1
|
Cheng JX, Yuan Y, Ni H, Ao J, Xia Q, Bolarinho R, Ge X. Advanced vibrational microscopes for life science. Nat Methods 2025; 22:912-927. [PMID: 40360912 DOI: 10.1038/s41592-025-02655-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Providing molecular fingerprint information, vibrational spectroscopic imaging opens a new window to decipher the function of biomolecules in living systems. While classic vibrational microscopes based on spontaneous Raman scattering or mid-infrared absorption offer rich insights into sample composition, they have very small cross sections or poor spatial resolution. Nonlinear vibrational microscopy, based on coherent Raman scattering or optical photothermal detection of vibrational absorption, overcomes these barriers and enables high-speed and high-sensitivity imaging of chemical bonds in live cells and tissues. Here, we introduce various modalities, including their principles, strengths, weaknesses and data mining methods to the life sciences community. We further provide a guide for prospective users and an outlook on future technological advances.
Collapse
Affiliation(s)
- Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
| | - Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jianpeng Ao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | | | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Kato R, Miyazawa K, Imura T, Minamikawa T. Toward nanoscale structural and chemical analysis of microbial surfaces. Biosci Biotechnol Biochem 2025; 89:489-495. [PMID: 39577857 DOI: 10.1093/bbb/zbae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Microbial surfaces play a critical role in various biological processes, including cell adhesion and biofilm formation. Understanding these surfaces at the nanoscale is essential for both fundamental and applied microbiology. This review explores recent advancements in nanoscale structural and chemical analyses of microbial surfaces, with a focus on vibrational spectroscopy, such as Raman spectroscopy, infrared spectroscopy, and atomic force microscopy. The review also discusses current challenges of these techniques, including variability in sample preparation and the reproducibility of data, and highlights future directions in nanoscale analysis that could lead to new insights in microbial physiology, antimicrobial resistance, and biofilm research.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Keisuke Miyazawa
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Takumi Imura
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Takeo Minamikawa
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Zhu L, Song G, Zhang W, Wu Y, Chen Y, Song J, Wang D, Li G, Tang BZ, Li Y. Aggregation induced emission luminogen bacteria hybrid bionic robot for multimodal phototheranostics and immunotherapy. Nat Commun 2025; 16:2578. [PMID: 40089477 PMCID: PMC11910577 DOI: 10.1038/s41467-025-57533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Multimodal phototheranostics utilizing single molecules offer a "one-and-done" approach, presenting a convenient and effective strategy for cancer therapy. However, therapies based on conventional photosensitizers often suffer from limitations such as a single photosensitizing mechanism, restricted tumor penetration and retention, and the requirement for multiple irradiations, which significantly constrain their application. In this report, we present an aggregation-induced emission luminogen (AIEgen) bacteria hybrid bionic robot to address above issues. This bionic robot is composed of multifunctional AIEgen (INX-2) and Escherichia coli Nissle 1917 (EcN), i.e., EcN@INX-2. The EcN@INX-2 bionic robot exhibits near-infrared II (NIR-II) fluorescence emission and demonstrates efficient photodynamic and photothermal effects, as well as tumor-targeting capabilities. These features are facilitated by the complementary roles of INX-2 and EcN. The robot successfully enables in vivo multimodal imaging and therapy of colon cancer models in female mice through various mechanisms, including the activation of anti-tumor immunity, as well as photodynamic and photothermal therapy. Our study paves an avenue for designing multifunctional diagnostic agents for targeted colon cancer therapy through image-guided combinational immunotherapy.
Collapse
Affiliation(s)
- Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wentian Zhang
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yifan Wu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuling Chen
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Guoxin Li
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, 102218, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
4
|
Yin J, Pfluegl C, Teng CC, Bolarinho R, Chen G, Gong X, Dong D, Vakhshoori D, Cheng JX. Mid-Infrared Energy Deposition Spectroscopy. PHYSICAL REVIEW LETTERS 2025; 134:093804. [PMID: 40131046 DOI: 10.1103/physrevlett.134.093804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/10/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
It is generally assumed that the spectral acquisition speed in photothermal spectroscopy is fundamentally limited by the thermal diffusion process. Here, we demonstrate midinfrared energy deposition (MIRED) spectroscopy that offers both microsecond-scale temporal resolution and submicron spatial resolution. In this approach, the photothermal process is optically probed while the infrared pulses from a quantum cascade laser array are rapidly tuned. Based on Newton's law of heating and cooling, the energy deposition is the first derivative of local temperature rise over time and gives the instantaneous absorption. By employing time-resolved measurement of transient energy deposition, the upper limit for spectrum encoding shifts to the vibrational relaxation level, which occurs on the picosecond scale. This method significantly increases the detection bandwidth while retaining the sensitivity and resolution benefits of photothermal detection.
Collapse
Affiliation(s)
- Jiaze Yin
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts 02215, USA
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
| | | | - Chu C Teng
- Pendar Technologies, Cambridge, Massachusetts 02138, USA
| | - Rylie Bolarinho
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, USA
| | - Guo Chen
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts 02215, USA
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
| | - Xinrui Gong
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts 02215, USA
| | - Dashan Dong
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts 02215, USA
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
| | | | - Ji-Xin Cheng
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts 02215, USA
- Boston University, Photonics Center, Boston, Massachusetts 02215, USA
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, USA
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Bolarinho R, Yin J, Ni H, Xia Q, Cheng JX. Background-Free Mid-Infrared Photothermal Microscopy via Single-Shot Measurement of Thermal Decay. Anal Chem 2025; 97:4299-4307. [PMID: 39965086 DOI: 10.1021/acs.analchem.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Mid-infrared photothermal (MIP) microscopy is an emerging tool for biological imaging, offering high sensitivity, subcellular resolution, and rapid image acquisition. However, the MIP signal of low concentration molecules in biological systems is often hindered or masked by background absorption, largely contributed by water, resulting from the H-O-H scissors-bending band in the fingerprint window or the bend-libration combination band in the cell-silent window. To preserve all desired signals while suppressing the background, we report a single-shot time-resolved MIP measurement that allows differentiation between the background and analyte signal based on their distinct photothermal dynamics. The results show that the thermal decay of the background is significantly longer than that of the desired intracellular signal, mainly due to the larger mass and heat capacity of water compared to those of intracellular features. Through two-component exponential fitting, we successfully differentiated and suppressed the background, while preserving the desired intracellular signal in both the fingerprint and cell-silent windows. By leveraging the thermal dynamics differences obtained from a single-shot measurement, we effectively remove the background and enhance the detection of small signals in a biological system.
Collapse
Affiliation(s)
- Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Zhang Z, Wang Y, Mu Z, Song W, Zhang S, Sun J, Yu H, Ding H, Niu S, Han Z, Ren L. High-Toughness Epoxy-Based Composites with a Bioinspired Three-Dimensional Interconnected Skeleton for Photothermal Conversion Applications. NANO LETTERS 2025; 25:1287-1295. [PMID: 39706689 DOI: 10.1021/acs.nanolett.4c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Advanced epoxy (EP)-based composites, retaining excellent physical and mechanical properties, are in demand in many high-end devices, such as fan blades of aeroengines. However, the irreconcilable conflict between stiffness and toughness within an EP often leads to catastrophic brittle fracture. Herein, inspired by the medulla skeleton of wing feathers of Milvus migrans, bioinspired EP-based composites (BECs) were obtained via integrating functionalized three-dimensional interconnected skeleton into a brittle EP. The BEC's fracture toughness is enhanced by 111.43%. Significantly, the maximum fracture toughness (KJC) of the BEC is 3.5 times greater than that of the EP. Moreover, under 100 mW/cm2 irradiation, the BEC can be heated from room temperature to 90 °C in 5 min, exhibiting excellent photothermal conversion capacity. The BEC expands the possible applications of conventional EP-based composites in engineering materials and energy management fields. The proposed bioinspired strategy provides a new avenue to design novel EP-based composites with strong mechanical properties and multifunction integration.
Collapse
Affiliation(s)
- Zhiyan Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yufei Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Wenda Song
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shuang Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jialve Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Hexuan Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Fu P, Zhang Y, Wang S, Ye X, Wu Y, Yu M, Zhu S, Lee HJ, Zhang D. INSPIRE: Single-beam probed complementary vibrational bioimaging. SCIENCE ADVANCES 2024; 10:eadm7687. [PMID: 39661668 PMCID: PMC11633736 DOI: 10.1126/sciadv.adm7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 12/13/2024]
Abstract
Molecular spectroscopy provides intrinsic contrast for in situ chemical imaging, linking the physiochemical properties of biomolecules to the functions of living systems. While stimulated Raman imaging has found successes in deciphering biological machinery, many vibrational modes are Raman inactive or weak, limiting the broader impact of the technique. It can potentially be mitigated by the spectral complementarity from infrared (IR) spectroscopy. However, the vastly different optical windows make it challenging to develop such a platform. Here, we introduce in situ pump-probe IR and Raman excitation (INSPIRE) microscopy, a nascent cross-modality spectroscopic imaging approach by encoding the ultrafast Raman and the IR photothermal relaxation into a single probe beam for simultaneous detection. INSPIRE inherits the merits of complementary modalities and demonstrates high-content molecular imaging of chemicals, cells, tissues, and organisms. Furthermore, INSPIRE applies to label-free and molecular tag imaging, offering possibilities for optical sensing and imaging in biomedicine and materials science.
Collapse
Affiliation(s)
- Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yongqing Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yunhong Wu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyao Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024; 14:1940-1954. [PMID: 39489617 PMCID: PMC11609584 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| | - Simon Ebbinghaus
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| |
Collapse
|
9
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
10
|
Huang SH, Shen PT, Mahalanabish A, Sartorello G, Shvets G. Mid-infrared chemical imaging of living cells enabled by plasmonic metasurfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613596. [PMID: 39345404 PMCID: PMC11429723 DOI: 10.1101/2024.09.17.613596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mid-Infrared (MIR) chemical imaging provides rich chemical information of biological samples in a label-free and non-destructive manner. Yet, its adoption to live-cell analysis is limited by the strong attenuation of MIR light in water, often necessitating cell culture geometries that are incompatible with the prolonged viability of cells and with standard high-throughput workflow. Here, we introduce a new approach to MIR microscopy, where cells are imaged through their localized near-field interaction with a plasmonic metasurface. Chemical contrast of distinct molecular groups provided sub-cellular resolution images of the proteins, lipids, and nucleic acids in the cells that were collected using an inverted MIR microscope. Time-lapse imaging of living cells demonstrated that their behaviors, including motility, viability, and substrate adhesion, can be monitored over extended periods of time using low-power MIR light. The presented approach provides a method for the non-perturbative MIR imaging of living cells, which is well-suited for integration with modern high-throughput screening technologies for the label-free, high-content chemical imaging of living cells.
Collapse
|
11
|
Prater CB, Kansiz M, Cheng JX. A tutorial on optical photothermal infrared (O-PTIR) microscopy. APL PHOTONICS 2024; 9:091101. [PMID: 39290719 PMCID: PMC11404004 DOI: 10.1063/5.0219983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
This tutorial reviews the rapidly growing field of optical photothermal infrared (O-PTIR) spectroscopy and chemical imaging. O-PTIR is an infrared super-resolution measurement technique where a shorter wavelength visible probe is used to measure and map infrared (IR) absorption with spatial resolution up to 30× better than conventional techniques such as Fourier transform infrared and direct IR laser imaging systems. This article reviews key limitations of conventional IR instruments, the O-PTIR technology breakthroughs, and their origins that have overcome the prior limitations. This article also discusses recent developments in expanding multi-modal O-PTIR approaches that enable complementary Raman spectroscopy and fluorescence microscopy imaging, including wide-field O-PTIR imaging with fluorescence-based detection of IR absorption. Various practical subjects are covered, including sample preparation techniques, optimal measurement configurations, use of IR tags/labels and techniques for data analysis, and visualization. Key O-PTIR applications are reviewed in many areas, including biological and biomedical sciences, environmental and microplastics research, (bio)pharmaceuticals, materials science, cultural heritage, forensics, photonics, and failure analysis.
Collapse
Affiliation(s)
- Craig B Prater
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Ji-Xin Cheng
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Park JH, Pattipaka S, Hwang GT, Park M, Woo YM, Kim YB, Lee HE, Jeong CK, Zhang T, Min Y, Park KI, Lee KJ, Ryu J. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. NANO-MICRO LETTERS 2024; 16:276. [PMID: 39186184 PMCID: PMC11347555 DOI: 10.1007/s40820-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
This review provides a comprehensive overview of the progress in light-material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu Mi Woo
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
| | - Yuho Min
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Kwi-Il Park
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jungho Ryu
- School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
13
|
Xia Q, Perera HA, Bolarinho R, Piskulich ZA, Guo Z, Yin J, He H, Li M, Ge X, Cui Q, Ramström O, Yan M, Cheng JX. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. SCIENCE ADVANCES 2024; 10:eadq0294. [PMID: 39167637 PMCID: PMC11338237 DOI: 10.1126/sciadv.adq0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Harini A. Perera
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
14
|
Hao S, Suebka S, Su J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:195. [PMID: 39160151 PMCID: PMC11333578 DOI: 10.1038/s41377-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Label-free detection techniques for single particles and molecules play an important role in basic science, disease diagnostics, and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging, they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously, microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here, we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 104. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this, we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields, including the biological sciences, nanotechnology, materials science, chemistry, and medicine.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sartanee Suebka
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
15
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 PMCID: PMC11785416 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently developed mid-infrared photothermal (MIP) microscopy has attracted great attention from the research community in terms of video-rate imaging speed, sub-micron resolution, sensitivity in the range of several micro-molars, and suitability for live-cell analysis. In this review, we recount the developmental history of MIP microscopy. Subsequently, we describe the operational principles. Next, we delve into the wide-ranging applications of MIP microscopy to life sciences, spanning various samples from viruses to tissues. We explore the potential of MIP imaging in comprehension of cellular metabolism, cellular responses to chemical stimuli, and the mechanism of diseases. Finally, we discuss the future perspectives of MIP microscopy.
Collapse
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongjian He
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Danchen Jia
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
16
|
Samolis PD, Sander MY. Increasing contrast in water-embedded particles via time-gated mid-infrared photothermal microscopy. OPTICS LETTERS 2024; 49:1457-1460. [PMID: 38489424 DOI: 10.1364/ol.513742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
The transient dynamics of photothermal signals provide interesting insights into material properties and heat diffusion. In a mid-infrared (mid-IR) photothermal microscope, the imaging contrast in a standard amplitude imaging can decrease due to thermal diffusion effects. It is shown that contrast varies for poly-methyl 2-methylpropenoate (PMMA) particles of different sizes when embedded in an absorbing medium of water (H2O) based on levels of heat exchange under the water absorption resonance. Using time-resolved boxcar (BC) detection, analysis of the transient thermal dynamics at the bead-water interface is presented, and the time decay parameters for 500 nm and 100 nm beads are determined. Enhanced (negative) imaging contrast is observed for less heat exchange between the water and bead, as in the case for the 100 nm bead. For the 500 nm bead, boxcar imaging before heat exchange starts occurring, leads to an increase of the imaging contrast up to a factor of 1.6.
Collapse
|
17
|
Xia Q, Perera HA, Bolarinho R, Piskulich ZA, Guo Z, Yin J, He H, Li M, Ge X, Cui Q, Ramström O, Yan M, Cheng JX. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584185. [PMID: 38559219 PMCID: PMC10979903 DOI: 10.1101/2024.03.08.584185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Harini A. Perera
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zeke A. Piskulich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Park C, Cho M. Dual phase-detected infrared photothermal microscopy. OPTICS EXPRESS 2024; 32:6865-6875. [PMID: 38439382 DOI: 10.1364/oe.510044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024]
Abstract
Infrared photothermal microscopy (IPM) has recently gained considerable attention as a versatile analytical platform capable of providing spatially resolved molecular insights across diverse research fields. This technique has led to numerous breakthroughs in the study of compositional variations in functional materials and cellular dynamics in living cells. However, its application to investigate multiple components of temporally dynamic systems, such as living cells and operational devices, has been hampered by the limited information content of the IP signal, which only covers a narrow spectral window (< 1 cm-1). Here, we present a straightforward approach for measuring two distinct IPM images utilizing the orthogonality between the in-phase and quadrature outputs of a lock-in amplifier, called dual-phase IR photothermal (DP-IP) detection. We demonstrate the feasibility of DP-IP detection for IPM in distinguishing two different micro-sized polymer beads.
Collapse
|
19
|
Guo Z, Bai Y, Pereira FC, Cheng JX. Optical Photothermal Infrared - Fluorescence In Situ Hybridization (OPTIR-FISH). J Vis Exp 2024:10.3791/66562. [PMID: 38465924 PMCID: PMC11797646 DOI: 10.3791/66562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Understanding the metabolic activities of individual cells within complex communities is critical for unraveling their role in human disease. Here, we present a comprehensive protocol for simultaneous cell identification and metabolic analysis with the OPTIR-FISH platform by combining rRNA-tagged FISH probes and isotope-labeled substrates. Fluorescence imaging provides cell identification by the specific binding of rRNA-tagged FISH probes, while OPTIR imaging provides metabolic activities within single cells by isotope-induced red shift on OPTIR spectra. Using bacteria cultured with 13C-glucose as a test bed, the protocol outlines microbial culture with isotopic labeling, fluorescence in situ hybridization (FISH), sample preparation, optimization of the OPTIR-FISH imaging setup, and data acquisition. We also demonstrate how to perform image analysis and interpret spectral data at the single-cell level with high throughput. This protocol's standardized and detailed nature will greatly facilitate its adoption by researchers from diverse backgrounds and disciplines within the broad single-cell metabolism research community.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University
| | - Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara; Photothermal Spectroscopy Corp.;
| | | | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University; Department of Electrical & Computer Engineering, Photonics Center, Boston University;
| |
Collapse
|
20
|
He H, Yin J, Li M, Dessai CVP, Yi M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat Methods 2024; 21:342-352. [PMID: 38191931 PMCID: PMC11165695 DOI: 10.1038/s41592-023-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Chinmayee Vallabh Prabhu Dessai
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Park C, Lim JM, Hong SC, Cho M. Monitoring the synthesis of neutral lipids in lipid droplets of living human cancer cells using two-color infrared photothermal microscopy. Chem Sci 2024; 15:1237-1247. [PMID: 38274065 PMCID: PMC10806728 DOI: 10.1039/d3sc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/25/2023] [Indexed: 01/27/2024] Open
Abstract
There has been growing interest in the functions of lipid droplets (LDs) due to recent discoveries regarding their diverse roles. These functions encompass lipid metabolism, regulation of lipotoxicity, and signaling pathways that extend beyond their traditional role in energy storage. Consequently, there is a need to examine the molecular dynamics of LDs at the subcellular level. Two-color infrared photothermal microscopy (2C-IPM) has proven to be a valuable tool for elucidating the molecular dynamics occurring in LDs with sub-micrometer spatial resolution and molecular specificity. In this study, we employed the 2C-IPM to investigate the molecular dynamics of LDs in both fixed and living human cancer cells (U2OS cells) using the isotope labeling method. We investigated the synthesis of neutral lipids occurring in individual LDs over time after exposing the cells to excess saturated fatty acids while simultaneously comparing inherent lipid contents in LDs. We anticipate that these research findings will reveal new opportunities for studying lesser-known biological processes within LDs and other subcellular organelles.
Collapse
Affiliation(s)
- Chanjong Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Physics, Korea University Seoul 02841 Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
22
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
23
|
Zong H, Yurdakul C, Zhao J, Wang Z, Chen F, Ünlü MS, Cheng JX. Bond-selective full-field optical coherence tomography. OPTICS EXPRESS 2023; 31:41202-41218. [PMID: 38087525 DOI: 10.1364/oe.503861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.
Collapse
|
24
|
Samolis P, Zhu X, Sander MY. Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles. Anal Chem 2023; 95:16514-16521. [PMID: 37880191 PMCID: PMC10652238 DOI: 10.1021/acs.analchem.3c02352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.
Collapse
Affiliation(s)
- Panagis
D. Samolis
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedong Zhu
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michelle Y. Sander
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Brookline, Massachusetts 02446, United States
| |
Collapse
|
25
|
Zhu Y, Ge X, Ni H, Yin J, Lin H, Wang L, Tan Y, Prabhu Dessai CV, Li Y, Teng X, Cheng JX. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging. SCIENCE ADVANCES 2023; 9:eadi2181. [PMID: 37889965 PMCID: PMC10610916 DOI: 10.1126/sciadv.adi2181] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics, and couplings in complex systems. However, the sensitivity of SRS is fundamentally limited to the millimolar level due to shot noise and the small modulation depth. To overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrationally excited states. The subsequent relaxation heats up the surroundings and induces refractive index changes. By probing the refractive index changes with a laser beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved. The versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. SRP microscopy opens a way to perform vibrational spectroscopic imaging with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
26
|
Zhu Y, Ge X, Ni H, Yin J, Lin H, Wang L, Tan Y, Prabhu Dessai CV, Li Y, Teng X, Cheng JX. Stimulated Raman Photothermal Microscopy towards Ultrasensitive Chemical Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531387. [PMID: 36945642 PMCID: PMC10028842 DOI: 10.1101/2023.03.06.531387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics and coupling in a complex system. However, the bond-detection sensitivity of SRS microscopy is fundamentally limited to milli-molar level due to the shot noise and the small modulation depth in either pump or Stokes beam4. Here, to overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrational excited states. The thereafter relaxation heats up the surrounding and induces a change in refractive index. By probing the refractive index change with a continuous wave beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved on dimethyl sulfide with conserved average power. Versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. With much improved signal to noise ratio compared to SRS, SRP microscopy opens a new way to perform vibrational spectroscopic imaging with ultrahigh sensitivity and minimal water absorption.
Collapse
|
27
|
Samolis PD, Sander MY, Hong MK, Erramilli S, Narayan O. Thermal transport across membranes and the Kapitza length from photothermal microscopy. J Biol Phys 2023; 49:365-381. [PMID: 37477759 PMCID: PMC10397174 DOI: 10.1007/s10867-023-09636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green's function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.
Collapse
Affiliation(s)
- Panagis D Samolis
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Michelle Y Sander
- Department of Electrical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Mi K Hong
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Shyamsunder Erramilli
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- The Photonics Center, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| | - Onuttom Narayan
- Department of Physics, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
28
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. SCIENCE ADVANCES 2023; 9:eadg8814. [PMID: 37315131 PMCID: PMC10266719 DOI: 10.1126/sciadv.adg8814] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.
Collapse
Affiliation(s)
- Jiaze Yin
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Lu Lan
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530116. [PMID: 36909493 PMCID: PMC10002684 DOI: 10.1101/2023.02.27.530116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
By optically sensing the mid-infrared absorption induced photothermal effect, midinfrared photothermal (MIP) microscope enables super-resolution IR imaging and scrutinizing of biological systems in an aqueous environment. However, the speed of current lock-in based sample-scanning MIP system is limited to 1.0 millisecond or longer per pixel, which is insufficient for capturing dynamics inside living systems. Here, we report a single pulse laserscanning MIP microscope that dramatically increases the imaging speed by three orders of magnitude. We harness a lock-in free demodulation scheme which uses high-speed digitization to resolve single IR pulse induced contrast at nanosecond time scale. To realize single pulse photothermal detection at each pixel, we employ two sets of galvo mirrors for synchronized scanning of mid-infrared and probe beams to achieve an imaging line rate over 2 kHz. With video-rate imaging capability, we observed two types of distinct dynamics of lipids in living cells. Furthermore, by hyperspectral imaging, we chemically dissected a single cell wall at nanometer scale. Finally, with a uniform field of view over 200 by 200 μm 2 and 2 Hz frame rate, we mapped fat storage in free-moving C. elegans and live embryos.
Collapse
|
31
|
He H, Yin J, Li M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping Enzyme Activity in Living Systems by Real-Time Mid-Infrared Photothermal Imaging of Nitrile Chameleons. RESEARCH SQUARE 2023:rs.3.rs-2592139. [PMID: 36909612 PMCID: PMC10002843 DOI: 10.21203/rs.3.rs-2592139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Enzymes are vital components in a variety of physiological and biochemical processes. Participation of various enzyme species are required for many biological events and signaling networks. Thus, spatially mapping the activity of multiple enzymes in a living system is significant for elucidating enzymatic functions in health and connections to diseases. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons for the shifted peak between substrate and product. By real-time mid-infrared photothermal imaging of the enzymatic substrates and products at 300 nm resolution, our approach can map the activity distribution of different enzymes and quantitate the relative catalytic efficiency in living cancer cells, C. elegans, and brain tissues. An important finding is the direct visualization of caspase-phosphatase cooperation during apoptosis. Our method is generally applicable to a broad category of enzymes and will advance the discovery of potential targets for diagnosis and drug development.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
32
|
Guo Z, Bai Y, Zhang M, Lan L, Cheng JX. High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Anal Chem 2023; 95:2238-2244. [PMID: 36651850 DOI: 10.1021/acs.analchem.2c03683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance poses great threats to global health and economics. Current gold-standard antimicrobial susceptibility testing (AST) requires extensive culture time (36-72 h) to determine susceptibility. There is an urgent need for rapid AST methods to slow down antimicrobial resistance. Here, we present a rapid AST method based on wide-field mid-infrared photothermal imaging of protein synthesis from 13C-glucose in Escherichia coli. Our wide-field approach achieved metabolic imaging for hundreds of bacteria at the single-cell resolution within seconds. The perturbed microbial protein synthesis can be probed within 1 h after antibiotic treatment in E. coli cells. The susceptibility of antibiotics with various mechanisms of action has been probed through monitoring protein synthesis, which promises great potential of the proposed platform toward clinical translation.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Yeran Bai
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
33
|
Bai Y, Guo Z, Pereira FC, Wagner M, Cheng JX. Mid-Infrared Photothermal-Fluorescence In Situ Hybridization for Functional Analysis and Genetic Identification of Single Cells. Anal Chem 2023; 95:2398-2405. [PMID: 36652555 PMCID: PMC9893215 DOI: 10.1021/acs.analchem.2c04474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simultaneous identification and metabolic analysis of microbes with single-cell resolution and high throughput are necessary to answer the question of "who eats what, when, and where" in complex microbial communities. Here, we present a mid-infrared photothermal-fluorescence in situ hybridization (MIP-FISH) platform that enables direct bridging of genotype and phenotype. Through multiple improvements of MIP imaging, the sensitive detection of isotopically labeled compounds incorporated into proteins of individual bacterial cells became possible, while simultaneous detection of FISH labeling with rRNA-targeted probes enabled the identification of the analyzed cells. In proof-of-concept experiments, we showed that the clear spectral red shift in the protein amide I region due to incorporation of 13C atoms originating from 13C-labeled glucose can be exploited by MIP-FISH to discriminate and identify 13C-labeled bacterial cells within a complex human gut microbiome sample. The presented methods open new opportunities for single-cell structure-function analyses for microbiology.
Collapse
Affiliation(s)
- Yeran Bai
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Fátima C. Pereira
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria
| | - Michael Wagner
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria,Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark,
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States,
| |
Collapse
|
34
|
Zhao J, Matlock A, Zhu H, Song Z, Zhu J, Wang B, Chen F, Zhan Y, Chen Z, Xu Y, Lin X, Tian L, Cheng JX. Bond-selective intensity diffraction tomography. Nat Commun 2022; 13:7767. [PMID: 36522316 PMCID: PMC9755124 DOI: 10.1038/s41467-022-35329-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Recovering molecular information remains a grand challenge in the widely used holographic and computational imaging technologies. To address this challenge, we developed a computational mid-infrared photothermal microscope, termed Bond-selective Intensity Diffraction Tomography (BS-IDT). Based on a low-cost brightfield microscope with an add-on pulsed light source, BS-IDT recovers both infrared spectra and bond-selective 3D refractive index maps from intensity-only measurements. High-fidelity infrared fingerprint spectra extraction is validated. Volumetric chemical imaging of biological cells is demonstrated at a speed of ~20 s per volume, with a lateral and axial resolution of ~350 nm and ~1.1 µm, respectively. BS-IDT's application potential is investigated by chemically quantifying lipids stored in cancer cells and volumetric chemical imaging on Caenorhabditis elegans with a large field of view (~100 µm x 100 µm).
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Ziqi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Biao Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhicong Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Xingchen Lin
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Xia Q, Yin J, Guo Z, Cheng JX. Mid-Infrared Photothermal Microscopy: Principle, Instrumentation, and Applications. J Phys Chem B 2022; 126:8597-8613. [PMID: 36285985 DOI: 10.1021/acs.jpcb.2c05827] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Midinfrared photothermal (MIP) microscopy, also called optical photothermal infrared (O-PTIR) microscopy, is an emerging tool for bond-selective chemical imaging of living biological and material samples. In MIP microscopy, a visible probe beam detects the photothermal-based contrast induced by a vibrational absorption. With submicron spatial resolution, high spectral fidelity, and reduced water absorption background, MIP microscopy has overcome the limitations in infrared chemical imaging methods. In this review, we summarize the basic principle of MIP microscopy, the different origins of MIP contrasts, and recent technology development that pushed the resolution, speed, and sensitivity of MIP imaging to a new stage. We further emphasize its broad applications in life science and material characterization, and provide a perspective of future technical advances.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
36
|
Abstract
![]()
Mid-infrared photothermal (MIP) microscopy is a valuable
tool for
sensitive and fast chemical imaging with high spatial resolution beyond
the mid-infrared diffraction limit. The highest sensitivity is usually
achieved with heterodyne MIP employing photodetector point-scans and
lock-in detection, while the fastest systems use camera-based widefield
MIP with pulsed probe light. One challenge is to simultaneously achieve
high sensitivity, spatial resolution, and speed in a large field of
view. Here, we present widefield mid-infrared photothermal heterodyne
(WIPH) imaging, where a digital frequency-domain lock-in (DFdLi) filter
is used for simultaneous multiharmonic demodulation of MIP signals
recorded by individual camera pixels at frame rates up to 200 kHz.
The DFdLi filter enables the use of continuous-wave probe light, which,
in turn, eliminates the need for synchronization schemes and allows
measuring MIP decay curves. The WIPH approach is characterized by
imaging potassium ferricyanide microparticles and applied to detect
lipid droplets (alkyne-palmitic acid) in 3T3-L1 fibroblast cells,
both in the cell-silent spectral region around 2100 cm–1 using an external-cavity quantum cascade laser. The system achieved
up to 4000 WIPH images per second at a signal-to-noise ratio of 5.52
and 1 μm spatial resolution in a 128 × 128 μm field
of view. The technique opens up for real-time chemical imaging of
fast processes in biology, medicine, and material science.
Collapse
Affiliation(s)
- Eduardo M Paiva
- Department of Applied Physics and Electronics, Umeå University, SE-90187Umeå, Sweden
| | - Florian M Schmidt
- Department of Applied Physics and Electronics, Umeå University, SE-90187Umeå, Sweden
| |
Collapse
|