1
|
Akıl C, Xu J, Shen J, Zhang P. Unveiling the Complete Spectrum of SARS-CoV-2 Fusion Stages by In Situ Cryo-ET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640151. [PMID: 40060467 PMCID: PMC11888396 DOI: 10.1101/2025.02.25.640151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
SARS-CoV-2 entry into host cells is mediated by the spike protein, which drives membrane fusion. While cryo-EM has revealed stable prefusion and postfusion conformations of the spike, the transient intermediate states during the fusion process have remained poorly understood. Here, we designed a near-native viral fusion system that recapitulates SARS-CoV-2 entry and used cryo-electron tomography (cryo-ET) to capture fusion intermediates leading to complete fusion. The spike protein undergoes extensive structural rearrangements, progressing through extended, partially folded, and fully folded intermediates prior to fusion-pore formation, a process that is dependent on protease cleavage and inhibited by the WS6 S2 antibody. Upon interaction with ACE2 receptor dimer, spikes cluster at membrane interfaces and following S2' cleavage concurrently transition to postfusion conformations encircling the hemifusion and pre-fusion pores in a distinct conical arrangement. Subtomogram averaging revealed that the WS6 S2 antibody binds to the spike's stem-helix, crosslinks and clusters prefusion spikes and inhibits refolding of fusion intermediates. These findings elucidate the complete process of spike-mediated fusion and SARS-CoV-2 entry, highlighting the neutralizing mechanism of S2-targeting antibodies.
Collapse
Affiliation(s)
- Caner Akıl
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Juan Shen
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
2
|
Sahrmann PG, Voth GA. Understanding the coarse-grained free energy landscape of phospholipids and their phase separation. Biophys J 2025; 124:620-636. [PMID: 39982441 PMCID: PMC11900191 DOI: 10.1016/j.bpj.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
The cell membrane exhibits lateral heterogeneity due to the preferential association among the large number of lipid species that constitute the membrane. In particular, the preferential association of cholesterol (CHOL) with saturated lipids into ordered domains has been an area of intense investigation. The large spatiotemporal scales that comprise spontaneous domain formation largely precludes computational investigation via conventional all-atom molecular dynamics. We demonstrate here that molecular coarse-grained (CG) models, obtained from the bottom-up, i.e., via statistical mechanical renormalization of atomistic models, are capable of spontaneous assembly and phase separation for two model raft-like systems, DLiPC/DPPC/CHOL and DOPC/DPPC/CHOL. The resulting bottom-up CG models exhibit spontaneous self-assembly and phase separation and recapitulate the structural correlations of the underlying atomistic models. The accuracy and fast dynamics of these CG models constitute an effective means of bypassing the limited spatiotemporal scales of atomistic simulations. As the first bottom-up CG models of lipid phase separation, the CG models in this work provide an informative analysis for further construction of bottom-up CG models transferable across a range of lipid compositions.
Collapse
Affiliation(s)
- Patrick G Sahrmann
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Cecil AJ, Sogues A, Gurumurthi M, Lane KS, Remaut H, Pak AJ. Molecular dynamics and machine learning stratify motion-dependent activity profiles of S-layer destabilizing nanobodies. PNAS NEXUS 2024; 3:pgae538. [PMID: 39660065 PMCID: PMC11631148 DOI: 10.1093/pnasnexus/pgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions toward an inhibitory conformational state described by domain-domain clamping and induced twisting of domains normal to the lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap-inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving the way forward for Nb therapeutics that target depolymerization mechanisms.
Collapse
Affiliation(s)
- Adam J Cecil
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mukund Gurumurthi
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Kaylee S Lane
- Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
- Materials Science Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
4
|
Roytenberg R, Yue H, DeHart A, Kim E, Bai F, Kim Y, Denning K, Kwei A, Zhang Q, Liu J, Zheng XL, Li W. Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced thrombosis in K18-hACE2 TG mice. Thromb Res 2024; 244:109195. [PMID: 39442286 PMCID: PMC11585440 DOI: 10.1016/j.thromres.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Thymidine phosphorylase (TYMP), which facilitates platelet activation and thrombosis, is significantly increased in COVID-19 patients. We hypothesize that TYMP mediates SARS-CoV-2 spike protein (SP)-induced thrombosis. MATERIALS AND METHODS Plasmids encoding wildtype SP or empty vector (p3.1) were transfected into COS-7 cells, and cell lysates were prepared as a reservoir for SP or p3.1 (control), respectively. K18-hACE2TG and K18-hACE2TG/Tymp-/- mice were treated with a single dose of SP or p3.1 by intraperitoneal injection and then subjected to thrombosis studies three days later. The role of SP on inflammatory signaling activation was assessed in BEAS-2B cells. RESULTS SARS-CoV-2 SP increased the expression of TYMP, resulting in the activation of STAT3 and NF-κB in BEAS-2B cells. A siRNA-mediated knockdown of TYMP attenuated SP-enhanced activation of STAT3. SP significantly promoted arterial thrombosis in K18-hACE2TG mice. SP-accelerated thrombosis was attenuated by inhibition or genetic ablation of TYMP. SP treatment did not influence ADP- or collagen-induced platelet aggregation but significantly increased platelet adhesion to fibrinogen. SP treatment also significantly shortened activated partial thromboplastin time, which was reversed and even prolonged by TYMP deficiency. Additionally, SP binds to platelet factor 4 (PF4) and TYMP. TYMP does not bind PF4 but enhances the formation of the SP/PF4 complex, which may augment the procoagulant and prothrombotic effect of PF4. CONCLUSIONS We conclude that SP is prothrombotic and upregulates TYMP expression, and TYMP inhibition or knockout mitigates SP-enhanced thrombosis. These findings suggest that inhibition of TYMP may be a novel therapeutic strategy for COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Autumn DeHart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Eugene Kim
- Department of Chemistry, College of Sciences, Marshall University, Huntington, WV 25755, USA
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Yongick Kim
- Department of Chemistry, College of Sciences, Marshall University, Huntington, WV 25755, USA
| | - Krista Denning
- Department of Pathology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Alec Kwei
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
5
|
Asor R, Olerinyova A, Burnap SA, Kushwah MS, Soltermann F, Rudden LS, Hensen M, Vasiljevic S, Brun J, Hill M, Chang L, Dejnirattisai W, Supasa P, Mongkolsapaya J, Zhou D, Stuart DI, Screaton GR, Degiacomi MT, Zitzmann N, Benesch JLP, Struwe WB, Kukura P. Oligomerization-driven avidity correlates with SARS-CoV-2 cellular binding and inhibition. Proc Natl Acad Sci U S A 2024; 121:e2403260121. [PMID: 39298475 PMCID: PMC11459207 DOI: 10.1073/pnas.2403260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 09/21/2024] Open
Abstract
Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.
Collapse
Affiliation(s)
- Roi Asor
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Anna Olerinyova
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sean A. Burnap
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Manish S. Kushwah
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Lucas S.P. Rudden
- Department of Physics, Durham University, DurhamDH1 3LE, United Kingdom
| | - Mario Hensen
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Juliane Brun
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michelle Hill
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Liu Chang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Daming Zhou
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
- Diamond Light Source (United Kingdom), Harwell Science and Innovation Campus, DidcotOX110DE, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Oxford University Hospitals National Health Service Foundation Trust, OxfordOX3 7JH, United Kingdom
| | | | - Nicole Zitzmann
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Justin L. P. Benesch
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Weston B. Struwe
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
6
|
Grunst MW, Qin Z, Dodero-Rojas E, Ding S, Prévost J, Chen Y, Hu Y, Pazgier M, Wu S, Xie X, Finzi A, Onuchic JN, Whitford PC, Mothes W, Li W. Structure and inhibition of SARS-CoV-2 spike refolding in membranes. Science 2024; 385:757-765. [PMID: 39146425 PMCID: PMC11449073 DOI: 10.1126/science.adn5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Benlarbi M, Ding S, Bélanger É, Tauzin A, Poujol R, Medjahed H, El Ferri O, Bo Y, Bourassa C, Hussin J, Fafard J, Pazgier M, Levade I, Abrams C, Côté M, Finzi A. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. mBio 2024; 15:e0090724. [PMID: 38953636 PMCID: PMC11323525 DOI: 10.1128/mbio.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie Hussin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Mila—Quebec AI institute, Montreal, Quebec, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cameron Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Wen CY, Luo YL, Madsen JJ. Optimizing Coarse-Grained Models for Large-Scale Membrane Protein Simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594009. [PMID: 38798639 PMCID: PMC11118278 DOI: 10.1101/2024.05.13.594009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Coarse-grained (CG) models have been developed for studying membrane proteins at physiologically relevant scales. Such methods, including popular CG lipid models, exhibit stability and efficiency at moderate scales, but they can become impractical or even unusable beyond a critical size due to various technical issues. Here, we report that these scale-dependent issues can arise from progressively slower relaxation dynamics and become confounded by unforeseen instabilities observed only at larger scales. To address these issues, we systemically optimized a 4-site solvent-free CG lipid model that is suitable for conducting micron-scale molecular dynamics simulations of membrane proteins under various membrane properties. We applied this lipid model to explore the long-range membrane deformation induced by a large mechanosensitive ion channel, PIEZO. We show that the optimized CG models are powerful in elucidating the structural and dynamic interplay between PIEZO and the membrane. Furthermore, we anticipate that our methodological insights can prove useful for resolving issues stemming from scale-dependent limitations of similar CG methodologies.
Collapse
|
9
|
Patarca R, Haseltine WA. Forty years of HIV research inspires the development of SARS-CoV-2 therapy. J Mol Cell Biol 2024; 15:mjad065. [PMID: 37873695 PMCID: PMC11137671 DOI: 10.1093/jmcb/mjad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
|
10
|
Kumar S, Dasgupta S, Sajadi MM, Snyder GA, DeVico AL, Ray K. Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins. Viruses 2024; 16:407. [PMID: 38543772 PMCID: PMC10974403 DOI: 10.3390/v16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sameer Kumar
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Mohammad M. Sajadi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Division of Clinical Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Christians LF, Halingstad EV, Kram E, Okolovitch EM, Pak AJ. Formalizing Coarse-Grained Representations of Anisotropic Interactions at Multimeric Protein Interfaces Using Virtual Sites. J Phys Chem B 2024; 128:1394-1406. [PMID: 38316012 DOI: 10.1021/acs.jpcb.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein-protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.
Collapse
Affiliation(s)
- Luc F Christians
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ethan V Halingstad
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Emiel Kram
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Evan M Okolovitch
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
12
|
Hudait A, Voth GA. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Proc Natl Acad Sci U S A 2024; 121:e2313737121. [PMID: 38241438 PMCID: PMC10823262 DOI: 10.1073/pnas.2313737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
13
|
Biskupek I, Gieldon A. Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). Int J Mol Sci 2024; 25:679. [PMID: 38203850 PMCID: PMC10779479 DOI: 10.3390/ijms25010679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years. With the publication of the SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in a complex with human ACE2 (hACE2) (PDB (6LZG)), the molecular analysis of one of the most crucial steps on the infection pathway was possible. The aim of this manuscript is to simulate the most widely spread mutants of SARS-CoV-2, namely Alpha, Beta, Gamma, Delta, Omicron, and the first recognized variant (natural wild type). With the wide search of the hypersurface of the potential energy performed using the UNRES force field, the intermediate state of the ACE2-RBD complex was found. R403, K/N/T417, L455, F486, Y489, F495, Y501, and Y505 played a crucial role in the protein recognition mechanism. The intermediate state cannot be very stable since it will prevent the infection cascade.
Collapse
Affiliation(s)
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
14
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
15
|
Kumar S, Delipan R, Chakraborty D, Kanjo K, Singh R, Singh N, Siddiqui S, Tyagi A, Jha V, Thakur KG, Pandey R, Varadarajan R, Ringe RP. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity. J Virol 2023; 97:e0092223. [PMID: 37861334 PMCID: PMC10688319 DOI: 10.1128/jvi.00922-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. In vivo, these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.
Collapse
Affiliation(s)
- Sahil Kumar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rathina Delipan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | | | - Nittu Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Samreen Siddiqui
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinitaa Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Krishan G. Thakur
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Rajesh P. Ringe
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
16
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
17
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
18
|
Zaporozhets I, Clementi C. Multibody Terms in Protein Coarse-Grained Models: A Top-Down Perspective. J Phys Chem B 2023; 127:6920-6927. [PMID: 37499123 DOI: 10.1021/acs.jpcb.3c04493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Coarse-grained models allow computational investigation of biomolecular processes occurring on long time and length scales, intractable with atomistic simulation. Traditionally, many coarse-grained models rely mostly on pairwise interaction potentials. However, the decimation of degrees of freedom should, in principle, lead to a complex many-body effective interaction potential. In this work, we use experimental data on mutant stability to parametrize coarse-grained models for two proteins with and without many-body terms. We demonstrate that many-body terms are necessary to reproduce quantitatively the effects of point mutations on protein stability, particularly to implicitly take into account the effect of the solvent.
Collapse
Affiliation(s)
- Iryna Zaporozhets
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics, Freie Universität, Arnimallee 12, Berlin 14195, Germany
| | - Cecilia Clementi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics, Freie Universität, Arnimallee 12, Berlin 14195, Germany
| |
Collapse
|
19
|
Wrobel AG. Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike. Curr Opin Struct Biol 2023; 81:102619. [PMID: 37285618 PMCID: PMC10183628 DOI: 10.1016/j.sbi.2023.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus' emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.
Collapse
Affiliation(s)
- Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
20
|
Hudait A, Hurley JH, Voth GA. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Biophys J 2023; 122:2655-2674. [PMID: 37218128 PMCID: PMC10397573 DOI: 10.1016/j.bpj.2023.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In the late stages of the HIV-1 life cycle, membrane localization and self-assembly of Gag polyproteins induce membrane deformation and budding. Release of the virion requires direct interaction between immature Gag lattice and upstream ESCRT machinery at the viral budding site, followed by assembly of downstream ESCRT-III factors, culminating in membrane scission. However, molecular details of upstream ESCRT assembly dynamics at the viral budding site remain unclear. In this work, using coarse-grained (CG) molecular dynamics (MD) simulations, we investigated the interactions between Gag, ESCRT-I, ESCRT-II, and membrane to delineate the dynamical mechanisms by which upstream ESCRTs assemble templated by late-stage immature Gag lattice. We first systematically derived "bottom-up" CG molecular models and interactions of upstream ESCRT proteins from experimental structural data and extensive all-atom MD simulations. Using these molecular models, we performed CG MD simulations of ESCRT-I oligomerization and ESCRT-I/II supercomplex formation at the neck of the budding virion. Our simulations demonstrate that ESCRT-I can effectively oligomerize to higher-order complexes templated by the immature Gag lattice both in the absence of ESCRT-II and when multiple copies of ESCRT-II are localized at the bud neck. The ESCRT-I/II supercomplexes formed in our simulations exhibit predominantly columnar structures, which has important implications for the nucleation pathway of downstream ESCRT-III polymers. Importantly, ESCRT-I/II supercomplexes bound to Gag initiate membrane neck constriction by pulling the inner edge of the bud neck closer to the ESCRT-I headpiece ring. Our findings serve to elucidate a network of interactions between upstream ESCRT machinery, immature Gag lattice, and membrane neck that regulate protein assembly dynamics at the HIV-1 budding site.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Chen C, Zhu R, Hodge EA, Díaz-Salinas MA, Nguyen A, Munro JB, Lee KK. hACE2-Induced Allosteric Activation in SARS-CoV versus SARS-CoV-2 Spike Assemblies Revealed by Structural Dynamics. ACS Infect Dis 2023; 9:1180-1189. [PMID: 37166130 PMCID: PMC10228703 DOI: 10.1021/acsinfecdis.3c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/12/2023]
Abstract
SARS-CoV and SARS-CoV-2 cell entry begins when spike glycoprotein (S) docks with the human ACE2 (hACE2) receptor. While the two coronaviruses share a common receptor and architecture of S, they exhibit differences in interactions with hACE2 as well as differences in proteolytic processing of S that trigger the fusion machine. Understanding how those differences impact S activation is key to understand its function and viral pathogenesis. Here, we investigate hACE2-induced activation in SARS-CoV and SARS-CoV-2 S using hydrogen/deuterium-exchange mass spectrometry (HDX-MS). HDX-MS revealed differences in dynamics in unbound S, including open/closed conformational switching and D614G-induced S stability. Upon hACE2 binding, notable differences in transduction of allosteric changes were observed extending from the receptor binding domain to regions proximal to proteolytic cleavage sites and the fusion peptide. Furthermore, we report that dimeric hACE2, the native oligomeric form of the receptor, does not lead to any more pronounced structural effect in S compared to saturated monomeric hACE2 binding. These experiments provide mechanistic insights into receptor-induced activation of Sarbecovirus spike proteins.
Collapse
Affiliation(s)
- Chengbo Chen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| | - Richard Zhu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Edgar A. Hodge
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Marco A. Díaz-Salinas
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Adam Nguyen
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| | - James B. Munro
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Kelly K. Lee
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
22
|
Huang L, Mao X, Li J, Li Q, Shen J, Liu M, Fan C, Tian Y. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS NANO 2023; 17:9155-9166. [PMID: 37171255 DOI: 10.1021/acsnano.2c12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
El-Baba T, Lutomski CA, Burnap SA, Bolla JR, Baker LA, Baldwin AJ, Struwe WB, Robinson CV. Uncovering the Role of N-Glycan Occupancy on the Cooperative Assembly of Spike and Angiotensin Converting Enzyme 2 Complexes: Insights from Glycoengineering and Native Mass Spectrometry. J Am Chem Soc 2023; 145:8021-8032. [PMID: 37000485 PMCID: PMC10103161 DOI: 10.1021/jacs.3c00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Interactions between the SARS-CoV-2 Spike protein and ACE2 are one of the most scrutinized reactions of our time. Yet, questions remain as to the impact of glycans on mediating ACE2 dimerization and downstream interactions with Spike. Here, we address these unanswered questions by combining a glycoengineering strategy with high-resolution native mass spectrometry (MS) to investigate the impact of N-glycan occupancy on the assembly of multiple Spike-ACE2 complexes. We confirmed that intact Spike trimers have all 66 N-linked sites occupied. For monomeric ACE2, all seven N-linked glycan sites are occupied to various degrees; six sites have >90% occupancy, while the seventh site (Asn690) is only partially occupied (∼30%). By resolving the glycoforms on ACE2, we deciphered the influence of each N-glycan on ACE2 dimerization. Unexpectedly, we found that Asn432 plays a role in mediating dimerization, a result confirmed by site-directed mutagenesis. We also found that glycosylated dimeric ACE2 and Spike trimers form complexes with multiple stoichiometries (Spike-ACE2 and Spike2-ACE2) with dissociation constants (Kds) of ∼500 and <100 nM, respectively. Comparing these values indicates that positive cooperativity may drive ACE2 dimers to complex with multiple Spike trimers. Overall, our results show that occupancy has a key regulatory role in mediating interactions between ACE2 dimers and Spike trimers. More generally, since soluble ACE2 (sACE2) retains an intact SARS-CoV-2 interaction site, the importance of glycosylation in ACE2 dimerization and the propensity for Spike and ACE2 to assemble into higher oligomers are molecular details important for developing strategies for neutralizing the virus.
Collapse
Affiliation(s)
- Tarick
J. El-Baba
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Sean A. Burnap
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Lindsay A. Baker
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Andrew J. Baldwin
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
24
|
Durumeric AEP, Charron NE, Templeton C, Musil F, Bonneau K, Pasos-Trejo AS, Chen Y, Kelkar A, Noé F, Clementi C. Machine learned coarse-grained protein force-fields: Are we there yet? Curr Opin Struct Biol 2023; 79:102533. [PMID: 36731338 PMCID: PMC10023382 DOI: 10.1016/j.sbi.2023.102533] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 02/04/2023]
Abstract
The successful recent application of machine learning methods to scientific problems includes the learning of flexible and accurate atomic-level force-fields for materials and biomolecules from quantum chemical data. In parallel, the machine learning of force-fields at coarser resolutions is rapidly gaining relevance as an efficient way to represent the higher-body interactions needed in coarse-grained force-fields to compensate for the omitted degrees of freedom. Coarse-grained models are important for the study of systems at time and length scales exceeding those of atomistic simulations. However, the development of transferable coarse-grained models via machine learning still presents significant challenges. Here, we discuss recent developments in this field and current efforts to address the remaining challenges.
Collapse
Affiliation(s)
- Aleksander E P Durumeric
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany
| | - Nicholas E Charron
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, 77005, Texas, USA; Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany; Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, 77005, Texas, USA
| | - Clark Templeton
- Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany. https://twitter.com/pbrun03
| | - Félix Musil
- Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany. https://twitter.com/FelixMusil
| | - Klara Bonneau
- Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany
| | - Aldo S Pasos-Trejo
- Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany. https://twitter.com/sayeg84
| | - Yaoyi Chen
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany. https://twitter.com/hello_yaoyi
| | - Atharva Kelkar
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany
| | - Frank Noé
- Microsoft Research AI4Science, Karl-Liebknecht Str. 32, Berlin, 10178, Berlin, Germany; Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany; Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany; Department of Chemistry, Rice University, 6100 Main Street, Houston, 77005, Texas, USA. https://twitter.com/FrankNoeBerlin
| | - Cecilia Clementi
- Department of Physics, Freie Universität Berlin, Arnimallee 12, 14195, Berlin, Germany; Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, 77005, Texas, USA; Department of Chemistry, Rice University, 6100 Main Street, Houston, 77005, Texas, USA; Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, 77005, Texas, USA.
| |
Collapse
|
25
|
Gonzalez-Rodriguez E, Zol-Hanlon M, Bineva-Todd G, Marchesi A, Skehel M, Mahoney KE, Roustan C, Borg A, Di Vagno L, Kjær S, Wrobel AG, Benton DJ, Nawrath P, Flitsch SL, Joshi D, González-Ramírez A, Wilkinson KA, Wilkinson RJ, Wall EC, Hurtado-Guerrero R, Malaker SA, Schumann B. O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:393-404. [PMID: 36968546 PMCID: PMC10037455 DOI: 10.1021/acscentsci.2c01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 06/18/2023]
Abstract
The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mia Zol-Hanlon
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Signalling
and Structural Biology Lab, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
| | - Andrea Marchesi
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mark Skehel
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Keira E. Mahoney
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Chloë Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Annabel Borg
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Lucia Di Vagno
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Svend Kjær
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Antoni G. Wrobel
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Donald J. Benton
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Philipp Nawrath
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Dhira Joshi
- Chemical
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Katalin A. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Robert J. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
- Department
of Infectious Diseases, Imperial College
London, W12 0NN London, United Kingdom
- Institute
of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Emma C. Wall
- The Francis
Crick Institute, NW1 1AT London, United Kingdom
- University
College London Hospitals (UCLH) Biomedical Research Centre, W1T 7DN London, United Kingdom
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Fundación
ARAID, 50018 Zaragoza, Spain
| | - Stacy A. Malaker
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Benjamin Schumann
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| |
Collapse
|
26
|
Calvaresi V, Wrobel AG, Toporowska J, Hammerschmid D, Doores KJ, Bradshaw RT, Parsons RB, Benton DJ, Roustan C, Reading E, Malim MH, Gamblin SJ, Politis A. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat Commun 2023; 14:1421. [PMID: 36918534 PMCID: PMC10013288 DOI: 10.1038/s41467-023-36745-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.
Collapse
Affiliation(s)
- Valeria Calvaresi
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| | | | | | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | | | | | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, SE1 1DB, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, M13 9PT, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, M1 7DN, Manchester, UK.
| |
Collapse
|
27
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
28
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
29
|
Yan ZS, Li XL, Ma YQ, Ding HM. Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13972-13982. [PMID: 36318181 PMCID: PMC9662070 DOI: 10.1021/acs.langmuir.2c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Indexed: 05/24/2023]
Abstract
The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.
Collapse
Affiliation(s)
- Zeng-Shuai Yan
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-Lei Li
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research,
School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
30
|
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys Rev 2022; 14:1109-1140. [PMID: 36249860 PMCID: PMC9552142 DOI: 10.1007/s12551-022-00999-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022] Open
Abstract
Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
31
|
Su L, Hendrikse SIS, Meijer EW. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr Opin Chem Biol 2022; 69:102171. [PMID: 35749930 DOI: 10.1016/j.cbpa.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Simone I S Hendrikse
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; School of Chemistry and UNSW RNA Institute, The University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Li T, Zhou B, Li Y, Huang S, Luo Z, Zhou Y, Lai Y, Gautam A, Bourgeau S, Wang S, Bao J, Tan J, Lavillette D, Li D. Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. Int J Biol Macromol 2022; 209:1379-1388. [PMID: 35460753 PMCID: PMC9020654 DOI: 10.1016/j.ijbiomac.2022.04.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 μg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Bingjie Zhou
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Yaning Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Suqiong Huang
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,College of Pharmacy, Chongqing Medical University, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yuanze Zhou
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Yanling Lai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China,University of CAS, Beijing 101408, China
| | - Anupriya Gautam
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China
| | - Salome Bourgeau
- University of CAS, Beijing 101408, China,CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China,Institut National de la Santé et de la Recherche Médicale, École des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, F-35000 Rennes, France
| | - Shurui Wang
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China
| | - Jingquan Tan
- Nanjing Crycision Biotech Co., Ltd., Nanjing, China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai 200031, China; Pasteurien College, Soochow University, Jiangsu, China.
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200030, China.
| |
Collapse
|
33
|
|