1
|
Panda SK, Sanchez-Pajares IR, Rehman A, Del Vecchio V, Mele L, Chipurupalli S, Robinson N, Desiderio V. ER stress and/or ER-phagy in drug resistance? Three coincidences are proof. Cell Commun Signal 2025; 23:223. [PMID: 40361118 PMCID: PMC12070796 DOI: 10.1186/s12964-025-02232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer is influenced by the tumor microenvironment (TME), which includes factors such as pH, hypoxia, immune cells, and blood vessels. These factors affect cancer cell growth and behavior. The tumor microenvironment triggers adaptive responses such as endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and autophagy, posing a challenge to cancer treatment. The UPR aims to restore ER homeostasis by involving key regulators inositol-requiring enzyme-1(IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Additionally, ER-phagy, a selective form of autophagy, eliminates ER components under stress conditions. Understanding the interplay between hypoxia, ER stress, UPR, and autophagy in the tumor microenvironment is crucial for developing effective cancer therapies to overcome drug resistance. Targeting the components of the UPR and modulating ER-phagy could potentially improve the efficacy of existing cancer therapies. Future research should define the conditions under which ER stress responses and ER-phagy act as pro-survival versus pro-death mechanisms and develop precise methods to quantify ER-phagic flux in tumor cells.
Collapse
Affiliation(s)
- Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | | | - Ayesha Rehman
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V 4, Rome, 00165, Italia
| | - Luigi Mele
- University of Basilicata, Via Dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Sandhya Chipurupalli
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Department of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Nirmal Robinson
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| |
Collapse
|
2
|
Mohammad-Sadeghipour M, Nematollahi MH, Sahebazzamani M, Ahmadinia H, Hajizadeh MR, Mahmoodi M, Sahebkar A. G protein-coupled estrogen receptor reduces the breast cancer cell survival by regulating the IRE1α/miR-17-5p/TXNIP pathway. J Steroid Biochem Mol Biol 2025; 252:106770. [PMID: 40328365 DOI: 10.1016/j.jsbmb.2025.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
This study aimed to explore whether GPER can induce the UPR response in the SKBR3 cell line through ER and IREα activation, and to assess whether this response leads to cell survival or cell death. Additionally, the study sought to evaluate the impact of this response on cell behaviors such as apoptosis, migration, and drug resistance. To activate the UPR and induce ER stress, we treated the MCF10A cell line with 0.5 µg/ml TUN for 24 and 48 h. The expression levels of XBP-1 and C/EBP homology protein (CHOP) genes (ER stress markers) were measured using the qRT-PCR technique. The MCF10A + TUN cell line was used as a positive control. To determine the optimal doses of G1 and tamoxifen (TAM), we evaluated GPER expression using qRT-PCR analysis. Cells were then treated with various doses of G1 (1000 nM), G15 (1000 nM), and TAM (2000 nM), both individually and in combination (G1 + G15, TAM + G15, G1 + TAM), for 24 and 48 h. We measured the expression of GPER, IRE1α, MiR-17-5p, TXNIP, ABCB1, and ABCC1 genes. Apoptosis was assessed via flow cytometry, and cell migration was examined using the wound-healing assay. Our results demonstrated that GPER activation by G1 and TAM significantly increased IRE1α expression in SKBR3 cells. This activation, through its RIDD activity, cleaved miR-17-5p and initiated the UPR death response. The upregulation of the TXNIP gene expression enhanced apoptosis and chemotherapy sensitivity while decreasing cell migration. Interestingly, these effects were notably reversed by G15 treatment. In summary, the GPER/IRE1α/miR-17-5p/TXNIP axis plays a key role in the UPR pro-death response, promoting programmed cell death, reducing migration, and decreasing drug resistance in SKBR3 cells.
Collapse
Affiliation(s)
- Maryam Mohammad-Sadeghipour
- Molecular Medicine Research Center, Inistitute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan City, Rafsanjan Province, Iran; Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman City, Kerman Province, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman City, Kerman Province, Iran
| | - Maryam Sahebazzamani
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman City, Kerman Province, Iran
| | - Hassan Ahmadinia
- Department of Biostatistics, Rafsanjan University of Medical Sciences, Rafsanjan City, Rafsanjan Province, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Inistitute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan City, Rafsanjan Province, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan City, Rafsanjan Province, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Inistitute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan City, Rafsanjan Province, Iran; Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman City, Kerman Province, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wang YY, Geng SK, Fu YP, Sun J. XBP1: A key regulator in breast cancer development and treatment. Pathol Res Pract 2025; 269:155900. [PMID: 40086337 DOI: 10.1016/j.prp.2025.155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
X-box binding protein 1 (XBP1), as a transcription factor, plays pivotal role in unfolded protein response (UPR), which is activated in response to endoplasmic reticulum (ER) stress to restore ER homeostasis. IRE1α/XBP1 pathway is a key component of UPR, and the expression levels of XBP1 can dictate the fate of cells under ER stress, either promoting survival or driving apoptosis. High expression of XBP1 in breast tumors is closely associated with poor prognosis. The paper elucidates the biological functions of XBP1 and its involvement in UPR, while also surveying the latest research on how XBP1 influences immunity, metabolism, apoptosis, angiogenesis, and the invasive and migratory behaviors of breast cancer cells. Moreover, it contemplates the potential of XBP1 as a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Ya-Ya Wang
- Department of Breast Surgery, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Sheng-Kai Geng
- Department of Breast Surgery, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Yi-Peng Fu
- Department of Breast Surgery, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China.
| | - Jian Sun
- Department of Breast Surgery, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China.
| |
Collapse
|
4
|
Ghemrawi R, Kremesh S, Mousa WK, Khair M. The Role of ER Stress and the Unfolded Protein Response in Cancer. Cancer Genomics Proteomics 2025; 22:363-381. [PMID: 40280715 PMCID: PMC12041869 DOI: 10.21873/cgp.20507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Dysregulation of protein synthesis, folding, and secretion leads to endoplasmic reticulum (ER) stress, triggering the unfolded protein response (UPR). While the UPR is essential for cell survival under stress, its chronic activation in cancer cells supports tumorigenesis, metastasis, and chemoresistance by enabling cellular adaptation to hypoxia, nutrient deprivation, and oxidative stress. This review provides a comprehensive overview of the roles of key UPR mediators - binding immunoglobulin protein (BiP), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) - in cancer progression and therapy resistance. Furthermore, it discusses strategies to target UPR pathways, including small molecule inhibitors, gene therapies, natural compounds, and combination therapies, while it evaluates their preclinical and clinical relevance. Finally, it explores how modulating UPR signaling can overcome therapeutic resistance, improve immunotherapy outcomes, and reshape the tumor microenvironment. This review emphasizes the promise of UPR-targeted approaches in enhancing the efficacy of current cancer treatments and achieving better patient outcomes.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Walaa K Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Shen H, Jin J, Yu N, Liu T, Nie Y, Wan Z, Chen Y, Cao K, Xu Y, Huang Y, Feng C, Huang R, Yang Y, Gao F. PRKCSH enhances colorectal cancer radioresistance via IRE1α/XBP1s-mediated DNA repair. Cell Death Dis 2025; 16:258. [PMID: 40189587 PMCID: PMC11973196 DOI: 10.1038/s41419-025-07582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Neoadjuvant radiotherapy is the standard treatment for locally advanced rectal cancer, but resistance to this therapy remains a significant clinical challenge. Understanding the molecular mechanisms of radioresistance and developing strategies to enhance radiosensitivity are crucial for improving treatment outcomes. This study investigated the role of PRKCSH in colorectal cancer radioresistance and its underlying mechanisms. Our results demonstrate that PRKCSH is upregulated in colorectal cancer cells following ionizing radiation. Inhibiting PRKCSH sensitized these cells to radiation by reducing clonogenic survival, promoting apoptosis, and impairing DNA damage repair. Mechanistically, PRKCSH inhibition reduced p53 ubiquitination and degradation by activating the ER stress IRE1α/XBP1s pathway after radiation exposure, which enhanced DNA repair and contributed to radioresistance. In preclinical CRC models, PRKCSH depletion suppressed tumor growth and increased radiosensitivity. Similarly, in patient-derived organoid models, PRKCSH knockdown reduced organoid growth post-radiotherapy. In rectal cancer patients receiving neoadjuvant radiotherapy, higher PRKCSH expression in post-treatment samples correlated with reduced tumor regression. These findings suggest that targeting PRKCSH diminishes radioresistance by impairing DNA repair through the modulation of ER stress. Furthermore, PRKCSH expression may serve as a biomarker for evaluating radiotherapy efficacy and clinical outcomes in rectal cancer patients undergoing neoadjuvant therapy.
Collapse
Affiliation(s)
- Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Jin
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an, China
| | - Nanxi Yu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ying Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yijuan Huang
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chao Feng
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Hunan, Changsha, China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China.
| |
Collapse
|
6
|
Zuazo-Gaztelu I, Lawrence D, Oikonomidi I, Marsters S, Pechuan-Jorge X, Gaspar CJ, Kan D, Segal E, Clark K, Beresini M, Braun MG, Rudolph J, Modrusan Z, Choi M, Sandoval W, Reichelt M, DeWitt DC, Kujala P, van Dijk S, Klumperman J, Ashkenazi A. A nonenzymatic dependency on inositol-requiring enzyme 1 controls cancer cell cycle progression and tumor growth. PLoS Biol 2025; 23:e3003086. [PMID: 40208872 PMCID: PMC12080931 DOI: 10.1371/journal.pbio.3003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/15/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Endoplasmic-reticulum resident inositol-requiring enzyme 1α (IRE1) supports protein homeostasis via its cytoplasmic kinase-RNase module. Known cancer dependency on IRE1 entails its enzymatic activation of the transcription factor XBP1s and of regulated RNA decay. We discovered surprisingly that some cancer cell lines require IRE1 but not its enzymatic activity. IRE1 knockdown but not enzymatic IRE1 inhibition or XBP1 disruption attenuated cell cycle progression and tumor growth. IRE1 silencing led to activation of TP53 and CDKN1A/p21 in conjunction with increased DNA damage and chromosome instability, while decreasing heterochromatin as well as DNA and histone H3K9me3 methylation. Immunoelectron microscopy detected some endogenous IRE1 protein at the nuclear envelope. Thus, cancer cells co-opt IRE1 either enzymatically or nonenzymatically, which has significant implications for IRE1's biological role and therapeutic targeting.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Lawrence
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Scot Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ximo Pechuan-Jorge
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Catarina J. Gaspar
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Kan
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ehud Segal
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Maureen Beresini
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Marie-Gabrielle Braun
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joachim Rudolph
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Meena Choi
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Wendy Sandoval
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - David C. DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Pekka Kujala
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine—Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
7
|
Zhang L, Ramesh P, Atencia Taboada L, Roessler R, Zijlmans DW, Vermeulen M, Picavet-Havik DI, van der Wel NN, Vaz FM, Medema JP. UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer. Cell Death Differ 2025; 32:657-671. [PMID: 39580596 PMCID: PMC11982410 DOI: 10.1038/s41418-024-01418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Elevated de novo lipid synthesis is a remarkable adaptation of cancer cells that can be exploited for therapy. However, the role of altered lipid metabolism in the regulation of apoptosis is still poorly understood. Using thermal proteome profiling, we identified Manidipine-2HCl, targeting UGT8, a key enzyme in the synthesis of sulfatides. In agreement, lipidomic analysis indicated that sulfatides are strongly reduced in colorectal cancer cells upon treatment with Manidipine-2HCl. Intriguingly, this reduction led to severe mitochondrial swelling and a strong synergism with BH3 mimetics targeting BCL-XL, leading to the activation of mitochondria-dependent apoptosis. Mechanistically, Manidipine-2HCl enhanced mitochondrial BAX localization in a sulfatide-dependent fashion, facilitating its activation by BH3 mimetics. In conclusion, our data indicates that UGT8 mediated synthesis of sulfatides controls mitochondrial homeostasis and BAX localization, dictating apoptosis sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Le Zhang
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Prashanthi Ramesh
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Lidia Atencia Taboada
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Rebecca Roessler
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daisy I Picavet-Havik
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
10
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
11
|
Robinson N, Polara R, Thomas D. IRE1α: a gatekeeper of chemotherapy-induced immunogenicity in triple-negative breast cancer. Signal Transduct Target Ther 2025; 10:52. [PMID: 39934100 DOI: 10.1038/s41392-025-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Affiliation(s)
- Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Daniel Thomas
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
12
|
Renzi G, Vlassakev I, Hansen M, Higos R, Lecoutre S, Elmastas M, Hodek O, Moritz T, Alaeddine LM, Frendo-Cumbo S, Dahlman I, Kerr A, Maqdasy S, Mejhert N, Rydén M. Epigenetic suppression of creatine kinase B in adipocytes links endoplasmic reticulum stress to obesity-associated inflammation. Mol Metab 2025; 92:102082. [PMID: 39675471 PMCID: PMC11731883 DOI: 10.1016/j.molmet.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In white adipose tissue, disturbed creatine metabolism through reduced creatine kinase B (CKB) transcription contributes to obesity-related inflammation. However, the mechanisms regulating CKB expression in human white adipocytes remain unclear. By screening conditions perturbed in obesity, we identified endoplasmic reticulum (ER) stress as a key suppressor of CKB transcription across multiple cell types. Through follow-up studies, we found that ER stress through the IRE1-XBP1s pathway, promotes CKB promoter methylation via the methyltransferase DNMT3A. This epigenetic change represses CKB transcription, shifting metabolism towards glycolysis and increasing the production of the pro-inflammatory chemokine CCL2. We validated our findings in vivo, demonstrating that individuals living with obesity show an inverse relationship between CKB expression and promoter methylation in white adipocytes, along with elevated CCL2 secretion. Overall, our study uncovers a regulatory axis where ER stress drives inflammation in obesity by reducing CKB abundance, and consequently altering the bioenergetic state of the cell.
Collapse
Affiliation(s)
- Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Mattias Hansen
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France
| | - Merve Elmastas
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn M Alaeddine
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| |
Collapse
|
13
|
Bhattacharjee S, Gao J, Lu YW, Eisa-Beygi S, Wu H, Li K, Birsner AE, Wong S, Song Y, Shyy JYJ, Cowan DB, Huang W, Wei W, Aikawa M, Shi J, Chen H. Endothelial FOXM1 and Dab2 promote diabetic wound healing. JCI Insight 2025; 10:e186504. [PMID: 39846251 PMCID: PMC11790024 DOI: 10.1172/jci.insight.186504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor-dependent (VEGF-dependent) angiogenesis remain unclear. In our study, the molecular underpinnings of endothelial dysfunction in diabetes are investigated, focusing on the roles of disabled-2 (Dab2) and Forkhead box M1 (FOXM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high-glucose-treated primary mouse skin endothelial cells. In diabetic mice with endothelial deficiency of Dab2, in vivo and in vitro angiogenesis and wound healing were reduced when compared with wild-type diabetic mice. Restoration of Dab2 expression by injected mRNA-containing, LyP-1-conjugated lipid nanoparticles rescued impaired angiogenesis and wound healing in diabetic mice. Furthermore, FOXM1 was downregulated in skin endothelial cells under high-glucose conditions as determined by RNA-sequencing analysis. FOXM1 was found to bind to the Dab2 promoter, regulating its expression and influencing VEGFR2 signaling. The FOXM1 inhibitor FDI-6 reduced Dab2 expression and phosphorylation of VEGFR2. Our study provides evidence of the crucial roles of Dab2 and FOXM1 in diabetic endothelial dysfunction and establishes targeted delivery as a promising treatment for diabetic vascular complications.
Collapse
Affiliation(s)
- Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Jianing Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Amy E. Birsner
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Yudong Song
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Y-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases, City of Hope National Medical Center, Duarte, California, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery and
| |
Collapse
|
14
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
16
|
Czechowicz P, Gebert M, Bartoszewska S, Kalinowski L, Collawn JF, Bartoszewski R. The Yin and Yang of hsa-miR-1244 expression levels during activation of the UPR control cell fate. Cell Commun Signal 2024; 22:577. [PMID: 39623432 PMCID: PMC11610070 DOI: 10.1186/s12964-024-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Regulation of endoplasmic reticulum (ER) homeostasis plays a critical role in maintaining cell survival. When ER stress occurs, a network of three pathways called the unfolded protein response (UPR) is activated to reestablish homeostasis. While it is known that there is cross-talk between these pathways, how this complex network is regulated is not entirely clear. Using human cancer and non-cancer cell lines, two different genome-wide approaches, and two different ER stress models, we searched for miRNAs that were decreased during the UPR and surprisingly found only one, miR-1244, that was found under all these conditions. We also verified that ER-stress related downregulation of miR-1244 expression occurred with 5 different ER stressors and was confirmed in another human cell line (HeLa S3). These analyses demonstrated that the outcome of this reduction during ER stress supported both IRE1 signaling and elevated BIP expression. Further analysis using inhibitors specific for IRE1, ATF6, and PERK also revealed that this miRNA is impacted by all three pathways of the UPR. This is the first example of a complex mechanism by which this miRNA serves as a regulatory check point for all 3 pathways that is switched off during UPR activation. In summary, the results indicate that ER stress reduction of miR-1244 expression contributes to the pro-survival arm of UPR.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, Wroclaw, 50- 383, Poland
| | - Magdalena Gebert
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, Wroclaw, 50- 383, Poland.
| |
Collapse
|
17
|
Pasat BA, Pilalis E, Mnich K, Samali A, Chatziioannou A, Gorman AM. MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. BIOINFORMATICS ADVANCES 2024; 4:vbae175. [PMID: 39569320 PMCID: PMC11576358 DOI: 10.1093/bioadv/vbae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Motivation Analysis of gene and isoform expression levels is becoming critical for the detailed understanding of biochemical mechanisms. In addition, integrating RNA-seq data with other omics data types, such as proteomics and metabolomics, provides a strong approach for consolidating our understanding of biological processes across various organizational tiers, thus promoting the identification of potential therapeutic targets. Results We present our pipeline, called MultiOmicsIntegrator (MOI), an inclusive pipeline for comprehensive omics analyses. MOI represents a unified approach that performs in-depth individual analyses of diverse omics. Specifically, exhaustive analysis of RNA-seq data at the level of genes, isoforms of genes, as well as miRNA is offered, coupled with functional annotation and structure prediction of these transcripts. Additionally, proteomics and metabolomics data are supported providing a holistic view of biological systems. Finally, MOI has tools to integrate simultaneously multiple and diverse omics datasets, with both data- and function-driven approaches, fostering a deeper understanding of intricate biological interactions. Availability and implementation MOI and ReadTheDocs.
Collapse
Affiliation(s)
- Bianka Alexandra Pasat
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway H91TK33, Ireland
- Science Foundation Ireland, SFI Centre for Research Training in Genomics Data Science, Galway H91TK33, Ireland
- Center of Systems Biology, Biomedical Reseach Foundation of the Academy of Athens, Athens 11527, Greece
- e-NIOS Applications PC, Athens 17671, Greece
| | | | - Katarzyna Mnich
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway H91TK33, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway H91TK33, Ireland
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Reseach Foundation of the Academy of Athens, Athens 11527, Greece
- e-NIOS Applications PC, Athens 17671, Greece
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway H91TK33, Ireland
- Science Foundation Ireland, SFI Centre for Research Training in Genomics Data Science, Galway H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway H91TK33, Ireland
| |
Collapse
|
18
|
Syed RU, Alshammari MD, Banu H, Khojali WMA, Jafar M, Nagaraju P, Alshammari A. Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7421-7437. [PMID: 38761210 DOI: 10.1007/s00210-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia.
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Mhaswad, Maharashtra, India
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| |
Collapse
|
19
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
20
|
Bhattacharjee S, Gao J, Lu YW, Eisa-Beygi S, Wu H, Li K, Birsner AE, Wong S, Song Y, Shyy JYJ, Cowan DB, Wei W, Aikawa M, Shi J, Chen H. Interplay Between FoxM1 and Dab2 Promotes Endothelial Cell Responses in Diabetic Wound Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579019. [PMID: 39253510 PMCID: PMC11383039 DOI: 10.1101/2024.02.07.579019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor (VEGF)-dependent angiogenesis remain uncertain and could reveal new therapeutic targets. In our study, the molecular underpinnings of endothelial dysfunction in diabetes were investigated, focusing on the roles of Disabled-2 (Dab2) and Forkhead Box M1 (FoxM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell (EC) function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high concentrations glucose treated primary mouse skin ECs, simulating hyperglycemic conditions in diabetes mellitus. In diabetic mice with a genetic EC deficiency of Dab2 angiogenesis was reduced in vivo and in vitro when compared with wild-type mice. Restoration of Dab2 expression by injected mRNA-containing lipid nanoparticles rescued impaired angiogenesis and wound healing in diabetic mice. At the same time, FoxM1 was downregulated in skin ECs subjected to high glucose conditions as determined by RNA-sequencing analysis. FoxM1 was found to bind to the Dab2 promoter, regulating its expression and influencing VEGFR2 signaling. The FoxM1 inhibitor FDI-6 reduced Dab2 expression and phosphorylation of VEGFR2. These findings indicate that restoring Dab2 expression through targeted therapies can enhance angiogenesis and wound repair in diabetes. To explore this therapeutic potential, we tested LyP-1-conjugated lipid nanoparticles (LNPs) containing Dab2 or control mRNAs to target ECs and found the former significantly improved wound healing and angiogenesis in diabetic mice. This study provides evidence of the crucial roles of Dab2 and FoxM1 in diabetic endothelial dysfunction and establishes targeted delivery as a promising treatment for diabetic vascular complications.
Collapse
Affiliation(s)
- Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jianing Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy E. Birsner
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yudong Song
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Y-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Sun M, Zhang X, Tan B, Zhang Q, Zhao X, Dong D. Potential role of endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity-an update. Front Pharmacol 2024; 15:1415108. [PMID: 39188945 PMCID: PMC11345228 DOI: 10.3389/fphar.2024.1415108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
As a chemotherapy agent, doxorubicin is used to combat cancer. However, cardiotoxicity has limited its use. The existing strategies fail to eliminate doxorubicin-induced cardiotoxicity, and an in-depth exploration of its pathogenesis is in urgent need to address the issue. Endoplasmic reticulum stress (ERS) occurs when Endoplasmic Reticulum (ER) dysfunction results in the accumulation of unfolded or misfolded proteins. Adaptive ERS helps regulate protein synthesis to maintain cellular homeostasis, while prolonged ERS stimulation may induce cell apoptosis, leading to dysfunction and damage to tissue and organs. Numerous studies on doxorubicin-induced cardiotoxicity strongly link excessive activation of the ERS to mechanisms including oxidative stress, calcium imbalance, autophagy, ubiquitination, and apoptosis. The researchers also found several clinical drugs, chemical compounds, phytochemicals, and miRNAs inhibited doxorubicin-induced cardiotoxicity by targeting ERS. The present review aims to outline the interactions between ERS and other mechanisms in doxorubicin-induced cardiotoxicity and summarize ERS's role in this type of cardiotoxicity. Additionally, the review enumerates several clinical drugs, phytochemicals, chemical compounds, and miRNAs targeting ERS for considering therapeutic regimens that address doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xin Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Boxuan Tan
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
23
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
24
|
Kettel P, Karagöz GE. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int J Biochem Cell Biol 2024; 172:106598. [PMID: 38768891 DOI: 10.1016/j.biocel.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The endoplasmic reticulum (ER) regulates essential cellular processes, including protein folding, lipid synthesis, and calcium homeostasis. The ER homeostasis is maintained by a conserved set of signaling cascades called the Unfolded Protein Response (UPR). How the UPR senses perturbations in ER homeostasis has been the subject of active research for decades. In metazoans, the UPR consists of three ER-membrane embedded sensors: IRE1, PERK and ATF6. These sensors detect the accumulation of misfolded proteins in the ER lumen and adjust protein folding capacity according to cellular needs. Early work revealed that the ER-resident chaperone BiP binds to all three UPR sensors in higher eukaryotes and BiP binding was suggested to regulate their activity. More recent data have shown that in higher eukaryotes the interaction of the UPR sensors with a complex network of chaperones and misfolded proteins modulates their activation and deactivation dynamics. Furthermore, emerging evidence suggests that the UPR monitors ER membrane integrity beyond protein folding defects. However, the mechanistic and structural basis of UPR activation by proteotoxic and lipid bilayer stress in higher eukaryotes remains only partially understood. Here, we review the current understanding of novel protein interaction networks and the contribution of the lipid membrane environment to UPR activation.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Zheng Y, Meng H, Jiang X, Huang S. Bombyx mori UFL1 facilitates BmNPV proliferation by regulating host cell apoptosis through PERK. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22127. [PMID: 38976652 DOI: 10.1002/arch.22127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5)-E2 (UFC1)-E3 (UFL1) cascade. UFL1 is the E3 ligase for UFMylation in vertebrates. However, there have been no studies on UFL1 in silkworm to date. In this study, we identified a UFL1 ortholog in Bombyx mori genome. Spatio-temporal expression profiles showed that BmUFL1 expression was high in the midgut, epidermis, and testis and in the pupa-adult stage. BmUFL1 knockdown inhibited B. mori nucleopolyhedrovirus (BmNPV) proliferation, while BmUFL1 overexpression promoted BmNPV proliferation. Mechanically, protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling and cell apoptosis are involved in BmUFL1-regulated BmNPV proliferation. Overall, these results suggest that BmUFL1 facilitates BmNPV proliferation in silkworm.
Collapse
Affiliation(s)
- Yijun Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haonan Meng
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaochun Jiang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shoujun Huang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
26
|
Gao W, Wang Y, Liu S, Li G, Shao Q, Zhang C, Cao L, Liu K, Gao W, Yang Z, Dong Y, Du X, Lei L, Liu G, Li X. Inositol-requiring enzyme 1α and c-Jun N-terminal kinase axis activation contributes to intracellular lipid accumulation in calf hepatocytes. J Dairy Sci 2024; 107:3127-3139. [PMID: 37939835 DOI: 10.3168/jds.2022-23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
During the perinatal period, dairy cows undergo negative energy balance, resulting in elevated circulating levels of nonesterified fatty acids (NEFA). Although increased blood NEFA concentrations are a physiological adaptation of early lactation, excessive NEFA in dairy cows is a major cause of fatty liver. Aberrant lipid metabolism leads to hepatic lipid accumulation and subsequently the development of fatty liver. Both inositol-requiring enzyme 1α (IRE1α) and c-Jun N-terminal kinase (JNK) have been validated for their association with hepatic lipid accumulation, including their regulatory functions in calf hepatocyte insulin resistance, oxidative stress, and apoptosis. Meanwhile, both IRE1α and JNK are involved in lipid metabolism in nonruminants. Therefore, the aim of this study was to investigate how IRE1α and JNK regulate lipid metabolism in bovine hepatocytes. An experiment was conducted on randomly selected 10 healthy cows (hepatic triglyceride [TG] content <1%) and 10 cows with fatty liver (hepatic TG content >5%). Liver tissue and blood samples were collected from experimental cows. Serum concentrations of NEFA and β-hydroxybutyrate (BHB) were greater, whereas serum concentrations of glucose and milk production were lower in cows with fatty liver. The western blot results revealed that dairy cows with fatty liver had higher phosphorylation levels of JNK, c-Jun, and IRE1α in the liver tissue. Three in vitro experiments were conducted using primary calf hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h, which showed that the phosphorylated levels of JNK, c-Jun, and IRE1α increased in both linear and quadratic effects. In the second experiment, hepatocytes were treated with high concentrations of NEFA (1.2 mM) for 12 h with or without SP600125, a canonical inhibitor of JNK. Western blot results showed that SP600125 treatment could decrease the expression of lipogenesis-associated proteins (PPARγ and SREBP-1c) and increase the expression of fatty acid oxidation (FAO)-associated proteins (CPT1A and PPARα) in NEFA-treated hepatocytes. The perturbed expression of lipogenesis-associated genes (FASN, ACACA, and CD36) and FAO-associated gene ACOX1 were also recovered by JNK inhibition, indicating that JNK reduced excessive NEFA-induced lipogenesis and FAO dysregulation in calf hepatocytes. Third, short hairpin RNA targeting IRE1α (sh-IRE1α) was transfected into calf hepatocytes to silence IRE1α, and KIRA6 was used to inhibit the kinase activity of IRE1α. The blockage of IRE1α could at least partially suppressed NEFA-induced JNK activation. Moreover, the blockage of IRE1α downregulated the expression of lipogenesis genes and upregulated the expression of FAO genes in NEFA-treated hepatocytes. In conclusion, these findings indicate that targeting the IRE1α-JNK axis can reduce NEFA-induced lipid accumulation in bovine hepatocytes by modulating lipogenesis and FAO. This may offer a prospective therapeutic target for fatty liver in dairy cows.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Siyu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guojin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Liguang Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenrui Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zifeng Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yifei Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
27
|
Liu J, Yu W, Dong C, Huang X, Ren J. Objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS) for studying the fusion dynamics of protein phase separation. Analyst 2024; 149:2719-2727. [PMID: 38525957 DOI: 10.1039/d4an00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to β-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Ong G, Ragetli R, Mnich K, Doble BW, Kammouni W, Logue SE. IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis 2024; 15:276. [PMID: 38637497 PMCID: PMC11026449 DOI: 10.1038/s41419-024-06663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The Unfolded Protein Response (UPR) is an essential cellular process activated by the accumulation of unfolded proteins within the Endoplasmic Reticulum (ER), a condition referred to as ER stress. Three ER anchored receptors, IRE1, PERK and ATF6 act as ER stress sensors monitoring the health of the ER. Upon detection of ER stress, IRE1, PERK and ATF6 initiate downstream signaling pathways collectively referred to as the UPR. The overarching aim of the UPR is to restore ER homeostasis by reducing ER stress, however if that is not possible, the UPR transitions from a pro-survival to a pro-death response. While our understanding of the key signaling pathways central to the UPR is well defined, the same is not true of the subtle signaling events that help fine tune the UPR, supporting its ability to adapt to varying amplitudes or durations of ER stress. In this study, we demonstrate cross talk between the IRE1 and PERK branches of the UPR, wherein IRE1 via XBP1s signaling helps to sustain PERK expression during prolonged ER stress. Our findings suggest cross talk between UPR branches aids adaptiveness thereby helping to support the plasticity of UPR signaling responses.
Collapse
Affiliation(s)
- Gideon Ong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rosemund Ragetli
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bradley W Doble
- Department of Paediatrics, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, MB, Canada
| | - Wafa Kammouni
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
González-Pereira P, Trinh R, Vasuthasawat A, Bartsch-Jiménez A, Nuñez-Soto C, Altamirano C. Enhancing Antibody-Specific Productivity: Unraveling the Impact of XBP1s Overexpression and Glutamine Availability in SP2/0 Cells. Bioengineering (Basel) 2024; 11:201. [PMID: 38534475 DOI: 10.3390/bioengineering11030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Augmentation of glycoprotein synthesis requirements induces endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR) and triggering unconventional XBP1 splicing. As a result, XBP1s orchestrates the expression of essential genes to reduce stress and restore homeostasis. When this mechanism fails, chronic stress may lead to apoptosis, which is thought to be associated with exceeding a threshold in XBP1s levels. Glycoprotein assembly is also affected by glutamine (Gln) availability, limiting nucleotide sugars (NS), and preventing compliance with the increased demands. In contrast, increased Gln intake synthesizes ammonia as a by-product, potentially reaching toxic levels. IgA2m(1)-producer mouse myeloma cells (SP2/0) were used as the cellular mammalian model. We explored how IgA2m(1)-specific productivity (qIgA2m(1)) is affected by (i) overexpression of human XBP1s (h-XBP1s) levels and (ii) Gln availability, evaluating the kinetic behavior in batch cultures. The study revealed a two and a five-fold increase in qIgA2m(1) when lower and higher levels of XBP1s were expressed, respectively. High h-XBP1s overexpression mitigated not only ammonia but also lactate accumulation. Moreover, XBP1s overexpressor showed resilience to hydrodynamic stress in serum-free environments. These findings suggest a potential application of h-XBP1s overexpression as a feasible and cost-effective strategy for bioprocess scalability.
Collapse
Affiliation(s)
- Priscilla González-Pereira
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Ryan Trinh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Vasuthasawat
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Bartsch-Jiménez
- Escuela Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Constanza Nuñez-Soto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2340000, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Av. Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso 2340000, Chile
| |
Collapse
|
30
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
31
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Liu J, Yu S, Yu W, Dong C, Huang X, Ren J. CRDBP Protein Phase Separation and Its Recruitment to β-Catenin Protein in a Single Living Cell. J Phys Chem B 2023; 127:10498-10507. [PMID: 38051203 DOI: 10.1021/acs.jpcb.3c06346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to β-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengrong Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Wang H, Liu F, Xue J, Liu Y, Gao W, Yang S, Mi Y, Zhang X, Gao S, Geng C. The investigation of circRNA profiling reveals the regulatory role of the hsa_circ_0000375/miR-7706 pathway in breast cancer. Mol Biol Rep 2023; 50:9993-10004. [PMID: 37904009 DOI: 10.1007/s11033-023-08798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) take an effect on tumorigenesis and progression. However, circRNAs have not been systematically identified in breast cancer (BC) as crucial regulators in multitudinous biological processes. This study is conducted to explore novel circRNAs in BC and the corresponding mechanisms of their action. METHODS The circRNA expression profile and RNA-sequencing data about BC were respectively downloaded from public database. Differentially expressed circRNAs, miRNAs, and mRNAs were identified by fold change filtering. The competing endogenous RNAs (ceRNAs) network was established based on the relationship between circular RNAs, miRNAs and mRNAs. GO and KEGG enrichment analysis of the overlapped genes were carried out to predict the potential functions and mechanisms of circRNAs in BC. The CytoHubba plugin in Cytoscape was applied to identify the hub genes from the PPI regulatory network. Kaplan-Meier plotter was used to perform survival analysis of these hub genes further. Real-time PCR was performed to test the expression of circRNA in BC tissues. Cell function studies including transwell analysis and CCK-8 analysis were used to investigate circRNAs' biological functions. RESULTS A total of seven circRNAs exhibiting differential expression were identified in this study. After the intersection between the predicted target miRNA and the down-regulated differential miRNAs (DEmiRNAs), circRNA-miRNA interactions involving 3 circRNAs and 4 miRNAs were identified. Venn diagram was utilized to intersect the predicted target genes of the 4 miRNAs and the down-regulated differential genes in BC, and 149 overlapped genes were screened out ulteriorly. Additionally, we built a protein-protein interaction (PPI) network and selected six hub genes. Moreover, the survival data of BC patients suggested that low expression of ADIPOQ, LPL and LEP were significantly correlated with poor prognosis. Results from real-time PCR indicated that hsa_circ_0000375 was significantly down-regulated in breast cancer tissues. Functional in vitro experiments showed that over-expression of hsa_circ_0000375 can restrain proliferation, migration and invasion abilities of breast cancer cells. Further verification indicated that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706. CONCLUSIONS This study constructed and analyzed a circRNA-associated ceRNA regulatory network and uncovered that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706.
Collapse
Affiliation(s)
- Haoqi Wang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Jing Xue
- Radiology Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yaping Liu
- Medical insurance center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Wei Gao
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Yang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yunzhe Mi
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Xi Zhang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Gao
- Gland Surgery, the Hebei Province People's Hospital, Shijiazhuang, 050000, Hebei, P.R. China.
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China.
| |
Collapse
|
35
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
36
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Hu C, Xin Z, Sun X, Hu Y, Zhang C, Yan R, Wang Y, Lu M, Huang J, Du X, Xing B, Liu X. Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress. J Exp Clin Cancer Res 2023; 42:108. [PMID: 37122003 PMCID: PMC10150531 DOI: 10.1186/s13046-023-02656-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Tumor cells display augmented capability to maintain endoplasmic reticulum (ER) homeostasis and hijack ER stress pathway for malignant phenotypes under microenvironmental stimuli. Metabolic reprogramming is a well-known hallmark for tumor cells to provide specific adaptive traits to the microenvironmental alterations. However, it's unknown how tumor cells orchestrate metabolic reprogramming and tumor progression in response to ER stress. Herein, we aimed to explore the pivotal roles of SEC63-mediated metabolic remodeling in hepatocellular carcinoma (HCC) cell metastasis after ER stress. METHODS The expression levels of SEC63 in HCC tissues and adjacent non-cancerous tissues were determined by immunohistochemistry and western blot. The regulatory roles of SEC63 in HCC metastasis were investigated both in vitro and in vivo by RNA-sequencing, metabolites detection, immunofluorescence, and transwell migration/invasion analyses. GST pull-down, immunoprecipitation/mass spectrometry and in vivo ubiquitination/phosphorylation assay were conducted to elucidate the underlying molecular mechanisms. RESULTS We identified SEC63 as a new regulator of HCC cell metabolism. Upon ER stress, the phosphorylation of SEC63 at T537 by IRE1α pathway contributed to SEC63 activation. Then, the stability of ACLY was upregulated by SEC63 to increase the supply of acetyl-CoA and lipid biosynthesis, which are beneficial for improving ER capacity. Meanwhile, SEC63 also entered into nucleus for increasing nuclear acetyl-CoA production to upregulate unfolded protein response targets to improve ER homeostasis. Importantly, SEC63 coordinated with ACLY to epigenetically modulate expression of Snail1 in the nucleus. Consequently, SEC63 promoted HCC cell metastasis and these effects were reversed by ACLY inhibition. Clinically, SEC63 expression was significantly upregulated in HCC tissue specimens and was positively correlated with ACLY expression. Importantly, high expression of SEC63 predicted unfavorable prognosis of HCC patients. CONCLUSIONS Our findings revealed that SEC63-mediated metabolic reprogramming plays important roles in keeping ER homeostasis upon stimuli in HCC cells. Meanwhile, SEC63 coordinates with ACLY to upregulate the expression of Snail1, which further promotes HCC metastasis. Metastasis is crucial for helping cancer cells seek new settlements upon microenvironmental stimuli. Taken together, our findings highlight a cancer selective adaption to ER stress as well as reveal the potential roles of the IRE1α-SEC63-ACLY axis in HCC treatment.
Collapse
Affiliation(s)
- Chenyu Hu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Zechang Xin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Xiaoyan Sun
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Yang Hu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Rui Yan
- Department of Genetics, Harvard Medical School, Boston, 02115, USA
| | - Yuying Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, People's Republic of China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
38
|
Ong G, Logue SE. Unfolding the Interactions between Endoplasmic Reticulum Stress and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12050981. [PMID: 37237847 DOI: 10.3390/antiox12050981] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is caused by an imbalance in cellular redox state due to the accumulation of reactive oxygen species (ROS). While homeostatic levels of ROS are important for cell physiology and signaling, excess ROS can induce a variety of negative effects ranging from damage to biological macromolecules to cell death. Additionally, oxidative stress can disrupt the function of redox-sensitive organelles including the mitochondria and endoplasmic reticulum (ER). In the case of the ER, the accumulation of misfolded proteins can arise due to oxidative stress, leading to the onset of ER stress. To combat ER stress, cells initiate a highly conserved stress response called the unfolded protein response (UPR). While UPR signaling, within the context of resolving ER stress, is well characterised, how UPR mediators respond to and influence oxidative stress is less defined. In this review, we evaluate the interplay between oxidative stress, ER stress and UPR signaling networks. Specifically, we assess how UPR signaling mediators can influence antioxidant responses.
Collapse
Affiliation(s)
- Gideon Ong
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
39
|
English BC, Savage HP, Mahan SP, Diaz-Ochoa VE, Young BM, Abuaita BH, Sule G, Knight JS, O’Riordan MX, Bäumler AJ, Tsolis RM. The IRE1α-XBP1 Signaling Axis Promotes Glycolytic Reprogramming in Response to Inflammatory Stimuli. mBio 2023; 14:e0306822. [PMID: 36475773 PMCID: PMC9973330 DOI: 10.1128/mbio.03068-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Immune cells must be able to adjust their metabolic programs to effectively carry out their effector functions. Here, we show that the endoplasmic reticulum (ER) stress sensor Inositol-requiring enzyme 1 alpha (IRE1α) and its downstream transcription factor X box binding protein 1 (XBP1) enhance the upregulation of glycolysis in classically activated macrophages (CAMs). The IRE1α-XBP1 signaling axis supports this glycolytic switch in macrophages when activated by lipopolysaccharide (LPS) stimulation or infection with the intracellular bacterial pathogen Brucella abortus. Importantly, these different inflammatory stimuli have distinct mechanisms of IRE1α activation; while Toll-like receptor 4 (TLR4) supports glycolysis under both conditions, TLR4 is required for activation of IRE1α in response to LPS treatment but not B. abortus infection. Though IRE1α and XBP1 are necessary for maximal induction of glycolysis in CAMs, activation of this pathway is not sufficient to increase the glycolytic rate of macrophages, indicating that the cellular context in which this pathway is activated ultimately dictates the cell's metabolic response and that IRE1α activation may be a way to fine-tune metabolic reprogramming. IMPORTANCE The immune system must be able to tailor its response to different types of pathogens in order to eliminate them and protect the host. When confronted with bacterial pathogens, macrophages, frontline defenders in the immune system, switch to a glycolysis-driven metabolism to carry out their antibacterial functions. Here, we show that IRE1α, a sensor of ER stress, and its downstream transcription factor XBP1 support glycolysis in macrophages during infection with Brucella abortus or challenge with Salmonella LPS. Interestingly, these stimuli activate IRE1α by independent mechanisms. While the IRE1α-XBP1 signaling axis promotes the glycolytic switch, activation of this pathway is not sufficient to increase glycolysis in macrophages. This study furthers our understanding of the pathways that drive macrophage immunometabolism and highlights a new role for IRE1α and XBP1 in innate immunity.
Collapse
Affiliation(s)
- Bevin C. English
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Hannah P. Savage
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Scott P. Mahan
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Vladimir E. Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Briana M. Young
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| |
Collapse
|
40
|
Danielli M, Perne L, Jarc Jovičić E, Petan T. Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol 2023; 11:1104725. [PMID: 36776554 PMCID: PMC9911892 DOI: 10.3389/fcell.2023.1104725] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Lipid droplets are fat storage organelles ubiquitously distributed across the eukaryotic kingdom. They have a central role in regulating lipid metabolism and undergo a dynamic turnover of biogenesis and breakdown to meet cellular requirements for fatty acids, including polyunsaturated fatty acids. Polyunsaturated fatty acids esterified in membrane phospholipids define membrane fluidity and can be released by the activity of phospholipases A2 to act as ligands for nuclear receptors or to be metabolized into a wide spectrum of lipid signaling mediators. Polyunsaturated fatty acids in membrane phospholipids are also highly susceptible to lipid peroxidation, which if left uncontrolled leads to ferroptotic cell death. On the one hand, lipid droplets act as antioxidant organelles that control polyunsaturated fatty acid storage in triglycerides in order to reduce membrane lipid peroxidation, preserve organelle function and prevent cell death, including ferroptosis. On the other hand, lipid droplet breakdown fine-tunes the delivery of polyunsaturated fatty acids into metabolic and signaling pathways, but unrestricted lipid droplet breakdown may also lead to the release of lethal levels of polyunsaturated fatty acids. Precise regulation of lipid droplet turnover is thus essential for polyunsaturated fatty acid distribution and cellular homeostasis. In this review, we focus on emerging aspects of lipid droplet-mediated regulation of polyunsaturated fatty acid trafficking, including the management of membrane lipid peroxidation, ferroptosis and lipid mediator signaling.
Collapse
Affiliation(s)
| | | | | | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
41
|
Duan J, Yi J, Wang Y. Exploitation of a shared genetic signature between obesity and endometrioid endometrial cancer. Front Surg 2023; 10:1097642. [PMID: 36761027 PMCID: PMC9902493 DOI: 10.3389/fsurg.2023.1097642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Aims The findings in epidemiological studies suggest that endometrioid endometrial cancer (EEC) is associated with obesity. However, evidence from gene expression data for the relationship between the two is still lacking. The purpose of this study was to explore the merits of establishing an obesity-related genes (ORGs) signature in the treatment and the prognostic assessment of EEC. Methods Microarray data from GSE112307 were utilized to identify ORGs by using weighted gene co-expression network analysis. Based on the sequencing data from TCGA, we established the prognostic ORGs signature, confirmed its value as an independent risk factor, and constructed a nomogram. We further investigated the association between grouping based on ORGs signature and clinicopathological characteristics, immune infiltration, tumor mutation burden and drug sensitivity. Results A total of 10 ORGs were identified as key genes for the construction of the signature. According to the ORGs score computed from the signature, EEC patients were divided into high and low-scoring groups. Overall survival (OS) was shorter in EEC patients in the high-scoring group compared with the low-scoring group (P < 0.001). The results of the Cox regression analysis showed that ORGs score was an independent risk factor for OS in EEC patients (HR = 1.017, 95% confidence interval = 1.011-1.023; P < 0.001). We further revealed significant disparities between scoring groups in terms of clinical characteristics, tumor immune cell infiltration, and tumor mutation burden. Patients in the low-scoring group may be potential beneficiaries of immunotherapy and targeted therapies. Conclusions The ORGs signature established in this study has promising prognostic predictive power and may be a useful tool for the selection of EEC patients who benefit from immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Junyi Duan
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiahong Yi
- Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The 985th Hospital of The People's Liberation Army Joint Logistic Support Force, Taiyuan, China,Correspondence: Yun Wang
| |
Collapse
|
42
|
Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis 2022; 13:1051. [PMID: 36535923 PMCID: PMC9763476 DOI: 10.1038/s41419-022-05444-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Jiafu Guo
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Nannan Yang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Yan Huang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Tingting Hu
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Chaolong Rao
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XState Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| |
Collapse
|
43
|
Gajdoš P, Ledesma‐Amaro R, Nicaud J, Rossignol T. A yeast-based tool for screening mammalian diacylglycerol acyltransferase inhibitors. Microbiologyopen 2022; 11:e1334. [PMID: 36479627 PMCID: PMC9716225 DOI: 10.1002/mbo3.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Dysregulation of lipid metabolism is associated with obesity and metabolic diseases but there is also increasing evidence of a relationship between lipid body excess and cancer. Lipid body synthesis requires diacylglycerol acyltransferases (DGATs) which catalyze the last step of triacylglycerol synthesis from diacylglycerol and acyl-coenzyme A. The DGATs and in particular DGAT2, are therefore considered potential therapeutic targets for the control of these pathologies. Here, the murine and the human DGAT2 were overexpressed in the oleaginous yeast Yarrowia lipolytica deleted for all DGAT activities, to evaluate the functionality of the enzymes in this heterologous host and DGAT activity inhibitors. This work provides evidence that mammalian DGATs expressed in Y. lipolytica are a useful tool for screening chemical libraries to identify potential inhibitors or activators of these enzymes of therapeutic interest.
Collapse
Affiliation(s)
- Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food TechnologySlovak University of TechnologyRadlinskehoBratislavaSlovakia
| | - Rodrigo Ledesma‐Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic BiologyImperial College London, South Kensington CampusLondonUK
| | - Jean‐Marc Nicaud
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | - Tristan Rossignol
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| |
Collapse
|
44
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
45
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
46
|
Rinaldi A, Lazareth H, Poindessous V, Nemazanyy I, Sampaio JL, Malpetti D, Bignon Y, Naesens M, Rabant M, Anglicheau D, Cippà PE, Pallet N. Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury. JCI Insight 2022; 7:161783. [PMID: 35998043 DOI: 10.1172/jci.insight.161783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Energy metabolism failure in proximal tubule cells (PTC) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic and lipidomic approaches in experimental models and patient cohorts to investigate the molecular bases of the progression to chronic kidney allograft injury initiated by ischemia-reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was significantly enriched with long chain fatty acids (FA). We identified a renal FA-related gene signature with low levels of Cpt2 and Acsm5 and high levels of Acsl4 and Acsm5 associated with IRI, transition to chronic injury, and established CKD in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-, Acsl4+, Acsl5+, Acsm5- PTC failing to recover from IRI as identified by snRNAseq. In vitro experiments indicated that endoplasmic reticulum (ER) stress contributes to CPT2 repression, which, in turn, promotes lipids accumulation, drives profibrogenic epithelial phenotypic changes, and activates the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation, engages an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule sustaining the progression to chronic kidney allograft injury.
Collapse
Affiliation(s)
- Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Hélène Lazareth
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| | | | - Ivan Nemazanyy
- PMM: The Metabolism-Metabolome Platform, Necker Federative Research Structu, INSERM US24/CNRS, UMS3633, Paris, France
| | - Julio L Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Paris, France
| | - Daniele Malpetti
- Instituto Dalle Molle di Studi sull'Intelligenza Artificiale, Lugano, Switzerland
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marion Rabant
- Department of Pathology, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Kidney Transplantation, Necker Hospital, Paris, France
| | - Pietro E Cippà
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| |
Collapse
|
47
|
An Q, Lin R, Wang D, Wang C. Emerging roles of fatty acid metabolism in cancer and their targeted drug development. Eur J Med Chem 2022; 240:114613. [PMID: 35853429 DOI: 10.1016/j.ejmech.2022.114613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming is now considered as one of hallmark of tumor cells and provides them with a selective survival/growth advantage to resist harsh micro-environmental stress. Fatty acid (FA) metabolism of tumor cells supports the biosynthetic needs and provides fuel sources for energy supply. Since FA metabolic reprogramming is a critical link in tumor metabolism, its various roles in tumors have attracted increasing interest. Herein, we review the mechanisms through which cancer cells rewire their FA metabolism with a focus on the pathway of FA metabolism and its targeting drug development. The failure and successful cases of targeting tumor FA metabolism are expected to bypass the metabolic vulnerability and improve the efficacy of targeted therapy.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China.
| |
Collapse
|