1
|
Rana D, Prajapati A, Karunakaran B, Vora L, Benival D, Jindal AB, Patel R, Joshi V, Jamloki A, Shah U. Recent Advances in Antiviral Drug Delivery Strategies. AAPS PharmSciTech 2025; 26:73. [PMID: 40038154 DOI: 10.1208/s12249-025-03053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Viral infectious diseases have long posed significant challenges to public health, leading to substantial morbidity and mortality worldwide. Recent outbreaks, including those caused by coronaviruses, have highlighted the urgent need for more effective antiviral treatments. Existing therapies, while numerous, face limitations such as drug resistance, toxicity, poor bioavailability, and non-specific targeting, which hinder their effectiveness against new and emerging viruses. This review focuses on the latest advances in nanoplatform technologies designed to enhance drug solubility, provide sustained or targeted delivery, and improve the efficacy of antiviral therapies. Additionally, we explore how these technologies can be integrated with novel strategies like genetic modulation to combat viral infections more effectively. The review also discusses the potential of these innovations in addressing the challenges posed by current antiviral therapies and their implications for future clinical applications.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Arvee Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Bharathi Karunakaran
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Rikin Patel
- Intas Pharmaceuticals Ltd., Matoda, Gujarat, 382210, India
| | - Vishvesh Joshi
- Chartwell Pharmaceuticals LLC, 77 Brenner Dr, Congers, New York, 10920, USA
| | - Ashutosh Jamloki
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Ujashkumar Shah
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| |
Collapse
|
2
|
Edagwa B, Nayan MU, Sillman B, Das S, Hanson B, Sultana A, Le NTH, Deodhar S, Dash A, Cohen S, Gendelman H. An Ultra-Long-Acting Dimeric Bictegravir Prodrug Defined by a Short Pharmacokinetic Tail. RESEARCH SQUARE 2025:rs.3.rs-5959131. [PMID: 40034436 PMCID: PMC11875291 DOI: 10.21203/rs.3.rs-5959131/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ultra-long-acting (ULA) antiretroviral parenteral formulations, with low injection volumes, high resistance barriers, and short pharmacokinetic (PK) tails, can transform HIV-1 therapeutics. Here, we converted bictegravir (BIC), a potent daily oral antiretroviral drug, into monomeric and homodimeric ester prodrugs. The homodimeric prodrug nanosuspension, NMXBIC, shows sustained plasma BIC levels >16 times the protein-adjusted 95% inhibitory concentration (PA-IC95) for six months after a single injection in Sprague Dawley rats. The results paralleled a short PK tail with the potential for late dose forgiveness. The monomeric prodrug nanosuspension, NM2BIC, shows lower year-long plasma BIC concentrations above PA-IC95 after a single injection in Sprague Dawley rats. After repeated injections, NMXBIC and NM2BIC are well tolerated in New Zealand White rabbits. NMXBIC's physicochemical properties and high BIC loading/unit mass of the prodrug contribute to its unique ULA PK profile. These results support its development as a ULA formulation for HIV-1 treatment and prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Samuel Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
3
|
Lanzafame M, Mori G, Vento S. Advances in HIV Treatment: Long-Acting Antiretrovirals and the Path Toward a Cure. Biomedicines 2025; 13:493. [PMID: 40002906 PMCID: PMC11853737 DOI: 10.3390/biomedicines13020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Long-acting antiretroviral therapy (LA-ART) represents an important advancement in HIV care as it has considerably reduced the frequency of dosing and therefore improved adherence [...].
Collapse
Affiliation(s)
- Massimiliano Lanzafame
- Unit of Infectious Diseases, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy;
- Centre for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
| | - Giovanni Mori
- Unit of Infectious Diseases, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy;
| | - Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh 12211, Cambodia;
| |
Collapse
|
4
|
Lhaglham P, Jiramonai L, Liang XJ, Liu B, Li F. The development of paliperidone nanocrystals for the treatment of schizophrenia. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012002. [PMID: 39655839 DOI: 10.1088/2516-1091/ad8fe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Schizophrenia is a complex and chronic psychiatric disorder that significantly impacts patients' quality of life. Ranking 12th among 310 diseases and injuries that result in disability, the number of patients suffering from schizophrenia continues to rise, emphasizing the urgent need for developing effective treatments. Despite the availability of effective antipsychotic drugs, over 80% of patients taking oral antipsychotics experience relapses, primarily caused by non-adherence as the high dosing frequency is required. In this review, we discuss about schizophrenia, its incidence, pathological causes, influencing factors, and the challenges of the current medications. Specifically, we explore nanocrystal technology and its application to paliperidone, making it one of the most successful long-acting antipsychotic drugs introduced to the market. We highlight the clinical advantages of paliperidone nanocrystals, including improved adherence, efficacy, long-term outcomes, patient satisfaction, safety, and cost-effectiveness. Additionally, we address the physicochemical factors influencing the drug's half-life, which crucially contribute to long-acting medications. Further studies on nanocrystal-based long-acting medications are crucial for enhancing their effectiveness and reliability. The successful development of paliperidone nanocrystals holds great promise as a significant approach for drug development, with potential applications for other chronic disease management.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
5
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
7
|
Islam F, Das S, Ashaduzzaman M, Sillman B, Yeapuri P, Nayan MU, Oupický D, Gendelman HE, Kevadiya BD. Development of an extended action fostemsavir lipid nanoparticle. Commun Biol 2024; 7:917. [PMID: 39080401 PMCID: PMC11289258 DOI: 10.1038/s42003-024-06589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
An extended action fostemsavir (FTR) lipid nanoparticle (LNP) formulation prevents human immunodeficiency virus type one (HIV-1) infection. This FTR formulation establishes a drug depot in monocyte-derived macrophages that extend the drug's plasma residence time. The LNP's physicochemical properties improve FTR's antiretroviral activities, which are linked to the drug's ability to withstand fluid flow forces and levels of drug cellular internalization. Each is, in measure, dependent on PEGylated lipid composition and flow rate ratios affecting the size, polydispersity, shape, zeta potential, stability, biodistribution, and antiretroviral efficacy. The FTR LNP physicochemical properties enable the drug-particle's extended actions.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, 68182, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Kalemera MD, Maher AK, Dominguez-Villar M, Maertens GN. Cell Culture Evaluation Hints Widely Available HIV Drugs Are Primed for Success if Repurposed for HTLV-1 Prevention. Pharmaceuticals (Basel) 2024; 17:730. [PMID: 38931397 PMCID: PMC11206710 DOI: 10.3390/ph17060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
With an estimated 10 million people infected, the deltaretrovirus human T-cell lymphotropic virus type 1 (HTLV-1) is the second most prevalent pathogenic retrovirus in humans after HIV-1. Like HIV-1, HTLV-1 overwhelmingly persists in a host via a reservoir of latently infected CD4+ T cells. Although most patients are asymptomatic, HTLV-1-associated pathologies are often debilitating and include adult T-cell leukaemia/lymphoma (ATLL), which presents in mature adulthood and is associated with poor prognosis with short overall survival despite treatment. Curiously, the strongest indicator for the development of ATLL is the acquisition of HTLV-1 through breastfeeding. There are no therapeutic or preventative regimens for HTLV-1. However, antiretrovirals (ARVs), which target the essential retrovirus enzymes, have been developed for and transformed HIV therapy. As the architectures of retroviral enzyme active sites are highly conserved, some HIV-specific compounds are active against HTLV-1. Here, we expand on our work, which showed that integrase strand transfer inhibitors (INSTIs) and some nucleoside reverse transcriptase inhibitors (NRTIs) block HTLV-1 transmission in cell culture. Specifically, we find that dolutegravir, the INSTI currently recommended as the basis of all new combination antiretroviral therapy prescriptions, and the latest prodrug formula of the NRTI tenofovir, tenofovir alafenamide, also potently inhibit HTLV-1 infection. Our results, if replicated in a clinical setting, could see transmission rates of HTLV-1 and future caseloads of HTLV-1-associated pathologies like ATLL dramatically cut via the simple repurposing of already widely available HIV pills in HTLV-1 endemic areas. Considering our findings with the old medical saying "it is better to prevent than cure", we highly recommend the inclusion of INSTIs and tenofovir prodrugs in upcoming HTLV-1 clinical trials as potential prophylactics.
Collapse
Affiliation(s)
| | | | | | - Goedele N. Maertens
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK; (M.D.K.); (A.K.M.); (M.D.-V.)
| |
Collapse
|
9
|
West RE, Oberly PJ, Riddler SA, Nolin TD, Devanathan AS. Development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry method to quantify antiretroviral drug concentrations in human plasma for therapeutic monitoring. J Pharm Biomed Anal 2024; 240:115932. [PMID: 38198884 PMCID: PMC10922569 DOI: 10.1016/j.jpba.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Antiretroviral therapy (ART) is highly effective for the treatment of HIV-1 infection. ART previously consisted of concomitant administration of many drugs, multiple times per day. Currently, ART generally consists of two- or three-drug regimens once daily as fixed-dose combinations. Drug monitoring may be necessary to ensure adequate concentrations are achieved in the plasma over the dosing interval and prevent further HIV resistance formation. Additionally, nonadherence remains an issue, highlighting the need to ensure sufficient ART exposure. Towards this effort, we developed and validated a highly selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of a panel of nine antiretrovirals: abacavir, bictegravir, cabotegravir, dolutegravir, doravirine, emtricitabine, lamivudine, raltegravir, and tenofovir in human plasma. Using only 50 µL of plasma, a simple protein precipitation with acetonitrile with internal standards followed by reconstitution in 50 uL (high) or 400 uL (low) was performed. Analyte separation was achieved using a multistep UPLC gradient mixture of (A: 0.1% formic acid in water and B: acetonitrile) and a Waters CORTECS T3 (2.1 ×100 mm) column. The method was comprehensively validated according to the United States Food and Drug Administration Bioanalytical Guidelines over two clinically relevant ranges (1-250 ng/mL and 100-5000 ng/mL) with excellent linearity (R2 > 0.99 for all). The assay run time was 7.5 min. This method achieves acceptable performance of trueness (89.7-104.1%), repeatability, and precision (CV <15%), and allows for simultaneous quantification of guideline-recommended ART regimens. This method can be utilized for the therapeutic monitoring of antiretrovirals in human plasma.
Collapse
Affiliation(s)
- Raymond E West
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Oberly
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon A Riddler
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron S Devanathan
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Chaturvedi A, Sharma S, Shukla R. Drug Nanocrystals: A Delivery Channel for Antiviral Therapies. AAPS PharmSciTech 2024; 25:41. [PMID: 38366178 DOI: 10.1208/s12249-024-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, 226002, India.
| |
Collapse
|
11
|
Hari BNV, Makowski T, Sowiński P, Domańska A, Gonciarz W, Brzeziński M. 3D printing of dolutegravir-loaded polylactide filaments as a long-acting implantable system for HIV treatment. Int J Biol Macromol 2024; 258:128754. [PMID: 38092121 DOI: 10.1016/j.ijbiomac.2023.128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
3D printing was used to prepare implantable systems or tablets loaded with dolutegravir to explore their potential as long-acting implantables (LAIs). Our strategy relies on preparing a polylactide (PLA) filament loaded with the anti-HIV drug. Subsequently, 3D printing was performed under conditions that allowed the PLA to be simultaneously melted and the drug encapsulated within the printed strand. The dolutegravir release profiles indicated its sustained release for 47 days. Furthermore, neat and drug-loaded tablets were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), while their morphology was assessed by scanning electron microscopy (SEM). Finally, their biocompatibility was proved by MTT assay against ISO standards recommended L929 mouse and human Hs68 skin fibroblast cells. All the results indicated that the 3D printing of PLA-based tablets could produce customized medications with potential applications against HIV.
Collapse
Affiliation(s)
- Bodethala Narayanan Vedha Hari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland; Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland
| | - Przemysław Sowiński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland
| | - Agnieszka Domańska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland.
| |
Collapse
|
12
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
13
|
Liu C, Hern FY, Shakil A, Temburnikar K, Chambon P, Liptrott N, McDonald TO, Neary M, Flexner C, Owen A, Meyers CF, Rannard SP. Polymer-prodrug conjugates as candidates for degradable, long-acting implants, releasing the water-soluble nucleoside reverse-transcriptase inhibitor emtricitabine. J Mater Chem B 2023; 11:11532-11543. [PMID: 37955203 PMCID: PMC10718295 DOI: 10.1039/d3tb02268d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Circulating, soluble polymer-drug conjugates have been utilised for many years to aid the delivery of sensitive, poorly-soluble or cytotoxic drugs, prolong circulation times or minimise side effects. Long-acting therapeutics are increasing in their healthcare importance, with intramuscular and subcutaneous administration of liquid formulations being most common. Degradable implants also offer opportunities and the use of polymer-prodrug conjugates as implant materials has not been widely reported in this context. Here, the potential for polymer-prodrug conjugates of the water soluble nucleoside reverse transciption inhibitor emtricitabine (FTC) is studied. A novel diol monomer scaffold, allowing variation of prodrug substitution, has been used to form polyesters and polycarbonates by step-growth polymerisation. Materials have been screened for physical properties that enable implant formation, studied for drug release to provide mechanistic insights, and tunable prolonged release of FTC has been demonstrated over a period of at least two weeks under relevant physiological conditions.
Collapse
Affiliation(s)
- Chung Liu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Faye Y Hern
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Anika Shakil
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Kartik Temburnikar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Neill Liptrott
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Megan Neary
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Charles Flexner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Andrew Owen
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| |
Collapse
|
14
|
Foster EG, Sillman B, Liu Y, Summerlin M, Kumar V, Sajja BR, Cassidy AR, Edagwa B, Gendelman HE, Bade AN. Long-acting dolutegravir formulations prevent neurodevelopmental impairments in a mouse model. Front Pharmacol 2023; 14:1294579. [PMID: 38149054 PMCID: PMC10750158 DOI: 10.3389/fphar.2023.1294579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Micah Summerlin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam R. Cassidy
- Departments of Psychiatry and Psychology & Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
15
|
Bigirimana F, Van den Wijngaert S, Fosso C, Stoffels K, Martin C, Maillart E, Clevenbergh P. Lenacapavir with Fostemsavir in a Multidrug-Resistant HIV-Infected Hemodialysis Patient. Case Rep Infect Dis 2023; 2023:8865265. [PMID: 37886135 PMCID: PMC10599868 DOI: 10.1155/2023/8865265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
We report a hemodialysis MDR HIV-infected patient switched to fostemsavir with lenacapavir plus lamivudine for more than a year. She maintained a suppressed viral replication and did not present any clinical or biological drug-related side effects. The combination of lenacapavir plus fostemsavir looks promising in terms of safety and efficacy even in patients with end-stage renal disease awaiting renal transplant. Both drugs are first in class ARVs so that there is no cross resistance with previous drugs, maintaining their efficacy against MDR HIV.
Collapse
Affiliation(s)
- Ferdinand Bigirimana
- Infectious Diseases Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Sigi Van den Wijngaert
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, Brussels, Belgium
| | - Christelle Fosso
- Nephrology and Dialysis Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, Brussels, Belgium
| | - Charlotte Martin
- Infectious Diseases Department, University Hospital St Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Evelyne Maillart
- Infectious Diseases Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Clevenbergh
- Infectious Diseases Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Ullah Nayan M, Sillman B, Hasan M, Deodhar S, Das S, Sultana A, Thai Hoang Le N, Soriano V, Edagwa B, Gendelman HE. Advances in long-acting slow effective release antiretroviral therapies for treatment and prevention of HIV infection. Adv Drug Deliv Rev 2023; 200:115009. [PMID: 37451501 DOI: 10.1016/j.addr.2023.115009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Science, University of Nebraska Medical Center, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, University of Nebraska Medical Center, NE, USA
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Nam Thai Hoang Le
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | | | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
17
|
Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, Jain S. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev 2023; 199:114901. [PMID: 37257756 DOI: 10.1016/j.addr.2023.114901] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sheetal Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Vivek Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kaushik Kuche
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
18
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
19
|
Wang J, Liu J, Ding J, Li Q, Zhao Y, Gao D, Su K, Yang Y, Wang Z, He J. Creation of a ready-to-use brexpiprazole suspension and the inflammation-mediated pharmacokinetics by intramuscular administration. Eur J Pharm Biopharm 2023; 189:S0939-6411(23)00166-2. [PMID: 37364749 DOI: 10.1016/j.ejpb.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Brexpiprazole (BPZ), which is approved for the treatment of schizophrenia and major depressive disorder, has the potential to meet diverse clinical needs. This study aimed to develop a long-acting injectable (LAI) formulation of BPZ that could provide sustained therapeutic benefits. A library of BPZ prodrugs was screened through esterification, and BPZ laurate (BPZL) was identified as an optimal candidate. To achieve stable aqueous suspensions, a pressure- and nozzle size-controlled microfluidization homogenizer was utilized. The pharmacokinetics (PK) profiles, considering dose and particle size modulation, were investigated following a single intramuscular injection in beagles and rats. BPZL treatment resulted in sustained plasma concentrations above the median effective concentration (EC50) for 2∼3 weeks, without exhibiting an initial burst release. Histological examination of foreign body reaction (FBR) in rats revealed the morphological evolution of an inflammation-mediated drug depot, confirming the sustained release mechanism of BPZL. These findings provide strong support for the further development of a ready-to-use LAI suspension of BPZL, which could potentially enhance treatment outcomes, improve patient adherence, and address the clinical challenges associated with long-term regimens of schizophrenia spectrum disorders (SSD).
Collapse
Affiliation(s)
- Junji Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Junfeng Liu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Jingwen Ding
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Qin Li
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Yuan Zhao
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Dongxu Gao
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Keyi Su
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Zhefeng Wang
- National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China
| | - Jun He
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, People's Republic of China; National Advanced Medical Engineering Research Center, 1111 Halei Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
20
|
Jindal AB, Bhide AR, Salave S, Rana D, Benival D. Long-acting Parenteral Drug Delivery Systems for the Treatment of Chronic Diseases. Adv Drug Deliv Rev 2023; 198:114862. [PMID: 37160247 DOI: 10.1016/j.addr.2023.114862] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The management of chronic conditions often requires patients to take daily medication for an extended duration. However, the need for daily dosing can lead to nonadherence to the therapy, which can result in the recurrence of the disease. Long-acting parenteral drug delivery systems have the potential to improve the treatment of chronic conditions. These systems use various technologies, such as oil-based injectables, PLGA-based microspheres, and in situ forming gel-based depots, to deliver different types of drugs. The use of long-acting parenteral formulations for the treatment of chronic infections such as HIV/AIDS and tuberculosis is a recent development in the field. Researchers are also exploring the use of long-acting parenteral formulations for the treatment of malaria, with the aim of reducing dosing frequency and improving adherence to treatment. This review discusses various aspects of long-acting formulation development, including the impact of the physicochemical properties of the drug, the type of long-acting formulation, and the route of administration. The clinical significance of long-acting formulations and recent advances in the field, such as long-acting nanoformulations and long-acting products currently in clinical trials, have also been highlighted.
Collapse
Affiliation(s)
- Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India.
| | - Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| |
Collapse
|
21
|
Kanvinde S, Deodhar S, Kulkarni TA, Jogdeo CM. Nanotherapeutic Approaches to Treat COVID-19-Induced Pulmonary Fibrosis. BIOTECH 2023; 12:34. [PMID: 37218751 PMCID: PMC10204512 DOI: 10.3390/biotech12020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
There have been significant collaborative efforts over the past three years to develop therapies against COVID-19. During this journey, there has also been a lot of focus on understanding at-risk groups of patients who either have pre-existing conditions or have developed concomitant health conditions due to the impact of COVID-19 on the immune system. There was a high incidence of COVID-19-induced pulmonary fibrosis (PF) observed in patients. PF can cause significant morbidity and long-term disability and lead to death in the long run. Additionally, being a progressive disease, PF can also impact the patient for a long time after COVID infection and affect the overall quality of life. Although current therapies are being used as the mainstay for treating PF, there is no therapy specifically for COVID-induced PF. As observed in the treatment of other diseases, nanomedicine can show significant promise in overcoming the limitations of current anti-PF therapies. In this review, we summarize the efforts reported by various groups to develop nanomedicine therapeutics to treat COVID-induced PF. These therapies can potentially offer benefits in terms of targeted drug delivery to lungs, reduced toxicity, and ease of administration. Some of the nanotherapeutic approaches may provide benefits in terms of reduced immunogenicity owing to the tailored biological composition of the carrier as per the patient needs. In this review, we discuss cellular membrane-based nanodecoys, extracellular vesicles such as exosomes, and other nanoparticle-based approaches for potential treatment of COVID-induced PF.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tanmay A. Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chinmay M. Jogdeo
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Overmars RJ, Krullaars Z, Mesplède T. Investigational drugs for HIV: trends, opportunities and key players. Expert Opin Investig Drugs 2023; 32:127-139. [PMID: 36751107 DOI: 10.1080/13543784.2023.2178415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Since the first antiretroviral drug was described, the field of HIV treatment and prevention has undergone two drug-based revolutions: the first one, enabled by the virtually concomitant discovery of non-nucleoside reverse transcriptase and protease inhibitors, was the inception of combined antiretroviral therapy. The second followed the creation of integrase strand-transfer inhibitors with improved safety, potency, and resistance profiles. Long-acting antiretroviral drugs, including broadly neutralizing antibodies, now offer the opportunity for a third transformational change in HIV management. AREAS COVERED Our review focused on HIV treatment and prevention with investigational drugs that offer the potential for infrequent dosing, including drugs not yet approved for clinical use. We also discussed approved drugs for which administration modalities or formulations are being optimized. We performed a literature search in published manuscripts, conference communications, and registered clinical trials. EXPERT OPINION While the field focuses on extending dosing intervals, we identify drug tissue penetration as an understudied opportunity to improve HIV care. We repeat that self-administration remains an essential milestone to reach the full potential of long-acting drugs. Treatments and prevention strategies based on broadly neutralizing antibodies require a deeper understanding of their antiretroviral properties.
Collapse
Affiliation(s)
- Ronald J Overmars
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Zoë Krullaars
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thibault Mesplède
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Foster EG, Gendelman HE, Bade AN. HIV-1 Integrase Strand Transfer Inhibitors and Neurodevelopment. Pharmaceuticals (Basel) 2022; 15:1533. [PMID: 36558984 PMCID: PMC9783753 DOI: 10.3390/ph15121533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.
Collapse
Affiliation(s)
- Emma G. Foster
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Mandarino A. Modifying dolutegravir to PrEPare for long life. Commun Biol 2022; 5:1193. [DOI: 10.1038/s42003-022-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
26
|
Current status of dolutegravir delivery systems for the treatment of HIV-1 infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|