1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Zhang H, Yao D, Ali HSM, Zhang G, Li X, Xi J, Liang Y, Shao L, Zhao F, Yu S, Yu K. Leaf physiological and endophytic microbial community characteristics and interactions of different scions grafted onto Malus sieversii. TREE PHYSIOLOGY 2025; 45:tpaf042. [PMID: 40188481 DOI: 10.1093/treephys/tpaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
Endophytic microbial communities in scion leaves substantially impact the growth efficiency of apple trees (Malus × domestica Borkh.); however, the underlying mechanisms remain underexplored. Herein, we grafted three varieties-Malus sieversii, Hanfu and Fuji-onto M. sieversii (Ledeb.) M. Roem rootstocks and employed high-throughput sequencing technology to investigate how physiological traits of scion leaves influence endophytic microbiota and apple tree growth. Compared with the M. sieversii scion, the aboveground (+49.28%) and root (+62.77%) biomass of juvenile trees grafted with the Hanfu scion significantly increased, with the net photosynthetic rate and stomatal conductance rising by 20.40% and 42.26%, respectively. Additionally, the leaves of the Hanfu scion exhibited a significant increase in sucrose synthase activity and carbon accumulation (CA) compared with the M. sieversii and Fuji scions, while the carbon content and carbon-to-nitrogen ratio (C/N) significantly decreased. Furthermore, through 16S rDNA and internal transcribed spacer high-throughput sequencing, we found that the diversity and abundance of endophytic bacteria and fungi in the leaves of the Hanfu scion were higher than in the M. sieversii and Fuji scions. Hanfu scion leaves were predominantly enriched with the phyla Firmicutes and Ascomycota and the genus Salinicoccus. A close association was observed between leaf endophytic bacterial and fungal communities and physiological traits, with particularly significant correlations in the fungal communities. Parameters such as leaf intercellular carbon dioxide concentration, chlorophyll b content, C/N and CA were implicated in enriching dominant endophytic microbial phyla and genera. Through partial least squares structural equation models, we confirmed that leaf photosynthetic properties and carbon and nitrogen metabolism significantly affect leaf carbon and nitrogen accumulation through the regulation of endophytic fungal diversity, thereby affecting apple tree growth. In conclusion, the interaction between leaf physiological properties of different scion varieties and the diversity and composition of endophytic microbial communities influences apple tree growth.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Dongdong Yao
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Hossam S M Ali
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Guangxin Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Xujiao Li
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Jingshan Xi
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Yingchi Liang
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Li Shao
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Fengyun Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Songlin Yu
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| | - Kun Yu
- Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, 221 North Fourth Road, Shihezi 832003, Xinjiang, China
| |
Collapse
|
3
|
Dos Reis JBA, Steindorff AS, Lorenzi AS, Pinho DB, do Vale HMM, Pappas GJ. How genomics can help unravel the evolution of endophytic fungi. World J Microbiol Biotechnol 2025; 41:153. [PMID: 40289066 DOI: 10.1007/s11274-025-04375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Endophytic fungi (EFs) form intimate associations with plants, residing within their tissues without causing apparent harm. Understanding the evolution of endophytic fungal genomes is essential for uncovering the mechanisms that drive their symbiotic relationships with host plants. This review explores the dynamic interactions between EFs and host plants, focusing on the evolutionary processes that shape their genomes. We highlighted key genomic adaptations promoting their endophytic lifestyle, including genes involved in plant cell wall degradation, secondary metabolite production, and stress tolerance. By combining genomic data with ecological and physiological information, this review provides a comprehensive understanding of the coevolutionary dynamics between EFs and host plants. Moreover, it provides insights that help elucidate the complex interdependencies governing their symbiotic interactions.
Collapse
Affiliation(s)
| | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, University of Brasília (UnB), Institute of Biological Sciences, Brasília, DF, Brazil
- Science of Beer Research Group, Science of Beer Institute, Florianópolis, SC, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, University of Brasília (UnB), Institute of Biological Sciences, Brasília, DF, Brazil
| | - Helson Mario Martins do Vale
- Department of Phytopathology, University of Brasília (UnB), Institute of Biological Sciences, Brasília, DF, Brazil
| | - Georgios Joannis Pappas
- Department of Cellular Biology, University of Brasília (UnB), Institute of Biological Sciences, Brasília, DF, Brazil
| |
Collapse
|
4
|
Chesneau G, Herpell J, Wolf SM, Perin S, Hacquard S. MetaFlowTrain: a highly parallelized and modular fluidic system for studying exometabolite-mediated inter-organismal interactions. Nat Commun 2025; 16:3310. [PMID: 40210863 PMCID: PMC11985495 DOI: 10.1038/s41467-025-58530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
Metabolic fluxes between cells, organisms, or communities drive ecosystem assembly and functioning and explain higher-level biological organization. Exometabolite-mediated inter-organismal interactions, however, remain poorly described due to technical challenges in measuring these interactions. Here, we present MetaFlowTrain, an easy-to-assemble, cheap, semi-high-throughput, and modular fluidic system in which multiple media can be flushed at adjustable flow rates into gnotobiotic microchambers accommodating diverse micro-organisms, ranging from bacteria to small eukaryotes. These microchambers can be used alone or connected in series to create microchamber trains within which metabolites, but not organisms, directionally travel between microchambers to modulate organismal growth. Using MetaFlowTrain, we uncover soil conditioning effects on synthetic community structure and plant growth, and reveal microbial antagonism mediated by exometabolite production. Our study highlights MetaFlowTrain as a versatile system for investigating plant-microbe-microbe metabolic interactions. We also discuss the system´s potential to discover metabolites that function as signaling molecules, drugs, or antimicrobials across various systems.
Collapse
Affiliation(s)
- Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Herpell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah Marie Wolf
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Silvina Perin
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
5
|
Degli Esposti C, Guerrisi L, Peruzzi G, Giulietti S, Pontiggia D. Cell wall bricks of defence: the case study of oligogalacturonides. FRONTIERS IN PLANT SCIENCE 2025; 16:1552926. [PMID: 40201780 PMCID: PMC11975879 DOI: 10.3389/fpls.2025.1552926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The plant cell wall (CW) is more than a structural barrier; it serves as the first line of defence against pathogens and environmental stresses. During pathogen attacks or physical damage, fragments of the CW, known as CW-derived Damage-Associated Molecular Patterns (CW-DAMPs), are released. These molecular signals play a critical role in activating the plant's immune responses. Among CW-DAMPs, oligogalacturonides (OGs), fragments derived from the breakdown of pectin, are some of the most well-studied. This review highlights recent advances in understanding the functional and signalling roles of OGs, beginning with their formation through enzymatic CW degradation during pathogen invasion or mechanical injury. We discuss how OGs perception triggers intracellular signalling pathways that enhance plant defence and regulate interactions with microbes. Given that excessive OG levels can negatively impact growth and development, we also examine the regulatory mechanisms plants use to fine-tune their responses, avoiding immune overactivation or hyper- immunity. As natural immune modulators, OGs (and more generally CW-DAMPs), offer a promising, sustainable alternative to chemical pesticides by enhancing crop resilience without harming the environment. By strengthening plant defences and supporting eco-friendly agricultural practices, OGs hold great potential for advancing resilient and sustainable farming systems.
Collapse
Affiliation(s)
- Chiara Degli Esposti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Laura Guerrisi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giulia Peruzzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sarah Giulietti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural Heritage, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Hill R, Grey M, Fedi MO, Smith D, Canning G, Ward SJ, Irish N, Smith J, McMillan VE, Hammond J, Osborne SJ, Reynolds G, Smith E, Chancellor T, Swarbreck D, Hall N, Palma-Guerrero J, Hammond-Kosack KE, McMullan M. Evolutionary genomics reveals variation in structure and genetic content implicated in virulence and lifestyle in the genus Gaeumannomyces. BMC Genomics 2025; 26:239. [PMID: 40075289 PMCID: PMC11905480 DOI: 10.1186/s12864-025-11432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Gaeumannomyces tritici is responsible for take-all disease, one of the most important wheat root threats worldwide. High-quality annotated genome resources are sorely lacking for this pathogen, as well as for the closely related antagonist and potential wheat take-all biocontrol agent, G. hyphopodioides. As such, we know very little about the genetic basis of the interactions in this host-pathogen-antagonist system. Using PacBio HiFi sequencing technology we have generated nine near-complete assemblies, including two different virulence lineages for G. tritici and the first assemblies for G. hyphopodioides and G. avenae (oat take-all). Genomic signatures support the presence of two distinct virulence lineages in G. tritici (types A and B), with A strains potentially employing a mechanism to prevent gene copy-number expansions. The CAZyme repertoire was highly conserved across Gaeumannomyces, while candidate secreted effector proteins and biosynthetic gene clusters showed more variability and may distinguish pathogenic and non-pathogenic lineages. A transition from self-sterility (heterothallism) to self-fertility (homothallism) may also be a key innovation implicated in lifestyle. We did not find evidence for transposable element and effector gene compartmentalisation in the genus, however the presence of Starship giant transposable elements may contribute to genomic plasticity in the genus. Our results depict Gaeumannomyces as an ideal system to explore interactions within the rhizosphere, the nuances of intraspecific virulence, interspecific antagonism, and fungal lifestyle evolution. The foundational genomic resources provided here will enable the development of diagnostics and surveillance of understudied but agriculturally important fungal pathogens.
Collapse
Affiliation(s)
- Rowena Hill
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| | - Michelle Grey
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Daniel Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Sabrina J Ward
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Jade Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | | | - Sarah-Jane Osborne
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- AHDB, Siskin Parkway East, Middlemarch Business Park, Coventry, CV3 4PE, UK
| | | | - Ellie Smith
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Tania Chancellor
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Javier Palma-Guerrero
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Research Institute of Organic Agriculture Fibl, Frick, 5070, Switzerland
| | | | - Mark McMullan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| |
Collapse
|
7
|
Lalanne C, Silar P. FungANI, a BLAST-based program for analyzing average nucleotide identity (ANI) between two fungal genomes, enables easy fungal species delimitation. Fungal Genet Biol 2025; 177:103969. [PMID: 39894199 DOI: 10.1016/j.fgb.2025.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Fungal species delimitation and phylogeny will likely rely in the future upon whole genome sequence comparison, as the costs of such sequences are rapidly decreasing. Average Nucleotide Identity (ANI) between genomes is a convenient metric that can be rapidly calculated for species delimitation. However, there is presently no easy-to-use program calculating the ANI between two fungal genomes and providing easy-to interpret results that can be help mycologists having limited access to bioinformatic facilities. Here, we present FungANI, a customizable BLAST-based program that calculate ANI between genomes. The program primarily targets Linux workstations or servers but it can be run on the latest Windows, macOS and Linux 64-Bit operating systems as a standalone desktop application. It was tested with various publicly-available genomes from species belonging to the Sordariales order. It proved efficient to differentiate closely related species and retrace their possible phylogenetic relationships. However, FungANI did not perform well for phylogenetic reconstruction on a broader evolutionary scale such as inferring relationships between distant genera. The program is freely available at https://github.com/podo-gec/fungani.
Collapse
Affiliation(s)
- Christophe Lalanne
- Univ Paris Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cité CEDEX 13, France
| | - Philippe Silar
- Univ Paris Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cité CEDEX 13, France.
| |
Collapse
|
8
|
Marcianò D, Kappel L, Ullah SF, Srivastava V. From glycans to green biotechnology: exploring cell wall dynamics and phytobiota impact in plant glycopathology. Crit Rev Biotechnol 2025; 45:314-332. [PMID: 39004515 DOI: 10.1080/07388551.2024.2370341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Filamentous plant pathogens, including fungi and oomycetes, pose significant threats to cultivated crops, impacting agricultural productivity, quality and sustainability. Traditionally, disease control heavily relied on fungicides, but concerns about their negative impacts motivated stakeholders and government agencies to seek alternative solutions. Biocontrol agents (BCAs) have been developed as promising alternatives to minimize fungicide use. However, BCAs often exhibit inconsistent performances, undermining their efficacy as plant protection alternatives. The eukaryotic cell wall of plants and filamentous pathogens contributes significantly to their interaction with the environment and competitors. This highly adaptable and modular carbohydrate armor serves as the primary interface for communication, and the intricate interplay within this compartment is often mediated by carbohydrate-active enzymes (CAZymes) responsible for cell wall degradation and remodeling. These processes play a crucial role in the pathogenesis of plant diseases and contribute significantly to establishing both beneficial and detrimental microbiota. This review explores the interplay between cell wall dynamics and glycan interactions in the phytobiome scenario, providing holistic insights for efficiently exploiting microbial traits potentially involved in plant disease mitigation. Within this framework, the incorporation of glycobiology-related functional traits into the resident phytobiome can significantly enhance the plant's resilience to biotic stresses. Therefore, in the rational engineering of future beneficial consortia, it is imperative to recognize and leverage the understanding of cell wall interactions and the role of the glycome as an essential tool for the effective management of plant diseases.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| |
Collapse
|
9
|
Navasca A, Singh J, Rivera-Varas V, Gill U, Secor G, Baldwin T. Dispensable genome and segmental duplications drive the genome plasticity in Fusarium solani. FRONTIERS IN FUNGAL BIOLOGY 2025; 6:1432339. [PMID: 39974207 PMCID: PMC11835900 DOI: 10.3389/ffunb.2025.1432339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Fusarium solani is a species complex encompassing a large phylogenetic clade with diverse members occupying varied habitats. We recently reported a unique opportunistic F. solani associated with unusual dark galls in sugarbeet. We assembled the chromosome-level genome of the F. solani sugarbeet isolate strain SB1 using Oxford Nanopore and Hi-C sequencing. The average size of F. solani genomes is 54 Mb, whereas SB1 has a larger genome of 59.38 Mb, organized into 15 chromosomes. The genome expansion of strain SB1 is due to the high repeats and segmental duplications within its three potentially accessory chromosomes. These chromosomes are absent in the closest reference genome with chromosome-level assembly, F. vanettenii 77-13-4. Segmental duplications were found in three chromosomes but are most extensive between two specific SB1 chromosomes, suggesting that this isolate may have doubled its accessory genes. Further comparison of the F. solani strain SB1 genome demonstrates inversions and syntenic regions to an accessory chromosome of F. vanettenii 77-13-4. The pan-genome of 12 publicly available F. solani isolates nearly reached gene saturation, with few new genes discovered after the addition of the last genome. Based on orthogroups and average nucleotide identity, F. solani is not grouped by lifestyle or origin. The pan-genome analysis further revealed the enrichment of several enzymes-coding genes within the dispensable (accessory + unique genes) genome, such as hydrolases, transferases, oxidoreductases, lyases, ligases, isomerase, and dehydrogenase. The evidence presented here suggests that genome plasticity, genetic diversity, and adaptive traits in Fusarium solani are driven by the dispensable genome with significant contributions from segmental duplications.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
10
|
Khan D, Shaw R, Kabiraj A, Paul A, Bandopadhyay R. Microbial inheritance through seed: a clouded area needs to be enlightened. Arch Microbiol 2025; 207:23. [PMID: 39754662 DOI: 10.1007/s00203-024-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions. In this review, instead of providing broad discussion on applicability of endophytes in plant growth improvement, the fundamental nature of endophytes, their survival strategies under stress conditions, transmittance, etc. have been broadly highlighted by collaborating recent discoveries and theories. We have also tried to differentiate endophyte with their pathogenic counterpart and their survival mechanism during seed dormancy stages. Critical analyses of physio-biochemical changes in seeds during maturation and parallel modifications of life styles of seed endophytes along with pathogens will enlighten the shaded part of seed-microbiome interactions. The mutualistic interrelations as well as their shipment towards pathogenic behaviour under stress are being discussed acutely. Finally, importances of conservation of seed microbiome to maintain seed quality and vigour have been pointed out. Throughout the manuscript, the knowledge gap on seed-microbiota have been mentioned, thus, in future, studies on these areas could help us to understand properly the actual role of endophytes for the betterment of maintaining seed quality and vigour.
Collapse
Affiliation(s)
- Dibyendu Khan
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajdeep Shaw
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Ashutosh Kabiraj
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Arpita Paul
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
11
|
Mishra A, Yadav P, Singh K. Host Response of Arabidopsis thaliana Interaction with Fungal Endophytes Involves microRNAs. Mol Biotechnol 2025; 67:294-303. [PMID: 38367181 DOI: 10.1007/s12033-024-01051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Plant and fungus interaction is a complex process involving many molecular factors determining the nature of relationship. The enigmatic methodology by which fungal endophytes are able to colonise a plant harmoniously is still inexplicable. Small RNAs have been identified as major regulatory elements under various biotic interactions. However, their role in endophytic plant-fungal interactions remain to be elucidated. Therefore, transcript expression data available on Gene Expression Omnibus for Arabidopsis thaliana was utilised for miRNAs identification under endophytism. The analysis predicted 15 miRNAs with differential expression of which the ath-miRNA398b modulation was significant. Application of psRNAtarget, C-mii, pmiREN, and TarDB provided a pool of 357 target genes for these miRNAs. Protein-protein interaction analysis identified major hub proteins, including BTB/POZ domain-containing protein, beta-Xylosidase-2 (AtBXL2), and Copper/Zinc Superoxide Dismutase-2 (AtSOD2). The quantitative real-time PCR validated the computational prediction and expression for selected target genes AtSOD2, AtBXL2, and AtRCA along with ath-miRNA398b under endophytism. Overall, results indicate that miRNAs have a significant role in regulating Arabidopsis thaliana-endophytic fungal interaction.
Collapse
Affiliation(s)
- Anand Mishra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
| | - Pooja Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Peck LD, Llewellyn T, Bennetot B, O’Donnell S, Nowell RW, Ryan MJ, Flood J, Rodríguez de la Vega RC, Ropars J, Giraud T, Spanu PD, Barraclough TG. Horizontal transfers between fungal Fusarium species contributed to successive outbreaks of coffee wilt disease. PLoS Biol 2024; 22:e3002480. [PMID: 39637834 PMCID: PMC11620798 DOI: 10.1371/journal.pbio.3002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential. We compared the genomes of 13 historic strains spanning 6 decades and multiple disease outbreaks to investigate population structure and host specialisation. We found that F. xylarioides comprised at least 4 distinct lineages: 1 host-specific to Coffea arabica, 1 to C. canephora var. robusta, and 2 historic lineages isolated from various Coffea species. The presence/absence of large genomic regions across populations, the higher genetic similarities of these regions between species than expected based on genome-wide divergence and their locations in different loci in genomes across populations showed that horizontal transfers of effector genes from members of the F. oxysporum species complex contributed to host specificity. Multiple transfers into F. xylarioides populations matched different parts of the F. oxysporum mobile pathogenicity chromosome and were enriched in effector genes and transposons. Effector genes in this region and other carbohydrate-active enzymes important in the breakdown of plant cell walls were shown by transcriptomics to be highly expressed during infection of C. arabica by the fungal arabica strains. Widespread sharing of specific transposons between F. xylarioides and F. oxysporum, and the correspondence of a putative horizontally transferred regions to a Starship (large mobile element involved in horizontal gene transfers in fungi), reinforce the inference of horizontal transfers and suggest that mobile elements were involved. Our results support the hypothesis that horizontal gene transfers contributed to the repeated emergence of coffee wilt disease.
Collapse
Affiliation(s)
- Lily D. Peck
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- CABI, Egham, Surrey, United Kingdom
| | - Theo Llewellyn
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Bastien Bennetot
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samuel O’Donnell
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Reuben W. Nowell
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Biological & Environmental Sciences, University of Stirling, Scotland, United Kingdom
| | | | | | | | - Jeanne Ropars
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro D. Spanu
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Molina A, Sánchez-Vallet A, Jordá L, Carrasco-López C, Rodríguez-Herva JJ, López-Solanilla E. Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102630. [PMID: 39306957 DOI: 10.1016/j.pbi.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 12/06/2024]
Abstract
Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
14
|
Jiang R, Yue Z, Shang L, Wang D, Wei N. PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates. Metab Eng Commun 2024; 19:e00248. [PMID: 39310048 PMCID: PMC11414552 DOI: 10.1016/j.mec.2024.e00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Plastic waste has caused a global environmental crisis. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. However, it is challenging and time-consuming to discover novel plastic-degrading enzymes using conventional cultivation-based or omics methods. There is a growing interest in developing effective computational methods to identify new enzymes with desirable plastic degradation functionalities by exploring the ever-increasing databases of protein sequences. In this study, we designed an innovative machine learning-based framework, named PEZy-Miner, to mine for enzymes with high potential in degrading plastics of interest. Two datasets integrating information from experimentally verified enzymes and homologs with unknown plastic-degrading activity were created respectively, covering eleven types of plastic substrates. Protein language models and binary classification models were developed to predict enzymatic degradation of plastics along with confidence and uncertainty estimation. PEZy-Miner exhibited high prediction accuracy and stability when validated on experimentally verified enzymes. Furthermore, by masking the experimentally verified enzymes and blending them into homolog dataset, PEZy-Miner effectively concentrated the experimentally verified entries by 14∼30 times while shortlisting promising plastic-degrading enzyme candidates. We applied PEZy-Miner to 0.1 million putative sequences, out of which 27 new sequences were identified with high confidence. This study provided a new computational tool for mining and recommending promising new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Renjing Jiang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenrui Yue
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Lanyu Shang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Dong Wang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
15
|
Eichfeld R, Mahdi LK, De Quattro C, Armbruster L, Endeshaw AB, Miyauchi S, Hellmann MJ, Cord-Landwehr S, Peterson D, Singan V, Lail K, Savage E, Ng V, Grigoriev IV, Langen G, Moerschbacher BM, Zuccaro A. Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts. THE NEW PHYTOLOGIST 2024; 244:980-996. [PMID: 39224928 DOI: 10.1111/nph.20080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.
Collapse
Affiliation(s)
- Ruben Eichfeld
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Lisa K Mahdi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Concetta De Quattro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Laura Armbruster
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Asmamaw B Endeshaw
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Shingo Miyauchi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Daniel Peterson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kathleen Lail
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregor Langen
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| |
Collapse
|
16
|
Hellequin E, Rech P, Petrolli R, Selosse MA, Kodja H, Piquet B, Martos F. Variations in the root mycobiome and mycorrhizal fungi between different types of Vanilla forest farms on Réunion Island. MYCORRHIZA 2024; 34:429-446. [PMID: 39432085 DOI: 10.1007/s00572-024-01171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The mycorrhizal fungi of cultivated Vanilla spp. have mainly been studied in America, while a recent study has investigated them on Réunion Island (Indian Ocean). However, there are many different types of cultivation on Réunion, from shade-house crops to forest farms of endemic or exotic trees. Here we fill a gap in the study of the root mycobiome of Vanilla by sampling vines in forest plantations on recent lava flows in the southeast of Réunion. Specifically, we aimed to characterize the fungal communities between terrestrial and epiphytic roots, between forest farms that differ mainly in the species of trees, and between Vanilla roots and ECM-like roots of nearby trees. By sequencing fungal ITS2, we showed that the Vanilla root mycobiome is diverse and differed between the root types and forest farms. Epiphytic and terrestrial roots host endophytic fungi, while a putative rust with visible urediniospores was abundant in terrestrial roots mainly. Other pathogens were detected in epiphytic roots (Colletotrichum) with no sign of disease. Following sequencing and electron microscopy, Tulasnellaceae, characterized by imperforate parenthesomes and cell wall expansion with an amorphous matrix, were shown to be the main mycorrhizal fungi in both vanilla root types. Interestingly, the dominant Tulasnellaceae OTU was found in ECM-type roots of trees belonging to the ectomycorrhizal family Sapotaceae. Further observations are needed to confirm the ectomycorrhizal association of endemic trees with Tulasnella. Moreover, labeling experiments will be instrumental in investigating the transfer of nutrients between the trees and the Vanilla through the network of mycorrhizal associations in the soil.
Collapse
Affiliation(s)
- Eve Hellequin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France.
| | - Philippe Rech
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Hippolyte Kodja
- Qualisud, Université Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 15 avenue René Cassin, St- Denis cedex 9, 97744, France
| | - Bérénice Piquet
- Electron Microscopy Platform, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, Paris Cedex 05, F-75231, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP 39, 57 rue Cuvier, Paris, F-75005, France
| |
Collapse
|
17
|
Liu W, Shi X, Cai Y, Sun W, He P, Perez-Moreno J, Liu D, Yu F. Two near-chromosomal-level genomes of globally-distributed Macroascomycete based on single-molecule fluorescence and Hi-C methods. Sci Data 2024; 11:964. [PMID: 39231989 PMCID: PMC11375150 DOI: 10.1038/s41597-024-03794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Discinaceae holds significant importance within the Pezizales, representing a prominent group of macroascomycetes distributed globally. However, there is a dearth of genomic studies focusing on this family, resulting in gaps in our understanding of its evolution, development, and ecology. Here we utilized state-of-the-art genome assembly methodologies, incorporating third-generation single-molecule fluorescence and Hi-C-assisted methods, to elucidate the genomic landscapes of Gyromitra esculenta and Paragyromitra xinjiangensis. The genome sizes of two species were determined to be 47.10 Mb and 48.20 Mb, with 23 and 22 scaffolds, respectively. 10,438 and 11,469 coding proteins were identified, with functional annotations encompassing over 96.47% and 94.40%, respectively. Assessment of completeness using BUSCO revealed that 98.71% and 98.89% of the conserved proteins were identified. The application of comparative genomic technology has helped in identifying traits associated with of heterothallic life cycle traits and elucidating unique patterns of chromosomal evolution. Additionally, we identified potential saprotrophic nutritional modes and systematic phylogenetic relationships between the two species. Therefore, this study provides crucial genomic insights into the evolution, nutritional type, and ecological roles of species within the Pezizales.
Collapse
Affiliation(s)
- Wei Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yingli Cai
- Institute of Agro-products Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650221, China
| | - Wenhua Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Jesus Perez-Moreno
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco, 56230, Mexico
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
18
|
Nielsen MR, Sørensen T, Pedersen TB, Westphal KR, Díaz Fernández De Quincoces L, Sondergaard TE, Wimmer R, Brown DW, Sørensen JL. Final piece to the Fusarium pigmentation puzzle - Unraveling of the phenalenone biosynthetic pathway responsible for perithecial pigmentation in the Fusarium solani species complex. Fungal Genet Biol 2024; 174:103912. [PMID: 39004163 DOI: 10.1016/j.fgb.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Daren W Brown
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 1815 N University St. Peoria IL 61604, United States of America
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark.
| |
Collapse
|
19
|
Dettman JR, Gerdis S. Alternaria sections Infectoriae and Pseudoalternaria: New genomic resources, phylogenomic analyses, and biodiversity. Mycologia 2024; 116:659-672. [PMID: 38884943 DOI: 10.1080/00275514.2024.2354149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Species in Alternaria sections Infectoriae and Pseudoalternaria are commonly isolated from agricultural crops and a variety of other plant hosts. With the increasing appreciation that species from these two sections are often the dominant taxa recovered from important cereal crops, the need for improved understanding of their biodiversity and taxonomy has grown. Given that morphological characteristics and existing molecular markers are not sufficient for distinguishing among species, we expanded the genomic resources for these sections to support research in biosystematics and species diagnostics. Whole genome assemblies for 22 strains were generated, including the first genomes from section Infectoriae or Pseudoalternaria strains sampled from Canada, which significantly increases the number of publicly released genomes, particularly for section Pseudoalternaria. We performed comprehensive phylogenomic analyses of all available genomes (n = 39) and present the first robust phylogeny for these taxa. The segregation of the two sections was strongly supported by genomewide data, and multiple lineages were detected within each section. We then provide an overview of the biosystematics of these groups by analyzing two standard molecular markers from the largest sample of section Infectoriae and Pseudoalternaria strains studied to date. The patterns of relative diversity suggest that, in many cases, multiple species described based on minor morphological differences may actually represent different strains of the same species. A list of candidate loci for development into new informative molecular markers, which are diagnostic for sections and lineages, was created from analyses of phylogenetic signals from individual genes across the entire genome.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Suzanne Gerdis
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
20
|
Zhang ZX, Shang YX, Zhang MY, Zhang JJ, Geng Y, Xia JW, Zhang XG. Phylogenomics, taxonomy and morphological characters of the Microdochiaceae (Xylariales, Sordariomycetes). MycoKeys 2024; 106:303-325. [PMID: 38993357 PMCID: PMC11237568 DOI: 10.3897/mycokeys.106.127355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Species of the family Microdochiaceae (Xylariales, Sordariomycetes) have been reported from worldwide, and collected from different plant hosts. The proposed new genus and two new species, viz., Macroidriella gen. nov., M.bambusae sp. nov. and Microdochiumaustrale sp. nov., are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 with morphological characteristics. Microdochiumsinense has been collected from diseased leaves of Phragmitesaustralis and this is the first report of the fungus on this host plant. Simultaneously, we annotated 10,372 to 11,863 genes, identified 4,909 single-copy orthologous genes, and conducted phylogenomic analysis based on genomic data. A gene family analysis was performed and it will expand the understanding of the evolutionary history and biodiversity of the Microdochiaceae. The detailed descriptions and illustrations of species are provided.
Collapse
Affiliation(s)
- Zhao-Xue Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Yu-Xin Shang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Meng-Yuan Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Jin-Jia Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Yun Geng
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, ChinaShandong Academy of Agricultural SciencesJinanChina
| | - Ji-Wen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Xiu-Guo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| |
Collapse
|
21
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
22
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
23
|
Puginier C, Libourel C, Otte J, Skaloud P, Haon M, Grisel S, Petersen M, Berrin JG, Delaux PM, Dal Grande F, Keller J. Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae. Nat Commun 2024; 15:4452. [PMID: 38789482 PMCID: PMC11126685 DOI: 10.1038/s41467-024-48787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.
Collapse
Affiliation(s)
- Camille Puginier
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP, Toulouse, 31320, Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP, Toulouse, 31320, Castanet-Tolosan, France
| | - Juergen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Pavel Skaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800, Praha 2, Czech Republic
| | - Mireille Haon
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, 13009, Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, 13009, Marseille, France
| | - Malte Petersen
- High Performance Computing & Analytics Lab, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115, Bonn, Germany
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, 13009, Marseille, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP, Toulouse, 31320, Castanet-Tolosan, France.
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Department of Biology, University of Padova, Padua, Italy.
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP, Toulouse, 31320, Castanet-Tolosan, France.
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|
24
|
Li X, Zheng X, Yadav N, Saha S, Salama ES, Li X, Wang L, Jeon BH. Rational management of the plant microbiome for the Second Green Revolution. PLANT COMMUNICATIONS 2024; 5:100812. [PMID: 38213028 PMCID: PMC11009158 DOI: 10.1016/j.xplc.2024.100812] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in environmental challenges. A new approach, the Second Green Revolution, seeks to enhance agricultural productivity while minimizing negative environmental impacts. Plant microbiomes play critical roles in plant growth and stress responses, and understanding plant-microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges, which are among the United Nations Sustainable Development Goals. This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies, including the host effect, the facilitator effect, and microbe-microbe interactions. A hierarchical framework for plant microbiome modulation is proposed to bridge the gap between basic research and agricultural applications. This framework emphasizes three levels of modulation: single-strain, synthetic community, and in situ microbiome modulation. Overall, rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.
Collapse
Affiliation(s)
- Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Hermantown, MN 55811, USA; Department of Biotechnology, Brainware University, Barasat, Kolkata 700125, West Bengal, India
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
25
|
van Westerhoven AC, Aguilera-Galvez C, Nakasato-Tagami G, Shi-Kunne X, Martinez de la Parte E, Chavarro-Carrero E, Meijer HJG, Feurtey A, Maryani N, Ordóñez N, Schneiders H, Nijbroek K, Wittenberg AHJ, Hofstede R, García-Bastidas F, Sørensen A, Swennen R, Drenth A, Stukenbrock EH, Kema GHJ, Seidl MF. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. THE NEW PHYTOLOGIST 2024; 242:610-625. [PMID: 38402521 DOI: 10.1111/nph.19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Carolina Aguilera-Galvez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Giuliana Nakasato-Tagami
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Einar Martinez de la Parte
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Edgar Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department Biointeractions and Plant Health, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alice Feurtey
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
- Plant Pathology, Eidgenössische Technische Hochschule Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
| | - Nani Maryani
- Biology Education, Universitas Sultan Ageng Tirtayasa, Jalan Raya Palka No.Km 3, 42163, Banten, Indonesia
| | - Nadia Ordóñez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Harrie Schneiders
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Koen Nijbroek
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Rene Hofstede
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | | | - Anker Sørensen
- KeyGene, Agro Business Park 90, 6708 PW, Wageningen, the Netherlands
| | - Ronny Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Catholic University of Leuven, Oude Markt 13, 3000, Leuven, Belgium
- International Institute of Tropical Agriculture, Plot 15 Naguru E Rd, Kampala, PO Box 7878, Uganda
| | - Andre Drenth
- The University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Eva H Stukenbrock
- Christian-Albrechts University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Michael F Seidl
- Department of Biology, Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
26
|
Meng T, Jiao H, Zhang Y, Zhou Y, Chen S, Wang X, Yang B, Sun J, Geng X, Ayhan DH, Guo L. FoPGDB: a pangenome database of Fusarium oxysporum, a cross-kingdom fungal pathogen. Database (Oxford) 2024; 2024:baae017. [PMID: 38537199 PMCID: PMC10972551 DOI: 10.1093/database/baae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2025]
Abstract
Pangenomes, capturing the genetic diversity of a species or genus, are essential to understanding the ecology, pathobiology and evolutionary mechanisms of fungi that cause infection in crops and humans. However, fungal pangenome databases remain unavailable. Here, we report the first fungal pangenome database, specifically for Fusarium oxysporum species complex (FOSC), a group of cross-kingdom pathogens causing devastating vascular wilt to over 100 plant species and life-threatening fusariosis to immunocompromised humans. The F. oxysporum Pangenome Database (FoPGDB) is a comprehensive resource integrating 35 high-quality FOSC genomes, coupled with robust analytical tools. FoPGDB allows for both gene-based and graph-based exploration of the F. oxysporum pangenome. It also curates a large repository of putative effector sequences, crucial for understanding the mechanisms of FOSC pathogenicity. With an assortment of functionalities including gene search, genomic variant exploration and tools for functional enrichment, FoPGDB provides a platform for in-depth investigations of the genetic diversity and adaptability of F. oxysporum. The modular and user-friendly interface ensures efficient data access and interpretation. FoPGDB promises to be a valuable resource for F. oxysporum research, contributing to our understanding of this pathogen's pangenomic landscape and aiding in the development of novel disease management strategies. Database URL: http://www.fopgdb.site.
Collapse
Affiliation(s)
- Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Hanqing Jiao
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
| | - Yi Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Bowen Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xin Geng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
27
|
Garcia JF, Morales-Cruz A, Cochetel N, Minio A, Figueroa-Balderas R, Rolshausen PE, Baumgartner K, Cantu D. Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:127-142. [PMID: 37934016 DOI: 10.1094/mpmi-09-23-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- Genome Center, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
28
|
Sun X, Liao J, Lu J, Lin R, Zou M, Xie B, Cheng X. Parasitism of Hirsutella rhossiliensis on Different Nematodes and Its Endophytism Promoting Plant Growth and Resistance against Root-Knot Nematodes. J Fungi (Basel) 2024; 10:68. [PMID: 38248977 PMCID: PMC10820206 DOI: 10.3390/jof10010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The endoparasitic fungus Hirsutella rhossiliensis is an important biocontrol agent of cyst nematodes in nature. To determine the potential parasitism of the fungus on a non-natural host, the pinewood nematode (Bursaphelenchus xylophilus) living in pine trees and the endophytic ability of the fungus on plants, in this paper, we first constructed and utilized a green fluorescent protein (GFP)-tagged H. rhossiliensis HR02 transformant to observe the fungal infection process on B. xylophilus and its colonization on Arabidopsis roots. Then, we compared the fungal parasitism on three species of nematodes with different lifestyles, and we found that the fungal parasitism is correlated with nematode species and stages. The parasitic effect of H. rhossiliensis on adults of B. xylophilus is similar to that on second-stage juveniles (J2) of the root-knot nematode Meloidogyne incognita after 24 h of inoculation, although the virulence of the fungus to second-stage juveniles of M. incognita is stronger than that to those of B. xylophilus and Caenorhabditis elegans. Moreover, the endophytism of H. rhossiliensis was confirmed. By applying an appropriate concentration of H. rhossiliensis conidial suspension (5 × 106 spores/mL) in rhizosphere soil, it was found that the endophytic fungus can promote A. thaliana growth and reproduction, as well as improve host resistance against M. incognita. Our results provide a deeper understanding of the fungus H. rhossiliensis as a promising biocontrol agent against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Xin Sun
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqian Liao
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junru Lu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Runmao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Manling Zou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100875, China
| |
Collapse
|
29
|
Basak AK, Piasecka A, Hucklenbroich J, Türksoy GM, Guan R, Zhang P, Getzke F, Garrido-Oter R, Hacquard S, Strzałka K, Bednarek P, Yamada K, Nakano RT. ER body-resident myrosinases and tryptophan specialized metabolism modulate root microbiota assembly. THE NEW PHYTOLOGIST 2024; 241:329-342. [PMID: 37771245 DOI: 10.1111/nph.19289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.
Collapse
Affiliation(s)
- Arpan Kumar Basak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jana Hucklenbroich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Gözde Merve Türksoy
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Rui Guan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pengfan Zhang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Stephane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Krakow, 30-387, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
30
|
Haimlich S, Fridman Y, Khandal H, Savaldi-Goldstein S, Levy A. Widespread horizontal gene transfer between plants and bacteria. ISME COMMUNICATIONS 2024; 4:ycae073. [PMID: 38808121 PMCID: PMC11131428 DOI: 10.1093/ismeco/ycae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plants host a large array of commensal bacteria that interact with the host. The growth of both bacteria and plants is often dependent on nutrients derived from the cognate partners, and the bacteria fine-tune host immunity against pathogens. This ancient interaction is common in all studied land plants and is critical for proper plant health and development. We hypothesized that the spatial vicinity and the long-term relationships between plants and their microbiota may promote cross-kingdom horizontal gene transfer (HGT), a phenomenon that is relatively rare in nature. To test this hypothesis, we analyzed the Arabidopsis thaliana genome and its extensively sequenced microbiome to detect events of horizontal transfer of full-length genes that transferred between plants and bacteria. Interestingly, we detected 75 unique genes that were horizontally transferred between plants and bacteria. Plants and bacteria exchange in both directions genes that are enriched in carbohydrate metabolism functions, and bacteria transferred to plants genes that are enriched in auxin biosynthesis genes. Next, we provided a proof of concept for the functional similarity between a horizontally transferred bacterial gene and its Arabidopsis homologue in planta. The Arabidopsis DET2 gene is essential for biosynthesis of the brassinosteroid phytohormones, and loss of function of the gene leads to dwarfism. We found that expression of the DET2 homologue from Leifsonia bacteria of the Actinobacteria phylum in the Arabidopsis det2 background complements the mutant and leads to normal plant growth. Together, these data suggest that cross-kingdom HGT events shape the metabolic capabilities and interactions between plants and bacteria.
Collapse
Affiliation(s)
- Shelly Haimlich
- The Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yulia Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Asaf Levy
- The Department of Plant Pathology and Microbiology, Institute of Environmental Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
31
|
Lu ZM, Zhang RT, Huang XB, Cao XT, Shen XY, Fan L, Hou CL. Optimisation of hypocrellin production in Shiraia-like fungi via genetic modification involving a transcription factor gene and a putative monooxygenase gene. Mycology 2023; 15:272-281. [PMID: 38813477 PMCID: PMC11133952 DOI: 10.1080/21501203.2023.2295406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 05/31/2024] Open
Abstract
Shiraia-like fungi, which are rare parasitic fungi found around bamboo, play an important role in traditional medicine. Their main active component, hypocrellin, is widely used in medicine, food, and cosmetics. By comparing strains with different hypocrellin yields, we identified a transcription factor (SbTF) in the hypocrellin biosynthesis pathway. SbTF from high-yielding zzz816 and low-yielding CNUCC C72 differed in its protein structure. Subsequently, SbTF from high-yielding zzz816 was overexpressed in several strains. This stabilised the yield in zzz816 and significantly increased the yield in low-yielding CNUCC C72. Comparing downstream non-essential genes between wild type and SbTF-overexpressing CNUCC C72 showed that SbMNF was significantly up-regulated. Therefore, it was selected for further study. SbMNF overexpression increased the hypocrellin yield in low-yielding CNUCC C72 and altered the composition of compounds in high-yielding CNUCC 1353PR and zzz816. This involved an increased elsinochrome C yield in CNUCC 1353PR and an increased hypocrellin B yield in zzz816 (by 2 and 70.3 times that in the corresponding wild type, respectively). This study is the first to alter hypocrellin synthesis to alter the levels of one bioactive agent compared to another. The results provide new insights regarding genetic modification and will help to optimise fungal fermentation.
Collapse
Affiliation(s)
- Zi-Min Lu
- College of Life Science, Capital Normal University, Beijing, China
| | - Run-Tong Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Bo Huang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xue-Ting Cao
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
32
|
Vannier N, Mesny F, Getzke F, Chesneau G, Dethier L, Ordon J, Thiergart T, Hacquard S. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota. Nat Commun 2023; 14:8274. [PMID: 38092730 PMCID: PMC10719396 DOI: 10.1038/s41467-023-43688-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains' abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
Collapse
Affiliation(s)
- Nathan Vannier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50923, Cologne, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Laura Dethier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thorsten Thiergart
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
33
|
Wippel K. Plant and microbial features governing an endophytic lifestyle. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102483. [PMID: 37939457 DOI: 10.1016/j.pbi.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Beneficial microorganisms colonizing internal plant tissues, the endophytes, support their host through plant growth promotion, pathogen protection, and abiotic stress alleviation. Their efficient application in agriculture requires the understanding of the molecular mechanisms and environmental conditions that facilitate in planta accommodation. Accumulating evidence reveals that commensal microorganisms employ similar colonization strategies as their pathogenic counterparts. Fine-tuning of immune response, motility, and metabolic crosstalk accounts for their differentiation. For a holistic perspective, in planta experiments with microbial collections and comprehensive genome data exploration are crucial. This review describes the most recent findings on factors involved in endophytic colonization processes, focusing on bacteria and fungi, and discusses required methodological approaches to unravel their relevance within a community context.
Collapse
Affiliation(s)
- Kathrin Wippel
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Jin P, Kong Y, Zhang Z, Zhang H, Dong Y, Lamour K, Yang Z, Zhou Y, Hu J. Comparative genomics and transcriptome analysis reveals potential pathogenic mechanisms of Microdochium paspali on seashore paspalum. Front Microbiol 2023; 14:1259241. [PMID: 37795300 PMCID: PMC10546424 DOI: 10.3389/fmicb.2023.1259241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The sparse leaf patch of seashore paspalum (Paspalum vaginatum Sw.) caused by Microdochium paspali seriously impacts the landscape value of turf and poses a challenge to the maintenance and management of golf courses. Little is known about the genome of M. paspali or the potential genes underlying pathogenicity. In this study, we present a high-quality genome assembly of M. paspali with 14 contigs using the Nanopore and Illumina platform. The M. paspali genome is roughly 37.32 Mb in size and contains 10,365 putative protein-coding genes. These encompass a total of 3,830 pathogen-host interactions (PHI) genes, 481 carbohydrate-active enzymes (CAZymes) coding genes, 105 effectors, and 50 secondary metabolite biosynthetic gene clusters (SMGCs) predicted to be associated with pathogenicity. Comparative genomic analysis suggests M. paspali has 672 species-specific genes (SSGs) compared to two previously sequenced non-pathogenic Microdochium species, including 24 species-specific gene clusters (SSGCs). Comparative transcriptomic analyses reveal that 739 PHIs, 198 CAZymes, 40 effectors, 21 SMGCs, 213 SSGs, and 4 SSGCs were significantly up-regulated during the process of infection. In conclusion, the study enriches the genomic resources of Microdochium species and provides a valuable resource to characterize the pathogenic mechanisms of M. paspali.
Collapse
Affiliation(s)
- Peiyuan Jin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Kong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ze Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
36
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
37
|
Natarajan S, Pucker B, Srivastava S. Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409. Sci Rep 2023; 13:14614. [PMID: 37670002 PMCID: PMC10480469 DOI: 10.1038/s41598-023-41738-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Camptothecin is an important anticancer alkaloid produced by particular plant species. No suitable synthetic route has been established for camptothecin production yet, imposing a stress on plant-based production systems. Endophytes associated with these camptothecin-producing plants have been reported to also produce camptothecin and other high-value phytochemicals. A previous study identified a fungal endophyte Alternaria burnsii NCIM 1409, isolated from Nothapodytes nimmoniana, to be a sustainable producer of camptothecin. Our study provides key insights on camptothecin biosynthesis in this recently discovered endophyte. The whole genome sequence of A. burnsii NCIM 1409 was assembled and screened for biosynthetic gene clusters. Comparative studies with related fungi supported the identification of candidate genes involved in camptothecin synthesis and also helped to understand some aspects of the endophyte's defense against the toxic effects of camptothecin. No evidence for horizontal gene transfer of the camptothecin biosynthetic genes from the host plant to the endophyte was detected suggesting an independent evolution of the camptothecin biosynthesis in this fungus.
Collapse
Affiliation(s)
- Shakunthala Natarajan
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Brunswick, Germany.
| | - Smita Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
38
|
Pokhrel A, Coleman JJ. Inventory of the Secondary Metabolite Biosynthetic Potential of Members within the Terminal Clade of the Fusarium solani Species Complex. J Fungi (Basel) 2023; 9:799. [PMID: 37623570 PMCID: PMC10455376 DOI: 10.3390/jof9080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The Fusarium solani species complex (FSSC) constitutes at least 77 phylogenetically distinct species including several agriculturally important and clinically relevant opportunistic pathogens. As with other Fusaria, they have been well documented to produce many secondary metabolites-compounds that are not required for the fungus to grow or develop but may be beneficial to the organism. An analysis of ten genomes from fungi within the terminal clade (clade 3) of the FSSC revealed each genome encoded 35 (F. cucurbitcola) to 48 (F. tenucristatum) secondary metabolite biosynthetic gene clusters (BGCs). A total of seventy-four different BGCs were identified from the ten FSSC genomes including seven polyketide synthases (PKS), thirteen nonribosomal peptide synthetases (NRPS), two terpene synthase BGCs, and a single dimethylallytryptophan synthase (DMATS) BGC conserved in all the genomes. Some of the clusters that were shared included those responsible for producing naphthoquinones such as fusarubins, a red pigmented compound, squalestatin, and the siderophores malonichrome, ferricrocin, and triacetylfusarinine. Eight novel NRPS and five novel PKS BGCs were identified, while BGCs predicted to produce radicicol, gibberellin, and fusaoctaxin were identified, which have not previously described in members of the FSSC. The diversity of the secondary metabolite repertoire of the FSSC may contribute to the expansive host range of these fungi and their ability to colonize broad habitats.
Collapse
Affiliation(s)
- Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jeffrey J. Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
39
|
Han S, Wang M, Ma Z, Raza M, Zhao P, Liang J, Gao M, Li Y, Wang J, Hu D, Cai L. Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Stud Mycol 2023; 104:87-148. [PMID: 37351543 PMCID: PMC10282163 DOI: 10.3114/sim.2022.104.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 11/26/2023] Open
Abstract
Fusarium species are important cereal pathogens that cause severe production losses to major cereal crops such as maize, rice, and wheat. However, the causal agents of Fusarium diseases on cereals have not been well documented because of the difficulty in species identification and the debates surrounding generic and species concepts. In this study, we used a citizen science initiative to investigate diseased cereal crops (maize, rice, wheat) from 250 locations, covering the major cereal-growing regions in China. A total of 2 020 Fusarium strains were isolated from 315 diseased samples. Employing multi-locus phylogeny and morphological features, the above strains were identified to 43 species, including eight novel species that are described in this paper. A world checklist of cereal-associated Fusarium species is provided, with 39 and 52 new records updated for the world and China, respectively. Notably, 56 % of samples collected in this study were observed to have co-infections of more than one Fusarium species, and the detailed associations are discussed. Following Koch's postulates, 18 species were first confirmed as pathogens of maize stalk rot in this study. Furthermore, a high-confidence species tree was constructed in this study based on 1 001 homologous loci of 228 assembled genomes (40 genomes were sequenced and provided in this study), which supported the "narrow" generic concept of Fusarium (= Gibberella). This study represents one of the most comprehensive surveys of cereal Fusarium diseases to date. It significantly improves our understanding of the global diversity and distribution of cereal-associated Fusarium species, as well as largely clarifies the phylogenetic relationships within the genus. Taxonomic novelties: New species: Fusarium erosum S.L. Han, M.M. Wang & L. Cai, Fusarium fecundum S.L. Han, M.M. Wang & L. Cai, Fusarium jinanense S.L. Han, M.M. Wang & L. Cai, Fusarium mianyangense S.L. Han, M.M. Wang & L. Cai, Fusarium nothincarnatum S.L. Han, M.M. Wang & L. Cai, Fusarium planum S.L. Han, M.M. Wang & L. Cai, Fusarium sanyaense S.L. Han, M.M. Wang & L. Cai, Fusarium weifangense S.L. Han, M.M. Wang & L. Cai. Citation: Han SL, Wang MM, Ma ZY, Raza M, Zhao P, Liang JM, Gao M, Li YJ, Wang JW, Hu DM, Cai L (2023). Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Studies in Mycology 104: 87-148. doi: 10.3114/sim.2022.104.02.
Collapse
Affiliation(s)
- S.L. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - M.M. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Z.Y. Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - J.M. Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - M. Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - Y.J. Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| | - J.W. Wang
- Institute of Biology Co., Ltd., Henan Academy of Science, Zheng Zhou 450008, Henan, P. R. China;
| | - D.M. Hu
- College of Bioscience & Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
| |
Collapse
|
40
|
He T, Li X, Iacovelli R, Hackl T, Haslinger K. Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor. J Fungi (Basel) 2023; 9:704. [PMID: 37504693 PMCID: PMC10381429 DOI: 10.3390/jof9070704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40.
Collapse
Affiliation(s)
- Ting He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiao Li
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Riccardo Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
41
|
Ortiz V, Chang HX, Sang H, Jacobs J, Malvick DK, Baird R, Mathew FM, Estévez de Jensen C, Wise KA, Mosquera GM, Chilvers MI. Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia. Front Genet 2023; 14:1103969. [PMID: 37351341 PMCID: PMC10282554 DOI: 10.3389/fgene.2023.1103969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Collapse
Affiliation(s)
- Viviana Ortiz
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Dean K. Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States
| | - Febina M. Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Kiersten A. Wise
- Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States
| | - Gloria M. Mosquera
- Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
42
|
|
43
|
Pande PM, Azarbad H, Tremblay J, St-Arnaud M, Yergeau E. Metatranscriptomic response of the wheat holobiont to decreasing soil water content. ISME COMMUNICATIONS 2023; 3:30. [PMID: 37061589 PMCID: PMC10105728 DOI: 10.1038/s43705-023-00235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Crops associate with microorganisms that help their resistance to biotic stress. However, it is not clear how the different partners of this association react during exposure to stress. This knowledge is needed to target the right partners when trying to adapt crops to climate change. Here, we grew wheat in the field under rainout shelters that let through 100%, 75%, 50% and 25% of the precipitation. At the peak of the growing season, we sampled plant roots and rhizosphere, and extracted and sequenced their RNA. We compared the 100% and the 25% treatments using differential abundance analysis. In the roots, most of the differentially abundant (DA) transcripts belonged to the fungi, and most were more abundant in the 25% precipitation treatment. About 10% of the DA transcripts belonged to the plant and most were less abundant in the 25% precipitation treatment. In the rhizosphere, most of the DA transcripts belonged to the bacteria and were generally more abundant in the 25% precipitation treatment. Taken together, our results show that the transcriptomic response of the wheat holobiont to decreasing precipitation levels is stronger for the fungal and bacterial partners than for the plant.
Collapse
Affiliation(s)
- Pranav M Pande
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Hamed Azarbad
- Department of Biology, Evolutionary Ecology of Plants, Philipps-University Marburg, Marburg, Germany
| | - Julien Tremblay
- National Research Council of Canada, Energy Mining and Environment, Montréal, Québec, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Université de Montréal et Jardin Botanique de Montréal, Montréal, Québec, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
44
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Li J, He K, Zhang Q, Wu X, Li Z, Pan X, Wang Y, Li C, Zhang M. Draft Genome and Biological Characteristics of Fusarium solani and Fusarium oxysporum Causing Black Rot in Gastrodia elata. Int J Mol Sci 2023; 24:ijms24054545. [PMID: 36901977 PMCID: PMC10003674 DOI: 10.3390/ijms24054545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Gastrodia elata is a valuable traditional Chinese medicinal plant. However, G. elata crops are affected by major diseases, such as brown rot. Previous studies have shown that brown rot is caused by Fusarium oxysporum and F. solani. To further understand the disease, we studied the biological and genome characteristics of these pathogenic fungi. Here, we found that the optimum growth temperature and pH of F. oxysporum (strain QK8) and F. solani (strain SX13) were 28 °C and pH 7, and 30 °C and pH 9, respectively. An indoor virulence test showed that oxime tebuconazole, tebuconazole, and tetramycin had significant bacteriostatic effects on the two Fusarium species. The genomes of QK8 and SX13 were assembled, and it was found that there was a certain gap in the size of the two fungi. The size of strain QK8 was 51,204,719 bp and that of strain SX13 was 55,171,989 bp. Afterwards, through phylogenetic analysis, it was found that strain QK8 was closely related to F. oxysporum, while strain SX13 was closely related to F. solani. Compared with the published whole-genome data for these two Fusarium strains, the genome information obtained here is more complete; the assembly and splicing reach the chromosome level. The biological characteristics and genomic information we provide here lay the foundation for further research on G. elata brown rot.
Collapse
Affiliation(s)
- Jinshao Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ke He
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Qian Zhang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaoyi Wu
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhong Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuejun Pan
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Cheng Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (C.L.); (M.Z.)
| | - Manman Zhang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (C.L.); (M.Z.)
| |
Collapse
|
46
|
Poupin MJ, Ledger T, Roselló-Móra R, González B. The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. ENVIRONMENTAL MICROBIOME 2023; 18:9. [PMID: 36803555 PMCID: PMC9938593 DOI: 10.1186/s40793-023-00466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
Collapse
Affiliation(s)
- M J Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - T Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - R Roselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Illes Balears, Majorca, Spain
| | - B González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile.
| |
Collapse
|
47
|
Jenkinson CB, Podgorny AR, Zhong C, Oakley BR. Computer-aided, resistance gene-guided genome mining for proteasome and HMG-CoA reductase inhibitors. J Ind Microbiol Biotechnol 2023; 50:kuad045. [PMID: 38061800 PMCID: PMC10734572 DOI: 10.1093/jimb/kuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Secondary metabolites (SMs) are biologically active small molecules, many of which are medically valuable. Fungal genomes contain vast numbers of SM biosynthetic gene clusters (BGCs) with unknown products, suggesting that huge numbers of valuable SMs remain to be discovered. It is challenging, however, to identify SM BGCs, among the millions present in fungi, that produce useful compounds. One solution is resistance gene-guided genome mining, which takes advantage of the fact that some BGCs contain a gene encoding a resistant version of the protein targeted by the compound produced by the BGC. The bioinformatic signature of such BGCs is that they contain an allele of an essential gene with no SM biosynthetic function, and there is a second allele elsewhere in the genome. We have developed a computer-assisted approach to resistance gene-guided genome mining that allows users to query large databases for BGCs that putatively make compounds that have targets of therapeutic interest. Working with the MycoCosm genome database, we have applied this approach to look for SM BGCs that target the proteasome β6 subunit, the target of the proteasome inhibitor fellutamide B, or HMG-CoA reductase, the target of cholesterol reducing therapeutics such as lovastatin. Our approach proved effective, finding known fellutamide and lovastatin BGCs as well as fellutamide- and lovastatin-related BGCs with variations in the SM genes that suggest they may produce structural variants of fellutamides and lovastatin. Gratifyingly, we also found BGCs that are not closely related to lovastatin BGCs but putatively produce novel HMG-CoA reductase inhibitors. ONE-SENTENCE SUMMARY A new computer-assisted approach to resistance gene-directed genome mining is reported along with its use to identify fungal biosynthetic gene clusters that putatively produce proteasome and HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| | - Adam R Podgorny
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| |
Collapse
|
48
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
49
|
Tao M, Zhao Y, Hu T, Zhang Q, Feng H, Lu Y, Guo Z, Yang B. Screening of Alfalfa Varieties Resistant to Phytophthora cactorum and Related Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2023; 12:702. [PMID: 36840050 PMCID: PMC9966651 DOI: 10.3390/plants12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Alfalfa is one of the most important legume forages in the world. Root rot caused by soil-borne pathogens severely restricts the production of alfalfa. The knowledge of the interaction between alfalfa and root rot-pathogens is still lacking in China. Phytophthora cactorum was isolated from symptomatic seedlings of an alfalfa field in Nanjing with high levels of damping-off. We observed the different infection stages of P. cactorum on alfalfa, and found that the purified P. cactorum strain was aggressive in causing alfalfa seed and root rot. The infecting hyphae penetrated the epidermal cells and wrapped around the alfalfa roots within 48 h. By evaluating the resistance of 37 alfalfa cultivars from different countries to P. cactorum, we found Weston is a resistant variety, while Longdong is a susceptible variety. We further compared the activities of various enzymes in the plant antioxidant enzyme system between Weston and Longdong during P. cactorum infection, as well as gene expression associated with plant hormone biosynthesis and response pathways. The results showed that the disease-resistant variety Weston has stronger antioxidant enzyme activity and high levels of SA-responsive PR genes, when compared to the susceptible variety Longdong. These findings highlighted the process of interaction between P. cactorum and alfalfa, as well as the mechanism of alfalfa resistance to P. cactorum, which provides an important foundation for breeding resistant alfalfa varieties, as well as managing Phytophthora-caused alfalfa root rot.
Collapse
Affiliation(s)
- Menghuan Tao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxue Hu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Zhang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Zhao Y, Qin L, Tan D, Wu D, Wu X, Fan Q, Bai C, Yang J, Xie J, He Y. Fatty acid metabolites of Dendrobium nobile were positively correlated with representative endophytic fungi at altitude. Front Microbiol 2023; 14:1128956. [PMID: 37180253 PMCID: PMC10172574 DOI: 10.3389/fmicb.2023.1128956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/01/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Altitude, as a comprehensive ecological factor, regulates the growth and development of plants and microbial distribution. Dendrobium nobile (D. nobile) planted in habitats at different elevations in Chishui city, also shows metabolic differences and endophytes diversity. What is the triangular relationship between altitude, endophytes, and metabolites? Methods In this study, the diversity and species of endophytic fungi were tested by ITS sequencing and metabolic differences in plants were tested by UPLC-ESI-MS/MS. Elevation regulated the colonization of plant endophytic fungal species and fatty acid metabolites in D. nobile. Results The results indicate that and high altitude was better for the accumulation of fatty acid metabolites. Therefore, the high-altitude characteristic endophytic floras were screened, and the correlation with fatty acid metabolites of plants was built. The colonization of T. rubrigenum, P. Incertae sedis unclassified, Phoma. cf. nebulosa JZG 2008 and Basidiomycota unclassified showed a significantly positive correlation with fatty acid metabolites, especially 18-carbon-chain fatty acids, such as (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid, 3,7,11,15-tetramethyl-12-oxohexadeca-2,4-dienoic acid and Octadec-9-en-12-ynoic acid. What is more fascinating is these fatty acids are the essential substrates of plant hormones. Discussion Consequently, it was speculated that the D. nobile- colonizing endophytic fungi stimulated or upregulated the synthesis of fatty acid metabolites and even some plant hormones, thus affecting the metabolism and development of D. nobile.
Collapse
Affiliation(s)
- Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Chaojun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd, Yulin, China
| | - Jiyong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., Ltd, Zunyi, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
- *Correspondence: Jian Xie,
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
- Yuqi He,
| |
Collapse
|