1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Stasko N, Arwood L, Jandick N, Spragion D, Roberts RC, Setién M, Henson I, Annas A, Fulcher ML, Brotton M, Kummer L, Szaba F, Reagan M, Lanzer K, Cookenham T, Casey S, Kothapalli N, Hart T, Bradrick SS, Emerson D, Cockrell AS, Randell SH, Kocher JF. The pan-variant potential of light: 425 nm light inactivates SARS-CoV-2 variants of concern and non-cytotoxic doses reduce viral titers in human airway epithelial cells. mSphere 2025:e0023025. [PMID: 40434113 DOI: 10.1128/msphere.00230-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) prolonged the coronavirus disease 2019 (COVID-19) pandemic. The continued development of novel pan-variant therapeutics to treat currently circulating and future VOCs is critically important. Photomedicine may offer broadly applicable, pan-variant treatments. In this study, we show that visible light centered around 425 nm inactivates each of the five SARS-CoV-2 VOC lineages that have been identified by the World Health Organization (Alpha, Beta, Delta, Gamma, and Omicron) in cell-free suspensions in a dose-dependent manner, including bamlanivimab-resistant variants. Specifically, 60 J/cm2 of 425 nm light reduced SARS-CoV-2 titers by >4 log10 relative to unilluminated controls. We observed that 425 nm light inactivates SARS-CoV-2 through restricted entry to host cells. In addition, a non-cytotoxic dosing regimen of 32 J/cm2 of 425 nm light reduced infectious virus titers in well-differentiated air-liquid interface (ALI) human airway epithelial (HAE) cells infected with the Beta, Delta, and Omicron variants that incorporate mutations associated with immune evasion and/or increased transmissibility. Infectious SARS-CoV-2 titers were reduced when dosing began during the early stages of infection or in more established infections. Finally, we translated these findings to the RD-X19, a novel medical device that emits 425 nm light; our results showed that the RD-X19 restricted spike binding to ACE-2 and reduced SARS-CoV-2 titers in cell-free suspensions (by >2 log10) and in the ALI HAE model (by >1 log10). These findings indicate that photomedicine utilizing 425 nm visible light may serve as a novel, pan-variant treatment modality for COVID-19.IMPORTANCEThe continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of variants that can evade public health measures, including vaccines and therapeutics. Thus, the continued development of broadly applicable measures to supplement current public health measures and standards of care remains critical. Photomedicine is one such approach. In this study, we show that non-ultraviolet visible light can inactivate each SARS-CoV-2 variant of concern (VOC) by preventing entry to host cells. Furthermore, visible light reduced the amount of virus produced in an infection model of the human airway at multiple stages of infection, demonstrating the antiviral capability of visible light. This study provides preclinical support for the development of visible light to serve as a SARS-CoV-2 countermeasure and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - M Leslie Fulcher
- The Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marisa Brotton
- The Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Frank Szaba
- Trudeau Institute, Saranac Lake, New York, USA
| | - Matt Reagan
- Trudeau Institute, Saranac Lake, New York, USA
| | | | | | - Sean Casey
- Trudeau Institute, Saranac Lake, New York, USA
| | | | - Tricia Hart
- Trudeau Institute, Saranac Lake, New York, USA
| | | | | | | | - Scott H Randell
- The Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
3
|
Chen J, Lin Y, Gao C, Wang Z, Xu Y, Zhao Y, Xie C, Liu C, Zhou N, Shan W, Zhuang W, Qin H, Shi C, Liu R, Wang Z, Xing P, Zhu J, Wang B, Li X, Shi D. Design, synthesis and activity evaluation of dual-target inhibitors against papain-like and main proteases of porcine epidemic diarrhea virus. J Adv Res 2025:S2090-1232(25)00265-6. [PMID: 40252827 DOI: 10.1016/j.jare.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025] Open
Abstract
INTRODUCTION Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), threatens the global pig industry due to lack of drugs. PEDV replication relies on PLpro and Mpro, which are crucial targets for inhibitors. Additionally, PLpro plays a role in modulating the host's immune response, and the inhibition of PLpro exhibits significant anti-inflammatory properties. OBJECTIVES A series of dual-targeted inhibitors of Mpro and PLpro were designed and synthesized, and their antiviral and anti-inflammatory activities were subsequently evaluated in vitro and in vivo. METHODS Dual-targeted inhibitors of Mpro and PLpro were designed by merging two series of Mpro inhibitors and PLpro inhibitors. sixty-four compounds were synthesized and screened in vitro by FRET for inhibitory activities and by RT-qPCR for antiviral activity on Vero-E6 cells. The anti-PEDV activity of f2 on Vero-E6 cells and IPEC-J2 cells was further confirmed by immunofluorescence. The mechanism by which f2 inhibited PEDV-induced inflammation was investigated by Western blot and RT-qPCR. The anti-colitis activity of f2 was verified in vivo. RESULTS Among the sixty-four synthesized compounds, seventeen potent dual-targeted inhibitors of PLpro and Mpro were identified with IC50 values less than 10 μM. Six compounds demonstrated excellent antiviral activity and safety in cell-based assays. The most potent compound f2 inhibited PEDV replication in Vero-E6 and IPEC-J2 cells with EC50 values of 1.17 ± 0.73 μM and 2.02 ± 0.56 μM, respectively, without cytotoxicity (CC50 > 800 μM). Moreover, f2 was found to inhibit the inflammatory response induced by PEDV infection via suppressing TLR2/PI3K/Akt/NF-κB signaling pathway. Oral f2 attenuated colitis by decreasing p65 phosphorylation, a major PEDV mortality cause. The in vivo acute toxicity test showed that oral administration of f2 did not affect the body weight and internal organs of mice. CONCLUSIONS In summary, a potent dual-targeted inhibitor of PLpro and Mpro, f2, was designed, synthesized, and found to be effective in the inhibition of PEDV replication and inflammatory response in vitro and in vivo.
Collapse
Affiliation(s)
- Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Zhuoya Wang
- GOSCI Technology Group, Qingdao 266237 Shandong, PR China
| | - Yue Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Yuanyuan Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Chao Xie
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Chao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China
| | - Jiqiang Zhu
- Lead High Technology (QingDao) Co., Ltd., Qingdao 266237 Shandong, PR China
| | - Bokan Wang
- Shandong Lead High Biotechnology Co., Ltd., Jinan 250031 Shandong, PR China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237 Shandong, PR China.
| |
Collapse
|
4
|
Föderl-Höbenreich E, Izadi S, Hofacker L, Kienzl NF, Castilho A, Strasser R, Tarrés-Freixas F, Cantero G, Roca N, Pérez M, Lorca-Oró C, Usai C, Segalés J, Vergara-Alert J, Mach L, Zatloukal K. An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Sci Rep 2025; 15:11307. [PMID: 40175560 PMCID: PMC11965572 DOI: 10.1038/s41598-025-95494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Newly emerging SARS-CoV-2 variants of concern (VOCs) continue to drive COVID-19 waves and are typically associated with immune escape and increased resistance to current therapeutics including monoclonal antibodies. By contrast, VOCs still display strong binding to the host cell receptor ACE2. Consistent with these properties, we have now found that a soluble ACE2-Fc decoy produced in glycoengineered plants effectively neutralizes different SARS-CoV-2 isolates and exhibits even increased potency against VOCs as compared to an ancestral virus strain. In a golden Syrian hamster model, therapeutic intranasal delivery of ACE2-Fc effectively reduced weight loss and SARS-CoV-2 replication in the lungs when administered 24 h post-inoculation. This protective effect was not observed upon treatment of the infected animals with a non-binding ACE2-Fc mutant, demonstrating that the plant-derived ACE2-Fc decoy interferes specifically with the attachment of the virus to host cells. The results obtained provide support for further development of decoy-based antiviral approaches by plant molecular pharming.
Collapse
Affiliation(s)
| | - Shiva Izadi
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Lara Hofacker
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Nikolaus F Kienzl
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Alexandra Castilho
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Richard Strasser
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Ferran Tarrés-Freixas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Roca
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mònica Pérez
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carla Usai
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Lukas Mach
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria.
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
6
|
Bernadin O, Cochin M, Driouich JS, Laprie C, Steigler P, Boukes G, Fenner C, de Lamballerie X, Nougairède A. Preclinical evaluation in hamster model of the mRNA COVID-19 vaccine candidate AfriVac 2121 (Wuhan) produced under the WHO/MPP mRNA Technology Transfer Programme. Vaccine 2024; 42:126378. [PMID: 39307023 DOI: 10.1016/j.vaccine.2024.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 12/14/2024]
Abstract
During the COVID-19 pandemic, access to vaccines in low- and middle-income countries was limited and delayed. To address these disparities, the mRNA Technology Transfer Programme, coordinated and led by the World Health Organization and the Medicines Patent Pool, was launched. A consortium has been set up in South Africa to develop a platform for manufacturing mRNA vaccines. In this study, the preclinical evaluation of the mRNA COVID-19 vaccine candidate, AfriVac 2121 (Wuhan) manufactured in December 2022 was conducted. The hamster model was employed to assess the immunogenicity and efficacy of this COVID-19 mRNA vaccine candidate in comparison to a commercial mRNA vaccine (mRNA-1273, Moderna). Results revealed that a vaccine regimen consisting of two 5 μg doses of AfriVac 2121 (Wuhan) elicited a protective immune response against an ancestral B.1 strain of SARS-CoV-2 similar to that obtained with the mRNA-1273 vaccine. AfriVac 2121 (Wuhan) induced robust humoral immune responses against SARS-CoV-2 and protected hamsters against a SARS-CoV-2 challenge with the B.1 strain. These results have since enabled the further development of this platform for manufacturing mRNA vaccines.
Collapse
Affiliation(s)
- Ornéllie Bernadin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Maxime Cochin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | | | - Pia Steigler
- Afrigen Biologics (Pty) Ltd, Cape Town, South Africa
| | | | - Caryn Fenner
- Afrigen Biologics (Pty) Ltd, Cape Town, South Africa
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France.
| |
Collapse
|
7
|
Nakashima M, Nobori H, Kuroda T, Shimba A, Miyagawa S, Hayashi A, Matsumoto K, Yoshida M, Baba K, Kato T, Fukao K. Oral 3CL protease inhibitor ensitrelvir suppressed SARS-CoV-2 shedding and infection in a hamster aerosol transmission model. Antiviral Res 2024; 232:106026. [PMID: 39477094 DOI: 10.1016/j.antiviral.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) remain a major global health challenge, with aerosol transmission being the primary route of spread. The use of antivirals as medical countermeasures to control SARS-CoV-2 transmission and spread is promising but remains to be clarified. The current study established and used an in vivo hamster aerosol transmission model system to evaluate the efficacy of the protease inhibitor ensitrelvir to prevent the spread of SARS-CoV-2. Male Index Syrian hamsters were intranasally infected with SARS-CoV-2, paired with naïve Contact hamsters, and co-housed for 12 h under conditions to allow for only aerosol transmission. The Index hamsters were treated three times with ensitrelvir starting 8 h post infection, or the Contact hamsters were treated once with ensitrelvir 12 h prior to co-housing. Viral infection and transmission were monitored by evaluating nasal lavage fluid, lung tissues, and body and lung weights. Post-infection administration of ensitrelvir to Index hamsters suppressed virus shedding in a dose-dependent manner. Pre-exposure administration of 750 mg/kg ensitrelvir to naïve Contact hamsters also protected against aerosol SARS-CoV-2 infection in a dose-dependent manner. Furthermore, pre-exposure treatment of 750 mg/kg ensitrelvir supressed body weight loss and lung weight increase of aerosol infected hamsters compared to vehicle-treated hamsters. These findings suggest that ensitrelvir may prevent SARS-CoV-2 spread when administered to infected patients and may prevent or limit SARS-CoV-2 infection when prophylactically administered to non-infected individuals. Both approaches may help protect at-risk individuals, such as family members living with SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Haruaki Nobori
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Takayuki Kuroda
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Alice Shimba
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Satoshi Miyagawa
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Akane Hayashi
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kazumi Matsumoto
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Mei Yoshida
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825 Japan
| | - Teruhisa Kato
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Keita Fukao
- Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan.
| |
Collapse
|
8
|
Do TND, Abdelnabi R, Boda B, Constant S, Neyts J, Jochmans D. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. Antiviral Res 2024; 231:105994. [PMID: 39237005 PMCID: PMC11560660 DOI: 10.1016/j.antiviral.2024.105994] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
The use of fixed dose-combinations of antivirals with different mechanisms of action has proven key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. This work explores the effect of a combination of 3 broad-spectrum antiviral nucleosides on the replication of coronaviruses. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (the parent nucleoside of remdesivir), molnupiravir and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters in a prophylactic setup. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy (but not in those that received the respective double combinations) no infectious virus was detectable. Our findings indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.
Collapse
Affiliation(s)
- Thuc Nguyen Dan Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium; The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium
| | - Bernadett Boda
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Samuel Constant
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium; The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium.
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Friedrich VD, Pennitz P, Wyler E, Adler JM, Postmus D, Müller K, Teixeira Alves LG, Prigann J, Pott F, Vladimirova D, Hoefler T, Goekeri C, Landthaler M, Goffinet C, Saliba AE, Scholz M, Witzenrath M, Trimpert J, Kirsten H, Nouailles G. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. EBioMedicine 2024; 108:105312. [PMID: 39317638 DOI: 10.1016/j.ebiom.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Translating findings from animal models to human disease is essential for dissecting disease mechanisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has highlighted this need, particularly for models showing disease severity-dependent immune responses. METHODS Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species at the molecular and cellular level with unprecedented resolution. However, computational methods enabling detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe COVID-19. FINDINGS Integration of data from patients with COVID-19 with two hamster models that develop moderate (Syrian hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified the overall transcriptomic similarity across species and severity levels, showing highest similarity between neutrophils of Roborovski hamsters and patients with severe COVID-19, while Syrian hamsters better matched patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide differential expression analysis to identify which disease stages and cell types display strongest transcriptional changes. INTERPRETATION Consistently, hamsters' response to COVID-19 was most similar to humans in monocytes and neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural network-supported workflow could be applied to other diseases, allowing better identification of suitable animal models with similar pathomechanisms across species. FUNDING This work was supported by German Federal Ministry of Education and Research, (BMBF) grant IDs: 01ZX1304B, 01ZX1604B, 01ZX1906A, 01ZX1906B, 01KI2124, 01IS18026B and German Research Foundation (DFG) grant IDs: 14933180, 431232613.
Collapse
Affiliation(s)
- Vincent D Friedrich
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia M Adler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Dylan Postmus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Kristina Müller
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany
| | - Luiz Gustavo Teixeira Alves
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia Prigann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Gladstone Institutes, San Francisco, USA
| | - Fabian Pott
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thomas Hoefler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Cengiz Goekeri
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; Cyprus International University, Faculty of Medicine, Nicosia, Cyprus
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Humboldt-Universität zu Berlin, Institut fuer Biologie, Berlin, Germany
| | - Christine Goffinet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Antoine-Emmanuel Saliba
- Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Markus Scholz
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; University of Leipzig, Faculty of Mathematics and Computer Science, Leipzig, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Jakob Trimpert
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Holger Kirsten
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany.
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
| |
Collapse
|
10
|
Aboras SI, Maher HM, Alzoman NZ, Elbordiny HS. Sustainable and technically smart spectrophotometric determination of PAXLOVID: a comprehensive ecological and analytical performance rating. BMC Chem 2024; 18:184. [PMID: 39304939 DOI: 10.1186/s13065-024-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
The Food and Drug Administration (FDA) authorized the administration of ritonavir (RIT)-boosted nirmatrelvir (NMV) on May 25, 2023, for the treatment of mild to moderate COVID-19 in patients who are at high risk of developing severe COVID-19. In accordance with sustainability and environmental friendliness, simple, eco-friendly, and sustainable spectrophotometric methods were established for concurrently estimating RIT and NMV in newly launched copackaged pills. The suggested solutions for resolving the spectral overlap between RIT and NMV involve the following mathematical methods: the first derivative method (1D), second derivative method (2D), and dual-wavelength zero-order method (DWZ). When ethanol was used as a green dilution solvent, the linearity range was adjusted (10-250 µg/mL) for both drugs. The procedures resulted in a high correlation coefficient (not less than 0.9996) and satisfactory levels of detection and quantification. Additionally, method validation was performed in accordance with International Council for Harmonization norms. Moreover, a detailed ecological and sustainability evaluation protocol was established to confirm the greenness and whiteness of the methods. Finally, the proposed method, along with previously reported methods for analysing NMV and RIT, were reviewed analytically and ecologically.
Collapse
Affiliation(s)
- Sara I Aboras
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Mesallah, Alexandria University, Alexandria, 21521, Egypt.
| | - Hadir M Maher
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Mesallah, Alexandria University, Alexandria, 21521, Egypt
| | - Nourah Z Alzoman
- College of Pharmacy, Department of Pharmaceutical Chemistry, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Haydi S Elbordiny
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
11
|
Compeer B, Neijzen TR, van Lelyveld SFL, Martina BEE, Russell CA, Goeijenbier M. Uncovering the Contrasts and Connections in PASC: Viral Load and Cytokine Signatures in Acute COVID-19 versus Post-Acute Sequelae of SARS-CoV-2 (PASC). Biomedicines 2024; 12:1941. [PMID: 39335455 PMCID: PMC11428903 DOI: 10.3390/biomedicines12091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively. Here, in this review, we offer a virologist's perspective on PASC, highlighting the dynamics of SARS-CoV-2 viral loads, cytokines, and chemokines in different organs of patients across the full clinical spectrum of acute-phase disease. We underline that the probability of severe or critical disease progression correlates with increased viral load levels detected in the upper respiratory tract (URT), lower respiratory tract (LRT), and plasma. Acute-phase viremia is a clear, although not unambiguous, predictor of PASC development. Moreover, both the quantity and diversity of functions of cytokines and chemokines increase with acute-phase disease severity. Specific cytokines remain or become elevated in the PASC phase, although the driving factor of ongoing inflammation found in patients with PASC remains to be investigated. The key findings highlighted in this review contribute to a further understanding of PASC and their differences and overlap with acute disease.
Collapse
Affiliation(s)
- Brandon Compeer
- Artemis Bioservices B.V., 2629 JD Delft, The Netherlands
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Tobias R Neijzen
- Department of Intensive Care Medicine, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands
| | | | | | - Colin A Russell
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Medical Microbiology, University Medical Center Amsterdam (UMC, Amsterdam), 1105 AZ Amsterdam, The Netherlands
- Department of Intensive Care, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Rhodin MHJ, Reyes AC, Balakrishnan A, Bisht N, Kelly NM, Gibbons JS, Lloyd J, Vaine M, Cressey T, Crepeau M, Shen R, Manalo N, Castillo J, Levene RE, Leonard D, Zang T, Jiang L, Daniels K, Cox RM, Lieber CM, Wolf JD, Plemper RK, Leist SR, Scobey T, Baric RS, Wang G, Goodwin B, Or YS. The small molecule inhibitor of SARS-CoV-2 3CLpro EDP-235 prevents viral replication and transmission in vivo. Nat Commun 2024; 15:6503. [PMID: 39090095 PMCID: PMC11294338 DOI: 10.1038/s41467-024-50931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses. EDP-235 maintains potency against variants bearing mutations associated with nirmatrelvir resistance. Additionally, EDP-235 demonstrates a ≥ 500-fold selectivity index against multiple host proteases. In a male Syrian hamster model of COVID-19, EDP-235 suppresses SARS-CoV-2 replication and viral-induced hamster lung pathology. In a female ferret model, EDP-235 inhibits production of SARS-CoV-2 infectious virus and RNA at multiple anatomical sites. Furthermore, SARS-CoV-2 contact transmission does not occur when naïve ferrets are co-housed with infected, EDP-235-treated ferrets. Collectively, these results demonstrate that EDP-235 is a broad-spectrum coronavirus inhibitor with efficacy in animal models of primary infection and transmission.
Collapse
Affiliation(s)
| | | | | | - Nalini Bisht
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | | | | | | | | | | | - Ruichao Shen
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | | | | | | | - Tianzhu Zang
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | - Lijuan Jiang
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Carolin M Lieber
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Josef D Wolf
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Yat Sun Or
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| |
Collapse
|
13
|
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Amorim VMDF, Soares EP, Ferrari ASDA, Merighi DGS, de Souza RF, Guzzo CR, de Souza AS. 3-Chymotrypsin-like Protease (3CLpro) of SARS-CoV-2: Validation as a Molecular Target, Proposal of a Novel Catalytic Mechanism, and Inhibitors in Preclinical and Clinical Trials. Viruses 2024; 16:844. [PMID: 38932137 PMCID: PMC11209289 DOI: 10.3390/v16060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| |
Collapse
|
15
|
Zhu Y, Gasbarri M, Zebret S, Pawar S, Mathez G, Diderich J, Valencia-Camargo AD, Russenberger D, Wang H, Silva PH, Dela Cruz JAB, Wei L, Cagno V, Münz C, Speck RF, Desmecht D, Stellacci F. Benzene with Alkyl Chains Is a Universal Scaffold for Multivalent Virucidal Antivirals. ACS CENTRAL SCIENCE 2024; 10:1012-1021. [PMID: 38799657 PMCID: PMC11117723 DOI: 10.1021/acscentsci.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 05/29/2024]
Abstract
Most viruses start their invasion by binding to glycoproteins' moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy in vivo against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.
Collapse
Affiliation(s)
- Yong Zhu
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Matteo Gasbarri
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Soumaila Zebret
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Sujeet Pawar
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Gregory Mathez
- Institute
of Microbiology, University Hospital of
Lausanne and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switerland
| | - Jacob Diderich
- Faculty
of
Veterinary Medicine Department of Pathology, University of Liège, Sart Tilman B43a, 4000 Liège, Belgium
| | - Alma Delia Valencia-Camargo
- Institute
of Experimental Immunology, University of
Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Doris Russenberger
- Department
of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, University of Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Paulo Henrique
Jacob Silva
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Jay-ar B. Dela Cruz
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Lixia Wei
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, University Hospital of
Lausanne and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switerland
| | - Christian Münz
- Institute
of Experimental Immunology, University of
Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roberto F. Speck
- Department
of Infectious Diseases and Hospital Hygiene, University Hospital Zurich, University of Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - Daniel Desmecht
- Faculty
of
Veterinary Medicine Department of Pathology, University of Liège, Sart Tilman B43a, 4000 Liège, Belgium
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Do TND, Abdelnabi R, Boda B, Constant S, Neyts J, Jochmans D. The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594200. [PMID: 38798406 PMCID: PMC11118304 DOI: 10.1101/2024.05.14.594200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The use of fixed dose-combinations of antivirals with different mechanisms of action has proven a key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. As a first effort, we studied the antiviral potency of combinations of antivirals. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (parent nucleoside of remdesivir), molnupiravir, and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy with suboptimal/inactive doses of GS-441524, molnupiravir, and ribavirin, no infectious virus was detectable. Our finding indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.
Collapse
Affiliation(s)
- Thuc Nguyen Dan Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
- The VirusBank Platform, Gaston Geenslaan, B-3000 Leuven, Belgium
| | - Bernadett Boda
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Samuel Constant
- Epithelix Sàrl, 18 Chemin des Aulx, Plan-les-Ouates, CH-1228, Geneva, Switzerland
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
- The VirusBank Platform, Gaston Geenslaan, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Avedissian SN, Malik JR, Podany AT, Neely M, Rhodes NJ, Scarsi KK, Scheetz MH, Duryee MJ, Modebelu UO, Mykris TM, Winchester LC, Byrareddy SN, Fletcher CV. In-vitro and in-vivo assessment of nirmatrelvir penetration into CSF, central nervous system cells, tissues, and peripheral blood mononuclear cells. Sci Rep 2024; 14:10709. [PMID: 38729980 PMCID: PMC11087525 DOI: 10.1038/s41598-024-60935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.
Collapse
Affiliation(s)
- Sean N Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
| | - Johid R Malik
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Michael Neely
- Department of Pediatrics, Division of Infectious Diseases, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Kimberly K Scarsi
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Michael J Duryee
- Division of Rheumatology, Department of Pharmacology & Experimental Neurosciences Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ukamaka O Modebelu
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy M Mykris
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Lee C Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology & Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
19
|
Kumar A, Vashisth H. Quantitative Assessment of Energetic Contributions of Residues in a SARS-CoV-2 Viral Enzyme/Nanobody Interface. J Chem Inf Model 2024; 64:2068-2076. [PMID: 38460144 PMCID: PMC10966652 DOI: 10.1021/acs.jcim.3c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The highly conserved protease enzyme from SARS-CoV-2 (MPro) is crucial for viral replication and is an attractive target for the design of novel inhibitory compounds. MPro is known to be conformationally flexible and has been stabilized in an extended conformation in a complex with a novel nanobody (NB2B4), which inhibits the dimerization of the enzyme via binding to an allosteric site. However, the energetic contributions of the nanobody residues stabilizing the MPro/nanobody interface remain unresolved. We probed these residues using all-atom MD simulations in combination with alchemical free energy calculations by studying the physical residue-residue interactions and discovered the role of hydrophobic and electrostatic interactions in stabilizing the complex. Specifically, we found via mutational analysis that three interfacial nanobody residues (Y59, R106, and L109) contributed significantly, two residues (L107 and P110) contributed moderately, and two residues (H112 and T113) contributed minimally to the overall binding affinity of the nanobody. We also discovered that the nanobody affinity could be enhanced via a charge-reversal mutation (D62R) that alters the local interfacial electrostatic environment of this residue in the complex. These findings are potentially useful in designing novel synthetic nanobodies as allosteric inhibitors of MPro.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
20
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Westberg M, Su Y, Zou X, Huang P, Rustagi A, Garhyan J, Patel PB, Fernandez D, Wu Y, Hao C, Lo CW, Karim M, Ning L, Beck A, Saenkham-Huntsinger P, Tat V, Drelich A, Peng BH, Einav S, Tseng CTK, Blish C, Lin MZ. An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Sci Transl Med 2024; 16:eadi0979. [PMID: 38478629 PMCID: PMC11193659 DOI: 10.1126/scitranslmed.adi0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/21/2024] [Indexed: 05/09/2024]
Abstract
Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Chemistry, Aarhus University; 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University; 8000 Aarhus C, Denmark
| | - Yichi Su
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Puja Bhavesh Patel
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University; Stanford, CA 94305, USA
- Sarafan ChEM-H, Macromolecular Structure Knowledge Center, Stanford University; Stanford, CA 94305, USA
| | - Yan Wu
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Chieh-Wen Lo
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Marwah Karim
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | | | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Shirit Einav
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Catherine Blish
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
22
|
Li P, Kim Y, Dampalla CS, Nhat Nguyen H, Meyerholz DK, Johnson DK, Lovell S, Groutas WC, Perlman S, Chang KO. Potent 3CLpro inhibitors effective against SARS-CoV-2 and MERS-CoV in animal models by therapeutic treatment. mBio 2024; 15:e0287823. [PMID: 38126789 PMCID: PMC10865860 DOI: 10.1128/mbio.02878-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
23
|
Acar DD, Witkowski W, Wejda M, Wei R, Desmet T, Schepens B, De Cae S, Sedeyn K, Eeckhaut H, Fijalkowska D, Roose K, Vanmarcke S, Poupon A, Jochmans D, Zhang X, Abdelnabi R, Foo CS, Weynand B, Reiter D, Callewaert N, Remaut H, Neyts J, Saelens X, Gerlo S, Vandekerckhove L. Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine 2024; 100:104960. [PMID: 38232633 PMCID: PMC10803917 DOI: 10.1016/j.ebiom.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING Full list of funders is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Magdalena Wejda
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Ruifang Wei
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tim Desmet
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | | | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Caroline S Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, Belgium
| | - Dirk Reiter
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Han Remaut
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
24
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
25
|
Sasaki M, Sugi T, Iida S, Hirata Y, Kusakabe S, Konishi K, Itakura Y, Tabata K, Kishimoto M, Kobayashi H, Ariizumi T, Intaruck K, Nobori H, Toba S, Sato A, Matsuno K, Yamagishi J, Suzuki T, Hall WW, Orba Y, Sawa H. Combination therapy with oral antiviral and anti-inflammatory drugs improves the efficacy of delayed treatment in a COVID-19 hamster model. EBioMedicine 2024; 99:104950. [PMID: 38159532 PMCID: PMC10792455 DOI: 10.1016/j.ebiom.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING Funding bodies are described in the Acknowledgments section.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Kusakabe
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Kei Konishi
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Haruaki Nobori
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Shinsuke Toba
- Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Keita Matsuno
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland; Global Virus Network, Baltimore, Maryland, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of Anti-Virus Drug Research, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Bianconi E, Gidari A, Souma M, Sabbatini S, Grifagni D, Bigiotti C, Schiaroli E, Comez L, Paciaroni A, Cantini F, Francisci D, Macchiarulo A. The hope and hype of ellagic acid and urolithins as ligands of SARS-CoV-2 Nsp5 and inhibitors of viral replication. J Enzyme Inhib Med Chem 2023; 38:2251721. [PMID: 37638806 PMCID: PMC10464554 DOI: 10.1080/14756366.2023.2251721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Non-structural protein 5 (Nsp5) is a cysteine protease that plays a key role in SARS-CoV-2 replication, suppressing host protein synthesis and promoting immune evasion. The investigation of natural products as a potential strategy for Nsp5 inhibition is gaining attention as a means of developing antiviral agents. In this work, we have investigated the physicochemical properties and structure-activity relationships of ellagic acid and its gut metabolites, urolithins A-D, as ligands of Nsp5. Results allow us to identify urolithin D as promising ligand of Nsp5, with a dissociation constant in the nanomolar range of potency. Although urolithin D is able to bind to the catalytic cleft of Nsp5, the appraisal of its viral replication inhibition against SARS-CoV-2 in Vero E6 assay highlights a lack of activity. While these results are discussed in the framework of the available literature reporting conflicting data on polyphenol antiviral activity, they provide new clues for natural products as potential viral protease inhibitors.
Collapse
Affiliation(s)
- Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Maria Souma
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuele Sabbatini
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Deborah Grifagni
- Centre for Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Perugia, Italy
| | | | - Francesca Cantini
- Centre for Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Wu Y, Li K, Li M, Pu X, Guo Y. Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy. J Chem Inf Model 2023; 63:7011-7031. [PMID: 37960886 DOI: 10.1021/acs.jcim.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Compared to de novo drug discovery, drug repurposing provides a time-efficient way to treat coronavirus disease 19 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 main protease (Mpro) has been proved to be an attractive drug target due to its pivotal involvement in viral replication and transcription. Here, we present a graph neural network-based deep-learning (DL) strategy to prioritize the existing drugs for their potential therapeutic effects against SARS-CoV-2 Mpro. Mpro inhibitors were represented as molecular graphs ready for graph attention network (GAT) and graph isomorphism network (GIN) modeling for predicting the inhibitory activities. The result shows that the GAT model outperforms the GIN and other competitive models and yields satisfactory predictions for unseen Mpro inhibitors, confirming its robustness and generalization. The attention mechanism of GAT enables to capture the dominant substructures and thus to realize the interpretability of the model. Finally, we applied the optimal GAT model in conjunction with molecular docking simulations to screen the Drug Repurposing Hub (DRH) database. As a result, 18 drug hits with best consensus prediction scores and binding affinity values were identified as the potential therapeutics against COVID-19. Both the extensive literature searching and evaluations on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) illustrate the premium drug-likeness and pharmacokinetic properties of the drug candidates. Overall, our work not only provides an effective GAT-based DL prediction tool for inhibitory activity of SARS-CoV-2 Mpro inhibitors but also provides theoretical guidelines for drug discovery in the COVID-19 treatment.
Collapse
Affiliation(s)
- Yanling Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kun Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Lachhab S, El Mansouri AE, Mehdi A, Dennemont I, Neyts J, Jochmans D, Andrei G, Snoeck R, Sanghvi YS, Ait Ali M, Loiseau PM, Lazrek HB. Synthesis of new 3-acetyl-1,3,4-oxadiazolines combined with pyrimidines as antileishmanial and antiviral agents. Mol Divers 2023; 27:2147-2159. [PMID: 36251201 PMCID: PMC9573813 DOI: 10.1007/s11030-022-10548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
A new series of 3-acetyl-1,3,4-oxadiazoline hybrid molecules was designed and synthesized using a condensation between acyclonucleosides and substituted phenylhydrazone. All intermediates and final products were screened against Leishmania donovani, a Protozoan parasite and against three viruses SARS-CoV-2, HCMV and VZV. While no significant activity was observed against the viruses, the intermediate with 6-azatymine as thymine and 5-azathymine-3-acetyl-1,3,4-oxadiazoline hybrid exhibited a significant antileishmanial activity. The later compound was the most promising, exhibiting an IC50 value at 8.98 µM on L. donovani intramacrophage amastigotes and a moderate selectivity index value at 2.4.
Collapse
Affiliation(s)
- Saida Lachhab
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Az-Eddine El Mansouri
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Ahmad Mehdi
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Indira Dennemont
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Dirk Jochmans
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KULeuven, Louvain, Belgium
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA, 92024-6615, USA
| | - Mustapha Ait Ali
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, Chatenay-Malabry, 92290, Paris, France
| | - Hassan B Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
29
|
Elbordiny HS, Alzoman NZ, Maher HM, Aboras SI. Tailoring two white chromatographic platforms for simultaneous estimation of ritonavir-boosted nirmatrelvir in their novel pills: degradation, validation, and environmental impact studies. RSC Adv 2023; 13:26719-26731. [PMID: 37681051 PMCID: PMC10481124 DOI: 10.1039/d3ra04186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
As the COVID-19 pandemic is not yet over, Pfizer has launched the novel pill Paxlovid® (Nirmatrelvir (NMV) co-packaged with ritonavir (RIT)) as an effective medication for hospitalized and non-hospitalized patients. Making pharmaceutical analysis greener and more sustainable has lately become the main direction of the research community. In this context, two fast, green, and stability-indicating chromatographic methods were designed for the neat quantitative determination of NMV and RIT in their bulk and dosage forms. Method I is deemed the first electro-driven attempt for the assay of Paxlovid®. Herein, the optimized conditions of the Micellar Electrokinetic Chromatographic (MEKC) method were 50 mM borate buffer at pH 9.2 with 25 mM sodium lauryl sulfate (SDS) being used as the background electrolyte (BGE) on a deactivated fused silica capillary (50 cm effective length × 50 μm id). Method II was an isocratic reversed-phase HPLC separation method using Zorbax-Eclipse C18 (4.6 × 250 mm, 5 μm particle size) column and 50 mM ammonium acetate buffer at pH 5 and acetonitrile as mobile phase constituents at a flow rate of 1 mL min-1. For the sake of simplicity and increasing sensitivity, a single wavelength of 210 nm was used for the two methods to assay both drugs. Linear correlations between peak areas and concentration were observed in the ranges of 10-200 μg mL-1 for NMV and 5-100 μg mL-1 RIT in both methods. The impact of versatile stress conditions such as hydrolysis, oxidation, and photolysis on the stability of NMV and RIT was studied. Fortunately, both methodologies were able to separate both drugs from their degradants. Thus, the stability indicating power of the methods was proved. The derived methods were statistically validated in agreement with the ICH guidelines. Furthermore, the environmental friendliness and sustainability of these methods were investigated and compared with the cited methods using the holistic multicriteria evaluation tools namely Hexagon, AGREE, and RGB12 metrics. Conclusively, the proposed methods offered reliable, feasible, economic, white, and stability-indicating alternatives to the cited chromatographic methods.
Collapse
Affiliation(s)
- Haydi S Elbordiny
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University Damanhour Egypt
| | - Nourah Z Alzoman
- College of Pharmacy, Department of Pharmaceutical Chemistry, King Saud University P.O. Box 22452 Riyadh 11495 Saudi Arabia
| | - Hadir M Maher
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | - Sara I Aboras
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| |
Collapse
|
30
|
Sha A, Liu Y, Hao H. Current state-of-the-art and potential future therapeutic drugs against COVID-19. Front Cell Dev Biol 2023; 11:1238027. [PMID: 37691829 PMCID: PMC10485263 DOI: 10.3389/fcell.2023.1238027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
The novel coronavirus disease (COVID-19) continues to endanger human health, and its therapeutic drugs are under intensive research and development. Identifying the efficacy and toxicity of drugs in animal models is helpful for further screening of effective medications, which is also a prerequisite for drugs to enter clinical trials. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invades host cells mainly by the S protein on its surface. After the SARS-CoV-2 RNA genome is injected into the cells, M protein will help assemble and release new viruses. RdRp is crucial for virus replication, assembly, and release of new virus particles. This review analyzes and discusses 26 anti-SARS-CoV-2 drugs based on their mechanism of action, effectiveness and safety in different animal models. We propose five drugs to be the most promising to enter the next stage of clinical trial research, thus providing a reference for future drug development.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Haiyan Hao
- School of Environmental and Chemical Engineering, Chongqing, China
| |
Collapse
|
31
|
Emanuel J, Papies J, Galander C, Adler JM, Heinemann N, Eschke K, Merz S, Pischon H, Rose R, Krumbholz A, Kulić Ž, Lehner MD, Trimpert J, Müller MA. In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs ® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2. Front Pharmacol 2023; 14:1214351. [PMID: 37564181 PMCID: PMC10410074 DOI: 10.3389/fphar.2023.1214351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Jackson Emanuel
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Celine Galander
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Kathrin Eschke
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Žarko Kulić
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| |
Collapse
|
32
|
Gidari A, Sabbatini S, Schiaroli E, Bastianelli S, Pierucci S, Busti C, Saraca LM, Capogrossi L, Pasticci MB, Francisci D. Synergistic Activity of Remdesivir-Nirmatrelvir Combination on a SARS-CoV-2 In Vitro Model and a Case Report. Viruses 2023; 15:1577. [PMID: 37515263 PMCID: PMC10385213 DOI: 10.3390/v15071577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. METHODS A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. RESULTS Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h, with an HSA score of 52.8 and 28.6, respectively (p < 0.0001). These data were confirmed by performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir until she tested negative. CONCLUSIONS Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Lavinia Maria Saraca
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Luca Capogrossi
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Maria Bruna Pasticci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
33
|
Kiso M, Yamayoshi S, Iida S, Furusawa Y, Hirata Y, Uraki R, Imai M, Suzuki T, Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir. Nat Commun 2023; 14:4231. [PMID: 37454219 PMCID: PMC10349878 DOI: 10.1038/s41467-023-40018-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Ensitrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro or Nsp5), is clinically useful against SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to most monoclonal antibody therapies, SARS-CoV-2 resistance to other antivirals including main protease inhibitors such as ensitrelvir is a major public health concern. Here, repeating passages of SARS-CoV-2 in the presence of ensitrelvir revealed that the M49L and E166A substitutions in Nsp5 are responsible for reduced sensitivity to ensitrelvir. Both substitutions reduced in vitro virus growth in the absence of ensitrelvir. The combination of the M49L and E166A substitutions allowed the virus to largely evade the suppressive effect of ensitrelvir in vitro. The virus possessing Nsp5-M49L showed similar pathogenicity to wild-type virus, whereas the virus possessing Nsp5-E166A or Nsp5-M49L/E166A slightly attenuated. Ensitrelvir treatment of hamsters infected with the virus possessing Nsp5-M49L/E166A was ineffective; however, nirmatrelvir or molnupiravir treatment was effective. Therefore, it is important to closely monitor the emergence of ensitrelvir-resistant SARS-CoV-2 variants to guide antiviral treatment selection.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Bakos É, Temesszentandrási-Ambrus C, Özvegy-Laczka C, Gáborik Z, Sarkadi B, Telbisz Á. Interactions of the Anti-SARS-CoV-2 Agents Molnupiravir and Nirmatrelvir/Paxlovid with Human Drug Transporters. Int J Mol Sci 2023; 24:11237. [PMID: 37510996 PMCID: PMC10379611 DOI: 10.3390/ijms241411237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Orally administered small molecules may have important therapeutic potential in treating COVID-19 disease. The recently developed antiviral agents, Molnupiravir and Nirmatrelvir, have been reported to be efficient treatments, with only moderate side effects, especially when applied in the early phases of this disease. However, drug-drug and drug-transporter interactions have already been noted by the drug development companies and in the application notes. In the present work, we have studied some of the key human transporters interacting with these agents. The nucleoside analog Molnupiravir (EIDD-2801) and its main metabolite (EIDD-1931) were found to inhibit CNT1,2 in addition to the ENT1,2 nucleoside transporters; however, it did not significantly influence the relevant OATP transporters or the ABCC4 nucleoside efflux transporter. The active component of Paxlovid (PF-07321332, Nirmatrelvir) inhibited the function of several OATPs and of ABCB1 but did not affect ABCG2. However, significant inhibition was observed only at high concentrations of Nirmatrelvir and probably did not occur in vivo. Paxlovid, as used in the clinic, is a combination of Nirmatrelvir (viral protease inhibitor) and Ritonavir (a "booster" inhibitor of Nirmatrelvir metabolism). Ritonavir is known to inhibit several drug transporters; therefore, we have examined these compounds together, in relevant concentrations and ratios. No additional inhibitory effect of Nirmatrelvir was observed compared to the strong transporter inhibition caused by Ritonavir. Our current in vitro results should help to estimate the potential drug-drug interactions of these newly developed agents during COVID-19 treatment.
Collapse
Affiliation(s)
- Éva Bakos
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | | | - Csilla Özvegy-Laczka
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | - Zsuzsanna Gáborik
- Charles River Laboratories, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Balázs Sarkadi
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| | - Ágnes Telbisz
- Research Centre for Natural Sciences-RCNS, Magyar Tudósok krt 2, 1117 Budapest, Hungary
| |
Collapse
|
35
|
Kiso M, Furusawa Y, Uraki R, Imai M, Yamayoshi S, Kawaoka Y. In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir. Nat Commun 2023; 14:3952. [PMID: 37402789 PMCID: PMC10319741 DOI: 10.1038/s41467-023-39704-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Nirmatrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro), is clinically useful against infection with SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to many monoclonal antibody therapies, potential SARS-CoV-2 resistance to nirmatrelvir is a major public health concern. Several amino acid substitutions have been identified as being responsible for reduced susceptibility to nirmatrelvir. Among them, we selected L50F/E166V and L50F/E166A/L167F in the 3CLpro because these combinations of substitutions are unlikely to affect virus fitness. We prepared and characterized delta variants possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F. Both mutant viruses showed decreased susceptibility to nirmatrelvir and their growth in VeroE6/TMPRSS2 cells was delayed. Both mutant viruses showed attenuated phenotypes in a male hamster infection model, maintained airborne transmissibility, and were outcompeted by wild-type virus in co-infection experiments in the absence of nirmatrelvir, but less so in the presence of the drug. These results suggest that viruses possessing Nsp5-L50F/E166V and Nsp5-L50F/E166A/L167F do not become dominant in nature. However, it is important to closely monitor the emergence of nirmatrelvir-resistant SARS-CoV-2 variants because resistant viruses with additional compensatory mutations could emerge, outcompete the wild-type virus, and become dominant.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
36
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
37
|
Navitha Reddy G, Jogvanshi A, Naikwadi S, Sonti R. Nirmatrelvir and ritonavir combination: an antiviral therapy for COVID-19. Expert Rev Anti Infect Ther 2023; 21:943-955. [PMID: 37525997 DOI: 10.1080/14787210.2023.2241638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION The emergence of the Omicron SARS-CoV-2 variant of concern in late November 2021 presaged yet another stage of the COVID-19 pandemic. Paxlovid, a co-packaged dosage form of two antiviral drugs (nirmatrelvir and ritonavir) developed by Pfizer, received its first FDA Emergency Use Authorization (EUA) and conditional marketing by European Medical Agency in patients at high risk of developing severe COVID-19. AREAS COVERED We reviewed the timeline of the drug nirmatrelvir from its discovery to authorization by FDA. After 1 year of its authorization, numerous studies and reports on paxlovid's use and post-use consequences are available. This review summarizes the complete journey of paxlovid from its development, preclinical studies, clinical trials, regulatory approvals, ongoing clinical trials, and safety measures, followed by discussions on recent updates on drug-drug interactions, adverse effects, and relapse of COVID-19. EXPERT OPINION Paxlovid, a new oral antiviral therapy for COVID-19, has shown promising results in clinical trials and has the potential to be effective against the pandemic, particularly for individuals at high risk of severe illness. Comorbidity usage and pharmacovigilance will play a significant stake in the future of paxlovid development. Second-generation Mpro inhibitors play an important role in the upcoming problems associated with COVID-19.
Collapse
Affiliation(s)
- Gangireddy Navitha Reddy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Akanksha Jogvanshi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sana Naikwadi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
38
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Pagliano P, Spera A, Sellitto C, Scarpati G, Folliero V, Piazza O, Franci G, Conti V, Ascione T. Preclinical discovery and development of nirmatrelvir/ritonavir combinational therapy for the treatment of COVID-19 and the lessons learned from SARS-COV-2 variants. Expert Opin Drug Discov 2023; 18:1301-1311. [PMID: 37614103 DOI: 10.1080/17460441.2023.2248879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Nirmatrelvir/ritonavir (Paxlovid®) represent an oral antiviral therapy approved for the treatment of COVID-19. Extensive in vitro and in vivo studies have reported the promising activity of nirmatrelvir/ritonavir against numerous emerging viruses. This combination consists of nirmatrelvir, a protease reversible inhibitor of coronavirus 3CLpro mainly metabolized by cytochrome P450 (CYP)3A4, and ritonavir, an inhibitor of the CYP3A isoforms that enhances the efficacy of nirmatrelvir by fixing its suboptimal pharmacokinetic properties. AREAS COVERED This review comprehensively examines the efficacy of nirmatrelvir/ritonavir through rigorous analysis of in vitro and in vivo studies. Moreover, it thoroughly assesses its safety, tolerability, pharmacokinetics, and antiviral efficacy against SARS-COV-2 infection, based on the main pre-authorization randomized controlled trials. EXPERT OPINION Nirmatrelvir/ritonavir has a good tolerability profile. Its administration during the early stages of mild-to-moderate COVID-19 holds potential benefits, as it can help prevent the onset of an aberrant immune response that could lead to pulmonary and extra-pulmonary complications. However, its drug - drug interactions can be a factor limiting its use, at least in populations on some chronic therapies, along with the risk of infection relapse after treatment.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Annamaria Spera
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| |
Collapse
|
40
|
Chenthamarakshan V, Hoffman SC, Owen CD, Lukacik P, Strain-Damerell C, Fearon D, Malla TR, Tumber A, Schofield CJ, Duyvesteyn HM, Dejnirattisai W, Carrique L, Walter TS, Screaton GR, Matviiuk T, Mojsilovic A, Crain J, Walsh MA, Stuart DI, Das P. Accelerating drug target inhibitor discovery with a deep generative foundation model. SCIENCE ADVANCES 2023; 9:eadg7865. [PMID: 37343087 PMCID: PMC10284550 DOI: 10.1126/sciadv.adg7865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.
Collapse
Affiliation(s)
| | - Samuel C. Hoffman
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA
| | - C. David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Tika R. Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Loic Carrique
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Thomas S. Walter
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A. Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - David I. Stuart
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Payel Das
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA
| |
Collapse
|
41
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Combinatorial Regimens Augment Drug Monotherapy for SARS-CoV-2 Clearance in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543159. [PMID: 37398307 PMCID: PMC10312581 DOI: 10.1101/2023.05.31.543159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating SARS-CoV-2 variants of concern (VOCs) that evolve to escape spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or Main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy did not eliminate SARS-CoV-2 in mice. However, targeting two viral enzymes by combining molnupiravir with nirmatrelvir resulted in superior efficacy and virus clearance. Furthermore, combining molnupiravir with Caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma yielded rapid virus clearance and 100% survival. Thus, our study provides insights into treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
|
42
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
43
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
44
|
Luo SY, Moussa EW, Lopez-Orozco J, Felix-Lopez A, Ishida R, Fayad N, Gomez-Cardona E, Wang H, Wilson JA, Kumar A, Hobman TC, Julien O. Identification of Human Host Substrates of the SARS-CoV-2 M pro and PL pro Using Subtiligase N-Terminomics. ACS Infect Dis 2023; 9:749-761. [PMID: 37011043 PMCID: PMC10081575 DOI: 10.1021/acsinfecdis.2c00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 04/04/2023]
Abstract
The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.
Collapse
Affiliation(s)
- Shu Y. Luo
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Eman W. Moussa
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joaquin Lopez-Orozco
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alberto Felix-Lopez
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ray Ishida
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Nawell Fayad
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Erik Gomez-Cardona
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Henry Wang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joyce A. Wilson
- Department
of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Anil Kumar
- Department
of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Tom C. Hobman
- Department
of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, Edmonton, Alberta T6G
2E1, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, Edmonton, Alberta T6G
2E1, Canada
| |
Collapse
|
45
|
Abdelnabi R, Jochmans D, Donckers K, Trüeb B, Ebert N, Weynand B, Thiel V, Neyts J. Nirmatrelvir-resistant SARS-CoV-2 is efficiently transmitted in female Syrian hamsters and retains partial susceptibility to treatment. Nat Commun 2023; 14:2124. [PMID: 37059708 PMCID: PMC10101821 DOI: 10.1038/s41467-023-37773-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
The SARS-CoV-2 main protease (3CLpro) is one of the promising therapeutic targets for the treatment of COVID-19. Nirmatrelvir is the first 3CLpro inhibitor authorized for treatment of COVID-19 patients at high risk of hospitalization. We recently reported on the in vitro selection of SARS-CoV-2 3CLpro resistant virus (L50F-E166A-L167F; 3CLprores) that is cross-resistant with nirmatrelvir and other 3CLpro inhibitors. Here, we demonstrate that the 3CLprores virus replicates efficiently in the lungs of intranasally infected female Syrian hamsters and causes lung pathology comparable to that caused by the WT virus. Moreover, hamsters infected with 3CLprores virus transmit the virus efficiently to co-housed non-infected contact hamsters. Importantly, at a dose of 200 mg/kg (BID) of nirmatrelvir, the compound was still able to reduce the lung infectious virus titers of 3CLprores-infected hamsters by 1.4 log10 with a modest improvement in the lung histopathology as compared to the vehicle control. Fortunately, resistance to Nirmatrelvir does not readily develop in clinical setting. Yet, as we demonstrate, in case drug-resistant viruses emerge, they may spread easily which may thus impact therapeutic options. Therefore, the use of 3CLpro inhibitors in combination with other drugs may be considered, especially in immunodeficient patients, to avoid the development of drug-resistant viruses.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
- The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Kim Donckers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Bettina Trüeb
- Institute of Virology and Immunology, University of Bern, 3012, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, University of Bern, 3012, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, B-3000, Leuven, Belgium
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, 3012, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium.
- The VirusBank Platform, Gaston Geenslaan, B-3000, Leuven, Belgium.
- Global Virus Network, GVN, Baltimore, US.
| |
Collapse
|
46
|
Kuroda T, Nobori H, Fukao K, Baba K, Matsumoto K, Yoshida S, Tanaka Y, Watari R, Oka R, Kasai Y, Inoue K, Kawashima S, Shimba A, Hayasaki-Kajiwara Y, Tanimura M, Zhang Q, Tachibana Y, Kato T, Shishido T. Efficacy comparison of 3CL protease inhibitors ensitrelvir and nirmatrelvir against SARS-CoV-2 in vitro and in vivo. J Antimicrob Chemother 2023; 78:946-952. [PMID: 36760083 PMCID: PMC10068418 DOI: 10.1093/jac/dkad027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVES Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become established in the human population, making the need to develop safe and effective treatments critical. We have developed the small-molecule antiviral ensitrelvir, which targets the 3C-like (3CL) protease of SARS-CoV-2. This study evaluated the in vitro and in vivo efficacy of ensitrelvir compared with that of another SARS-CoV-2 3CL PI, nirmatrelvir. METHODS Cultured cells, BALB/cAJcl mice and Syrian hamsters were infected with various SARS-CoV-2 strains, including the ancestral strain WK-521, mouse-adapted SARS-CoV-2 (MA-P10) strain, Delta strain and Omicron strain. Ensitrelvir efficacy was compared with that of nirmatrelvir. Effective concentrations were determined in vitro based on virus-induced cytopathic effects, viral titres and RNA levels. Lung viral titres, nasal turbinate titres, body-weight changes, and animal survival were also monitored. RESULTS Ensitrelvir and nirmatrelvir showed comparable antiviral activity in multiple cell lines. Both ensitrelvir and nirmatrelvir reduced virus levels in the lungs of mice and the nasal turbinates and lungs of hamsters. However, ensitrelvir demonstrated comparable or better in vivo efficacy than that of nirmatrelvir when present at similar or slightly lower unbound-drug plasma concentrations. CONCLUSIONS Direct in vitro and in vivo efficacy comparisons of 3CL PIs revealed that ensitrelvir demonstrated comparable in vitro efficacy to that of nirmatrelvir in cell culture and exhibited equal to or greater in vivo efficacy in terms of unbound-drug plasma concentration in both animal models evaluated. The results suggest that ensitrelvir may become an important resource for treating individuals infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Takayuki Kuroda
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Haruaki Nobori
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Keita Fukao
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kaoru Baba
- Research Area for Drug Candidate Generation II, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kazumi Matsumoto
- Research Area for Drug Candidate Generation II, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shinpei Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yukari Tanaka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryosuke Watari
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryoko Oka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yasuyuki Kasai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kae Inoue
- Research Area for Drug Candidate Generation II, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Sho Kawashima
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Alice Shimba
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yoko Hayasaki-Kajiwara
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Miki Tanimura
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Qianhui Zhang
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuki Tachibana
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Teruhisa Kato
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takao Shishido
- Pharmaceutical Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
47
|
Aboras SI, Maher HM. Green adherent degradation kinetics study of Nirmatrelvir, an oral anti-COVID-19: characterization of degradation products using LC-MS with insilico toxicity profile. BMC Chem 2023; 17:23. [PMID: 36932440 PMCID: PMC10020773 DOI: 10.1186/s13065-023-00928-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/25/2023] [Indexed: 03/19/2023] Open
Abstract
The SARS-CoV-2 virus sets up a global catastrophe, and countries all around the world made significant efforts to halt the spread. Nirmatrelvir (NMV) was lately approved by the FDA as a safe and well-tolerated oral direct-acting antiviral medication for SARS-CoV-2 virus infection. Therefore, a fast completely validated stability indicating method was established-for the first time- for NMV determination. The study used NaOH, HCl, neutral, H2O2, and sunlight to test NMV stability under various stress conditions followed by kinetics degradation investigation and derivation of Arrhenius plot. The analysis was performed using Agilent Zorbax Eclipse-C18 column (5 µm, 4.6 × 250 mm) with a mobile phase consisting of acetonitrile: 50 mM ammonium acetate, pH = 5 (50:50, v/v, respectively) at a flow rate of 1.0 mL/min with 5 min run time. Diode array detector (DAD) was set at 225 nm to quantify NMV at the concentration range of 5-500 µg/mL with LOD and LOQ of 0.6 and 2 µg/mL, respectively. Method's greenness was assessed using different metrics including Analytical Eco-Scale, Greenness Assessment Procedure Index, GAPI, and Analytical Greenness, AGREE. A thorough study of stress stability revealed that NMV was more susceptible to alkaline hydrolysis compared with acid hydrolysis. In contrast, it was found that NMV remained stable when subjected to oxidative, neutral, and sun-induced degradation conditions. Moreover, acid and alkali-induced hydrolysis were found to follow pseudo first order kinetics. Consequently, the half lifetime of the studied degradation conditions at room temperature were calculated using the Arrhenius plot. The mechanism of the degradation pathways under stress circumstances was proposed using LC-MS-UV. Toxicities of the proposed degradation products were assessed using ProTox-II, along with the parent medication NMV, and were shown to be hardly hazardous.
Collapse
Affiliation(s)
- Sara I Aboras
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Elmessalah, Alexandria, 21521, Egypt.
| | - Hadir M Maher
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Elmessalah, Alexandria, 21521, Egypt
| |
Collapse
|
48
|
Khan K, Kar S, Roy K. Are we ready to combat the ecotoxicity of COVID-19 pharmaceuticals? An in silico aquatic risk assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106416. [PMID: 36758333 PMCID: PMC9898056 DOI: 10.1016/j.aquatox.2023.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To fight COVID-19 with uncountable medications and bioproducts throughout the world has taken us to another challenge of ecotoxicity. The indiscriminate usage followed by improper disposal of unused antibacterials, antivirals, antimalarials, immunomodulators, angiotensin II receptor blockers, corticosteroids, anthelmintics, anticoagulants etc. can lead us to an unimaginable ecotoxicity in the long run. A series of studies already identified active pharmaceutical ingredients (APIs) of the mentioned therapeutic classes and their metabolites in aquatic bodies as well as in wastewater treatment plants. Therefore, an initial ecotoxicity assessment of the majorly used pharmaceuticals is utmost requirement of the present time. The present in silico risk assessment study is focused on the aquatic toxicity prediction of 81 pharmaceuticals where 77 are most-used pharmaceuticals for COVID-19 throughout the world based on the literature along with one drug nirmatrelvir [PF-07321332] approved for emergency use by US-FDA and three other molecules under clinical trial. The ecotoxicity of the studied compounds were predicted based on the three aquatic species fish, algae and crustaceans employing the highest quality QSAR models available from the literature as well as using ECOSAR and QSAR Toolbox. To compare the toxicity thresholds, we have also used 4 control pharmaceuticals based on the worldwide occurrence from river, lake, STP, WWTPs, influent and effluent followed by high reported aquatic toxicity over the years as per the literature. Based on the statistical comparison, we have proposed top 3 pharmaceuticals used for the COVID-19 most toxic to the aquatic environment. The study will provide confident predictions of aquatic ecotoxicity data related to abundant use of COVID-19 drugs. The major aim of the study is to fill up the aquatic ecotoxicity data gap of major medications used for COVID-19.
Collapse
Affiliation(s)
- Kabiruddin Khan
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ 07083, USA.
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India.
| |
Collapse
|
49
|
The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir. mBio 2023; 14:e0281522. [PMID: 36625640 PMCID: PMC9973015 DOI: 10.1128/mbio.02815-22] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.
Collapse
|
50
|
Jochmans D, Liu C, Donckers K, Stoycheva A, Boland S, Stevens SK, De Vita C, Vanmechelen B, Maes P, Trüeb B, Ebert N, Thiel V, De Jonghe S, Vangeel L, Bardiot D, Jekle A, Blatt LM, Beigelman L, Symons JA, Raboisson P, Chaltin P, Marchand A, Neyts J, Deval J, Vandyck K. The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir. mBio 2023. [PMID: 36625640 DOI: 10.1101/2022.06.07.495116] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.
Collapse
Affiliation(s)
- Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | - Cheng Liu
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Kim Donckers
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | | | | | - Sarah K Stevens
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Chloe De Vita
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Bettina Trüeb
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | | | - Andreas Jekle
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | | | - Julian A Symons
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | - Patrick Chaltin
- CISTIM Leuven vzw, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), KU Leuven, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Jerome Deval
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | |
Collapse
|