1
|
Yu B, Sopic M, Sluimer JC. Single-cell RNA sequencing (scRNA-seq) and its insights into cellular heterogeneity in atherosclerosis. Vascul Pharmacol 2025:107499. [PMID: 40345606 DOI: 10.1016/j.vph.2025.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.
Collapse
Affiliation(s)
- Baixue Yu
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands; Aachen Maastricht Institute for CardioRenal research (AMICARE), 52074 Aachen, Germany; British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
2
|
Su H, Wang X, Wang L, Yuan N. Therapeutic Targeting of Pattern Recognition Receptors to Modulate Inflammation in Atherosclerosis. Cell Biochem Biophys 2025; 83:73-86. [PMID: 39145823 DOI: 10.1007/s12013-024-01481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Atherosclerosis (AS), a potentially fatal cardiovascular disease (CVD), is a chronic inflammatory condition. The disease's onset and progression are influenced by inflammatory and immunological mechanisms. The innate immune pathways are essential in the progression of AS, as they are responsible for detecting first danger signals and causing long-term changes in immune cells. The innate immune system possesses distinct receptors known as pattern recognition receptors (PRRs) which can identify both pathogen-associated molecular patterns and danger-associated molecular signals. Activation of PRRs initiates the inflammatory response in various physiological systems, such as the cardiovascular system. This review specifically examines the contribution of the innate immune response and PRRs to the formation and advancement of AS. Studying the role of these particular receptors in AS would enhance our understanding of the development of AS and offer novel approaches for directly improving the inflammatory response associated with it.
Collapse
Affiliation(s)
- Hongyan Su
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Xiancheng Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Lu Wang
- Cardiology Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, China
| | - Na Yuan
- Rheumatology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 30000, China.
| |
Collapse
|
3
|
Narayanan S, Vuckovic S, Bergman O, Wirka R, Verdezoto Mosquera J, Chen QS, Baldassarre D, Tremoli E, Veglia F, Lengquist M, Aherrahrou R, Razuvaev A, Gigante B, Björck HM, Miller CL, Quertermous T, Hedin U, Matic L. Atheroma transcriptomics identifies ARNTL as a smooth muscle cell regulator and with clinical and genetic data improves risk stratification. Eur Heart J 2025; 46:308-322. [PMID: 39552248 PMCID: PMC11735083 DOI: 10.1093/eurheartj/ehae768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/10/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND AND AIMS The role of vascular smooth muscle cells (SMCs) in atherosclerosis has evolved to indicate causal genetic links with the disease. Single cell RNA sequencing (scRNAseq) studies have identified multiple cell populations of mesenchymal origin within atherosclerotic lesions, including various SMC sub-phenotypes, but it is unknown how they relate to patient clinical parameters and genetics. Here, mesenchymal cell populations in atherosclerotic plaques were correlated with major coronary artery disease (CAD) genetic variants and functional analyses performed to identify SMC markers involved in the disease. METHODS Bioinformatic deconvolution was done on bulk microarrays from carotid plaques in the Biobank of Karolinska Endarterectomies (BiKE, n = 125) using public plaque scRNAseq data and associated with patient clinical data and follow-up information. BiKE patients were clustered based on the deconvoluted cell fractions. Quantitative trait loci (QTLs) analyses were performed to predict the effect of CAD associated genetic variants on mesenchymal cell fractions (cfQTLs) and gene expression (eQTLs) in plaques. RESULTS Lesions from symptomatic patients had higher fractions of Type 1 macrophages and pericytes, but lower fractions of classical and modulated SMCs compared with asymptomatic ones, particularly females. Presence of diabetes or statin treatment did not affect the cell fraction distribution. Clustering based on plaque cell fractions, revealed three patient groups, with relative differences in their stability profiles and associations to stroke, even during long-term follow-up. Several single nucleotide polymorphisms associated with plaque mesenchymal cell fractions, upstream of the circadian rhythm gene ARNTL were identified. In vitro silencing of ARNTL in human carotid SMCs increased the expression of contractile markers and attenuated cell proliferation. CONCLUSIONS This study shows the potential of combining scRNAseq data with vertically integrated clinical, genetic, and transcriptomic data from a large biobank of human plaques, for refinement of patient vulnerability and risk prediction stratification. The study revealed novel CAD-associated variants that may be functionally linked to SMCs in atherosclerotic plaques. Specifically, variants in the ARNTL gene may influence SMC ratios and function, and its role as a regulator of SMC proliferation should be further investigated.
Collapse
Affiliation(s)
- Sampath Narayanan
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Sofija Vuckovic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Robert Wirka
- Department of Medicine and Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Qiao Sen Chen
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Fabrizio Veglia
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Redouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Anton Razuvaev
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Hanna M Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, BioClinicum J8:20, Visionsgatan 4, SE-171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Li X, Du YX, Yu CL, Niu N. Ion channels in macrophages: Implications for disease progression. Int Immunopharmacol 2025; 144:113628. [PMID: 39566388 DOI: 10.1016/j.intimp.2024.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
RATIONALE Macrophages are immune cells found throughout the body and exhibit morphological and functional diversity. Macrophages have been implicated in a wide range of diseases, including autoimmune diseases, acute liver injury, cardiovascular diseases, lung diseases and tumours. Ion channels are transmembrane glycoproteins with important functions in maintaining homeostasis in the intra- and extracellular environment and mediating signal transduction. Many studies have shown that different types of ion channels influence the role of macrophages in the development of various diseases. In recent years, studies on the role of ion channels in macrophages in immune regulation and inflammatory responses have attracted much attention. OBJECTIVE AND FINDINGS In order to gain a deeper understanding of the role of macrophage ion channels, this paper reviews the recent research progress on the role of macrophage ion channels in recent years. The aim is to explore the role of different ion channels in the regulation of macrophage function and their impact on a variety of disease processes. The most studied channels are calcium, sodium and potassium channels, most of which are located in the cell membrane. Among these, TRP channels have a more complex role in M1 and M2 macrophage types. CONCLUSION Ion channels are critical for the functional regulation of macrophages. Targeting ion channels provides new avenues for disease prevention and treatment. This review provides researchers with new ideas and introduces readers to the current state of research on ion channels in macrophages.
Collapse
Affiliation(s)
- Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Chun-Lei Yu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
5
|
Rao C, Qin H, Du Z. ECH 1 attenuates atherosclerosis by reducing macrophage infiltration and improving plaque stability through CD36 degradation. Arch Biochem Biophys 2025; 763:110217. [PMID: 39551333 DOI: 10.1016/j.abb.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Enoyl coenzyme A hydratase 1 (ECH1) is a secreted protein implicated in numerous metabolic disorders, yet its role in the pathogenesis of atherosclerosis remains unclear. In this study, we found higher serum ECH1 levels in coronary artery disease (CAD) patients and apolipoprotein E (ApoE)-/- mice on a western diet for 12 weeks. In vivo, aorta and aortic sinus histological staining revealed that intraperitoneal injection of recombinant ECH1 reduced aortic lesions, inflammation, and macrophage infiltration in ApoE-/- mice. In vitro, incubating peritoneal macrophages with recombinant ECH1 protein reduced oxidized low-density lipoprotein uptake and increased macrophage migration. Mechanically, we observed that recombinant ECH1 incubation led to a reduction in the protein levels of scavenger receptor cluster of differentiation 36 (CD36) in primary macrophages through the promotion of CD36 protein degradation. Additionally, we found that chloroquine (CQ), a lysosomal inhibitor, mitigated this pro-degradation effect. Taken together, our findings provide unique evidence that ECH1 can attenuate the severity of atherosclerotic plaques, especially improving the stability of plaques, by decreasing macrophage infiltration. ECH1 demonstrates its protective effect by enhancing the lysosome-dependent degradation of CD36, suggesting its potential as a viable target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haojie Qin
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhipeng Du
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Monaco C, Dib L. Atheroimmunology: keeping the immune system in atherosclerosis in check. Nat Rev Cardiol 2024; 21:737-738. [PMID: 39261586 DOI: 10.1038/s41569-024-01075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Edalat SG, Gerber R, Houtman M, Lückgen J, Teixeira RL, Palacios Cisneros MDP, Pfanner T, Kuret T, Ižanc N, Micheroli R, Polido-Pereira J, Saraiva F, Lingam S, Burki K, Burja B, Pauli C, Rotar Ž, Tomšič M, Čučnik S, Fonseca JE, Distler O, Calado Â, Romão VC, Ospelt C, Sodin-Semrl S, Robinson MD, Frank Bertoncelj M. Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol. iScience 2024; 27:109707. [PMID: 38832018 PMCID: PMC11144743 DOI: 10.1016/j.isci.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/25/2024] [Accepted: 04/06/2024] [Indexed: 06/05/2024] Open
Abstract
In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters. This synovial cell map expanded the diversity of synovial cell types/states, detected synovial neutrophils, and broadened synovial endothelial cell classification. We revealed tissue-resident macrophage subsets with proposed matrix-sensing (FOLR2+COLEC12high) and iron-recycling (LYVE1+SLC40A1+) activities and identified fibroblast subsets with proposed functions in cartilage breakdown (SOD2highSAA1+SAA2+SDC4+) and extracellular matrix remodeling (SERPINE1+COL5A3+LOXL2+). Our study offers an efficient synovium dissociation method and a reference scRNA-seq resource, that advances the current understanding of synovial cell heterogeneity in inflammatory arthritis.
Collapse
Affiliation(s)
- Sam G. Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Reto Gerber
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | | | - Rui Lourenço Teixeira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | | | | | - Tadeja Kuret
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Nadja Ižanc
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Joaquim Polido-Pereira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Fernando Saraiva
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Swathi Lingam
- Team PTA, BioMed X Institute, 69120 Heidelberg, Germany
| | - Kristina Burki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - João Eurico Fonseca
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Ângelo Calado
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vasco C. Romão
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Snežna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Mark D. Robinson
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Trimaglio G, Sneperger T, Raymond BBA, Gilles N, Näser E, Locard-Paulet M, Ijsselsteijn ME, Brouwer TP, Ecalard R, Roelands J, Matsumoto N, Colom A, Habch M, de Miranda NFCC, Vergnolle N, Devaud C, Neyrolles O, Rombouts Y. The C-type lectin DCIR contributes to the immune response and pathogenesis of colorectal cancer. Sci Rep 2024; 14:7199. [PMID: 38532110 DOI: 10.1038/s41598-024-57941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Development and progression of malignancies are accompanied and influenced by alterations in the surrounding immune microenvironment. Understanding the cellular and molecular interactions between immune cells and cancer cells has not only provided important fundamental insights into the disease, but has also led to the development of new immunotherapies. The C-type lectin Dendritic Cell ImmunoReceptor (DCIR) is primarily expressed by myeloid cells and is an important regulator of immune homeostasis, as demonstrated in various autoimmune, infectious and inflammatory contexts. Yet, the impact of DCIR on cancer development remains largely unknown. Analysis of available transcriptomic data of colorectal cancer (CRC) patients revealed that high DCIR gene expression is associated with improved patients' survival, immunologically "hot" tumors and high immunologic constant of rejection, thus arguing for a protective and immunoregulatory role of DCIR in CRC. In line with these correlative data, we found that deficiency of DCIR1, the murine homologue of human DCIR, leads to the development of significantly larger tumors in an orthotopic murine model of CRC. This phenotype is accompanied by an altered phenotype of tumor-associated macrophages (TAMs) and a reduction in the percentage of activated effector CD4+ and CD8+ T cells in CRC tumors of DCIR1-deficient mice. Overall, our results show that DCIR promotes antitumor immunity in CRC, making it an attractive target for the future development of immunotherapies to fight the second deadliest cancer in the world.
Collapse
Affiliation(s)
- Giulia Trimaglio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tamara Sneperger
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin B A Raymond
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nelly Gilles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Näser
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Thomas P Brouwer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Romain Ecalard
- INSERM US006 ANEXPLO/CREFRE, Purpan Hospital, Toulouse, France
| | - Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Myriam Habch
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Christel Devaud
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Rombouts
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Döring Y, van der Vorst EP, Yan Y, Neideck C, Blanchet X, Jansen Y, Kemmerich M, Bayasgalan S, Peters LJ, Hristov M, Bidzhekov K, Yin C, Zhang X, Leberzammer J, Li Y, Park I, Kral M, Nitz K, Parma L, Gencer S, Habenicht A, Faussner A, Teupser D, Monaco C, Holdt L, Megens RT, Atzler D, Santovito D, von Hundelshausen P, Weber C. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:221-242. [PMID: 39044999 PMCID: PMC7616283 DOI: 10.1038/s44161-023-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2023] [Indexed: 07/25/2024]
Abstract
CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.
Collapse
Affiliation(s)
- Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Pediatric Translational Medicine Institute and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Carlos Neideck
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Manuela Kemmerich
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | | | - Linsey J.F. Peters
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Julian Leberzammer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ya Li
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Inhye Park
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, United Kingdom
| | - Maria Kral
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Laura Parma
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Faussner
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Claudia Monaco
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Remco T.A. Megens
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
13
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
15
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
16
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
19
|
Aronova A, Tosato F, Naser N, Asare Y. Innate Immune Pathways in Atherosclerosis-From Signaling to Long-Term Epigenetic Reprogramming. Cells 2023; 12:2359. [PMID: 37830572 PMCID: PMC10571887 DOI: 10.3390/cells12192359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Innate immune pathways play a crucial role in the development of atherosclerosis, from sensing initial danger signals to the long-term reprogramming of immune cells. Despite the success of lipid-lowering therapy, anti-hypertensive medications, and other measures in reducing complications associated with atherosclerosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. Consequently, there is an urgent need to devise novel preventive and therapeutic strategies to alleviate the global burden of CVD. Extensive experimental research and epidemiological studies have demonstrated the dominant role of innate immune mechanisms in the progression of atherosclerosis. Recently, landmark trials including CANTOS, COLCOT, and LoDoCo2 have provided solid evidence demonstrating that targeting innate immune pathways can effectively reduce the risk of CVD. These groundbreaking trials mark a significant paradigm shift in the field and open new avenues for atheroprotective treatments. It is therefore crucial to comprehend the intricate interplay between innate immune pathways and atherosclerosis for the development of targeted therapeutic interventions. Additionally, unraveling the mechanisms underlying long-term reprogramming may offer novel strategies to reverse the pro-inflammatory phenotype of immune cells and restore immune homeostasis in atherosclerosis. In this review, we present an overview of the innate immune pathways implicated in atherosclerosis, with a specific focus on the signaling pathways driving chronic inflammation in atherosclerosis and the long-term reprogramming of immune cells within atherosclerotic plaque. Elucidating the molecular mechanisms governing these processes presents exciting opportunities for the development of a new class of immunotherapeutic approaches aimed at reducing inflammation and promoting plaque stability. By addressing these aspects, we can potentially revolutionize the management of atherosclerosis and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), 80539 Munich, Germany
| |
Collapse
|
20
|
Wang Z, Wan Q, Xie B, Zhu Z, Xu X, Fu P, Liu R. Integrated network pharmacology and fecal metabolomic analysis of the combinational mechanisms of Shexiang Baoxin Pill against atherosclerosis. Mol Omics 2023; 19:653-667. [PMID: 37357557 DOI: 10.1039/d3mo00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Shexiang Baoxin Pill (SBP) has an excellent therapeutic effect on atherosclerosis (AS), but the combinational mechanisms of SBP against AS remain unclear. This study aimed to investigate the combinational mechanisms of SBP against AS by comprehensive network pharmacology and fecal metabolomic analysis. Bufonis venenum, one of the adjuvant medicines in SBP, is an animal medicine with a narrow therapeutic window. Considering animal protection, we evaluated the anti-AS effect of SBP without BV (SBP-BV) using ApoE-/- mouse models, culture cells, and metabolomic methods. Our data suggested that SBP showed remarkable anti-atherosclerotic effects through multiple targets and multiple pathways, while each component in SBP played different roles in their synergistic effect. Notably, SBP-BV showed comparable effects with SBP in the treatment of AS. Both SBP and SBP-BV could reduce cholesterol uptake in RAW264.7 cells and prevent the occurrence and development of AS in WD-induced ApoE-/- mice by attenuating the atherosclerotic plaque area, and reducing inflammatory cytokines and cholesterol levels in vivo. Our finding might provide new insights into the research and development of new anti-atherosclerosis drugs.
Collapse
Affiliation(s)
- Zhicong Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qianqian Wan
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China.
| | - Bin Xie
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zifan Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Peng Fu
- Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
21
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
22
|
Gunawan I, Vafaee F, Meijering E, Lock JG. An introduction to representation learning for single-cell data analysis. CELL REPORTS METHODS 2023; 3:100547. [PMID: 37671013 PMCID: PMC10475795 DOI: 10.1016/j.crmeth.2023.100547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Single-cell-resolved systems biology methods, including omics- and imaging-based measurement modalities, generate a wealth of high-dimensional data characterizing the heterogeneity of cell populations. Representation learning methods are routinely used to analyze these complex, high-dimensional data by projecting them into lower-dimensional embeddings. This facilitates the interpretation and interrogation of the structures, dynamics, and regulation of cell heterogeneity. Reflecting their central role in analyzing diverse single-cell data types, a myriad of representation learning methods exist, with new approaches continually emerging. Here, we contrast general features of representation learning methods spanning statistical, manifold learning, and neural network approaches. We consider key steps involved in representation learning with single-cell data, including data pre-processing, hyperparameter optimization, downstream analysis, and biological validation. Interdependencies and contingencies linking these steps are also highlighted. This overview is intended to guide researchers in the selection, application, and optimization of representation learning strategies for current and future single-cell research applications.
Collapse
Affiliation(s)
- Ihuan Gunawan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Erik Meijering
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - John George Lock
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
23
|
Monaco C, Dib L. Breaking the macrophage code in atherosclerosis. Cardiovasc Res 2023; 119:1622-1623. [PMID: 37226046 DOI: 10.1093/cvr/cvad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Affiliation(s)
- Claudia Monaco
- Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Lea Dib
- Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| |
Collapse
|
24
|
Dib L, Koneva LA, Edsfeldt A, Zurke YX, Sun J, Nitulescu M, Attar M, Lutgens E, Schmidt S, Lindholm MW, Choudhury RP, Cassimjee I, Lee R, Handa A, Goncalves I, Sansom SN, Monaco C. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. NATURE CARDIOVASCULAR RESEARCH 2023; 2:656-672. [PMID: 38362263 PMCID: PMC7615632 DOI: 10.1038/s44161-023-00295-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/31/2023] [Indexed: 02/17/2024]
Abstract
The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
Collapse
Grants
- FS/18/63/34184 British Heart Foundation
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- British Heart Foundation (BHF)
- Fondation Leducq
- European Commission (EC)
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004), Oxford NIHR Biomedical Research Centre.
- Vetenskapsrådet (Swedish Research Council)
- The Swedish Society for Medical Research, Crafoord foundation; The Swedish Society of Medicine, the Swedish Heart and Lung Foundation, Diabetes foundation, SUS foundation, Lund University Diabetes Center, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne.
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004)
- Netcare-Physicians-Partnership trust
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
Collapse
Affiliation(s)
- Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lada A. Koneva
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN USA
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Ismail Cassimjee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Kaifu T, Maruhashi T, Chung SH, Shimizu K, Nakamura A, Iwakura Y. DCIR suppresses osteoclastic proliferation and resorption by downregulating M-CSF and RANKL signaling. Front Immunol 2023; 14:1159058. [PMID: 37266426 PMCID: PMC10230091 DOI: 10.3389/fimmu.2023.1159058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is an inhibitory C-type lectin receptor that acts as a negative regulator in the immune system and bone metabolism. We previously revealed that DCIR deficiency enhanced osteoclastogenesis and antigen presentation of dendritic cells, and that asialo-biantennary N-glycan (NA2) functions as a ligand for DCIR. NA2 binding to DCIR suppressed murine and human osteoclastogenesis that occurs in the presence of M-CSF and RANKL. The DCIR-NA2 axis, therefore, plays an important role in regulating osteoclastogenesis in both mice and humans, although the underlying mechanisms remain unclear. Here we found that Dcir -/- bone marrow-derived macrophages (BMMs) exhibited greater proliferative and differentiation responses to M-CSF and RANKL, respectively, than wild-type (WT) BMMs. Moreover, Dcir -/- osteoclasts (OCs) increased resorptive activity and cell fusion more significantly than WT OCs. DCIR deficiency affects gene expression patterns in OCs, and we found that the expression of neuraminidase 4 was increased in Dcir -/- OCs. Furthermore, DCIR-NA2 interaction in WT BMMs, but not Dcir -/- BMMs, decreased Akt phosphorylation in response to M-CSF and RANKL. These data suggest that DCIR regulates osteoclastogenesis by downregulating M-CSF and RANKL signaling, and that DCIR-mediated signaling may contribute to the terminal modification of oligosaccharides by controlling the expression of glycosylation enzymes.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kenji Shimizu
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
26
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
27
|
de Winther MPJ, Bäck M, Evans P, Gomez D, Goncalves I, Jørgensen HF, Koenen RR, Lutgens E, Norata GD, Osto E, Dib L, Simons M, Stellos K, Ylä-Herttuala S, Winkels H, Bochaton-Piallat ML, Monaco C. Translational opportunities of single-cell biology in atherosclerosis. Eur Heart J 2023; 44:1216-1230. [PMID: 36478058 PMCID: PMC10120164 DOI: 10.1093/eurheartj/ehac686] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.
Collapse
Affiliation(s)
- Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Magnus Bäck
- Translational Cardiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- University of Lorraine, INSERM U1116, Nancy University Hospital, Nancy, France
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Delphine Gomez
- Department of Medicine, Division of Cardiology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabel Goncalves
- Cardiovascular Research Translational Studies, Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Helle F Jørgensen
- Cardiorespiratory Medicine Section, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilian’s Universität, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Center for the Study of Atherosclerosis, SISA, Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lea Dib
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| | - Michael Simons
- Departments of Internal Medicine and Cell Biology, Yale University and Yale Cardiovascular Research Center, 300 George St, New Haven, CT 06511, USA
| | - Konstantinos Stellos
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland and Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Holger Winkels
- Department of Internal Medicine III, Division of Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| |
Collapse
|
28
|
Yu L, Zhang Y, Liu C, Wu X, Wang S, Sui W, Zhang Y, Zhang C, Zhang M. Heterogeneity of macrophages in atherosclerosis revealed by single-cell RNA sequencing. FASEB J 2023; 37:e22810. [PMID: 36786718 DOI: 10.1096/fj.202201932rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shasha Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To highlight recent conceptual and technological advances that have positioned the field to interrogate the cellular and molecular mechanisms contributing to the initiation of atherosclerosis, including intimal lipid accumulation, inflammation, and lesion growth. RECENT FINDINGS Advances in the understanding of endothelial LDL transcytosis and rapid lipid uptake by intimal macrophages provide mechanistic insights into intimal LDL accumulation and the initiation of atherogenesis. Recent studies have used unbiased single-cell approaches, such as single-cell RNA sequencing and CyTOF, to characterize the cellular components of the normal intima and atherosclerotic lesions. In-vitro studies and high-resolution transcriptomic analysis of aortic intimal lipid-loaded versus lipid-poor myeloid populations in vivo suggest that lipid-loaded macrophages may not be the primary drivers of inflammation in atherosclerotic lesions. SUMMARY A new perspective on the complex cellular landscape of the aorta, specifically the atherosclerosis-prone regions, confirm that intimal accumulation of lipid, monocyte recruitment, and macrophage accumulation are key events in atherogenesis triggered by hypercholesterolemia. Targeting these early events may prove to be a promising strategy for the attenuation of lesion development; however, the specific details of how hypercholesterolemia acts to initiate early inflammatory events remain to be fully elucidated.
Collapse
Affiliation(s)
- Corey A. Scipione
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
| | - Myron I. Cybulsky
- Toronto General Hospital Research Institute, University Health Network
- Department of Laboratory Medicine and Pathobiology
- Department of Immunology, University of Toronto
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| |
Collapse
|
31
|
Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, Rios-Arce ND, Amiri B, Christiansen BA, Loots GG. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol 2022; 13:938075. [PMID: 35967299 PMCID: PMC9373730 DOI: 10.3389/fimmu.2022.938075] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Stephen P. Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy Deliz Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| |
Collapse
|
32
|
Rumianek AN, Davies B, Channon KM, Greaves DR, Purvis GSD. A Human CD68 Promoter-Driven Inducible Cre-Recombinase Mouse Line Allows Specific Targeting of Tissue Resident Macrophages. Front Immunol 2022; 13:918636. [PMID: 35874787 PMCID: PMC9298978 DOI: 10.3389/fimmu.2022.918636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Current genetic tools designed to target macrophages in vivo often target cells from all myeloid lineages. Therefore, we sought to generate a novel transgenic mouse which has a tamoxifen inducible Cre-recombinase under the control of the human CD68 promoter (hCD68-CreERT2). To test the efficiency and specificity of the of Cre-recombinase activity we crossed the hCD68-CreERT2 mice with a loxP-flanked STOP cassette red fluorescent protein variant (tdTomato) mouse. We established that orally dosing mice with 2 mg of tamoxifen for 5 consecutive days followed by a 5-day induction period resulted in robust expression of tdTomato in CD11b+ F4/80+ tissue resident macrophages. Using this induction protocol, we demonstrated tdTomato expression within peritoneal, liver and spleen macrophages and blood Ly6Clow monocytes. Importantly there was limited or no inducible tdTomato expression within other myeloid cells (neutrophils, monocytes, dendritic cells and eosinophils), T cells (CD4+ and CD8+) and B cells (CD19+). We also demonstrated that the level of tdTomato expression can be used as a marker to identify different populations of peritoneal and liver macrophages. We next assessed the longevity of tdTomato expression in peritoneal macrophages, liver and splenic macrophages and demonstrated high levels of tdTomato expression as long as 6 weeks after the last tamoxifen dose. Importantly, hCD68-CreERT2 expression is more restricted than that of LysM-Cre which has significant expression in major myeloid cell types (monocytes and neutrophils). To demonstrate the utility of this novel macrophage-specific Cre driver line we demonstrated tdTomato expression in recruited CD11b+CD64+F4/80+ monocyte-derived macrophages within the atherosclerotic lesions of AAV8-mPCSK9 treated mice, with limited expression in recruited neutrophils. In developing this new hCD68-CreERT2 mouse we have a tool that allows us to target tissue resident macrophages, with the advantage of not targeting other myeloid cells namely neutrophils and inflammatory monocytes.
Collapse
Affiliation(s)
- Agata N. Rumianek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth S. D. Purvis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
von Ehr A, Bode C, Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front Cardiovasc Med 2022; 9:865367. [PMID: 35548412 PMCID: PMC9081876 DOI: 10.3389/fcvm.2022.865367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|