1
|
Winsor NJ, Tsang DK, Ranger A, Singh O, Goyal S, Philpott DJ, Girardin SE. The IL-18 receptor is expressed on murine small-intestinal enterochromaffin cells and executes a recovery program upon injury. Proc Natl Acad Sci U S A 2025; 122:e2417149122. [PMID: 40424129 DOI: 10.1073/pnas.2417149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Upon injury, epithelial-derived IL-18 is released and induces an inflammatory response in underlying IL18R1+ lamina propria cells. Notably, Il18r1 is also predicted to be expressed and functional in intestinal epithelial cells (IECs), since epithelial IL18R1 deficiency contributes to worsened outcomes upon inflammatory challenge. However, the nature of Il18r1+ IECs, and their subsequent role in epithelial-intrinsic IL-18 signaling is poorly characterized. Here, we show that, in the murine small intestine, the IL-18 receptor is expressed by rare IECs that we identified to be a subset of enterochromaffin cells (ECC). While these cells are the major producers of serotonin in the intestine, we found no evidence that IL-18 regulated serotonin metabolism or release. Rather, upon radiation-induced injury, Il18r1+ cells appeared in the crypt base and took on a revival stem cell (revSC) program, marked by mixed expression of YAP/TAZ and enteroendocrine genes signatures. Functionally, irradiated Il18-/- mice display reduced epithelial proliferation and altered differentiation in the small intestine, characterized by increased Paneth cells (PC) and elevated Wnt3 levels, which was partially recapitulated in Il18-/- ileal organoids. In sum, we identified an Il18r1+ population in the epithelium and revealed a role for IEC-intrinsic IL-18 signaling during injury.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Derek K Tsang
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| | - Adrienne Ranger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Shawn Goyal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Sato S, Hasan AU, Obara M, Kondo Y, Taira E. Long-term consumption of moderate amounts of sucrose-sweetened drinks disrupts intestinal barrier function by impairing goblet cell differentiation. Cell Tissue Res 2025; 400:273-285. [PMID: 40072586 DOI: 10.1007/s00441-025-03961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
While the prolonged consumption of sucrose-containing beverages is known to impact many organs, their specific effects on the small intestine remain elusive. This study aimed to evaluate how regular intake of sucrose, in amounts typically consumed, affects goblet cells, which play a critical role in regulating the mucosal barrier and innate immune defenses in the small intestine. Ten-week-old male ddY mice, a model of diet-induced obesity, were given a regular diet with either plain water or 7% sucrose water. Caloric intake was monitored weekly through food and drink measurements. After 8 weeks, glucose and insulin responses were evaluated following an oral gavage of glucose or sucrose. At 14 weeks, plasma, whole small intestine, and liver samples were collected. Despite achieving an isocaloric state, mice drinking sucrose water showed approximately a 1.5-fold increase in body weight and impaired glucose tolerance. In the small intestine, genes involved in sucrose digestion and absorption (Sis, Sglt1, Glut2, and Glut5) were upregulated, while genes essential for maintaining the intestinal barrier and function (Epcam, Fabp2, Cldn1, Ocln, and Tjp1) were downregulated. Serum levels and mRNA expression of the inflammatory cytokine, interleukin-18 were elevated. Genes responsible for goblet cell differentiation and function (Hes1, Gfi1, Spdef, and Klf4) were downregulated, leading to an increase in immature goblet cells and a decrease in mucin-producing markers (Muc2, Muc4, and Muc13) in the jejunum. The findings underscore that besides obesity, long-term intake of sucrose-containing drinks provokes localized inflammation and disrupts small intestinal barrier function by impairing goblet cell differentiation and activity.
Collapse
Affiliation(s)
- Sachiko Sato
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Arif U Hasan
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan.
| | - Mami Obara
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yukiko Kondo
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Eiichi Taira
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
3
|
Zhang X, Chen W, Zhang H, Li Y, Han Y, Liu W, Liu Y, Wang X, Zhang X, Tian D, Wang X. Effects of Vibrio alginolyticus on intestinal health and intestinal flora of sea urchin (Strongylocentrotus intermedius). Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111099. [PMID: 40250796 DOI: 10.1016/j.cbpb.2025.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The aim of this study was to understand the effect of Vibrio alginolyticus on the intestinal tract of Strongylocentrotus intermedius. The effects of injecting V. alginolyticus into the body cavity via the perioral membrane at concentrations of 0 CFU/mL (C), 1.5 × 107 CFU/mL (VA1), and 1.5 × 108 CFU/mL (VA10) on the intestinal tract of S. intermedius were analyzed using histological examination, immunoenzyme activity, and 16S rRNA sequencing. The results showed that V. alginolyticus caused intestinal tissue damage and oxidative stress (e.g. altered levels of superoxide dismutase). In addition, the intestinal flora was altered. At the phylum level, the abundance of Bacteroidota was significantly decreased in the VA10 group, at the genus level, Vibrio spp. exhibited a significant increase following V. alginolyticus injection. Prediction of Kyoto Encyclopedia of Genes and Genomes function in the intestinal flora revealed that high concentrations of V. alginolyticus may have induced pathways such as energy metabolism. These results indicated that V. alginolyticus caused lesions in the intestinal morphology of S. intermedius and disrupted the balance of intestinal flora.
Collapse
Affiliation(s)
- Xiaochen Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Wei Chen
- Yantai Marine Economic Research Institute, Yantai, Shandong 264003, China
| | - Haoyu Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yan Li
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China.
| | - Wan Liu
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xiaona Wang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Xuekai Zhang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China
| | - Deyang Tian
- Laizhou LiYang Aquatic Development Co., Ltd., Yantai 261441, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
4
|
Bruce JK, Li LY, Tang Y, Forster E, Winsor NJ, Bi PY, Krustev C, Keely S, Lee JE, Rohde JR, Gaisano HY, Philpott DJ, Girardin SE. Gasdermin-D pores induce an inactivating caspase-4 cleavage that limits IL-18 production in the intestinal epithelium. Commun Biol 2025; 8:737. [PMID: 40355718 PMCID: PMC12069520 DOI: 10.1038/s42003-025-08183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Intestinal epithelial-derived IL-18 is critical for homeostatic intestinal barrier function and is secreted through Gasdermin D (GSDMD) pores. Inflammasome activation is a prerequisite for both IL-18 maturation and GSDMD pore formation. However, GSDMD pores also cause pyroptotic cell death, which could be detrimental to the intestinal epithelial barrier. How epithelial cells balance the need to secrete IL-18 and to maintain barrier integrity remains poorly understood. In human intestinal epithelial cell lines and in primary human epithelial intestinal organoids, but not in immune cells, GSDMD plasma membrane pore formation by LPS electroporation and by gram-negative bacterial infection induced a non-conventional p37 caspase-4 fragment that was associated with reduced levels of mature IL-18. By contrast, limiting GSDMD plasma membrane pores pharmacologically and via point-mutagenesis prevented caspase-4 cleavage and increased IL-18 production, suggesting that p37 caspase-4 cleavage may regulate IL-18 maturation in the intestinal epithelium. In support, co-expression of caspase-4 cleavage mutants and IL-18 in HEK293T cells revealed that non-cleavable caspase-4 produced more mature IL-18 than cleaved caspase-4. Overall, these studies suggest that epithelial inflammasomes encode feedback pathways that control the balance between cytokine secretion and cell death. This may be an important mechanism to ensure homeostatic IL-18 production in the intestinal epithelium.
Collapse
Affiliation(s)
- J K Bruce
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - L Y Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Y Tang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - E Forster
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - N J Winsor
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - P Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - C Krustev
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - S Keely
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - J E Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - J R Rohde
- Department of Microbiology and Immunology Dalhousie University, Halifax, NS, Canada
| | - H Y Gaisano
- Department of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - D J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - S E Girardin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Iborra I, Bartolí R, Ardèvol A, Torner M, Bermúdez-Ramos M, Bargalló A, Masnou H, Morillas RM. Xyloglucan protects the intestinal barrier and reduces bacterial translocation in experimental cirrhosis - A promising non-antibiotic strategy. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2025. [PMID: 40353428 DOI: 10.17235/reed.2025.11236/2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
BACKGROUND Cirrhosis alters the intestinal barrier, increasing permeability and promoting bacterial translocation (BT). Norfloxacin is currently the only effective strategy to reduce BT, but the rise of multidrug-resistant bacteria highlights the need for new approaches. AIMS To evaluate the effect of xyloglucan, alone or with norfloxacin, on the intestinal barrier in cirrhotic rats with ascites. METHODS Decompensated cirrhosis with ascites was induced in 32 rats using CCl4. They were then administered xyloglucan (XG), norfloxacin (NF), xyloglucan+norfloxacin (XG+NF), or water (control) for one week. Parameters measured included BT incidence, endotoxemia, IFN-, IL-23, PV1/CD34 ratio, occludin and liver histology. RESULTS BT incidence was lower in all treatment groups (XG, NF, XG+NF) compared to controls, and significantly so in NF and XG+NF. Endotoxemia was reduced significantly in all treatment groups compared to controls, with values correlating significantly with BT incidence, occludin expression, IFN- levels, IL-23 levels, and PV1/CD34 ratio. There were no differences in IL-23 levels, but all treatment groups exhibited a decrease in IFN-, which was significant in the NF and XG+NF groups. All treatment groups showed significant increases in occludin levels and decreases in PV1/CD34 ratio compared to controls. All groups showed similar histological signs of cirrhosis. CONCLUSIONS Xyloglucan reduces intestinal mucosal inflammation, improves mucosal integrity and vascular permeability, and reduces endotoxemia and BT incidence. Xyloglucan alone showed similar results to norfloxacin; however, combining xyloglucan with norfloxacin does not provide additional benefits. These findings support evaluating xyloglucan as a new therapeutic strategy to prevent infections in cirrhosis.
Collapse
Affiliation(s)
- Ignacio Iborra
- Gastroenterology, Hepatology Unit, Hospital Universitario Germans Trias i Pujol , España
| | | | - Alba Ardèvol
- Gastroenterology, Hepatology Unit, Hospital Universitario Germans Trias i Pujol
| | - Maria Torner
- Gastroenterology, Hepatology Unit, Hospital Universitario Germans Trias i Pujol
| | - María Bermúdez-Ramos
- Hepatology Unit, Gastroenterology Department. Germans Trias i Pujol University Hospital, Badalona, S
| | - Ana Bargalló
- Gastroenterology, Digestive Endoscopy Unit, EndosMedicina. Clínica Diagonal, EPAÑA
| | - Helena Masnou
- Gastroenterology, Hospital Universitario Germans Trias i Pujol
| | - Rosa M Morillas
- Gastroenterology, Hepatology Unit, Hospital Universitario Germans Trias i Pujol
| |
Collapse
|
6
|
Zhu C, Chen J, Yan Z, Wang F, Sun Z, Liu Z, Li Y, Chen X, Bao Z, Li Q, Chen Z. IL-22 Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Epithelial Cell Apoptosis Associated with STAT3 Signalling. J Inflamm Res 2025; 18:5383-5398. [PMID: 40291457 PMCID: PMC12024478 DOI: 10.2147/jir.s496387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose Sepsis is a critical condition characterized by organ dysfunction due to an aberrant response to infection, which results in a life-threatening situation. The lung, which is the most vulnerable target organ, is often severely damaged during sepsis. Research has demonstrated that interleukin-22 (IL-22), which is secreted by various immunocytes, can mitigate inflammation-associated diseases. Nevertheless, the precise function of IL-22 in sepsis-induced acute lung injury (SALI) is still unclear. This study aimed to investigate the therapeutic efficacy of IL-22 in sepsis and explore the regulatory mechanisms involved. Methods A mouse caecal ligation and puncture (CLP) model of sepsis was established, and the effect of IL-22 was investigated as indicated. Immunohistochemistry, qRT‒PCR, ELISA, immunofluorescence, TUNEL, Western blotting, and flow cytometry assays were applied to investigate the protective efficacy and involved pathways. Additionally, an in vitro model of lipopolysaccharide (LPS)-induced bronchial epithelial cell (BEAS-2B) apoptosis was established, and these cells were treated with or without recombinant IL-22 (rIL-22) to further evaluate the effect of IL-22 and the underlying mechanism. Results The experimental results clearly confirmed that the levels of IL-22 were increased in the serum and lung tissue after CLP. The administration of rIL-22 was observed to increase the survival rate of septic mice. Notably, rIL-22 treatment resulted in decreased levels of proteins and a decreased cell number in the bronchoalveolar lavage fluid, as well as in a reduction in inflammatory cytokine release into the serum. Importantly, rIL-22 mitigated SALI by inhibiting lung cell apoptosis in septic mice. Furthermore, the results revealed that rIL-22 attenuated apoptosis of lung epithelial cells via the activation of the STAT3 signalling pathway. Conclusion The results of this study suggest that IL-22 alleviates lung epithelial cell apoptosis to protect mice against SALI in association with the STAT3 signalling pathway, highlighting the potential therapeutic value of IL-22 against sepsis.
Collapse
Affiliation(s)
- Chiying Zhu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
| | - Jiabo Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, School of Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhengzheng Yan
- Laboratory Animal Research Center, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, 523000, People’s Republic of China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, 523059, People’s Republic of China
| | - Ziqi Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, School of Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zeyu Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
| | - Ying Li
- Laboratory Animal Research Center, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, 523000, People’s Republic of China
| | - Xiaona Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Ziwei Bao
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518116, People’s Republic of China
| | - Quan Li
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, School of Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, People’s Republic of China
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People’s Republic of China
- Department of Anesthesiology, School of Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, People’s Republic of China
| |
Collapse
|
7
|
Jiang Z, Li P, Qiu K, Liao Y, Chen X, Xuan J, Wang F, Ma H, Wang Y, Zhu M. Proteus mirabilis exacerbates ulcerative colitis by inhibiting mucin production. Front Microbiol 2025; 16:1556953. [PMID: 40201443 PMCID: PMC11975560 DOI: 10.3389/fmicb.2025.1556953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration in colonic mucosa, accompanied by a defective epithelial barrier. Proteus mirabilis (P. mirabilis) bacterium is a putative intestinal pathogen with invasive ability, yet its role in UC inflammation and gut barrier disruption is unclear. This study aims to investigate its epidemiological presence, pathogenic roles and preventive strategy during UC inflammation. Method P. mirabilis culture and PCR amplification of the P. mirabilis-specific ureR gene were used to detect fecal P. mirabilis and determine its prevalence in UC and control stool specimens. P. mirabilis isolated from UC stool specimens was gavaged into dextran sulfate sodium (DSS)-treated mice. Inflammation and the mucus layer of colons were assessed through histological examination and cytokine quantification. Bacteriophages were screened and used to eliminate P. mirabilis in colitis animals. Results and discussion The fecal P. mirabilis bacteria were detected by PCR amplification of P. mirabilis-specific ureR gene. Of 41 UC patients, 65.9% patients were P. mirabilis positive, which was significantly higher than the controls. Administration of P. mirabilis aggravated DSS-induced colitis symptom and mucosal inflammation in mice. Interestingly, the colonic mucus layer, an essential component of the epithelial barrier, of the animals was dramatically disrupted, which was consistent with the alteration of human UC colon. The disrupted mucus layer was mediated by the down-regulation of IL-18 in intestinal epithelium. Importantly, a bacteriophage cocktail targeting P. mirabilis could restore the mucus barrier and alleviate the enteric inflammation. Thus, our results suggest that P. mirabilis is a UC pathobiont bacterium, which exacerbates the severity of UC inflammation owing to down-regulation of mucin production and IL-18 expression. Bacteriophage-mediated elimination of P. mirabilis may be effective in limiting UC inflammation.
Collapse
Affiliation(s)
- Zhihui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Pengpeng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Kehui Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Yang Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Ji Xuan
- Department of Gastroenterology, Jinling Hospital, The Medical School of Nanjing University, Nanjing, China
| | - Fangyu Wang
- Department of Gastroenterology, Jinling Hospital, The Medical School of Nanjing University, Nanjing, China
| | - Hongfeng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
- Department of Rehabilitation Medicine, Huzhou Rehabilitation Hospital, Huzhou, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| | - Minsheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Suqian Scientific Research Institute of Nanjing University Medical School, Gulou Hospital of the Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Chen Y, Chen X, Lin S, Huang S, Li L, Hong M, Li J, Ma L, Ma J. Effects of psychological stress on inflammatory bowel disease via affecting the microbiota-gut-brain axis. Chin Med J (Engl) 2025; 138:664-677. [PMID: 39965932 PMCID: PMC11925421 DOI: 10.1097/cm9.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 02/20/2025] Open
Abstract
ABSTRACT Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory condition with chronic and relapsing manifestations and is characterized by a disturbance in the interplay between the intestinal microbiota, the gut, and the brain. The microbiota-gut-brain axis involves interactions among the nervous system, the neuroendocrine system, the gut microbiota, and the host immune system. Increasing published data indicate that psychological stress exacerbates the severity of IBD due to its negative effects on the microbiota-gut-brain axis, including alterations in the stress response of the hypothalamic-pituitary-adrenal (HPA) axis, the balance between the sympathetic nervous system and vagus nerves, the homeostasis of the intestinal flora and metabolites, and normal intestinal immunity and permeability. Although the current evidence is insufficient, psychotropic agents, psychotherapies, and interventions targeting the microbiota-gut-brain axis show the potential to improve symptoms and quality of life in IBD patients. Therefore, further studies that translate recent findings into therapeutic approaches that improve both physical and psychological well-being are needed.
Collapse
Affiliation(s)
- Yuhan Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiaofen Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Suqin Lin
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengjun Huang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijuan Li
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingzhi Hong
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianzhou Li
- Department of Diagnosis and Treatment Center of High Altitude Digestive Disease, The Second People’s Hospital of Xining, Xining, Qinghai 810003, China
| | - Lili Ma
- Department of Gastroenterology and Hepatology, Qinghai Provincial People’s Hospital, Xining, Qinghai 810007, China
| | - Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Department of Diagnosis and Treatment Center of High Altitude Digestive Disease, The Second People’s Hospital of Xining, Xining, Qinghai 810003, China
| |
Collapse
|
9
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
10
|
Tshikudi DM, Hutchison H, Ghia JE. Pancreastatin Inhibition Alters the Colonic Epithelial Cells Profile in a Sex-Dependent Manner. Int J Mol Sci 2024; 25:12757. [PMID: 39684467 DOI: 10.3390/ijms252312757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The impaired mucosal barrier is a hallmark of ulcerative colitis (UC), an inflammatory colonic disorder with epidemiological and pathophysiology sex bias. UC Patients overexpress the colonic epithelial cells (CECs)-derived peptide pancreastatin (PST). Pancreastatin inhibitor 8 (PSTi8), an inhibitor of PST, has shown promising anti-inflammatory effects on UC. However, no data exist in the context of CEC barrier function and integrity. We investigated the impact of PSTi8 treatment on CECs in homeostatic and colitic conditions. PSTi8 (2.5 mg/mL/kg, i.r.) or PBS treatment started one day before colitis induction (5% dextran sodium sulfate for five days) in male and female C57BL/6 mice. The disease activity score was assessed daily. Epithelial-associated cytokines, markers specific to differentiation, proliferation, differentiated CECs, stem cells, CECs regulators, and the PSTi8 G-protein coupled receptor 78 (GPR78) signaling pathway, were evaluated using ELISA, immunofluorescence and qRT-PCR. PSTi8 treatment reduced the epithelial-associated cytokines and differentiated CECs while promoting CEC proliferation and self-renewal in females at a steady state through the GRP78 signaling pathway. PSTi8 treatment exacerbated colitis severity and increased CEC differentiation while reducing proliferation in colitic females. Conversely, PSTi8 treatment reduced males' susceptibility to colitis by preserving stem cells and differentiated CECs. PST regulated colonic mucosal maintenance in a sex- and disease-dependent manner.
Collapse
Affiliation(s)
- Diane M Tshikudi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hannah Hutchison
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jean-Eric Ghia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| |
Collapse
|
11
|
Gofron K, Berezowski A, Gofron M, Borówka M, Dziedzic M, Kazimierczak W, Kwiatkowski M, Gofron M, Nowaczyk Z, Małgorzewicz S. Akkermansia muciniphila - impact on the cardiovascular risk, the intestine inflammation and obesity. Acta Biochim Pol 2024; 71:13550. [PMID: 39611203 PMCID: PMC11602308 DOI: 10.3389/abp.2024.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Contemporary scientific discussions are increasingly focusing on Akkermansia muciniphila due to its complex influence on intestinal physiology. This article provides a comprehensive analysis of the various effects Akkermansia muciniphila has on intestinal inflammation, while also exploring its potential associations with obesity and cardiovascular diseases. A systematic literature search was conducted using PubMed, Google Scholar, and ResearchGate with the following keywords: Akkermansia muciniphila, obesity, cardiovascular risk, and inflammatory bowel diseases. The aim of our mini-review was to examine the impact of Akkermansia bacteria on the intestines, cardiovascular system, and its relationship with obesity. Through a detailed review of current literature, the article seeks to elucidate the complex interactions of Akkermansia muciniphila within the human body, highlighting its potential contributions to health improvement and medical interventions. Research indicates that Akkermansia muciniphila positively correlates with maintaining intestinal health, modulating the cardiovascular system, and aiding in weight management. However, the number of studies available is small, and the effects of Akkermansia muciniphila on human health require further research.
Collapse
Affiliation(s)
- Krzysztof Gofron
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Berezowski
- Department of Urology and Kidney Transplantation, Nikolay Pirogov Provincial Specialist Hospital, Łódź, Poland
| | - Maksymilian Gofron
- Urology Department, Municipal Teaching Hospital in Częstochowa, Częstochowa, Poland
| | - Małgorzata Borówka
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical University of Łódź, Łódź, Poland
| | - Michał Dziedzic
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Kazimierczak
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kwiatkowski
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warszawa, Poland
| | - Maria Gofron
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Nowaczyk
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Zhang X, Li Y, Liu W, Zhang H, Han Y, Liu Y, Wang X. Preliminary investigation on the effect of Vibrio splendidus stimulation on the intestinal flora of Strongylocentrotus intermedius. Biochem Biophys Res Commun 2024; 730:150389. [PMID: 39003864 DOI: 10.1016/j.bbrc.2024.150389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
To better understand the effect of Vibrio splendidus infection on Strongylocentrotus intermedius, 16S rRNA sequencing was carried out to investigate the intestinal flora of S. intermedius stimulated by 0 CFU/mL (Con), 1.5 × 107 CFU/mL (Vib1) and 1.5 × 108 CFU/mL (Vib2) concentrations of V. splendidus. The results showed that there was significant difference in intestinal flora diversity between Con group and Vib1 group, but no significant difference between Con group and Vib2 group. However, there were significant differences in the composition of intestinal flora among all groups. Bacteroidota, Proteobacteria and Firmicutes were the dominant phylum in the Con group. The abundance of Bacteroidota and Firmicutes decreased and Proteobacteria increased in Vib1 and Vib2 groups. The relative abundance of the potential probiotic bacteria Muribaculaceae and Alloprevotella was significantly lower in the Vib1 and Vib2 groups. In addition, the opportunistic pathogen Desulfovibrio was found in Vib1 and Vib2 groups. It is evident that V. splendidus infection not only alters the composition of the microbial community in the intestinal tract of S. intermedius, but may also lead to the production of opportunistic pathogens, which could be potentially harmful to the health of S. intermedius. The results of this study provide a foundation for exploring the diseases caused by V. splendidus stimulation leading to an imbalance in the intestinal flora of S. intermedius, and contribute to our further understanding of the role of Vibrio on the health of S. intermedius.
Collapse
Affiliation(s)
- Xiaochen Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Wan Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Haoyu Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
14
|
Diniz-Lima I, Gomes A, Medeiros M, Guimarães-de-Oliveira JC, Ferreira-dos-Santos IM, Barbosa da Silva-Junior E, Morrot A, Nascimento DO, Freire-de-Lima L, de Brito-Gitirana L, Cruz FF, Decote-Ricardo D, Leonel de Matos Guedes H, Freire-de-Lima CG. IL-22 and IL-23 regulate the anticryptococcal response during Cryptococcus deuterogattii infection. iScience 2024; 27:111054. [PMID: 39635124 PMCID: PMC11615251 DOI: 10.1016/j.isci.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
Cryptococcosis is a neglected fungal disease that causes many deaths annually, is primarily caused by Cryptococcus neoformans and Cryptococcus gattii species. They are environmental fungus that engages lung pneumonia and a severe systemic infection. The rising incidence of affected immunocompetent hosts, particularly by the aggressive Cryptococcus deuterogattii (R265), underscores the urgency to understand factors influencing its dissemination. The immunopathogenesis of R265 infection is incompletely understood. Therefore, we investigate the role of IL-22 and IL-23 cytokines during R265 cryptocococcosis. Our findings highlight the crucial role of IL-22 and IL-23 cytokines in lung barrier homeostasis, preventing excessive lung damage. IL-22 not only prevents neutrophil infiltration and IL-17A production but also facilitates eosinophil lung infiltration. Ultimately, this study contributes vital insights into the selective role of IL-22 and IL-23 cytokines in immune activation and tissue regulation during the aggressive R265 lung and systemic infection.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Ariel Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
| | - Mayck Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | | | | | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- School of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| |
Collapse
|
15
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
16
|
Kazemifard N, Golestani N, Jahankhani K, Farmani M, Ghavami SB. Ulcerative colitis: the healing power of macrophages. Tissue Barriers 2024:2390218. [PMID: 39127887 DOI: 10.1080/21688370.2024.2390218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and debilitating disorder that falls under the broad category of inflammatory bowel disease (IBD). Therefore, affects the colon and rectum, resulting in inflammation and ulcers in the lining of these organs. Over the years, there has been a significant shift in the management of UC. The focus has moved from achieving symptom-free daily living to attaining mucosal healing. Mucosal healing means completely restoring the colon and rectum's lining, significantly reducing the risk of complications and relapse. Macrophages are a crucial component of the immune system that play a vital role in the regeneration and repair of colonic ulcers. These immune cells are responsible for production of a variety of cytokines and growth factors that facilitate tissue repair. Macrophages are responsible for maintaining a balance between inflammation and healing. When this balance is disrupted, it can lead to chronic inflammation and tissue damage, exacerbating UC symptoms. Thus, this review aims to investigate the contribution of macrophages to mucosal repair and remission maintenance in UC patients.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Farmani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ikegami S, Maeda K, Urano T, Mu J, Nakamura M, Yamamura T, Sawada T, Ishikawa E, Yamamoto K, Muto H, Oishi A, Iida T, Mizutani Y, Ishikawa T, Kakushima N, Furukawa K, Ohno E, Honda T, Ishigami M, Kawashima H. Monoclonal Antibody Against Mature Interleukin-18 Ameliorates Colitis in Mice and Improves Epithelial Barrier Function. Inflamm Bowel Dis 2024; 30:1353-1366. [PMID: 38141180 DOI: 10.1093/ibd/izad292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 12/25/2023]
Abstract
BACKGROUND Antitumor necrosis factor (TNF)-α antibodies have improved the outcome of inflammatory bowel disease (IBD); but half of patients remain unresponsive to treatment. Interleukin-18 (IL-18) gene polymorphism is associated with resistance to anti-TNF-α antibodies, but therapies targeting IL-18 have not been clinically applied. Only the mature protein is biologically active, and we aimed to investigate whether specific inhibition of mature IL-18 using a monoclonal antibody (mAb) against a neoepitope of caspase-cleaved mature IL-18 could be an innovative treatment for IBD. METHODS The expression of precursor and mature IL-18 in patients with UC was examined. Colitis was induced in C57/BL6 mice by administering dextran sulfate sodium (DSS), followed by injection with anti-IL-18 neoepitope mAb. Colon tissues were collected and subjected to histological analysis, immunohistochemistry, immunoblotting, and quantitative polymerase chain reaction. Colon epithelial permeability and microbiota composition were analyzed. RESULTS Mature IL-18 expression was elevated in colon tissues of patients with active ulcerative colitis. Administration of anti-IL-18 neoepitope mAb ameliorated acute and chronic DSS-induced colitis; reduced interferon-γ, TNF-α, and chemokine (CXC motif) ligand-2 production and epithelial cell permeability; promoted goblet cell function; and altered the intestinal microbiome composition. The suppressive effect of anti-IL-18 neoepitope mAb was superior to that of anti-whole IL-18 mAb. Furthermore, combination therapy with anti-TNF-α Ab suppressed acute and chronic colitis additively by suppressing cytokine expressions and reducing cell permeability by upregulating claudin1 and occludin expression. CONCLUSIONS Anti-IL-18 neoepitope mAb ameliorates acute and chronic colitis, suggesting that this mAb will be an innovative therapeutic option for IBD.
Collapse
Affiliation(s)
- Shuji Ikegami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
- mAbProtein Co. Ltd., Izumo 693-8501, Japan
| | - Jingxi Mu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akina Oishi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
18
|
Corbin A, Aromolaran KA, Aromolaran AS. STAT4 Mediates IL-6 Trans-Signaling Arrhythmias in High Fat Diet Guinea Pig Heart. Int J Mol Sci 2024; 25:7813. [PMID: 39063055 PMCID: PMC11277091 DOI: 10.3390/ijms25147813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a major risk factor for the development of life-threatening malignant ventricular tachyarrhythmias (VT) and sudden cardiac death (SCD). Risks may be highest for patients with high levels of the proinflammatory cytokine interleukin (IL)-6. We used our guinea pig model of high-fat diet (HFD)-induced arrhythmias that exhibit a heightened proinflammatory-like pathology, which is also observed in human obesity arrhythmias, as well as immunofluorescence and confocal microscopy approaches to evaluate the pathological IL-6 trans-signaling function and explore the underlying mechanisms. Using blind-stick and electrocardiogram (ECG) techniques, we tested the hypothesis that heightened IL-6 trans-signaling would exhibit increased ventricular arrhythmia/SCD incidence and underlying arrhythmia substrates. Remarkably, compared to low-fat diet (LFD)-fed controls, HFD promoted phosphorylation of the IL-6 signal transducer and activator of transcription 4 (STAT4), leading to its activation and enhanced nuclear translocation of pSTAT4/STAT4 compared to LFD controls and pSTAT3/STAT3 nuclear expression. Overactivation of IL-6 trans-signaling in guinea pigs prolonged the QT interval, which resulted in greater susceptibility to arrhythmias/SCD with isoproterenol challenge, as also observed with the downstream Janus kinase (JAK) 2 activator. These findings may have potentially profound implications for more effective arrhythmia therapy in the vulnerable obese patient population.
Collapse
Affiliation(s)
- Andrea Corbin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (A.C.); (K.A.A.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (A.C.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (A.C.); (K.A.A.)
- Department of Biomedical Engineering, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
19
|
Mu J, Maeda K, Ohashi A, Urano T, Nariai Y, Kamino H, Nakamura M, Yamamura T, Sawada T, Ishikawa E, Murate K, Yamamoto K, Hirose T, Furukawa K, Fujishiro M, Kawashima H. Monoclonal Antibodies Against Mature Interleukin-18 Ameliorate Colitis and Repair Goblet Cell Function. Dig Dis Sci 2024; 69:2573-2585. [PMID: 38713271 PMCID: PMC11258180 DOI: 10.1007/s10620-024-08453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Numerous biological interventions and small molecules are used to treat Crohn's disease; however, the effectiveness of these treatments varies largely. Non-responsiveness to biological therapies is associated with interleukin (IL)-18 gene polymorphisms and high IL-18 expression has been implicated in the pathogenesis of Crohn's disease. AIMS The aim of this study was to elucidate the expression of precursor and mature IL-18 in patients with Crohn's disease who exhibited varied responses to cytokine-targeted treatments and determine whether selective inhibition of mature IL-18 offers a novel therapeutic avenue. METHODS We generated a monoclonal antibody that specifically recognizes the neoepitope of caspase-cleaved mature IL-18. Expression of precursor and mature IL-18 was analyzed in patients with Crohn's disease. Anti-mature IL-18 monoclonal antibodies were intraperitoneally administered in an acute colitis mouse model, and the disease activity index, body weight loss, tissue pathology, proinflammatory cytokine expression, goblet cell function, and microbiota composition were assessed. RESULTS Precursor and mature IL-18 expression was upregulated and goblet cell function was impaired in patients with Crohn's disease who were unresponsive to biological therapies. Administration of anti-mature IL-18 antibodies ameliorated induced colitis by repairing goblet cell function and restoring the mucus layer. CONCLUSIONS The newly developed monoclonal antibody holds promise as a therapeutic alternative for Crohn's disease.
Collapse
Affiliation(s)
- Jingxi Mu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Ayako Ohashi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan
- mAbProtein Co. Ltd, Izumo, 693-8501, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, 693-8501, Japan
| | - Yuko Nariai
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, 693-8501, Japan
| | - Hiroki Kamino
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, 693-8501, Japan
| | - Masanao Nakamura
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kentaro Murate
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Takashi Hirose
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
20
|
Yin Q, Ni J, Ying J. Potential mechanisms and targeting strategies of the gut microbiota in antitumor immunity and immunotherapy. Immun Inflamm Dis 2024; 12:e1263. [PMID: 39031507 PMCID: PMC11259004 DOI: 10.1002/iid3.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Immunotherapies, notably immune checkpoints inhibitors that target programmed death 1/programmed death ligand 1(PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), had profoundly changed the way advanced and metastatic cancers are treated and dramatically improved overall and progression-free survival. AIMS This review article aimed to explore the underlying molecular mechanisms by which the gut microbiota affects antitumor immunity and the efficacy of cancer immunotherapy. METHODS We summarized the latest knowledge supporting the associations among the gut microbiota, antitumor immunity, and immunotherapy. Moreover, we disscussed the therapeutic strategy for improving immunotherapy efficacy by modulating gut microbiota in cancer treatment. RESULTS The potential molecular mechanisms underlying these associations are explained in terms of four aspects: immunomodulation, molecular mimicry, mamps, and microbial metabolites. CONCLUSION The gut microbiota significantly impacts antitumor immunity and alters the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Yin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital)HangzhouZhejiangChina
| | - Jiao‐jiao Ni
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jie‐er Ying
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
21
|
Sun H, Shu J, Tang J, Li Y, Qiu J, Ding Z, Xuan B, Chen M, Gan C, Lin J, Qiu J, Sheng H, Wang C. GLP-1 receptor agonists alleviate colonic inflammation by modulating intestinal microbiota and the function of group 3 innate lymphoid cells. Immunology 2024; 172:451-468. [PMID: 38544428 DOI: 10.1111/imm.13784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 02/08/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), which are drugs used for treating type 2 diabetes, have been reported to exert anti-inflammatory effects on inflammatory bowel disease (IBD), the mechanism of which remains elusive. Here, we report that GLP-1RAs ameliorate dextran sulfate sodium (DSS)-induced colitis in both wild-type and T/B-cell-deficient mice through modulating group 3 innate lymphoid cells (ILC3s), a subset of innate lymphoid cells that regulate intestinal immunity. GLP-1RAs promote IL-22 production by ILC3, and the protective effect of GLP-1RAs on DSS-induced colitis was abrogated in ILC3-deficient RORgtgfp/gfp mice. Furthermore, the treatment effect of GLP-RAs on colitis, as well as the generation of IL-22-producing ILC3s by GLP-RAs, is dependent on the gut microbiota. GLP-1RAs increase the abundance of Firmicutes and Proteobacteria in the gut, particularly beneficial bacteria such as Lactobacillus reuteri, and decrease the abundance of enteropathogenic Staphylococcus bacteria. The untargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) of faecal metabolites further revealed enrichment of N,N-dimethylsphingosine (DMS), an endogenous metabolite derived from sphingosine, in the GLP-1RA-treated group. Strikingly, DMS ameliorates colitis while promoting intestinal IL-22-producing ILC3s. Taken together, our findings show that GLP-1RAs exert a therapeutic effect on colitis possibly by regulating the microbiota-DMS-IL-22+ILC3 axis, highlighting the potential beneficial role of GLP-RAs in inflammatory intestinal disorders with diabetes complications.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shu
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jupei Tang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Li
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyun Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Binbin Xuan
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Chen
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxin Gan
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Ye Q, Huang S, Wang Y, Chen S, Yang H, Tan W, Wu Z, Wang A, Chen Y. Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155425. [PMID: 38518634 DOI: 10.1016/j.phymed.2024.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Collapse
Affiliation(s)
- Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ying Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Weihao Tan
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zaoxuan Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| |
Collapse
|
23
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
24
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
25
|
Maeda K, Kawashima H. Reply: Interleukin-18 Inhibition in Inflammatory Bowel Diseases: A Delicate Balance. Inflamm Bowel Dis 2024; 30:695-696. [PMID: 38442897 DOI: 10.1093/ibd/izae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Affiliation(s)
- Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
26
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
27
|
Wen Y, Zhang T, Zhang B, Wang F, Wei X, Wei Y, Ma X, Tang X. Comprehensive bibliometric and visualized analysis of research on gut-liver axis published from 1998 to 2022. Heliyon 2024; 10:e27819. [PMID: 38496853 PMCID: PMC10944270 DOI: 10.1016/j.heliyon.2024.e27819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.
Collapse
Affiliation(s)
- Yongtian Wen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuxiu Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Tang FL, Xie LW, Tang LF, Lu HY, Zhu RQ, Wang DF, Tian Y, Cai S, Li M. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside) confers protection against ionizing radiation-induced intestinal epithelial injury in vitro and in vivo. Int Immunopharmacol 2024; 129:111637. [PMID: 38335653 DOI: 10.1016/j.intimp.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.
Collapse
Affiliation(s)
- Feng-Ling Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Li-Wei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Lin-Feng Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hai-Yan Lu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Rui-Qiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Gaudino SJ, Singh A, Huang H, Padiadpu J, Jean-Pierre M, Kempen C, Bahadur T, Shiomitsu K, Blumberg R, Shroyer KR, Beyaz S, Shulzhenko N, Morgun A, Kumar P. Intestinal IL-22RA1 signaling regulates intrinsic and systemic lipid and glucose metabolism to alleviate obesity-associated disorders. Nat Commun 2024; 15:1597. [PMID: 38383607 PMCID: PMC10881576 DOI: 10.1038/s41467-024-45568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
IL-22 is critical for ameliorating obesity-induced metabolic disorders. However, it is unknown where IL-22 acts to mediate these outcomes. Here we examine the importance of tissue-specific IL-22RA1 signaling in mediating long-term high fat diet (HFD) driven metabolic disorders. To do so, we generated intestinal epithelium-, liver-, and white adipose tissue (WAT)-specific Il22ra1 knockout and littermate control mice. Intestinal epithelium- and liver-specific IL-22RA1 signaling upregulated systemic glucose metabolism. Intestinal IL-22RA1 signaling also mediated liver and WAT metabolism in a microbiota-dependent manner. We identified an association between Oscillibacter and elevated WAT inflammation, likely induced by Mmp12 expressing macrophages. Mechanistically, transcription of intestinal lipid metabolism genes is regulated by IL-22 and potentially IL-22-induced IL-18. Lastly, we show that Paneth cell-specific IL-22RA1 signaling, in part, mediates systemic glucose metabolism after HFD. Overall, these results elucidate a key role of intestinal epithelium-specific IL-22RA1 signaling in regulating intestinal metabolism and alleviating systemic obesity-associated disorders.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ankita Singh
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Huakang Huang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jyothi Padiadpu
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Makheni Jean-Pierre
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cody Kempen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Tej Bahadur
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kiyoshi Shiomitsu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Richard Blumberg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
30
|
Yao Y, Liu Y, Xu Q, Mao L. Short Chain Fatty Acids: Essential Weapons of Traditional Medicine in Treating Inflammatory Bowel Disease. Molecules 2024; 29:379. [PMID: 38257292 PMCID: PMC10818876 DOI: 10.3390/molecules29020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease, mainly including Crohn's disease (CD) and ulcerative colitis (UC). In recent years, the incidence and prevalence of IBD have been on the rise worldwide and have become a significant concern of health and a huge economic burden on patients. The occurrence and development of IBD involve a variety of pathogenic factors. The changes in short-chain fatty acids (SCFAs) are considered to be an important pathogenic mechanism of this disease. SCFAs are important metabolites in the intestinal microbial environment, which are closely involved in regulating immune, anti-tumor, and anti-inflammatory activities. Changes in metabolite levels can reflect the homeostasis of the intestinal microflora. Recent studies have shown that SCFAs provide energy for host cells and intestinal microflora, shape the intestinal environment, and regulate the immune system, thereby regulating intestinal physiology. SCFAs can effectively reduce the incidence of enteritis, cardiovascular disease, colon cancer, obesity, and diabetes, and also play an important role in maintaining the balance of energy metabolism (mainly glucose metabolism) and improving insulin tolerance. In recent years, many studies have shown that numerous decoctions and natural compounds of traditional Chinese medicine have shown promising therapeutic activities in multiple animal models of colitis and thus attracted increasing attention from scientists in the study of IBD treatment. Some of these traditional Chinese medicines or compounds can effectively alleviate colonic inflammation and clinical symptoms by regulating the generation of SCFAs. This study reviews the effects of various traditional Chinese medicines or bioactive substances on the production of SCFAs and their potential impacts on the severity of colonic inflammation. On this basis, we discussed the mechanism of SCFAs in regulating IBD-associated inflammation, as well as the related regulatory factors and signaling pathways. In addition, we provide our understanding of the limitations of current research and the prospects for future studies on the development of new IBD therapies by targeting SCFAs. This review may widen our understanding of the effect of traditional medicine from the view of SCFAs and their role in alleviating IBD animal models, thus contributing to the studies of IBD researchers.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Qiuyun Xu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| |
Collapse
|
31
|
Ma W, Zou X, Sun X, Wang W, Liu K, He Y, Liu Y, Wang D. Protective effects of sodium humate on the intestinal barrier damage of Salmonella Typhimurium-challenged broilers. Anim Sci J 2024; 95:e14004. [PMID: 39327865 DOI: 10.1111/asj.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Salmonella Typhimurium (S. Typhimurium) infections can lead to severe intestinal damage and reduce growth performance in broilers. Thus, this study examined the potential mitigating impact of sodium humate (HNa) on intestinal barrier damage resulting from S. Typhimurium infection in broilers. A total of 320 1-day-old Arbor Acres broilers were randomly assigned into 5 treatments with 8 replicates. On d 22-24, broilers in the CON group were challenged with 1 ml of PBS, while broilers in the other groups were challenged with 1 ml of 3 × 109 CFU/ml S. Typhimurium, daily. Dietary administration with 4 g/kg of HNa increased (P < 0.05) the final body weight, jejunal secretory immunoglobulin A (sIgA), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) levels as compared with the MOD group broilers. Furthermore, HNa alleviated intestinal barrier damage by increasing villus height (VH), upregulating protein expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1), inhibiting toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway activation, and decreasing the secretion of inflammatory cytokines (P < 0.05). Collectively, the present study showed that HNa mitigated intestinal barrier damage induced by S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Weiming Ma
- College of Veterinary Medicine, Shandong, P. R. China
| | - Xing Zou
- College of Veterinary Medicine, Shandong, P. R. China
| | - Xinyu Sun
- College of Veterinary Medicine, Shandong, P. R. China
| | - Wenzhe Wang
- College of Veterinary Medicine, Shandong, P. R. China
| | - Kexin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yanjun He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Wang
- College of Veterinary Medicine, Shandong, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
32
|
Han X, Allaire JM, Crowley SM, Chan JJ, Lau K, Zhang C, Hirota SA, Bergstrom K, Knodler LA, Vallance BA. Inflammasome activation links enteric Salmonella Typhimurium infection to a rapid, cytokine-dependent increase in intestinal mucin release. Gut Microbes 2024; 16:2413372. [PMID: 39428744 PMCID: PMC11497969 DOI: 10.1080/19490976.2024.2413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
The host restricts Salmonella enterica serovar Typhimurium infection of the gut via inflammasome-dependent sloughing of infected epithelial cells. Here we determined that concurrent caspase 1/11-dependent release of the goblet cell-derived mucin, Muc2, into the intestinal lumen also controls Salmonella burdens in infected mice. The increased release of mucins from goblet cells in the cecum and nearby proximal colon, and the subsequent thickening of the protective mucus barrier layer in the distal colon, were all dependent on the cytokines interleukin (IL)-18 and IL-22, as deficiencies in either cytokine resulted in reduced mucin secretion. Supplementation of IL-18 into IL-22 deficient mice restored mucin secretion, indicating that IL-22 acted upstream of IL-18 secretion during infection. In contrast, IL-18 and IL-22 independent signaling through Nlrp6 underlies only a modest, infection-induced increase in mucin secretion from goblet cells in the distal colon. These findings reveal that inflammasome signaling orchestrates multiple levels of protection centered on the intestinal epithelium, including pyroptosis and expulsion of infected enterocytes, as well as the release of mucins by goblet cells in the cecum and along the length of the colon. Our studies underscore the pivotal, multi-faceted role of inflammasome signaling in promoting host defense at the intestinal mucosal surface.
Collapse
Affiliation(s)
- Xiao Han
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Joannie M. Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J. Chan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly Lau
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Conghao Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon A. Hirota
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kirk Bergstrom
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Leigh A. Knodler
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
34
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
35
|
Schumacher MA. The emerging roles of deep crypt secretory cells in colonic physiology. Am J Physiol Gastrointest Liver Physiol 2023; 325:G493-G500. [PMID: 37697924 PMCID: PMC10887841 DOI: 10.1152/ajpgi.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Deep crypt secretory (DCS) cells are a population of epithelial cells located at the colonic crypt base that share some similarities to Paneth and goblet cells. They were initially defined as c-Kit expressing cells, though subsequent work showed that they are more specifically marked by Reg4 in the murine colon. The best-understood function of DCS cells at present is supporting the stem cell niche by generating Notch and EGF ligands. However, as these cells also express immunoregulatory (e.g., Ccl6) and host defense (e.g., Retnlb) genes, it is likely they have additional functions in maintaining colonic health outside of maintenance of the stem niche. Recent advances in single-cell transcriptomic profiling hint at additional epithelial and immune roles that may exist for these cells and have aided in elucidating their developmental lineage. This review highlights the emerging evidence supporting a crucial role for DCS cells in intestinal physiology, the current understanding of how these cells are regulated, and their potential role(s) in colonic disease.
Collapse
Affiliation(s)
- Michael A Schumacher
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| |
Collapse
|
36
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
37
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Zhou X, Wang L, Wang Z, Zhu P, Chen Y, Yu C, Chen S, Xie Y. Impacts of Eimeria coinfection on growth performance, intestinal health and immune responses of broiler chickens. Vet Parasitol 2023; 322:110019. [PMID: 37666058 DOI: 10.1016/j.vetpar.2023.110019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Coccidiosis caused by Eimeria is one of the most severe chicken diseases and imposes huge economic losses to the poultry industry globally. Multi-Eimeria species coinfections are common with the most prevalent combination being mixtures of Eimeria acervulina and Eimeria tenella. Although detrimental impacts of either E. acervulina or E. tenella on chicken health are well recognized, no information is available regarding their coinfection effects so far. This study was designed to investigate the influence of coinfection with E. acervulina and E. tenella on broiler chickens. 144 one-day-old broiler chickens within each of trials (trial I or II) were divided into four groups, namely, control group (CG), E. acervulina infection group (EAIG), E. tenella infection group (ETIG) and dual (E. acervulina and E. tenella) infection group (DIG). Then, chickens were measured for weight loss, lesion scores, oocyst outputs, histological changes and expressions of pro-inflammatory (interleukin [IL]-6, IL-8 and IL-18), regulatory (IL-10 and IL-22) cytokines and Toll-like receptors (TLR; TLR2 and TLR4) as well as intestinal barrier (mucin 2 [MUC2] and fattey acid-bingding proteins 2 and 6 [FABP2 and FABP6])- and tight junction (TJ; zonula occluden-1 [ZO-1], occludin [OCLN], and claudins 1 and 5 [CLDN1 and CLDN5])-related proteins at 3, 5, 7, 10, 14 and 21 days post-infection, respectively. Our results consistently showed that although ETIG and DIG exhibited a higher level of weight loss and a more amount of oocyst excretion than EAIG, DIG had lighter lesions than EAIG in the early phase because of coinfection with E. tenella. A higher (P < 0.05) ratio of duodenal villous height to crypt depth was also observed in DIG than EAIG. Moreover, histological changes in the duodenum and cecum varied by single and dual Eimeria infections. Expressions of the intestinal barrier- and TJ-related genes of EAIG, ETIG and DIG were significantly (P < 0.05) upregulated but their levels exhibited differential changes among infected chickens. Similarly, the infected chickens showed significant (P < 0.05) inflammatory responses and higher (P < 0.05) expressions of TLRs in the intestines in comparison to CG. These results presented a comprehensive physiological, pathological and immunological characterization of E. acervulina and E. tenella coinfection in broiler chickens and also shed insights into pathogenesis of multi-coccidia coinfections.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lidan Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengchen Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yijun Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu 610065, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
39
|
Kaur H, Kaur G, Ali SA. IL-33's role in the gut immune system: A comprehensive review of its crosstalk and regulation. Life Sci 2023; 327:121868. [PMID: 37330043 DOI: 10.1016/j.lfs.2023.121868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The intestinal tract is the largest immune organ in the human body, comprising a complex network of immune cells and epithelial cells that perform a variety of functions such as nutrient absorption, digestion, and waste excretion. Maintenance of homeostasis and effective responses to injury in the colonic epithelium are crucial for maintaining homeostasis between these two cell types. The onset and perpetuation of gut inflammation, characterizing inflammatory bowel diseases (IBD), are triggered by constitutive dysregulation of cytokine production. IL-33 is a newly characterized cytokine that has emerged as a critical modulator of inflammatory disorders. IL-33 is constitutively expressed in the nuclei of different cell types such as endothelial, epithelial, and fibroblast-like cells. Upon tissue damage or pathogen encounter, IL-33 is released as an alarmin and signals through a heterodimer receptor that consists of serum Stimulation-2 (ST2) and IL-1 receptor accessory protein (IL-1RAcP). IL-33 has the ability to induce Th2 cytokine production and enhance both Th1 and Th2, as well as Th17 immune responses. Exogenous administration of IL-33 in mice caused pathological changes in most mucosal tissues such as the lung and the gastrointestinal (GI) tract associated with increased production of type 2 cytokines and chemokines. In vivo and in vitro, primary studies have exhibited that IL-33 can activate Th2 cells, mast cells, or basophils to produce type 2 cytokines such as IL-4, IL-5, and IL-13. Moreover, several novel cell populations, collectively referred to as "type 2 innate lymphoid cells," were identified as being IL-33 responsive and are thought to be important for initiating type 2 immunity. Nevertheless, the underlying mechanisms by which IL-33 promotes type 2 immunity in the GI tract remain to be fully understood. Recently, it has been discovered that IL-33 plays important roles in regulatory immune responses. Highly suppressive ST2 + FoxP3+ Tregs subsets regulated by IL-33 were identified in several tissues, including lymphoid organs, gut, lung, and adipose tissues. This review aims to comprehensively summarize the current knowledge on IL-33's role in the gut immune system, its crosstalk, and regulation. The article will provide insights into the potential applications of IL-33-based therapies in the treatment of gut inflammatory disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia; Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Wang D, Zheng Y, Fan Y, He Y, Liu K, Deng S, Liu Y. Sodium Humate-Derived Gut Microbiota Ameliorates Intestinal Dysfunction Induced by Salmonella Typhimurium in Mice. Microbiol Spectr 2023; 11:e0534822. [PMID: 37067423 PMCID: PMC10269575 DOI: 10.1128/spectrum.05348-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Salmonella is a foodborne pathogen that is one of the main causes of gastroenteric disease in humans and animals. As a natural organic substance, sodium humate (HNa) possesses antibacterial, antidiarrheal, and anti-inflammatory properties. However, it is unclear whether the HNa and HNa-derived microbiota exert alleviative effects on Salmonella enterica serovar Typhimurium-induced enteritis. We found that treatment with HNa disrupted the cell wall of S. Typhimurium and decreased the virulence gene expression. Next, we explored the effect of HNa presupplementation on S. Typhimurium-induced murine enteritis. The results revealed that HNa ameliorated intestinal pathological damage. In addition, we observed that presupplementation with HNa enhanced intestinal barrier function via modulating gut microbiota, downregulating toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3) signaling pathways, regulating intestinal mucosal immunity, and enhancing tight junction protein expression. To further validate the effect of HNa-derived microbiota on S. Typhimurium-induced enteritis, we performed fecal microbiota transplantation and found that HNa-derived microbiota also alleviated S. Typhimurium-induced intestinal damage. It is noteworthy that both HNa and HNa-derived microbiota improved the liver injury caused by S. Typhimurium infection. Collectively, this is the first study to confirm that HNa could alleviate S. Typhimurium-induced enteritis in a gut microbiota-dependent manner. This study provides a new perspective on HNa as a potential drug to prevent and treat salmonellosis. IMPORTANCE Salmonella Typhimurium is an important zoonotic pathogen, widely distributed in nature. S. Typhimurium is one of the leading causes of foodborne illnesses worldwide, and more than 350,000 people died from Salmonella infection each year, which poses a substantial risk to public health and causes a considerable economic loss. Here, we found that the S. Typhimurium infection caused severe intestinal and liver damage. In addition, we first found that sodium humate (HNa) and HNa-derived gut microbiota can alleviate S. Typhimurium infection-induced intestinal damage. These findings extend the knowledge about the public health risk and pathogenic mechanisms of S. Typhimurium.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yingce Zheng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuying Fan
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanjun He
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shouxiang Deng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Yang J, Shi Y. Paneth cell development in the neonatal gut: pathway regulation, development, and relevance to necrotizing enterocolitis. Front Cell Dev Biol 2023; 11:1184159. [PMID: 37266449 PMCID: PMC10231676 DOI: 10.3389/fcell.2023.1184159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Paneth cells (PCs) are intestinal epithelial cells (IECs) that contain eosinophilic granules, which are located in Lieberkühn crypts. An increasing number of animal and human experiments have indicated that PCs are involved in the progression of a variety of intestinal as well as systemic inflammatory responses including necrotizing enterocolitis (NEC). NEC is an enteric acquired disease with high mortality that usually occurs in premature infants and neonates, however the underlying mechanisms remain unclear. In this review, we summarize the features of PCs, including their immune function, association with gut microbiota and intestinal stem cells, and their mechanism of regulating IEC death to explore the possible mechanisms by which PCs affect NEC.
Collapse
|
42
|
Lim YS, Lee AG, Jiang X, Scott JM, Cofie A, Kumar S, Kennedy D, Granville DJ, Shin H. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep 2023; 42:112410. [PMID: 37071533 DOI: 10.1016/j.celrep.2023.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.
Collapse
Affiliation(s)
- Ying Shiang Lim
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aisha G Lee
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason M Scott
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adjoa Cofie
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dania Kennedy
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC V5V 3P1, Canada
| | - Haina Shin
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Jimenez-Rondan FR, Ruggiero CH, McKinley KL, Koh J, Roberts JF, Triplett EW, Cousins RJ. Enterocyte-specific deletion of metal transporter Zip14 (Slc39a14) alters intestinal homeostasis through epigenetic mechanisms. Am J Physiol Gastrointest Liver Physiol 2023; 324:G159-G176. [PMID: 36537699 PMCID: PMC9925170 DOI: 10.1152/ajpgi.00244.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023]
Abstract
Zinc has anti-inflammatory properties using mechanisms that are unclear. Zip14 (Slc39a14) is a zinc transporter induced by proinflammatory stimuli and is highly expressed at the basolateral membrane of intestinal epithelial cells (IECs). Enterocyte-specific Zip14 ablation (Zip14ΔIEC) in mice was developed to study the functions of this transporter in enterocytes. This gene deletion led to increased intestinal permeability, increased IL-6 and IFNγ expression, mild endotoxemia, and intestinal dysbiosis. RNA sequencing was used for transcriptome profiling. These analyses revealed differential expression of specific intestinal proinflammatory and tight junction (TJ) genes. Binding of transcription factors, including NF-κβ, STAT3, and CDX2, to appropriate promoter sites of these genes supports the differential expression shown with chromatin immunoprecipitation assays. Total histone deacetylase (HDAC), and specifically HDAC3, activities were markedly reduced with Zip14 ablation. Intestinal organoids derived from ΔIEC mice display TJ and cytokine gene dysregulation compared with control mice. Differential expression of specific genes was reversed with zinc supplementation of the organoids. We conclude that zinc-dependent HDAC enzymes acquire zinc ions via Zip14-mediated transport and that intestinal integrity is controlled in part through epigenetic modifications.NEW & NOTEWORTHY We show that enterocyte-specific ablation of zinc transporter Zip14 (Slc39a14) results in selective dysbiosis and differential expression of tight junction proteins, claudin 1 and 2, and specific cytokines associated with intestinal inflammation. HDAC activity and zinc uptake are reduced with Zip14 ablation. Using intestinal organoids, the expression defects of claudin 1 and 2 are resolved through zinc supplementation. These novel results suggest that zinc, an essential micronutrient, influences gene expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Courtney H Ruggiero
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - John F Roberts
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J Cousins
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
44
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
45
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
46
|
Schill EM, Floyd AN, Newberry RD. Neonatal development of intestinal neuroimmune interactions. Trends Neurosci 2022; 45:928-941. [PMID: 36404456 PMCID: PMC9683521 DOI: 10.1016/j.tins.2022.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Interactions between the enteric nervous system (ENS), immune system, and gut microbiota regulate intestinal homeostasis in adults, but their development and role(s) in early life are relatively underexplored. In early life, these interactions are dynamic, because the mucosal immune system, microbiota, and the ENS are developing and influencing each other. Moreover, disrupting gut microbiota and gut immune system development, and potentially ENS development, by early-life antibiotic exposure increases the risk of diseases affecting the gut. Here, we review the development of the ENS and immune/epithelial cells, and identify potential critical periods for their interactions and development. We also highlight knowledge gaps that, when addressed, may help promote intestinal homeostasis, including in the settings of early-life antibiotic exposure.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Alexandria N Floyd
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
47
|
Cheng C, Hu J, Li Y, Ji Y, Lian Z, Au R, Xu F, Li W, Shen H, Zhu L. Qing-Chang-Hua-Shi granule ameliorates DSS-induced colitis by activating NLRP6 signaling and regulating Th17/Treg balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154452. [PMID: 36150347 DOI: 10.1016/j.phymed.2022.154452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chinese herbal medicine Qing-Chang-Hua-Shi granule (QCHS) is widely used to treat ulcerative colitis in China. However, the molecular mechanisms of QCHS remains largely unknown. PURPOSE To assess the therapeutic effects of QCHS on colitis and to reveal its mechanisms of action. METHODS The main components of QCHS were identified using a UHPLC-QTOF-MS method and the efficacy of QCHS was evaluated using an DSS-induced mice model. The inflammatory responses and mucosal integrity in colon were comprehensively assessed. Flow cytometry was used to analysis the proportion of Th17 and Treg cells. Detect the signal transduction of the NOD-like receptor family pyrin domain containing 6 (NLRP6) both in vitro and in vivo. Furthermore, siNLRP6 transfection was used to validate the functional targets of QCHS. RESULTS QCHS treatment significantly alleviated colitis in mice by improving symptoms and pathological damage. Moreover, QCHS treatment suppressed the inflammatory response and preserved the integrity of colon tissue. Most importantly, QCHS balanced the Th17/Treg response of UC mice. Mechanistically, by activating NLRP6 inflammasome pathway, QCHS regulated the maturation of interleukin (IL)-1β and IL-18 to affect inflammation and drive Th17 cell differentiation. CONCLUSIONS The effect of QCHS on UC mice is dose-dependent, with high-dose QCHS being superior to 5-Aminosalicylic acid (200 mg/kg/day). QCHS acts through the NLRP6 signaling pathway to modulate Th17/Treg balance, resulting in the protective effects against colitis. This study investigated the relevant pharmacological mechanisms of QCHS, providing further evidence for the application of QCHS in UC treatment.
Collapse
Affiliation(s)
- Cheng Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuejin Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyu Lian
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
48
|
Pan H, Jian Y, Wang F, Yu S, Guo J, Kan J, Guo W. NLRP3 and Gut Microbiota Homeostasis: Progress in Research. Cells 2022; 11:3758. [PMID: 36497018 PMCID: PMC9739202 DOI: 10.3390/cells11233758] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The inflammasome is a platform for inflammatory signaling, and the NLRP3 inflammasome recognizes stimuli in vitro and in vivo, and releases inflammatory cytokines that trigger inflammation and pyroptosis. In the gut, the NLRP3 inflammasome is a key sensor for protecting the body from damage and exogenous pathogens. It plays a fundamental role in maintaining the stability of the gut's immune system. We focus on the role of NLRP3 as a key node in maintaining the homeostasis of gut microbiota which has not been fully highlighted in the past; gut microbiota and innate immunity, as well as the NLRP3 inflammasome, are discussed in this article.
Collapse
Affiliation(s)
- Hongming Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Yuting Jian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Shaokun Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiannan Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai 201203, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
49
|
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 2022; 34:1700-1718. [PMID: 36208625 DOI: 10.1016/j.cmet.2022.09.017] [Citation(s) in RCA: 310] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University, Vienna, Austria
| |
Collapse
|
50
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|