1
|
Oyarbide U, Bezzerri V, Staton M, Boni C, Shah A, Cipolli M, Calo E, Corey SJ. Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome. J Clin Invest 2025; 135:e187778. [PMID: 39964763 PMCID: PMC11996912 DOI: 10.1172/jci187778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency, and bony abnormalities with an increased risk of myeloid neoplasia. Almost all cases of SDS result from biallelic mutations in Shwachman-Bodian-Diamond syndrome (SBDS). SBDS interacts with elongation factor-like 1 (EFL1) to displace eukaryotic initiation factor 6 (EIF6) from the 60S ribosomal subunit. Released EIF6 permits the assembly of ribosomal large and small subunits in the cytoplasm. Decreased EIF6 levels due to haploinsufficiency or missense mutations, which lead to decreased protein expression, may provide a somatic genetic rescue and antileukemic effects. We observed accumulation of EIF6 protein in sbds-KO zebrafish models, confirmed this accumulation in patient-derived tissues, and correlated these with changes in ribosomal proteins and tumor protein p53 (TP53) pathways. The mechanism of action for this adaptive response is unknown. To address this, we generated eif6-KO zebrafish, which do not survive more than 10 days after fertilization. We also created 2 mutants with low Eif6 expression, i.e., 5%-25% of WT levels, that could survive until adulthood. We bred them with sbds-null strains and analyzed their phenotype and biochemical properties. Low Eif6 levels reduced Tp53 pathway activation but did not rescue neutropenia in Sbds-deficient zebrafish. Further studies elucidating the interplay between SBDS, EIF6, and TP53 and cellular stress responses offer promising insights into SDS pathogenesis, somatic genetic rescue, and therapeutic strategies.
Collapse
Affiliation(s)
- Usua Oyarbide
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
| | - Morgan Staton
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christian Boni
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Arish Shah
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Eliezer Calo
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ford PW, Garshott DM, Narasimhan M, Ge X, Jordahl EM, Subramanya S, Bennett EJ. RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation. Cell Rep 2025; 44:115371. [PMID: 40022732 PMCID: PMC12008924 DOI: 10.1016/j.celrep.2025.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
The initiation-specific ribosome-associated quality control pathway (iRQC) is activated when translation initiation complexes fail to transition to elongation-competent 80S ribosomes. Upon iRQC activation, RNF10 ubiquitylates the 40S proteins uS3 and uS5, which leads to 40S decay. How iRQC is activated in the absence of pharmacological translation inhibitors and what mechanisms govern iRQC capacity and activity remain unanswered questions. Here, we demonstrate that altering 60S:40S stoichiometry by disrupting 60S biogenesis triggers iRQC activation and 40S decay. Depleting the critical scanning helicase eIF4A1 impairs 40S ubiquitylation and degradation, indicating mRNA engagement is required for iRQC. We show that amino acid starvation conditions also stimulate iRQC-dependent 40S decay. We identify RIOK3 as a crucial iRQC factor that interacts with ubiquitylated 40S subunits to mediate degradation. Both RNF10 and RIOK3 protein levels increase upon iRQC pathway activation, establishing a feedforward mechanism that regulates iRQC capacity and subsequent 40S decay.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle M Garshott
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric M Jordahl
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shubha Subramanya
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Roshan P, Biswas A, Ahmed S, Anagnos S, Luebbers R, Harish K, Li M, Nguyen N, Zhou G, Tedeschi F, Hathuc V, Lin Z, Hamilton Z, Origanti S. Sequestration of ribosomal subunits as inactive 80S by targeting eIF6 limits mitotic exit and cancer progression. Nucleic Acids Res 2025; 53:gkae1272. [PMID: 39727167 PMCID: PMC11879136 DOI: 10.1093/nar/gkae1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunit is eukaryotic translation initiation factor-6 (eIF6). Release of eIF6 from the 60S subunit is essential to permit 60S interactions with the 40S subunit. Here, using the eIF6-N106S mutant, we show that disrupting eIF6 interaction with the 60S subunit leads to an increase in vacant 80S ribosomes. It further highlights a dichotomy in the anti-association activity of eIF6 that is distinct from its role in 60S subunit biogenesis and shows that nucleolar localization of eIF6 is not dependent on BCCIP chaperone and uL14. Limiting active ribosomal pools markedly deregulates translation especially in mitosis and leads to chromosome segregation defects, mitotic exit delays and mitotic catastrophe. Ribo-seq analysis of eIF6-N106S mutant shows a significant downregulation in the translation efficiencies of mitotic factors and specifically transcripts with long 3' untranslated regions. eIF6-N106S mutation also limits cancer invasion, and this role is correlated with overexpression of eIF6 only in high-grade invasive cancers suggesting that deregulation of eIF6 is probably not an early event in cancers. Thus, this study highlights the segregation of eIF6 functions and its role in moderating 80S ribosome availability for translation, mitosis and cancer progression.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Aparna Biswas
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Sinthyia Ahmed
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Stella Anagnos
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Riley Luebbers
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Kavya Harish
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Megan Li
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Nicholas Nguyen
- Division of Urologic Surgery, Saint Louis University School of Medicine, 6400 Clayton Road, Saint Louis, MO 63117, USA
| | - Gao Zhou
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Frank Tedeschi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Vivian Hathuc
- Department of Pathology, Saint Louis University School of Medicine,1402 S. Grand Blvd., Saint Louis, MO 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| | - Zachary Hamilton
- Division of Urologic Surgery, Saint Louis University School of Medicine, 6400 Clayton Road, Saint Louis, MO 63117, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA
| |
Collapse
|
4
|
Shen C, Peng C, Zhang S, Li R, Liu S, Kuang Y, Su F, Liu Y, Liang L, Xiao Y, Xu H. Eukaryotic translation initiation factor 6-mediated ribosome biogenesis promotes synovial aggression and inflammation by increasing the translation of SP1 in rheumatoid arthritis. Int Immunopharmacol 2024; 142:113164. [PMID: 39288622 DOI: 10.1016/j.intimp.2024.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Chenxi Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Ruiru Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yu Kuang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Fan Su
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yingli Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
5
|
Sjövall D, Ghosh S, Fernandez-Fuentes N, Velasco-Hernandez T, Hogmalm A, Menendez P, Hansson J, Guibentif C, Jaako P. Defective ribosome assembly impairs leukemia progression in a murine model of acute myeloid leukemia. Cell Rep 2024; 43:114864. [PMID: 39412990 DOI: 10.1016/j.celrep.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Despite an advanced understanding of disease mechanisms, the current therapeutic regimen fails to cure most patients with acute myeloid leukemia (AML). In the present study, we address the role of ribosome assembly in leukemia cell function. We apply patient datasets and murine models to demonstrate that immature leukemia cells in mixed-lineage leukemia-rearranged AML are characterized by relatively high ribosome biogenesis and protein synthesis rates. Using a model with inducible regulation of ribosomal subunit joining, we show that defective ribosome assembly extends survival in mice with AML. Single-cell RNA sequencing and proteomic analyses reveal that leukemia cell adaptation to defective ribosome assembly is associated with an increase in ribosome biogenesis and deregulation of the transcription factor landscape. Finally, we demonstrate that defective ribosome assembly shows antileukemia efficacy in p53-deficient AML. Our study unveils the critical requirement of a high protein synthesis rate for leukemia progression and highlights ribosome assembly as a therapeutic target in AML.
Collapse
Affiliation(s)
- Daniel Sjövall
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Narcis Fernandez-Fuentes
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Anna Hogmalm
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pablo Menendez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain
| | - Jenny Hansson
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carolina Guibentif
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
6
|
Cull AH, Kent DG, Warren AJ. Emerging genetic technologies informing personalized medicine in Shwachman-Diamond syndrome and other inherited BMF disorders. Blood 2024; 144:931-939. [PMID: 38905596 DOI: 10.1182/blood.2023019986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Roshan P, Biswas A, Anagnos S, Luebbers R, Harish K, Ahmed S, Li M, Nguyen N, Zhou G, Tedeschi F, Hathuc V, Lin Z, Hamilton Z, Origanti S. Modulation of ribosomal subunit associations by eIF6 is critical for mitotic exit and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600220. [PMID: 38979253 PMCID: PMC11230244 DOI: 10.1101/2024.06.24.600220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunits is eukaryotic translation initiation factor 6. Release of eIF6 from 60S is essential to permit 60S interactions with 40S. Here, using the N106S mutant of eIF6, we show that disrupting eIF6 interaction with 60S leads to an increase in vacant 80S. It further highlights a dichotomy in the anti-association activity of eIF6 that is distinct from its role in 60S biogenesis and shows that the nucleolar localization of eIF6 is not dependent on uL14-BCCIP interactions. Limiting active ribosomal pools markedly deregulates translation especially in mitosis and leads to chromosome segregation defects, mitotic exit delays and mitotic catastrophe. Ribo-Seq analysis of the eIF6-N106S mutant shows a significant downregulation in the translation efficiencies of mitotic factors and specifically transcripts with long 3'UTRs. eIF6-N106S mutation also limits cancer invasion, and this role is correlated with the overexpression of eIF6 only in high-grade invasive cancers suggesting that deregulation of eIF6 is probably not an early event in cancers. Thus, this study highlights the segregation of eIF6 functions and its role in moderating 80S availability for mitotic translation and cancer progression.
Collapse
|
8
|
Pegoraro A, Bezzerri V, Tridello G, Brignole C, Lucca F, Pintani E, Danesino C, Cesaro S, Fioredda F, Cipolli M. Growth Charts for Shwachman-Diamond Syndrome at Ages 0 to 18 Years. Cancers (Basel) 2024; 16:1420. [PMID: 38611098 PMCID: PMC11010856 DOI: 10.3390/cancers16071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most common inherited bone marrow failure syndromes. SDS is characterized by hypocellular bone marrow, with a severe impairment of the myeloid lineage, resulting in neutropenia, thrombocytopenia, and, more rarely, anemia. Almost 15% of patients with SDS develop myelodysplastic syndrome or acute myeloid leukemia as early as childhood or young adulthood. Exocrine pancreatic insufficiency is another common feature of SDS. Almost all patients with SDS show failure to thrive, which is associated with skeletal abnormalities due to defective ossification. Considering these observations, it remains unfeasible to use the common growth charts already available for the general population. To address this issue, we report how we drew up growth charts of patients with SDS aged 0 to 18 years. We analyzed height, weight, and body max index (BMI) in 121 Italian patients with SDS. Results indicated that the 50th and 3rd percentiles of weight and height of the pediatric general population correspond to the 97th and 50th percentiles of patients with SDS aged 0-18 years, respectively. In addition, the percentage increment in weight of subjects aged 14-18 years was higher in patients with SDS than in the general population. SDS-specific growth charts, such as those described here, afford a new tool, which is potentially useful for both clinical and research purposes in SDS.
Collapse
Affiliation(s)
- Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Gloria Tridello
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cecilia Brignole
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Francesca Lucca
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Emily Pintani
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | | | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| |
Collapse
|
9
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wąchalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, Becker T, Beckmann R, Kopito RR. UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature 2024; 627:445-452. [PMID: 38383785 PMCID: PMC11469336 DOI: 10.1038/s41586-024-07073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan Penchev
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | | | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
12
|
Li Y, Cheng L, Peng Y, Wang L, Zhang W, Yin Y, Zhang J, Wu X. The role of genetic factors in pediatric myelodysplastic syndromes with different outcomes. BMC Pediatr 2024; 24:28. [PMID: 38191334 PMCID: PMC10773107 DOI: 10.1186/s12887-023-04492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pediatric myelodysplastic syndromes (MDS) are rare disorders with an unrevealed pathogenesis. Our aim is to explore the role of genetic factors in the pathogenesis of MDS in children with different outcomes and to discover the correlation between genetic features and clinical outcomes as well as disease characteristics. METHODS We conducted an analysis of archived genetic data from 26 patients diagnosed with pediatric MDS at our institution between 2015 and 2021, examining the association between different genetic characteristics and clinical manifestations as well as prognosis. Additionally, We presented three cases with distinct genetic background and outcomes as examples to elaborate the role of genetic factors in pediatric MDS with different prognoses. RESULTS Genetic variations were detected in 13 out of the 26 patients, including 8 patients with co-occurrence of somatic and germline mutations (CSGMs) and 5 patients with somatic mutations alone. Our analysis revealed that advanced MDS (4/8, 50% vs. 1/5, 20% and 4/11, 36.4%), PD (3/8, 37.5% vs. 1/5, 20% and 1/11 9.1%), and TD (6/8, 75% vs. 2/5, 40% and 2/11, 18.2%) were more common in patients with CSGMs than those with somatic mutations alone or without any mutations. We also found out in our study that 8 patients with CSGMs had evidently different clinical outcomes, and we presented 3 of them as examples for elaboration. Case 1 with germline and somatic mutations of unknown significance had a relatively slow disease course and a good prognosis. Case 2 with compound heterozygous germline SBDS variants and somatic mutations like del20q had a stable disease course and a reversed outcome. Case 3 with a germline GATA2 variant and somatic mutations including - 7 had a rapidly progressive disease course and a worst prognosis. CONCLUSION Our findings indicate that genetic background of pediatric MDS is closely linked with disease characteristics as well as outcomes and that CSGMs may lead to disease progression. It should be emphasized that the interaction between certain germline variants and somatic mutations, such as SBDS and del20q, may result in hematopoietic stem cell adaptation (improved hematopoiesis) and reversed clinical outcomes, which can facilitate the development of targeted therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Cheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhong Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Lao J, Sun H, Wang A, Wu M, Liu D, Zhang Y, Chen C, Xia Q, Ma S. Effect of eIF6 on the development of silk glands and silk protein synthesis of the silkworm, Bombyx mori. Int J Biol Macromol 2024; 256:128316. [PMID: 38000606 DOI: 10.1016/j.ijbiomac.2023.128316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The silkworm is a lepidopteran domesticated from the wild silkworm, mostly valued for its efficient synthesis of silk protein. This species' ability to spin silk has supported the 5500-year-old silk industry and the globally known "Silk Road", making the transformation of mulberry leaves into silk of great concern. Therefore, research on the silk-related genes of silkworms and their regulatory mechanisms has attracted increasing attention. Previous studies have revealed that domestic silk gland cells are endoreduplication cells, and their high-copy genome and special chromatin conformation provide conditions for the high expression of silk proteins. In this study, we systematically investigate the expression pattern of eukaryotic initiation factors (eIFs) and identified the eIF6 as a eukaryotic translation initiation factor involved in the synthesis of silk proteins. We generated an eIF6 gene deletion mutant strain of silkworm using the CRISPR/Cas9 system and investigated the function of eIF6 in silk gland development and silk protein synthesis. The results showed that deletion of eIF6 inhibited the individual development of silkworm larvae, inhibited the development of silk glands, and significantly reduced the cocoon layer ratio. Therefore, we elucidated the function of eIF6 in the development of silk glands and the synthesis of silk proteins, which is important for further elucidation of the developmental process of silk glands and the mechanism underlying the ultra-high expression of silk proteins.
Collapse
Affiliation(s)
- Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Mingke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Chaojie Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
| |
Collapse
|
14
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
15
|
Oyarbide U, Shah AN, Staton M, Snyderman M, Sapra A, Calo E, Corey SJ. SBDS R126T rescues survival of sbds -/- zebrafish in a dose-dependent manner independently of Tp53. Life Sci Alliance 2023; 6:e202201856. [PMID: 37816584 PMCID: PMC10565674 DOI: 10.26508/lsa.202201856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Defects in ribosomal biogenesis profoundly affect organismal development and cellular function, and these ribosomopathies produce a variety of phenotypes. One ribosomopathy, Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, pancreatic exocrine insufficiency, and skeletal anomalies. SDS results from biallelic mutations in SBDS, which encodes a ribosome assembly factor. Some individuals express a missense mutation, SBDS R126T , along with the common K62X mutation. We reported that the sbds-null zebrafish phenocopies much of SDS. We further showed activation of Tp53-dependent pathways before the fish died during the larval stage. Here, we expressed SBDS R126T as a transgene in the sbds -/- background. We showed that one copy of the SBDS R126T transgene permitted the establishment of maternal zygotic sbds-null fish which produced defective embryos with cdkn1a up-regulation, a Tp53 target involved in cell cycle arrest. None survived beyond 3 dpf. However, two copies of the transgene resulted in normal development and lifespan. Surprisingly, neutropenia persisted. The surviving fish displayed suppression of female sex differentiation, a stress response in zebrafish. To evaluate the role of Tp53 in the pathogenesis of sbds -/- fish phenotype, we bred the fish with a DNA binding deficient allele, tp53 M214K Expression of the loss-of-function tp53 M214K did not rescue neutropenia or survival in sbds-null zebrafish. Increased expression of cdkn1a was abrogated in the tp53 M214K/M214K ;sbds -/- fish. We conclude that the amount of SBDSR126T protein is important for development, inactivation of Tp53 fails to rescue neutropenia or survival in the sbds-null background, and cdkn1a up-regulation was dependent on WT tp53 We hypothesize that additional pathways are involved in the pathophysiology of SDS.
Collapse
Affiliation(s)
- Usua Oyarbide
- Departments of Cancer Biology and Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| | - Arish N Shah
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morgan Staton
- Departments of Cancer Biology and Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew Snyderman
- Departments of Cancer Biology and Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| | - Adya Sapra
- Departments of Cancer Biology and Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| | - Eliezer Calo
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth J Corey
- Departments of Cancer Biology and Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
16
|
Catalanotto C, Barbato C, Cogoni C, Benelli D. The RNA-Binding Function of Ribosomal Proteins and Ribosome Biogenesis Factors in Human Health and Disease. Biomedicines 2023; 11:2969. [PMID: 38001969 PMCID: PMC10669870 DOI: 10.3390/biomedicines11112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Christian Barbato
- National Research Council (CNR), Department of Sense Organs DOS, Institute of Biochemistry and Cell Biology (IBBC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Carlo Cogoni
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| |
Collapse
|
17
|
Kawashima N, Oyarbide U, Cipolli M, Bezzerri V, Corey SJ. Shwachman-Diamond syndromes: clinical, genetic, and biochemical insights from the rare variants. Haematologica 2023; 108:2594-2605. [PMID: 37226705 PMCID: PMC10543188 DOI: 10.3324/haematol.2023.282949] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Shwachman-Diamond syndrome is a rare inherited bone marrow failure syndrome characterized by neutropenia, exocrine pancreatic insufficiency, and skeletal abnormalities. In 10-30% of cases, transformation to a myeloid neoplasm occurs. Approximately 90% of patients have biallelic pathogenic variants in the SBDS gene located on human chromosome 7q11. Over the past several years, pathogenic variants in three other genes have been identified to cause similar phenotypes; these are DNAJC21, EFL1, and SRP54. Clinical manifestations involve multiple organ systems and those classically associated with the Shwachman-Diamond syndrome (bone, blood, and pancreas). Neurocognitive, dermatologic, and retinal changes may also be found. There are specific gene-phenotype differences. To date, SBDS, DNAJC21, and SRP54 variants have been associated with myeloid neoplasia. Common to SBDS, EFL1, DNAJC21, and SRP54 is their involvement in ribosome biogenesis or early protein synthesis. These four genes constitute a common biochemical pathway conserved from yeast to humans that involve early stages of protein synthesis and demonstrate the importance of this synthetic pathway in myelopoiesis.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Usua Oyarbide
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | | | | | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
18
|
Cuccuini W, Collonge-Rame MA, Auger N, Douet-Guilbert N, Coster L, Lafage-Pochitaloff M. Cytogenetics in the management of bone marrow failure syndromes: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103423. [PMID: 38016422 DOI: 10.1016/j.retram.2023.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.
Collapse
Affiliation(s)
- Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 75475, Paris Cedex 10, France.
| | - Marie-Agnes Collonge-Rame
- Oncobiologie Génétique Bioinformatique UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Hôpital Minjoz, 25030, Besançon, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique/Génétique des Tumeurs, Gustave Roussy, 94805, Villejuif, France
| | - Nathalie Douet-Guilbert
- Laboratoire de Génétique Chromosomique, CHU Brest, Hôpital Morvan, 29609, Brest Cedex, France
| | - Lucie Coster
- Laboratoire d'Hématologie, Secteur de Cytogénétique, Institut Universitaire de Cancérologie de Toulouse, CHU de Toulouse, 31059, Toulouse Cedex 9, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, CHU Timone, Assistance Publique Hôpitaux de Marseille (APHM), Aix Marseille Université, 13005, Marseille, France
| |
Collapse
|
19
|
Machado HE, Øbro NF, Williams N, Tan S, Boukerrou AZ, Davies M, Belmonte M, Mitchell E, Baxter EJ, Mende N, Clay A, Ancliff P, Köglmeier J, Killick SB, Kulasekararaj A, Meyer S, Laurenti E, Campbell PJ, Kent DG, Nangalia J, Warren AJ. Convergent somatic evolution commences in utero in a germline ribosomopathy. Nat Commun 2023; 14:5092. [PMID: 37608017 PMCID: PMC10444798 DOI: 10.1038/s41467-023-40896-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.
Collapse
Affiliation(s)
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Shengjiang Tan
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Ahmed Z Boukerrou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jutta Köglmeier
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sally B Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Austin Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, UK
| | - Stefan Meyer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, Oxford Road, Manchester, UK
- Teenage and Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Alan J Warren
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.
| |
Collapse
|
20
|
Xing H, Taniguchi R, Khusainov I, Kreysing JP, Welsch S, Turoňová B, Beck M. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. Science 2023; 381:70-75. [PMID: 37410833 DOI: 10.1126/science.adh1411] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.
Collapse
Affiliation(s)
- Huaipeng Xing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Reiya Taniguchi
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, 60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Brune Z, Li D, Song S, Li DI, Castro I, Rasquinha R, Rice MR, Guo Q, Kampta K, Moss M, Lallo M, Pimenta E, Somerville C, Lapan M, Nelson V, Dos Santos CO, Blanc L, Pruitt K, Barnes BJ. Loss of IRF5 increases ribosome biogenesis leading to alterations in mammary gland architecture and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538998. [PMID: 37292919 PMCID: PMC10246023 DOI: 10.1101/2023.05.01.538998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
Collapse
|
22
|
Reilly CR, Shimamura A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. Blood 2023; 141:1513-1523. [PMID: 36542827 PMCID: PMC10082379 DOI: 10.1182/blood.2022017739] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited multisystem ribosomopathy characterized by exocrine pancreatic deficiency, bone marrow failure, and predisposition to myeloid malignancies. The pathobiology of SDS results from impaired ribosomal maturation due to the deficiency of SBDS and the inability to evict the antiassociation factor eIF6 from the 60S ribosomal subunit. Clinical outcomes for patients with SDS who develop myeloid malignancies are extremely poor because of high treatment-related toxicities and a high rate of refractory disease/relapse even after allogeneic hematopoietic stem cell transplant (HSCT). Registry data indicate that outcomes are improved for patients with SDS who undergo routine bone marrow surveillance and receive an HSCT before developing an overt malignancy. However, the optimal approach to hematologic surveillance and the timing of HSCT for patients with SDS is not clearly established. Recent studies have elucidated distinct patterns of somatic blood mutations in patients with SDS that either alleviate the ribosome defect via somatic rescue (heterozygous EIF6 inactivation) or disrupt cellular checkpoints, resulting in increased leukemogenic potential (heterozygous TP53 inactivation). Genomic analysis revealed that most myeloid malignancies in patients with SDS have biallelic loss-of-function TP53 mutations. Single-cell DNA sequencing of SDS bone marrow samples can detect premalignant biallelic TP53-mutated clones before clinical diagnosis, suggesting that molecular surveillance may enhance the detection of incipient myeloid malignancies when HSCT may be most effective. Here, we review the clinical, genetic, and biologic features of SDS. In addition, we present evidence supporting the hematologic surveillance for patients with SDS that incorporates clinical, pathologic, and molecular data to risk stratify patients and prioritize transplant evaluation for patients with SDS with high-risk features.
Collapse
Affiliation(s)
- Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
23
|
Elliff J, Biswas A, Roshan P, Kuppa S, Patterson A, Mattice J, Chinnaraj M, Burd R, Walker SE, Pozzi N, Antony E, Bothner B, Origanti S. Dynamic states of eIF6 and SDS variants modulate interactions with uL14 of the 60S ribosomal subunit. Nucleic Acids Res 2023; 51:1803-1822. [PMID: 36651285 PMCID: PMC9976893 DOI: 10.1093/nar/gkac1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.
Collapse
Affiliation(s)
- Jonah Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
- Department of Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Aparna Biswas
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Poonam Roshan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Ryan Burd
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Sarah E Walker
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Sofia Origanti
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
24
|
Faille A, Dent KC, Pellegrino S, Jaako P, Warren AJ. The chemical landscape of the human ribosome at 1.67 Å resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530191. [PMID: 36909531 PMCID: PMC10002709 DOI: 10.1101/2023.02.28.530191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ability of ribosomes to translate the genetic code into protein requires a finely tuned ion and solvent ecosystem. However, the lack of high-resolution structures has precluded accurate positioning of all the functional elements of the ribosome and limited our understanding of the specific role of ribosomal RNA chemical modifications in modulating ribosome function in health and disease. Here, using a new sample preparation methodology based on functionalised pristine graphene-coated grids, we solve the cryo-EM structure of the human large ribosomal subunit to a resolution of 1.67 Å. The accurate assignment of water molecules, magnesium and potassium ions in our model highlights the fundamental biological role of ribosomal RNA methylation in harnessing unconventional carbon-oxygen hydrogen bonds to establish chemical interactions with the environment and fine-tune the functional interplay with tRNA. In addition, the structures of three translational inhibitors bound to the human large ribosomal subunit at better than 2 Å resolution provide mechanistic insights into how three key druggable pockets of the ribosome are targeted and illustrate the potential of this methodology to accelerate high-throughput structure-based design of anti-cancer therapeutics.
Collapse
|
25
|
Donadieu J. Genetics of severe congenital neutropenia as a gateway to personalized therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:658-665. [PMID: 36485107 PMCID: PMC9821599 DOI: 10.1182/hematology.2022000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Registre National des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|