Mateos
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David Koppstein
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Agnieszka Rybak-Wolf
- Organoid Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Ulrike Bönisch
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitépl. 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK); National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
| |
Collapse
|
28
|
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. SCIENCE ADVANCES 2023; 9:eadf2687. [PMID: 37083536 PMCID: PMC10121174 DOI: 10.1126/sciadv.adf2687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Leily Rabbani
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Francesco Cardamone
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Fides Zenk
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Eva Löser
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Melanie A. Schächtle
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Marina Mazina
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
29
|
Pérez-Mojica JE, Enders L, Walsh J, Lau KH, Lempradl A. Continuous transcriptome analysis reveals novel patterns of early gene expression in Drosophila embryos. CELL GENOMICS 2023; 3:100265. [PMID: 36950383 PMCID: PMC10025449 DOI: 10.1016/j.xgen.2023.100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The transformative events during early organismal development lay the foundation for body formation and long-term phenotype. The rapid progression of events and the limited material available present major barriers to studying these earliest stages of development. Herein, we report an operationally simple RNA sequencing approach for high-resolution, time-sensitive transcriptome analysis in early (≤3 h) Drosophila embryos. This method does not require embryo staging but relies on single-embryo RNA sequencing and transcriptome ordering along a developmental trajectory (pseudo-time). The resulting high-resolution, time-sensitive mRNA expression profiles reveal the exact onset of transcription and degradation for thousands of transcripts. Further, using sex-specific transcription signatures, embryos can be sexed directly, eliminating the need for Y chromosome genotyping and revealing patterns of sex-biased transcription from the beginning of zygotic transcription. Our data provide an unparalleled resolution of gene expression during early development and enhance the current understanding of early transcriptional processes.
Collapse
Affiliation(s)
- J. Eduardo Pérez-Mojica
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Lennart Enders
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Joseph Walsh
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Adelheid Lempradl
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Hsiao YL, Chen HW, Chen KH, Tan BCM, Chen CH, Pi H. Actin-related protein 6 facilitates proneural protein-induced gene activation for rapid neural differentiation. Development 2023; 150:297055. [PMID: 36897355 DOI: 10.1242/dev.201034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.
Collapse
Affiliation(s)
- Yun-Ling Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Wen Chen
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Han Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Gradulate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
Li S, Wei T, Panchenko AR. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Nat Commun 2023; 14:769. [PMID: 36765119 PMCID: PMC9918499 DOI: 10.1038/s41467-023-36465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Nucleosomes, containing histone variants H2A.Z, are important for gene transcription initiation and termination, chromosome segregation and DNA double-strand break repair, among other functions. However, the underlying mechanisms of how H2A.Z influences nucleosome stability, dynamics and DNA accessibility are not well understood, as experimental and computational evidence remains inconclusive. Our modeling efforts of human nucleosome stability and dynamics, along with comparisons with experimental data show that the incorporation of H2A.Z results in a substantial decrease of the energy barrier for DNA unwrapping. This leads to the spontaneous DNA unwrapping of about forty base pairs from both ends, nucleosome gapping and increased histone plasticity, which otherwise is not observed for canonical nucleosomes. We demonstrate that both N- and C-terminal tails of H2A.Z play major roles in these events, whereas the H3.3 variant exerts a negligible impact in modulating the DNA end unwrapping. In summary, our results indicate that H2A.Z deposition makes nucleosomes more mobile and DNA more accessible to transcriptional machinery and other chromatin components.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tiejun Wei
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biology and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,School of Computing, Queen's University, Kingston, ON, Canada. .,Ontario Institute of Cancer Research, Toronto, Canada.
| |
Collapse
|
32
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
33
|
Abstract
The control of gene expression in eukaryotes relies on how transcription factors and RNA polymerases manipulate the structure of chromatin. These interactions are especially important in development as gene expression programs change. Chromatin generally limits the accessibility of DNA, and thus exposing sequences at regulatory elements is critical for gene expression. However, it is challenging to understand how transcription factors manipulate chromatin structure and the sequence of regulatory events. The Drosophila embryo has provided a powerful setting to directly observe the establishment and elaboration of chromatin features and experimentally test the causality of transcriptional events that are shared among many metazoans. The large embryo is tractable by live imaging, and a variety of well-developed tools allow the manipulation of factors during early development. The early embryo develops as a syncytium with rapid nuclear divisions and no zygotic transcription, with largely featureless chromatin. Thus, studies in this system have revealed the progression of genome activation triggered by pioneer factors that initiate DNA exposure at regulatory elements and the establishment of chromatin domains, including heterochromatin, the nucleolus, and nuclear bodies. The de novo emergence of nuclear structures in the early embryo reveals features of chromatin dynamics that are likely to be central to transcriptional regulation in all cells.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
34
|
Wang Q, Qi Y, Xiong F, Wang D, Wang B, Chen Y. The H2A.Z-KDM1A complex promotes tumorigenesis by localizing in the nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells. BMC Cancer 2022; 22:1166. [PMID: 36368958 PMCID: PMC9652970 DOI: 10.1186/s12885-022-10279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC), originating from the bile ducts, is the second most common primary liver malignancy, and its incidence has recently increased. H2A.Z, a highly conserved H2A variant, is emerging as a key regulatory molecule in cancer. However, its underlying mechanism of action in ICC cells remains unclear. Methods Here, we examined the expression of H2A.Z and SFRP1 in normal intrahepatic cholangiocytes, ICC cell lines, ICC tissue microarrays, and fresh specimens. The correlations between H2A.Z or SFRP1 expression and clinical features were analysed. The overall survival rate was analysed based on H2A.Z and SFRP1 expression. Immunoprecipitation was used to analyse the recruitment of KDM1A, and ChIP sequencing and BSP were used to analyse the enrichment of methylation-related molecules such as H3K4me1 and H3K4me2 in the SFRP1 promoter and reveal the underlying mechanisms. Knockdown and rescue experiments were used to determine the potential mechanism by which H2A.Z and SFRP1 promote tumorigenesis in vitro. Results We showed that upregulation of H2A.Z expression is linked to downregulation of SFRP1 expression in ICC tissues and poor overall survival in patients with ICC. H2A.Z interacted with KDM1A in the nucleus to bind to the -151 ~ -136 bp region upstream of the SFRP1 promoter to increase its demethylation in ICC cells. Functionally, H2A.Z silencing inhibited the proliferation and invasion of ICC cells, and these effects were mitigated by SFRP1 silencing in ICC cells. Conclusions Our findings reveal that H2A.Z inhibits SFRP1 expression through chromatin modification in the context of ICC by forming a complex with KDM1A in the nucleus. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10279-y.
Collapse
|
35
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
36
|
Liu X, Zhang J, Zhou J, Bu G, Zhu W, He H, Sun Q, Yu Z, Xiong W, Wang L, Wu D, Dou C, Yu L, Zhou K, Wang S, Fan Z, Wang T, Hu R, Hu T, Zhang X, Miao Y. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200057. [PMID: 35717671 PMCID: PMC9376818 DOI: 10.1002/advs.202200057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Indexed: 05/09/2023]
Abstract
Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.
Collapse
|
37
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|