1
|
Li SJ, Tetri LH, Vijayan V, Elezaby A, Chiang CH, Lopez I, Ostberg NP, Cornell TT, Chen CY, Haileselassie B. Excessive mitochondrial fission and associated extracellular mitochondria mediate cardiac dysfunction in obesity cardiomyopathy. Life Sci 2025; 373:123658. [PMID: 40287058 DOI: 10.1016/j.lfs.2025.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Obesity cardiomyopathy (OCM) is associated with mitochondrial dysfunction caused by altered mitochondrial dynamics. Extracellular mitochondria (exMito) are released following tissue injury under various conditions. While the excessive mitochondrial fission-mediated release of exMito as a mechanism for mitochondrial quality control in several inflammatory disorders, its role in OCM remains unclear. The present work aimed to determine if excessive mitochondrial fission and associated exMito mediate the chronic inflammatory response and cardiac remodeling in OCM. MATERIALS AND METHODS H9c2 cardiomyoblasts were treated with 200 μM palmitate (PA) to induce lipotoxicity. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce OCM. P110, a peptide inhibitor of Drp1/Fis1 interaction, was used to evaluate the impact of excessive mitochondrial fission on cardiac mitochondrial function, quality, and quantity of exMito, systemic inflammatory response, and cardiac contractile function in both models of OCM. KEY FINDINGS PA induced excessive mitochondrial fission, increased oxidative stress, decreased ATP level, and damaged exMito release in vitro. Exposure of naïve cardiomyoblasts to exMito isolated from PA treated cells resulted in mitochondrial dysfunction and a pro-inflammatory response. In vivo, HFD induced cardiac mitochondrial and contractile dysfunction, exMito release, and a pro-inflammatory response. Inhibition of Drp1/Fis1 interaction with P110 attenuated the observed effects both in vitro and in vivo. SIGNIFICANCE P110 limited lipid-induced mitochondrial dysfunction and decreased exMito release, subsequently improving the inflammatory state and contractile function in our OCM model. Drp1/Fis1 dependent fission and associated exMito release might serve as a therapeutic target for obesity induced cardiomyopathy.
Collapse
Affiliation(s)
- Sin-Jin Li
- Bachelor Program of Biotechnology and Food and Nutrition, National Taiwan University, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan.
| | - Laura H Tetri
- Department of Pediatrics, Stanford University of School of Medicine, Stanford, CA 94305, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vijith Vijayan
- Department of Pediatrics, Stanford University of School of Medicine, Stanford, CA 94305, USA
| | - Aly Elezaby
- Department of Chemical and Systems Biology, Stanford, Stanford University, CA 94305, USA
| | - Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| | - Ivan Lopez
- Department of Pediatrics, Stanford University of School of Medicine, Stanford, CA 94305, USA
| | - Nicolai P Ostberg
- Department of Chemical and Systems Biology, Stanford, Stanford University, CA 94305, USA
| | - Timothy T Cornell
- Department of Pediatrics, Stanford University of School of Medicine, Stanford, CA 94305, USA
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| | | |
Collapse
|
2
|
Cabana VC, Lussier MP. RNF13 variants L311S and L312P associated with developmental epileptic encephalopathy alter dendritic organization in hippocampal neurons. IBRO Neurosci Rep 2025; 18:559-573. [PMID: 40276023 PMCID: PMC12018061 DOI: 10.1016/j.ibneur.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Developmental and epileptic encephalopathy (DEE) is a group of rare and serious neurological disorders where seizures exacerbate developmental impairment. Recently, genetic mutations in the RNF13 gene were reported to cause DEE73. Specifically, two leucines from the ubiquitin E3 ligase RNF13 are converted to serine or proline (L311S and L312P). These mutations are located within a dileucine motif, which impairs RNF13's capacity to interact with AP-3. A second motif allows RNF13 to interact with AP-1 when the dileucine sorting motif is altered. The present study demonstrates that RNF13 variants L311S and L312P are trafficked through an AP-1-dependent pathway in HeLa cells. In cultures of primary rat hippocampal neurons, the protein level of the variants is significantly higher in dendrites than for wild-type protein. L311S and L312P variants alter dendritic components similarly to an RNF13 AP-3-defective binding variant or a dominant negative for RNF13's ubiquitin ligase activity. Compared to non-transfected neurons, the variants change the distribution of EEA1-positive early endosomes throughout the dendrites. While the WT alters the distribution of lysosomes (Lamp1-positive) in dendrites, the variants only decrease their presence in proximal dendrites. Unlike the variants, RNF13 WT increases the abundance of PSD-95 in distal dendrites. Interestingly, only the variants with altered dileucine motifs decrease the total number of postsynaptic inhibitory protein Gephyrin puncta. This study reports that genetic variants L311S and L312P mainly act as a dominant negative protein. This research provides valuable insights into the dendritic defects that occur when DEE73-associated genetic variants of RNF13 are present.
Collapse
Affiliation(s)
- Valérie C. Cabana
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| | - Marc P. Lussier
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Blasiak J, Pawlowska E, Helotera H, Ionov M, Derwich M, Kaarniranta K. Potential of autophagy in subretinal fibrosis in neovascular age-related macular degeneration. Cell Mol Biol Lett 2025; 30:54. [PMID: 40307700 PMCID: PMC12044759 DOI: 10.1186/s11658-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can lead to legal blindness and vision loss. In its advanced stages, it is classified into dry and neovascular AMD. In neovascular AMD, the formation of new blood vessels disrupts the structure of the retina and induces an inflammatory response. Treatment for neovascular AMD involves antibodies and fusion proteins targeting vascular endothelial growth factor A (VEGFA) and its receptors to inhibit neovascularization and slow vision loss. However, a fraction of patients with neovascular AMD do not respond to therapy. Many of these patients exhibit a subretinal fibrotic scar. Thus, retinal fibrosis may contribute to resistance against anti-VEGFA therapy and the cause of irreversible vision loss in neovascular AMD patients. Retinal pigment epithelium cells, choroidal fibroblasts, and retinal glial cells are crucial in the development of the fibrotic scar as they can undergo a mesenchymal transition mediated by transforming growth factor beta and other molecules, leading to their transdifferentiation into myofibroblasts, which are key players in subretinal fibrosis. Autophagy, a process that removes cellular debris and contributes to the pathogenesis of AMD, regardless of its type, may be stimulated by epithelial-mesenchymal transition and later inhibited. The mesenchymal transition of retinal cells and the dysfunction of the extracellular matrix-the two main aspects of fibrotic scar formation-are associated with impaired autophagy. Nonetheless, the causal relationship between autophagy and subretinal fibrosis remains unknown. This narrative/perspective review presents information on neovascular AMD, subretinal fibrosis, and autophagy, arguing that impaired autophagy may be significant for fibrosis-related resistance to anti-VEGFA therapy in neovascular AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402, Plock, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Hanna Helotera
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
| | - Maksim Ionov
- Faculty of Health Sciences, Mazovian Academy in Plock, 09-402, Plock, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210, Kuopio, Finland
| |
Collapse
|
4
|
Michetti F, Cirone M, Strippoli R, D'Orazi G, Cordani M. Mechanistic insights and therapeutic strategies for targeting autophagy in pancreatic ductal adenocarcinoma. Discov Oncol 2025; 16:592. [PMID: 40266451 PMCID: PMC12018664 DOI: 10.1007/s12672-025-02400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by early metastasis and resistance to anti-cancer therapy, leading to an overall poor prognosis. Macroautophagy (hereinafter referred to as autophagy) is a conserved cellular homeostasis mechanism that degrades various cargoes (e.g., proteins, organelles, and pathogens) mainly playing a role in promoting survival under environmental stress. Autophagy is an essential defense mechanism against PDAC initiation, acting on multiple levels to maintain cellular and tissue homeostasis. However, autophagy is also intimately involved in the molecular mechanisms driving PDAC progression, facilitating the adaptation of cancer cells to the tumor microenvironment's harsh conditions. In this review, we examine the complex role of autophagy in PDAC and assess the potential of modulating autophagy as a therapeutic strategy. By reviewing current research and clinical trials, we seek to elucidate how targeting autophagy can disrupt PDAC tumor survival mechanisms, enhance the efficacy of existing treatments, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy.
| | - Gabriella D'Orazi
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Via Elio Chianesi 51, 00144, Rome, Italy.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
5
|
Jing F, Zhao M, Xiong H, Zeng X, Jiang J, Li T. Mechanisms underlying targeted mitochondrial therapy for programmed cardiac cell death. Front Physiol 2025; 16:1548194. [PMID: 40292006 PMCID: PMC12021874 DOI: 10.3389/fphys.2025.1548194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heart diseases are common clinical diseases, such as cardiac fibrosis, heart failure, hypertension and arrhythmia. Globally, the incidence rate and mortality of heart diseases are increasing by years. The main mechanism of heart disease is related to the cellular state. Mitochondrion is the organ of cellular energy supply, participating in various signal transduction pathways and playing a vital role in the occurrence and development of heart disease. This review summarizes the cell death patterns and molecular mechanisms associated with heart disease and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fengting Jing
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Hemin Xiong
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zeng
- School of Continuing Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Tang M, Tu Y, Gong Y, Yang Q, Wang J, Zhang Z, Qin J, Niu S, Yi J, Shang Z, Chen H, Tang Y, Huang Q, Liu Y, Billadeau DD, Liu X, Dai L, Jia D. β-hydroxybutyrate facilitates mitochondrial-derived vesicle biogenesis and improves mitochondrial functions. Mol Cell 2025; 85:1395-1410.e5. [PMID: 40118051 DOI: 10.1016/j.molcel.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/04/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Mitochondrial dynamics and metabolites reciprocally influence each other. Mitochondrial-derived vesicles (MDVs) transport damaged mitochondrial components to lysosomes or the extracellular space. While many metabolites are known to modulate mitochondrial dynamics, it is largely unclear whether they are involved in MDV generation. Here, we discovered that the major component of ketone body, β-hydroxybutyrate (BHB), improved mitochondrial functions by facilitating the biogenesis of MDVs. Mechanistically, BHB drove specific lysine β-hydroxybutyrylation (Kbhb) of sorting nexin-9 (SNX9), a key regulator of MDV biogenesis. Kbhb increased SNX9 interaction with inner mitochondrial membrane (IMM)/matrix proteins and promoted the formation of IMM/matrix MDVs. SNX9 Kbhb was not only critical for maintaining mitochondrial homeostasis in cells but also protected mice from alcohol-induced liver injury. Altogether, our research uncovers the fact that metabolites influence the formation of MDVs by directly engaging in post-translational modifications of key protein machineries and establishes a framework for understanding how metabolites regulate mitochondrial functions.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiamin Yi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hongyu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qian Huang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
8
|
Asami N, Yano S, Tsuruta F. Potential for micronuclear turnover through autophagy secretion pathway. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001545. [PMID: 40134942 PMCID: PMC11933925 DOI: 10.17912/micropub.biology.001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Micronuclei (MN) serve as well-established markers of genomic instability. MN arise from various stresses, such as segregation errors and mechanical stress, and are subsequently eliminated by the autophagy pathway. It has been suggested that MN are traditionally considered markers of cancer cells, often without recognized functional significance. Meanwhile, we recently discovered that MN act as mediators in regulating microglial characteristics. Neurons produce MN in response to migrating stress during the developmental stage and release them to the extracellular space, subsequently transferring them to microglia. In this study, we report the potential mechanisms underlying MN release through the autophagic secretion pathway. Our data show a possibility by which damaged MN are recognized autophagy regulatory factors, resulting in the propagation of MN to microglia.
Collapse
Affiliation(s)
- Natsu Asami
- Master's Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Sarasa Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Fuminori Tsuruta
- Master's and Doctoral Program in Biology, Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Master's and Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Doctoral Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Center for Quantum and Information Life Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
9
|
Tang M, Rong D, Gao X, Lu G, Tang H, Wang P, Shao NY, Xia D, Feng XH, He WF, Chen W, Lu JH, Liu W, Shen HM. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy. Cell Discov 2025; 11:22. [PMID: 40064862 PMCID: PMC11894195 DOI: 10.1038/s41421-025-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway. First, we observed that mitochondrial depolarization promotes PINK1 transcription, and SMAD3 is likely to be the nuclear transcription factor mediating PINK1 transcription. Intriguingly, SMAD3 positively transactivates PINK1 transcription independent of the canonical TGFβ signaling components, such as TGFβ-R1, SMAD2 or SMAD4. Second, we found that mitochondrial depolarization activates SMAD3 via PINK1-mediated phosphorylation of SMAD3 at serine 423/425. Therefore, PINK1 and SMAD3 constitute a positive feedforward loop in control of mitophagy. Finally, activation of PINK1 transcription by SMAD3 provides an important pro-survival signal, as depletion of SMAD3 sensitizes cells to cell death caused by mitochondrial stress. In summary, our findings identify a non-canonical function of SMAD3 as a nuclear transcriptional factor in regulation of PINK1 transcription and mitophagy and a positive feedback loop via PINK1-mediated SMAD3 phosphorylation and activation. Understanding this novel regulatory mechanism provides a deeper insight into the pathological function of PINK1 in the pathogenesis of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Mingzhu Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dade Rong
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiangzheng Gao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Peng Wang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Ning-Yi Shao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Feng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
10
|
Xian Y, Liu B, Shen T, Yang L, Peng R, Shen H, An X, Wang Y, Ben Y, Jiang Q, Guo B. Enhanced SIRT3 expression restores mitochondrial quality control mechanism to reverse osteogenic impairment in type 2 diabetes mellitus. Bone Res 2025; 13:30. [PMID: 40025004 PMCID: PMC11873136 DOI: 10.1038/s41413-024-00399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 03/04/2025] Open
Abstract
Osteoporosis represents a prevalent and debilitating comorbidity in patients diagnosed with type 2 diabetes mellitus (T2DM), which is characterized by suppressed osteoblast function and disrupted bone microarchitecture. In this study, we utilized male C57BL/6 J mice to investigate the role of SIRT3 in T2DM. Decreased SIRT3 expression and impaired mitochondrial quality control mechanism are observed in both in vitro and in vivo models of T2DM. Mechanistically, SIRT3 suppression results in hyperacetylation of FOXO3, hindering the activation of the PINK1/PRKN mediated mitophagy pathway and resulting in accumulation of dysfunctional mitochondria. Genetical overexpression or pharmacological activation of SIRT3 restores deacetylation status of FOXO3, thus facilitating mitophagy and ameliorating osteogenic impairment in T2DM. Collectively, our findings highlight the fundamental regulatory function of SIRT3 in mitochondrial quality control, crucial for maintaining bone homeostasis in T2DM. These insights not only enhance our understanding of the molecular mechanisms underlying diabetic osteoporosis but also identify SIRT3 as a promising therapeutic target for diabetic osteoporosis.
Collapse
Affiliation(s)
- Yansi Xian
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Tao Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Lin Yang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Rui Peng
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Hongdou Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Xueying An
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yutian Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yu Ben
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China.
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
- Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China.
| |
Collapse
|
11
|
Li J, Liu W, Zhang J, Sun C. The Role of Mitochondrial Quality Control in Liver Diseases: Dawn of a Therapeutic Era. Int J Biol Sci 2025; 21:1767-1783. [PMID: 39990657 PMCID: PMC11844277 DOI: 10.7150/ijbs.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The liver is a vital metabolic organ that detoxifies substances, produces bile, stores nutrients, and regulates versatile metabolic processes. Maintaining normal liver cell function requires the prompt and delicate modulation of mitochondrial quality control (MQC), which encompasses a spectrum of processes such as mitochondrial fission, fusion, biogenesis, and mitophagy. Recent studies have shown that disruptions to this homeostatic status are closely linked to the advent and progression of a variety of acute and chronic liver diseases, including but not limited to alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease. However, the explicit mechanisms by which mitochondrial dysfunction impacts inflammatory pathways and cell death in the context of liver diseases remain unclear. In this narrative review, we provide a detailed description of MQC, analyze the mechanisms underpinning mitochondrial dysfunction induced by different detrimental insults, and further elucidate how imbalanced/disrupted MQC promotes the progression and aggravation of liver diseases, ultimately shedding light on the mitochondrion-centric therapeutic strategies for these pathophysiological entities.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wenqin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
12
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
13
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol 2025; 224:e202403104. [PMID: 39500490 PMCID: PMC11540856 DOI: 10.1083/jcb.202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.
Collapse
Affiliation(s)
- Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Liding Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Condie SV, Kim WD, Huber RJ. Lysosomal enzyme processing and trafficking in the social amoeba Dictyostelium discoideum. Biochem Cell Biol 2025; 103:1-11. [PMID: 40168691 DOI: 10.1139/bcb-2025-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Dictyostelium discoideum is a single-celled protist that undergoes multicellular development in response to nutrient deprivation. For close to a century, D. discoideum has been used as a model system for studying conserved cellular and developmental processes such as chemotaxis, cell adhesion, and cell differentiation. In the later decades of the 20th century, intensive research efforts examined the synthesis, trafficking, and activity of lysosomal enzymes in D. discoideum. Subsequent work revealed that lysosomes are essential for all stages of the D. discoideum life cycle and the genome encodes dozens of homologs of human lysosomal enzymes, including those associated with lysosomal storage diseases. Additionally, protocols for examining the trafficking and activity of lysosomal enzymes in D. discoideum are well-established. Here, we provide a comprehensive up-to-date review that summarizes our current knowledge of lysosomal enzyme processing and trafficking in D. discoideum, with an eye towards re-establishing D. discoideum as a model eukaryote for studying the functions of conserved lysosomal enzymes and the pathways that regulate their trafficking.
Collapse
Affiliation(s)
- Sean V Condie
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - William D Kim
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
16
|
Yao M, Wang X, Lin H, Shu H, Xu Z, Tang L, Guo W, Xu P. LncRNA Tug1 Regulates Post-Stroke Microglial Pyroptosis via PINK1/Parkin-Mediated Mitophagy. Inflammation 2024:10.1007/s10753-024-02219-8. [PMID: 39739230 DOI: 10.1007/s10753-024-02219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear. This study explores the biological role of Tug1 and its potential mechanisms in regulating pyroptosis in microglia. We utilized an in vivo photothrombosis (PT) mice model and an in vitro oxygen-glucose deprivation and reperfusion (OGD/R) BV2 cell model to explore the mechanisms underlying ischemic stroke. Initially, we assessed the expression levels of Tug1 in the OGD/R model in vitro and the PT model in vivo. Subsequently, we investigated the impact of Tug1 on microglial pyroptosis by knocking down Tug1, silencing the PTEN-induced putative kinase 1 (Pink1) expression, and employing the mitophagy inhibitor mdivi-1. Tug1 exacerbated microglial pyroptosis by inhibiting mitophagy in both in vivo and in vitro models. The increase in mitophagy observed following Tug1 knockdown was reversed by either silencing Pink1 expression or using the mitophagy inhibitor mdivi-1. This reversal resulted in exacerbated pyroptosis and worsened neurological damage. Further mechanistic studies revealed that Tug1 knockdown significantly reduced microglial pyroptosis and alleviated neuronal damage by enhancing PINK1/Parkin-mediated mitophagy. For the first time, this study reveals that Tug1 promotes hypoxia-induced microglial pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy, potentially providing a promising therapeutic target for ischemic inflammatory injury.
Collapse
Affiliation(s)
- Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hao Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Sho T, Li Y, Jiao H, Yu L. Migratory autolysosome disposal mitigates lysosome damage. J Cell Biol 2024; 223:e202403195. [PMID: 39347717 PMCID: PMC11457477 DOI: 10.1083/jcb.202403195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
Lysosomes, essential for intracellular degradation and recycling, employ damage-control strategies such as lysophagy and membrane repair mechanisms to maintain functionality and cellular homeostasis. Our study unveils migratory autolysosome disposal (MAD), a response to lysosomal damage where cells expel LAMP1-LC3 positive structures via autolysosome exocytosis, requiring autophagy machinery, SNARE proteins, and cell migration. This mechanism, crucial for mitigating lysosomal damage, underscores the role of cell migration in lysosome damage control and facilitates the release of small extracellular vesicles, highlighting the intricate relationship between cell migration, organelle quality control, and extracellular vesicle release.
Collapse
Affiliation(s)
- Takami Sho
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- Cryo-EM Facility of Tsinghua University, Branch of National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haifeng Jiao
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Lin L, Lv Z, Zhou C, Zhu T, Hu Y, Sun X, Zhou H, Wang M, Lin Y, Gu G, Wang S, Zhou Y, Han J, Jin G, Hua F. TLR3 Knockdown Attenuates Pressure-Induced Neuronal Damage In Vitro. J Cell Mol Med 2024; 28:e70276. [PMID: 39671271 PMCID: PMC11640903 DOI: 10.1111/jcmm.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024] Open
Abstract
The disruption of nerve parenchyma and axonal networks triggered by spinal cord injury (SCI) can initiate a cascade of events associated with secondary injury. Toll-like receptors play a critical role in initiating and regulating immune-inflammatory responses following SCI; however, the precise involvement of Toll-like receptor-3 (TLR3) in secondary neuronal injury remains incompletely understood. To investigate the potential contribution of TLR3 in mediating neuronal pressure-induced damage, we established a stress-induced neuronal damage model using rat anterior horn motor neuron line (VSC4.1), which was subjected to varying levels and durations of sustained pressure. Our findings suggest that pressure induces neuronal damage and apoptosis, and reduced proliferation rates in VSC4.1 cells. Furthermore, this pressure-induced neuronal injury is accompanied by upregulation of TLR3 expression and activation of downstream TLR3 signalling molecules. Knockdown experiments targeting TLR3 significantly alleviate pressure-induced motor neuron injury and apoptosis within the anterior horn region while promoting mitochondria-related autophagy and reducing mitochondrial dysfunction via the TLR3/IRF3 and TLR3/NF-κB pathways.
Collapse
Affiliation(s)
- Li Lin
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
- Department of NeurologyBenq Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Zhongzhong Lv
- Department of NeurosurgeryBenq Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Chao Zhou
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Taiyang Zhu
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Yuting Hu
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Xiaoyu Sun
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Hui Zhou
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Miao Wang
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | | | | | - Shang Wang
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Yan Zhou
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Jingjing Han
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Guoliang Jin
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
| | - Fang Hua
- Department of NeurologyXuzhou Medical UniversityXuzhouChina
- Department of Interdisciplinary Health SciencesCollege of Allied Health Sciences, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
20
|
Yi J, Wang HL, Lu G, Zhang H, Wang L, Li ZY, Wang L, Wu Y, Xia D, Fang EF, Shen HM. Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model. Autophagy 2024; 20:2655-2676. [PMID: 39051473 PMCID: PMC11587853 DOI: 10.1080/15548627.2024.2383145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in Caenorhabditis elegans (C. elegans) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) C. elegans model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.Abbreviations: AD, Alzheimer disease; ATG, autophagy related; BafA1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; EBSS, Earle's balanced salt; ECAR, extracellular acidification rate; GFP, green fluorescent protein; IA, isoamyl alcohol; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MMP, mitochondrial membrane potential; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; O/A, oligomycin-antimycin; OCR, oxygen consumption rate; OMM, outer mitochondrial membrane; OPTN, optineurin; PARL, presenilin associated rhomboid like; PINK1, PTEN induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; p-Ser65-Ub, phosphorylation of Ub at Ser65; TIMM23, translocase of inner mitochondrial membrane 23; TOMM, translocase of outer mitochondrial membrane; USP10, ubiquitin specific peptidase 10; USP13, ubiquitin specific peptidase 13; VAL, valinomycin; YFP, yellow fluorescent protein.
Collapse
Affiliation(s)
- Juan Yi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hailong Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen-Yu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
21
|
Ma X, Ding WX. Quality control of mitochondria involves lysosomes in multiple definitive ways. Autophagy 2024; 20:2599-2601. [PMID: 39324497 PMCID: PMC11587833 DOI: 10.1080/15548627.2024.2408712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are crucial organelles in maintaining cellular homeostasis. They are involved in processes such as energy production, metabolism of lipids and glucose, and cell death regulation. Mitochondrial dysfunction can lead to various health issues such as aging, cancer, neurodegenerative diseases, and chronic liver diseases. While mitophagy is the main process for getting rid of excess or damaged mitochondria, there are additional mechanisms for preserving mitochondrial quality. One such alternative mechanism we have discovered is a hybrid organelle called mitochondrial-lysosome-related-organelle (MLRO), which functions independently of the typical autophagy process. More recently, another type of vesicle called vesicle derived from the inner mitochondrial membrane (VDIM) has been identified to break down the inner mitochondrial membrane without involving the standard autophagy pathway. In this article, we will delve into the similarities and differences between MLRO and VDIM, including their structure, regulation, and relevance to human diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Zhang W, Wang S, Zheng H, Zhang W, Yang L, Li Z, Yu M. Spotlight on Mitochondrial Health: A Trailblazing Fluorescent Tool for Cancer Detection and Surgical Guidance. Anal Chem 2024; 96:18455-18463. [PMID: 39501707 DOI: 10.1021/acs.analchem.4c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Mitochondria play a pivotal role in maintaining normal physiological functions. Mitochondrial autophagy, namely, mitophagy, is a selective catabolic disposal of impaired mitochondria through an autophagic mechanism during episodes of mitochondrial harm. This selective removal, e.g., mitophagy, is essential for mitochondrial quality control and is closely related to the pathogenesis of many diseases. The abnormal buildup of defective mitochondria in vivo was used as a target to prevent the development of cancer. The mitochondrial autophagy process of disease-related cells is usually accompanied by a decrease in polarity and pH, and the fluorescence sensing effects caused by these two factors are usually contradictory. Here, we propose a reinventing strategy to develop a dual-channel and dual-responsive fluorescent probe HDTVB that is capable of tracking mitochondrial autophagy by monitoring fluctuations in mitochondrial pH and polarity. Based on the aggregation-induced emission (AIE) moiety and hemicarpine moiety push-pull system with activated near-infrared (NIR) emission and pH-activatable cyclization reaction, HDTVB was able to differentiate tumors from normal sites via polarity- and acidity-triggered structural changes of the probe in the course of mitochondrial autophagy. HDTVB is expected to be applied to clinical diagnosis and tumor excision guided by fluorescence, offering a new route in physiological and biochemical research.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hongyong Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhanxian Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Iorio R, Petricca S, Di Emidio G, Falone S, Tatone C. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases. Ageing Res Rev 2024; 101:102522. [PMID: 39369800 DOI: 10.1016/j.arr.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
Collapse
Affiliation(s)
- Roberto Iorio
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy.
| | - Sabrina Petricca
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Giovanna Di Emidio
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Carla Tatone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| |
Collapse
|
24
|
Cabana VC, Sénécal AM, Bouchard AY, Kourrich S, Cappadocia L, Lussier MP. AP-1 contributes to endosomal targeting of the ubiquitin ligase RNF13 via a secondary and novel non-canonical binding motif. J Cell Sci 2024; 137:jcs262035. [PMID: 39206621 DOI: 10.1242/jcs.262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.
Collapse
Affiliation(s)
- Valérie C Cabana
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Audrey M Sénécal
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Antoine Y Bouchard
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Saïd Kourrich
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 avenue du Président-Kennedy, Montréal, QC H2X 3X8, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Marc P Lussier
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
25
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
26
|
Vijayan V, Yan H, Lohmeyer JK, Prentiss KA, Patil RV, Barbarito G, Lopez I, Elezaby A, Peterson K, Baker J, Ostberg NP, Bertaina A, Negrin RS, Mochly-Rosen D, Weinberg K, Haileselassie B. Extracellular release of damaged mitochondria induced by prehematopoietic stem cell transplant conditioning exacerbates GVHD. Blood Adv 2024; 8:3691-3704. [PMID: 38701354 PMCID: PMC11284707 DOI: 10.1182/bloodadvances.2023012328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.
Collapse
Affiliation(s)
- Vijith Vijayan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Hao Yan
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kaylin A. Prentiss
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rachna V. Patil
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Giulia Barbarito
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ivan Lopez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kolten Peterson
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nicolai P. Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Bereketeab Haileselassie
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
27
|
Sun S, Li Q, Liu G, Huang X, Li A, Guo H, Qi L, Zhang J, Song J, Su X, Zhang Y. Endosomal protein DENND10/FAM45A integrates extracellular vesicle release with cancer cell migration. BMC Biol 2024; 22:154. [PMID: 38987765 PMCID: PMC11234546 DOI: 10.1186/s12915-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Shenqing Sun
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Qian Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Ganggang Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaoheng Huang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Aiqing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Haoran Guo
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lijuan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jianrui Song
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key Laboratory of Cell Therapy Nanoformulation, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Xiong Su
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Yanling Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Gao DL, Lin MR, Ge N, Guo JT, Yang F, Sun SY. From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders. World J Gastroenterol 2024; 30:2934-2946. [PMID: 38946875 PMCID: PMC11212700 DOI: 10.3748/wjg.v30.i23.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.
Collapse
Affiliation(s)
- Duo-Lun Gao
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Meng-Ran Lin
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Nan Ge
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Fan Yang
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
29
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
30
|
Husna N, Aiba T, Fujita SI, Saito Y, Shiba D, Kudo T, Takahashi S, Furukawa S, Muratani M. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat Commun 2024; 15:4814. [PMID: 38862469 PMCID: PMC11166646 DOI: 10.1038/s41467-023-41995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/20/2023] [Indexed: 06/13/2024] Open
Abstract
A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.
Collapse
Affiliation(s)
- Nailil Husna
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Program in Humanics, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Tatsuya Aiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - Yoshika Saito
- Faculty of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Dai Shiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Takashi Kudo
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
31
|
Gong Y, Zhou Y, Feng L, Zhao Y. The roles of secretory autophagy in mitochondria release via extracellular vesicles: waste disposal and food delivery? Front Cell Dev Biol 2024; 12:1392810. [PMID: 38855162 PMCID: PMC11157114 DOI: 10.3389/fcell.2024.1392810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Yuhan Gong
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yucheng Zhou
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Linhui Feng
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Hertz N, Chin R, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laihsu A, Eastes A, Tai C, Kim R, Li J, Khasnavis S, Rafalski V, Heerendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. RESEARCH SQUARE 2024:rs.3.rs-4356493. [PMID: 38765977 PMCID: PMC11100876 DOI: 10.21203/rs.3.rs-4356493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.
Collapse
|
33
|
Ma X, Niu M, Ni HM, Ding WX. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024:01515467-990000000-00861. [PMID: 38683546 DOI: 10.1097/hep.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, and HCC. In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mitochondrial DNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of alcohol-associated liver disease and HCC. Mitochondrial dynamics and mitochondrial DNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating alcohol-associated liver disease and alcohol-associated HCC.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Mobility, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
34
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
35
|
Chiu HW, Wu CH, Lin WY, Wong WT, Tsai WC, Hsu HT, Ho CL, Cheng SM, Cheng CC, Yang SP, Li LH, Hua KF. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024; 47:696-717. [PMID: 38319541 DOI: 10.1007/s10753-023-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024]
Abstract
The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Che Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
36
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
37
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
38
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
39
|
Jian F, Wang S, Tian R, Wang Y, Li C, Li Y, Wang S, Fang C, Ma C, Rong Y. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome-lysosome fusion. Cell Res 2024; 34:151-168. [PMID: 38182888 PMCID: PMC10837459 DOI: 10.1038/s41422-023-00916-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Autophagosome-lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome-lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P2 via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome-lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.
Collapse
Affiliation(s)
- Fenglei Jian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Tian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufen Wang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuangpeng Li
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Fang
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Zou S, Wang B, Yi K, Su D, Chen Y, Li N, Geng Q. The critical roles of STING in mitochondrial homeostasis. Biochem Pharmacol 2024; 220:115938. [PMID: 38086488 DOI: 10.1016/j.bcp.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The stimulator of interferon genes (STING) is a crucial signaling hub in the immune system's antiviral and antimicrobial defense by detecting exogenous and endogenous DNA. The multifaceted functions of STING have been uncovered gradually during past decades, including homeostasis maintenance and overfull immunity or inflammation induction. However, the subcellular regulation of STING and mitochondria is poorly understood. The main functions of STING are outlined in this review. Moreover, we discuss how mitochondria and STING interact through multiple mechanisms, including the release of mitochondrial DNA (mtDNA), modulation of mitochondria-associated membrane (MAM) and mitochondrial dynamics, alterations in mitochondrial metabolism, regulation of reactive oxygen species (ROS) production, and mitochondria-related cell death. Finally, we discuss how STING is crucial to disease development, providing a novel perspective on its role in cellular physiology and pathology.
Collapse
Affiliation(s)
- Shishi Zou
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Dandan Su
- Department of Neurology, Wuhan University Renmin Hospital, 430060, China
| | - Yukai Chen
- Department of Oncology, Wuhan University Renmin Hospital, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| |
Collapse
|
42
|
Zhou H, Zhang W, Li H, Xu F, Yinwang E, Xue Y, Chen T, Wang S, Wang Z, Sun H, Wang F, Mou H, Yao M, Chai X, Zhang J, Diarra MD, Li B, Zhang C, Gao J, Ye Z. Osteocyte mitochondria inhibit tumor development via STING-dependent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadi4298. [PMID: 38232158 DOI: 10.1126/sciadv.adi4298] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fan Xu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mohamed Diaty Diarra
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Zhaoming Ye
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
43
|
Tian W, Shi D, Zhang Y, Wang H, Tang H, Han Z, Wong CCL, Cui L, Zheng J, Chen Y. Deep proteomic analysis of obstetric antiphospholipid syndrome by DIA-MS of extracellular vesicle enriched fractions. Commun Biol 2024; 7:99. [PMID: 38225453 PMCID: PMC10789860 DOI: 10.1038/s42003-024-05789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
Proteins in the plasma/serum mirror an individual's physiology. Circulating extracellular vesicles (EVs) proteins constitute a large portion of the plasma/serum proteome. Thus, deep and unbiased proteomic analysis of circulating plasma/serum extracellular vesicles holds promise for discovering disease biomarkers as well as revealing disease mechanisms. We established a workflow for simple, deep, and reproducible proteome analysis of both serum large and small EVs enriched fractions by ultracentrifugation plus 4D-data-independent acquisition mass spectrometry (4D-DIA-MS). In our cohort study of obstetric antiphospholipid syndrome (OAPS), 4270 and 3328 proteins were identified from large and small EVs enriched fractions respectively. Both of them revealed known or new pathways related to OAPS. Increased levels of von Willebrand factor (VWF) and insulin receptor (INSR) were identified as candidate biomarkers, which shed light on hypercoagulability and abnormal insulin signaling in disease progression. Our workflow will significantly promote our understanding of plasma/serum-based disease mechanisms and generate new biomarkers.
Collapse
Affiliation(s)
- Wenmin Tian
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dongxue Shi
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yinmei Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China
| | - Hongli Wang
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haohao Tang
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongyu Han
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, 100084, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China.
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, P R China.
| | - Yang Chen
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
44
|
Tan S, Wang D, Fu Y, Zheng H, Liu Y, Lu B. Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull (Beijing) 2023; 68:3013-3026. [PMID: 37940449 DOI: 10.1016/j.scib.2023.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Increased mitochondrial damage plays a critical role in many neurodegeneration-related diseases such as Parkinson's disease (PD) and Down syndrome (DS). Thus, enhancement of mitochondrial degradation by small molecule compounds may provide promising new strategies to tackle these diseases. Here, we explored the strategy to induce clearance of mitochondria by targeting them to the autophagy machinery by autophagy-tethering compounds (ATTECs). We provided the proof-of-concept evidence demonstrating that the bifunctional compound (mT1) binding to both the outer mitochondrial membrane protein TSPO and the autophagosome protein LC3B simultaneously may enhance the engulfment of damaged mitochondria by autophagosomes and subsequent autophagic degradation of them. In addition, preliminary experiments suggest that mT1 attenuated disease-relevant phenotypes in both a PD cellular model and a DS organoid model. Taken together, we demonstrate the possibility of degrading mitochondria by bifunctional ATTECs, which confirms the capability of degrading organelles by ATTECs and provides potential new strategies in the intervention of mitochondria-related disorders.
Collapse
Affiliation(s)
- Shuixia Tan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhua Fu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huiwen Zheng
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
45
|
Tan B, Zheng X, Xie X, Chen Y, Li Y, He W. MMP11 and MMP14 contribute to the interaction between castration-resistant prostate cancer and adipocytes. Am J Cancer Res 2023; 13:5934-5949. [PMID: 38187060 PMCID: PMC10767328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Previous studies have demonstrated that adipocytes promote prostate cancer (PCa) cell progression, which facilitates the development of PCa into castration-resistant prostate cancer (CRPC); however, the underlying mechanisms are still not fully understood. Matrix metalloproteinases (MMPs) are a group of proteases responsible for the degradation of extracellular matrix (ECM) and the activation of latent factors. In our study, we detected that MMP11 expression was increased in PCa patients and that a high level of MMP11 was correlated with poor prognosis. Furthermore, siRNA knockdown of MMP11 in CRPC cells not only blocked the delipidation and dedifferentiation of mature adipocytes but also reduced the lipid uptake and utilization of CRPC cells in a cell co-culture model. The number of mitophagosomes and the expression level of Parkin were increased in MMP11-silenced CRPC cells. Moreover, we found that simultaneous downregulation of MMP14 and MMP11 expression may benefit patient survival. Indeed, MMP11/14 knockdown in CRPC cells significantly decreased lipid metabolism and cell invasion, at least partly through the mTOR/HIF1α/MMP2 signaling pathway. Importantly, MMP11/14 knockdown dramatically delayed tumor growth in a xenograft mouse model. Consistently, the decreased lipid metabolism, Ki67 and MMP2 expression, as well as the increased Parkin level were also confirmed in in vivo experiments, further demonstrating the mechanisms responsible for the tumor-promoting effects of MMP11/14. Collectively, our study elucidated the role of MMP11 and MMP14 in the bidirectional crosstalk between adipocytes and CRPC cells and provided the rationale of targeting MMP11/14 for the treatment of CRPC patients.
Collapse
Affiliation(s)
- Bing Tan
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityYuzhong District, Chongqing 400016, China
| | - Xiaoyu Zheng
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical CollegeShapingba District, Chongqing 401331, China
| | - Xiaoqin Xie
- Department of Clinical Laboratory, Chongqing Blood CenterJiulongpo District, Chongqing 400015, China
| | - Yirong Chen
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
| | - Yuehua Li
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityYuzhong District, Chongqing 400016, China
| |
Collapse
|
46
|
Han Y, Zheng J, Ge L. Activated STING1 rides the Rafeesome. Autophagy 2023; 19:3230-3233. [PMID: 37543953 PMCID: PMC10621249 DOI: 10.1080/15548627.2023.2240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Over the past decade, accumulated studies have reported the presence of non-canonical macroautophagy/autophagy characterized by the shared usage of the autophagy machinery and distinct components that function in multiple scenarios but do not involve lysosomal degradation. One type of non-canonical autophagy is secretory autophagy, which facilitates the secretion of various cargoes. In a recent work from Gao et al. the ER-membrane protein STING1 has been identified as a novel substrate of secretory autophagy. The secretion of activated STING1 is mediated by its packing into the rafeesome, a newly identified organelle formed upon the fusion of RAB22A-mediated non-canonical autophagosome with an early endosome. Moreover, extracellular vesicles containing activated STING1 induce antitumor immunity in recipient cells, a process potentially promoted by RAB22A.
Collapse
Affiliation(s)
- Yaping Han
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jianfei Zheng
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liang Ge
- The State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander AD. Leveraging gene correlations in single cell transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532643. [PMID: 36993765 PMCID: PMC10055147 DOI: 10.1101/2023.03.14.532643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data when ground truth about biological variation is unknown (i.e., usually). RESULTS We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p-values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.
Collapse
Affiliation(s)
- Kai Silkwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Emmanuel Dollinger
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Josh Gervin
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Scott Atwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
- Department of Mathematics, University of California, Irvine, Irvine CA
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine CA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine CA
| |
Collapse
|
48
|
Ma X, Manley S, Qian H, Li Y, Zhang C, Li K, Ding B, Guo F, Chen A, Zhang X, Liu M, Hao M, Kugler B, Morris EM, Thyfault J, Yang L, Sesaki H, Ni HM, McBride H, Ding WX. Mitochondria-lysosome-related organelles mediate mitochondrial clearance during cellular dedifferentiation. Cell Rep 2023; 42:113291. [PMID: 37862166 PMCID: PMC10842364 DOI: 10.1016/j.celrep.2023.113291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kevin Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin Kugler
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heidi McBride
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
49
|
Pan KH, Chang H, Yang WY. Extracellular release in the quality control of the mammalian mitochondria. J Biomed Sci 2023; 30:85. [PMID: 37805581 PMCID: PMC10560436 DOI: 10.1186/s12929-023-00979-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Mammalian cells release a wealth of materials to their surroundings. Emerging data suggest these materials can even be mitochondria with perturbed morphology and aberrant function. These dysfunctional mitochondria are removed by migrating cells through membrane shedding. Neuronal cells, cardiomyocytes, and adipocytes send dysfunctional mitochondria into the extracellular space for nearby cells to degrade. Various studies also indicate that there is an interplay between intracellular mitochondrial degradation pathways and mitochondrial release in handling dysfunctional mitochondria. These observations, in aggregate, suggest that extracellular release plays a role in quality-controlling mammalian mitochondria. Future studies will help delineate the various types of molecular machinery mammalian cells use to release dysfunctional mitochondria. Through the studies, we will better understand how mammalian cells choose between intracellular degradation and extracellular release for the quality control of mitochondria.
Collapse
Affiliation(s)
- Kuei-Hsiang Pan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Hung Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
50
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|