1
|
Xu C, Zhou GQ, Li WF, Hu DS, Chen XZ, Lin SJ, Jin F, Huang XQ, Peng G, Huang J, Wu Y, Tao CJ, Li JB, Lin AH, Zhao HY, Hong SB, Huang HL, Tang LL, Peng YL, Shi KF, Chen L, Qi LP, Yang KY, Shen LF, Sun Y, Ma J. Nivolumab combined with induction chemotherapy and radiotherapy in nasopharyngeal carcinoma: A multicenter phase 2 PLATINUM trial. Cancer Cell 2025; 43:925-936.e4. [PMID: 40020668 DOI: 10.1016/j.ccell.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Severe toxicities caused by concurrent cisplatin are a critical problem in nasopharyngeal carcinoma (NPC) treatment. In this phase 2 multicenter PLATINUM trial (NCT03984357), we recruited 152 NPC patients who received 12-cycle nivolumab plus induction chemotherapy and radiotherapy without concurrent cisplatin. After a median follow-up of 43 months, the 3-year failure-free survival (FFS) was 88.5% (95% confidence interval [CI], 83.4%-93.8%) and the 3-year overall survival was 97.9%. An early clearance of Epstein-Barr virus (EBV) DNA after induction-phase treatment was associated with FFS benefit. Sixty (40.2%) and eight (5.2%) patients had acute and late grade 3-4 adverse events (AEs), respectively. Most patients had good tolerance to AE-associated frequency (68.0%-96.7%), severity (56.0%-98.6%), and interference (58.0%-98.0%); 86.7%-100.0% of quality-of-life domains showed either no clinically meaningful deterioration or a rapid recovery. Nivolumab plus induction chemotherapy and radiotherapy demonstrated efficacious anti-tumor activity, low toxicity, and favorable tolerability and quality-of-life for NPC patients.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China
| | - Wen-Fei Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China
| | - De-Sheng Hu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| | - Xiao-Zhong Chen
- Department of Head and Neck Tumor Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Shao-Jun Lin
- Department of Radiation Oncology, Cancer Hospital of Fujian Medical University (Fujian Provincial Cancer Hospital), Fuzhou, Fujian 350014, P.R. China
| | - Feng Jin
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xin-Qiong Huang
- Department of Radiation Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Gang Peng
- Department of Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Huang
- Department of Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuan Wu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| | - Chang-Juan Tao
- Department of Head and Neck Tumor Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Ji-Bin Li
- Clinical Trials Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Ai-Hua Lin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Hong-Yun Zhao
- Department of Medical Oncology, and Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Shu-Bin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Hui-Ling Huang
- Department of Cardiology, Cardiac Prevention and Assessment Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China
| | - Ying-Lin Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China
| | - Ke-Fu Shi
- Nursing Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Liu Chen
- Nursing Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Li-Ping Qi
- Nursing Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Kun-Yu Yang
- Department of Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.
| | - Liang-Fang Shen
- Department of Radiation Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China.
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China; Chinese Society of Clinical Oncology, Beijing 100000, P.R. China.
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong 510000, P.R. China; Chinese Society of Clinical Oncology, Beijing 100000, P.R. China.
| |
Collapse
|
2
|
von Renesse J, Lin MC, Ho PC. Tumor-draining lymph nodes - friend or foe during immune checkpoint therapy? Trends Cancer 2025:S2405-8033(25)00104-9. [PMID: 40348668 DOI: 10.1016/j.trecan.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
The pivotal role of tumor-draining lymph nodes (TDLNs) in supporting antitumor immunity and serving as sites for cancer metastasis presents a clinical challenge: eliminate tumors while preserving antitumor immune responses. In this article, we explore the initiation of tumor-specific immune responses within lymph nodes (LNs), the immunocompromised microenvironment induced by tumors within LNs, and the crucial involvement of TDLNs in immunotherapy. Additionally, we examine the clinical prospects of modifying surgical procedures or therapy sequences to enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Janusz von Renesse
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Mei-Chun Lin
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
3
|
Zahnreich S, Bhatti A, Ahmad B, Drabke S, Kaufmann J, Schmidberger H. Effects of Cisplatin on the Radiation Response and DNA Damage Markers in Peripheral Blood Lymphocytes Ex Vivo. Cells 2025; 14:682. [PMID: 40422185 DOI: 10.3390/cells14100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Platinum-based radiochemotherapy is associated with hematologic side effects, impacting patient outcomes. However, the clinical mechanisms of cisplatin and its interaction with ionizing radiation (IR), including in biodosimetry for radiotherapy, have not yet been fully clarified. For this purpose, healthy donors' peripheral blood lymphocytes (PBLs) were pretreated with cisplatin in a pulse (1-4 h) or continuous (24 h) regimen followed by X-rays. DNA damage was assessed as DNA double-strand breaks using repair foci of γH2AX and 53BP1 after 0.5 h and 24 h in G1 PBLs and a proliferation-based cytokinesis-block micronucleus assay. Additionally, cell death and proliferation activity were measured. Unlike a 1 h pulse, a 24 h cisplatin pretreatment caused a concentration-dependent increase in cisplatin-induced foci while decreasing IR-induced foci, especially 24 h after irradiation. This was accompanied by increased apoptosis, with cisplatin and IR having additive effects. Both genotoxins alone caused a dose-dependent increase in micronuclei, while cisplatin significantly reduced binuclear cells, especially after the 24 h treatment, leading to lower micronuclei frequencies post-irradiation. Our results show that prolonged cisplatin exposure, even at low concentrations, impacts the vitality and division activity of PBLs, with significantly stronger effects post-irradiation. This has major implications and must be considered for the detection of DNA damage-associated biomarkers in PBLs used in clinical prediction or biodosimetry during radiotherapy.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Aisha Bhatti
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Barea Ahmad
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sophia Drabke
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Justus Kaufmann
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
4
|
Rosenberg AJ, Juloori A, Jelinek MJ, Agrawal N, Cursio JF, Cipriani N, Lingen MW, Izumchenko E, Katipally R, Chin J, Ginat D, Pasternak-Wise O, Gooi Z, Blair E, Pearson AT, Haraf DJ, Vokes EE. Neoadjuvant Nivolumab Plus Chemotherapy Followed by Response-Stratified Chemoradiation Therapy in HPV-Negative Head and Neck Cancer: The DEPEND Phase 2 Nonrandomized Clinical Trial. JAMA Oncol 2025; 11:492-501. [PMID: 40048190 PMCID: PMC11886870 DOI: 10.1001/jamaoncol.2025.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 03/09/2025]
Abstract
Importance Neoadjuvant immunotherapy in human papillomavirus (HPV)-negative locoregionally advanced (LA) head and neck squamous cell carcinoma (HNSCC) appears promising, yet its role in nonsurgical treatment for head and neck cancer remains undefined. Neoadjuvant nivolumab plus chemotherapy followed by response-stratified de-escalated chemoradiation therapy (CRT) in HPV-negative LA stage IVa/b HNSCC may improve treatment efficacy while reducing treatment-related toxic effects. Objective To determine the deep response rate and tolerability of neoadjuvant nivolumab plus chemotherapy followed by response-stratified CRT in nonvirally mediated stage IVa/b HNSCC. Design, Setting, and Participants In this investigator-initiated phase 2 nonrandomized clinical trial conducted at a single academic center, patients with stage IVa/b (American Joint Committee on Cancer Tumor Classification, 8th edition) HPV-negative LA HNSCC were enrolled between 2019 and 2022. Data were analyzed from February 2023 to January 2024. Interventions The DEPEND trial evaluated neoadjuvant nivolumab plus carboplatin and paclitaxel, followed by response-stratified CRT. Patients with 50% or greater reduction per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 received de-escalated CRT to 66 Gy with elimination of elective nodal volumes; patients with less than 50% reduction received standard CRT to 70 to 75 Gy. Adjuvant nivolumab was administered for 9 cycles. Main Outcomes and Measures The primary end point was deep response rate (DRR; 50% or greater shrinkage per RECIST version 1.1) following neoadjuvant nivolumab plus chemotherapy. Secondary end points included progression-free survival (PFS), overall survival (OS), locoregional control, and distant control. Exploratory end points included acute toxic effects in patients who received response-adapted de-escalated CRT. Results Of 36 included patients, 28 (78%) were male, and the median (range) age was 58.9 (27-77) years. All patients started treatment and were available for analysis. The median (range) follow-up was 20 (13-40) months. The primary end point was met, with a DRR following neoadjuvant nivolumab/chemotherapy of 53% (95% CI, 35-70). The objective response rate was 86% (95% CI, 71-95). A total of 19 received de-escalated CRT and 16 received standard CRT. PFS and OS at 2 years were 66% (95% CI, 34-76) and 73% (95% CI, 52-86), respectively. The most common treatment-emergent adverse events for de-escalated and standard CRT were mucositis (14 of 19 [74%] and 15 of 16 [94%], respectively), radiation dermatitis (13 of 19 [68%] and 14 of 16 [88%], respectively), and dry mouth (7 of 19 [37%] and 10 of 16 [63%], respectively). Conclusions and Relevance In this phase 2 nonrandomized clinical trial, neoadjuvant nivolumab/chemotherapy led to deep responses in 53% of patients with HPV-negative LA stage IVa/b HNSCC, and response-adapted de-escalated CRT led to favorable survival with lower acute toxic effects among deep responders. Trial Registration ClinicalTrials.gov Identifier: NCT03944915.
Collapse
Affiliation(s)
- Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Aditya Juloori
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | | | - Nishant Agrawal
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, Illinois
| | - John F. Cursio
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Nicole Cipriani
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Mark W. Lingen
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Rohan Katipally
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Jeffrey Chin
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Daniel Ginat
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Olga Pasternak-Wise
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Zhen Gooi
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, Illinois
| | - Elizabeth Blair
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, Illinois
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel J. Haraf
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Everett E. Vokes
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
5
|
Kanno T, Ito K, Kita Y, Mochizuki T, Sano T, Yokomizo A, Abe T, Tsuchihashi K, Tatarano S, Inokuchi J, Takahashi A, Matsui Y, Nishiyama H, Kitamura H, Saito R, Kobayashi T. Impact of lymph node dissection during surgery on the efficacy of pembrolizumab in patients with metastatic urothelial carcinoma. Int J Urol 2025; 32:593-597. [PMID: 39930591 DOI: 10.1111/iju.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVES The impact of lymph node dissection (LND) on the efficacy of pembrolizumab in patients with urothelial carcinoma (UC) who develop metastasis after surgery remains unclear. This study aimed to investigate the efficacy of pembrolizumab in patients with metastatic UC who underwent primary tumor resection with LND. PATIENTS AND METHODS This retrospective study included patients who initially underwent radical surgery with or without LND for non-metastatic UC and later received pembrolizumab for recurrent lesions. Data were collected from a retrospective nationwide Japanese cohort study in patients with metastatic UC treated with pembrolizumab. The primary endpoints were overall response rate (ORR) and overall survival (OS). Multivariate analysis was performed to identify predictors of OS. RESULTS A total of 393 patients (273 [69.5%] underwent LND, and 120 (30.5%) did not) were included in this study. The ORRs for patients with and without LND were 30.8% and 27.3%, respectively (p = 0.460). No significant difference in OS was observed between the two groups (p = 0.471). Multivariate Cox regression analysis revealed that a neutrophil-to-lymphocyte ratio ≥3.0, Eastern Cooperative Oncology Group performance status ≥2, hemoglobin <11, and liver metastasis were associated with worse OS. However, LND was not associated with OS. CONCLUSIONS LND during primary tumor resection did not affect the efficacy of pembrolizumab in patients with metastatic UC.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Male
- Female
- Retrospective Studies
- Aged
- Middle Aged
- Carcinoma, Transitional Cell/mortality
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/secondary
- Carcinoma, Transitional Cell/surgery
- Carcinoma, Transitional Cell/therapy
- Lymph Node Excision/statistics & numerical data
- Lymphatic Metastasis
- Treatment Outcome
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/surgery
- Urinary Bladder Neoplasms/drug therapy
- Aged, 80 and over
- Antineoplastic Agents, Immunological/therapeutic use
- Japan
- Neoplasm Recurrence, Local
- Survival Rate
- Cystectomy
Collapse
Affiliation(s)
- Toru Kanno
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Katsuhiro Ito
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Tomoyasu Sano
- Department of Urology, Nagoya University, Nagoya, Japan
| | - Akira Yokomizo
- Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Takashige Abe
- Department of Urology, Hokkaido University, Sapporo, Japan
| | | | | | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Takahashi
- Department of Urology, Hakodate Goryoukaku Hospital, Hakodate, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Ryoichi Saito
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Xu Q, Chu J, Hu Q, Sun Y, Jiang F, Li S, Liu L. The role and clinical significance of tumor-draining lymph nodes in tumor progression and immunotherapy. Crit Rev Oncol Hematol 2025; 212:104745. [PMID: 40315968 DOI: 10.1016/j.critrevonc.2025.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) play a pivotal role in tumor growth and the immune response, activating immune cells such as CD8 + T cells and natural killer cells to combat tumors. However, tumors can subvert TDLNs to avoid immune attack. Initially, TDLNs stimulate a robust antitumor response, but as tumor evolve, they infiltrate with immunosuppressive cells that alter the TDLN environment and potentially promote metastasis. Immunotherapy, including immune checkpoint inhibitor (ICI), have emerged as a potential solution to this challenge by reconfiguring the TDLN environment to enhance immune responses and influence the immune status of the primary tumor. The integrity of the TDLNs is crucial for the efficacy of immunotherapy. Conventional surgery often removes TDLNs, but this may impede immune system function and the effectiveness of immunotherapy. It is therefore recommended that removal of TDLNs be considered after neoadjuvant treatment rather than before adjuvant treatment. Accurate identification of patients who require post-neoadjuvant TDLN removal and the determination of metastatic nodes is of paramount importance in tailoring treatment plans, optimizing of patient outcomes, and improving quality of life.
Collapse
Affiliation(s)
- Qian Xu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahui Chu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qinqin Hu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanheng Sun
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Jiang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Yang X, Wu X, Hao X, Li T, Guo H, Yang R. Unleashing the therapeutic potential of tumor-draining lymph nodes: spotlight on bladder cancer. J Transl Med 2025; 23:489. [PMID: 40301883 PMCID: PMC12042586 DOI: 10.1186/s12967-024-05864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 05/01/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are often involved during the metastasis of bladder cancer (BC), which is associated with a poor prognosis. Recent studies have shown that TDLNs are a major source of host anti-tumor immunity, which can impede tumor progression and favor tumor immunotherapy. However, during tumor progression, various tumor-derived mediators modulate the TDLN microenvironment, impairing their protective function. Ultimately, TDLNs provide the soil for the proliferation and dissemination of tumor cells. Therefore, surgical removal of TDLNs is commonly recommended in various solid tumors to prevent metastasis, but this poses significant challenges for leveraging TDLNs in immunotherapy. Additionally, lymph node dissection (LND) has not shown survival benefits in some tumors. Hence, the decision to remove TDLNs in oncological treatment needs to be reconsidered. Herein, we spotlight the TDLNs of BC and introduce how BC cells modulate stromal cells and immune cells to shape an immunosuppressive TDLN microenvironment for BC progression. We summarize the existing therapeutic strategies to reinvigorate anti-tumor immunity in TDLNs. Furthermore, we discuss whether to preserve TDLNs and the role of LND during oncological treatment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuyang Hao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Li ZZ, Wei LY, Cao LM, Wang GR, Zhou K, Xiao Y, Luo HY, Zhang SJ, Wu Q, Liu B, Bu LL. Neck management in cT1-2N0 oral squamous cell carcinoma: Act or watchful wait? Int J Cancer 2025. [PMID: 40268514 DOI: 10.1002/ijc.35455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
The controversy over neck management for cT1-2N0 OSCC patients has persisted for two decades. While selective neck dissection (SND) has been deemed effective, only 30% of patients actually exhibit lymph node metastasis (LNM). SND-related complications, such as shoulder dysfunction and lymphedema, significantly impact patient quality of life, suggesting that 70% of patients may not benefit from SND. Current guidelines advocate observation, sentinel lymph node biopsy (SLNB), and SND, but the appropriate scenarios for each strategy need further exploration. Risk stratification assessment can inform treatment decisions in early-stage OSCC. This review explores histological risk factors, SLNB, gene expression profiles, and biomarkers for risk stratification. Additionally, we assess the potential value of postoperative radiotherapy (PORT) and immunotherapy, particularly immune checkpoint blockade (ICB), in cT1-2N0 OSCC. Risk-stratified approaches align with personalized medicine and precision surgery trends, while PORT and ICB may offer more reliable neck management options. This comprehensive review systematically synthesizes the past selection of therapeutic strategies for cT1-2N0 OSCC patients, alongside their respective strengths and limitations. We aspire to contribute to the optimization of treatment strategies for early-stage OSCC patients, ultimately enhancing both survival outcomes and quality of life.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li-Ya Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han-Yue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Shen Y, Connolly E, Aiello M, Zhou C, Chappa P, Song H, Tippitak P, Clark T, Cardenas M, Prokhnevska N, Mariniello A, De Bruyker I, Pagadala MS, Dhere VR, Rafiq S, Kesarwala AH, Orthwein A, Thomas SN, Zhang SL, Khan MK, Dixon JB, Lesinski GB, Lowe MC, Kissick H, Yu DS, Paulos CM, Schmitt NC, Buchwald ZS. Combination radiation and αPD-L1 enhance tumor control by stimulating CD8+ PD-1+ TCF-1+ T cells in the tumor-draining lymph node. Nat Commun 2025; 16:3522. [PMID: 40229241 PMCID: PMC11997041 DOI: 10.1038/s41467-025-58510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Combination radiotherapy (RT) and αPD-L1 therapy has potential to enhance local and distant (abscopal) tumor control, however, clinical results in humans have been variable. Using murine melanoma models, we found RT + αPD-L1 increases intra-tumor progenitor CD8+ PD-1+ TCF-1+ T cells. This increase depends on trafficking of the PD-1+ TCF-1+ cells from the tumor-draining lymph node (TdLN) to the tumor. RT alone promotes the expansion and differentiation of the TdLN derived PD-1+ TCF-1+ cells into TIM-3+ GZMB+ TCF-1- effector-like cells in the tumor with further enhancement after the addition of αPD-L1. In the TdLN, combination therapy enriches for a novel PD-1+ TCF-1+ TOX- LY6A+ subset with expression of a type I interferon and migratory signature. This subset is able to traffic to the tumor and differentiate into TIM-3+ TCF-1- cells. Finally, we found that ablation of the PD-1+ TCF-1+ T cell population attenuates the enhanced tumor control observed with combination RT + αPD-L1. These results suggest that abscopal response failures may be secondary to impaired stimulation of TdLN CD8+ PD-1 + TCF-1+ T cells or an inability of PD-1+ TCF-1+ cells in the TdLN to traffic to the tumor.
Collapse
Affiliation(s)
- Yang Shen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Erin Connolly
- Bioinformatics Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meili Aiello
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Chengjing Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Prasanthi Chappa
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haorui Song
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Patan Tippitak
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tarralyn Clark
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria Cardenas
- Department of Urology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Nataliya Prokhnevska
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai (ICMMS), New York City, NY, USA
| | - Annapaola Mariniello
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Isabelle De Bruyker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Vishal R Dhere
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Aparna H Kesarwala
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Alexandre Orthwein
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shirley L Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohammad K Khan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - J Brandon Dixon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael C Lowe
- Department of Surgery and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn Kissick
- Department of Urology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Chrystal M Paulos
- Department of Surgery and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Nicole C Schmitt
- Department of Otolaryngology - Head and Neck Surgery and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Saenz FR, Velasquez B, Waldrop T, Aguilar E, Cox KR, Delahoussaye A, Laberiano-Fernandez C, Clemente LC, Connell L, Mims N, Neill D, Parra ER, Clise-Dwyer K, Schüler E, Spiotto MT. FLASH radiotherapy spares lymphocytes in tumor-draining lymph nodes and increases infiltration of immune cells in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647544. [PMID: 40291670 PMCID: PMC12026895 DOI: 10.1101/2025.04.07.647544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Radiotherapy (RT) delivered at conventional dose rates (CONV) can both stimulate antitumor immune responses and inhibit these immune responses by depleting circulating lymphocytes. Given the observed normal tissue sparing associated with ultra-high dose rate (FLASH) RT, we hypothesized that FLASH RT may protect lymphocytes while increasing the immunogenicity of cancer cells. We irradiated cancer cell lines in vitro with FLASH RT or CONV RT and assessed immunogenic mRNA and protein expression. Both HPV-positive cell lines MEER and TC-1 showed upregulation of Calr, Hmgb1 , and cGAS-STING family members after FLASH RT but not after CONV RT in vitro . To assess changes in lymphocyte populations, we irradiated murine mEER tumors in syngeneic C57BL/6 mice with 27 Gy in 3 fractions of FLASH RT or CONV RT. In mice bearing FLASH irradiated tumors, tumor-draining lymph nodes contained greater numbers of CD8 + T cells (FLASH 1.7×10 4 vs 0.8×10 4 CONV; P <0.001) and CD4 + T cells (FLASH 2.3×10 4 vs CONV 1.2×10 4 ; P <0.001) after irradiation. FLASH RT was associated with increased numbers of activated CD44 + CD62L lo CD8 + and CD4 + lymphocytes. In irradiated tumors, FLASH RT was associated with increased CD8 + tumor-infiltrating lymphocytes, increased PD1 expression on these lymphocytes and increased PDL1 expression on macrophages. Compared with CONV RT, FLASH RT spared activated T cells in tumor-draining lymph nodes and in tumors but increased checkpoint inhibitor expression in tumors. These results suggest that FLASH RT may enhance antitumor immune responses by maintaining the immunogenic effects of RT while preserving lymphocyte numbers, which may be augmented with immune checkpoint blockade. Significance Radiation-induced lymphopenia is associated with poorer survival outcomes. New treatment approaches, like FLASH radiation therapy (FLASH RT), which reduce lymphopenia and enhance the antitumor response, could potentially lead to better outcomes for cancer patients.
Collapse
|
11
|
Ma R, Yang H, Ge Y, Ma T, Wang J, Li S, Feng T, Feng S, Zhang C, Sun T, Yao F, Yi J, Zhang H, Song P. Prognostic Implications of Lymph Node Status in Non-Small-Cell Lung Cancer Patients Before and After Neoadjuvant Chemoimmunotherapy: A Multicenter Retrospective Study. Clin Lung Cancer 2025:S1525-7304(25)00062-2. [PMID: 40316494 DOI: 10.1016/j.cllc.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND In patients with non-small-cell lung cancer (NSCLC) treated with neoadjuvant chemoimmunotherapy, lymph node (LN) status is classified as ypN0 and ypN+. However, ypN0 includes patients who either had LN metastasis before neoadjuvant therapy (cN+/ypN0) or those who never developed LN metastasis (cN0/ypN0). The prognostic implications of these different LN statuses are not well understood. METHODS A retrospective analysis was conducted on patients with NSCLC who underwent surgery after neoadjuvant chemoimmunotherapy at 4 centers in China from 2019 to 2022. Patients were grouped by their LN status into ``natural'' N0 (cN0/ypN0), ``downstaged'' N0 (cN+/ypN0), and ypN+ (cN+/ypN+). RESULTS Out of 527 initially enrolled patients, 186 met the inclusion criteria: 34 (18.3%) had ``natural'' N0, 95 (51.1%) had ``downstaged'' N0, and 57 (30.6%) had ypN+. The median follow-up was 24 months (11-64 months). Disease-free survival (DFS) and overall survival (OS) were significantly lower in ypN+ compared to ``natural'' N0 and ``downstaged'' N0 (DFS: P < .001; OS: P < .001). However, no significant difference in either DFS (P = .695) or OS (P = .814) were observed between ``natural'' N0 and ``downstaged'' N0. Subgroup analysis showed that the MPR/ypN0 group had significantly better DFS compared to the non-MPR/ypN0 (P = .008), MPR/ypN+ (P = .028), and non-MPR/ypN+ groups (P < .001). For OS, MPR/ypN0 group was significantly superior to non-MPR/ypN+ (P < .001) and showed a trend toward better OS than non-MPR/ypN0 (P = .067) and MPR/ypN+ (P = .067). Notably, no significant differences were observed in either DFS (P = .908) or OS (P = .943) between non-MPR/ypN0 and MPR/ypN+ groups. The non-MPR/ypN+ group had the poorest survival outcomes in both DFS and OS. CONCLUSIONS Achieving ypN0 status after neoadjuvant chemoimmunotherapy strongly predicts favorable outcomes in patients with NSCLC, regardless of pretreatment cN status. Combining MPR with LN status effectively differentiates patient prognoses.
Collapse
Affiliation(s)
- Ran Ma
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Ge
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyue Ma
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayi Wang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyuan Li
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianci Feng
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shoujie Feng
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Teng Sun
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
12
|
Nash A, DeBonis J, Murungi D, Castillo B, Kim B, Hu F, Chambers C, Nguyen A, Hernandez A, Wang Z, Rios PD, Ghani S, Joshi I, Isa D, Zheng N, Peng W, Igoshin OA, Oberholzer J, Hodges HC, Reticker-Flynn N, Veiseh O. IL-12-producing cytokine factories induce precursor exhausted T cells and elimination of primary and metastatic tumors. J Immunother Cancer 2025; 13:e010685. [PMID: 40169286 PMCID: PMC11962782 DOI: 10.1136/jitc-2024-010685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Curative responses to immunotherapy require the generation of robust systemic immunity with limited toxicity. Recruitment of T cell populations such as precursor exhausted T cells (Tpex) from lymphoid tissues to tumors is a hallmark of effective treatment. However, the ability to efficiently induce this recruitment is lacking in current immunotherapy approaches. Furthermore, systemic administration of immunotherapies frequently results in dose-limiting toxicities, yielding an inadequate therapeutic window for eliciting durable responses. METHODS In this investigation, we evaluated the safety and antitumor efficacy of locally administered interleukin 12 (IL-12) using a clinically translatable cytokine delivery platform (NCT05538624) to identify Tpex recruitment capabilities at tolerable cytokine doses. RESULTS We show IL-12 cytokine factories can effectively treat a broad spectrum of cancer types. Single-cell RNA sequencing data suggests that the antitumor efficacy seen in our studies was due to retinal pigmented epithelial cells-mIL12 treatment inducing differentiation of Tpex cells within the tumor microenvironment. When administered in combination with checkpoint therapy, IL-12 cytokine factory treatment generated systemic abscopal immunity, preventing subcutaneous tumor outgrowth in 8/9 mice with colorectal cancer and lung metastasis in mice with melanoma. Furthermore, this platform was well tolerated in a non-human primate without signs of toxicity. CONCLUSIONS Our new immunotherapy approach provides a robust strategy for inducing Tpex recruitment and systemic immunity against a range of solid peritoneal malignancies, many incurable with current immunotherapy strategies. Notably, these features were achieved using IL-12, and by leveraging our technology, we avoided the toxicities that have prevented the translation of IL-12 to the clinic. Our findings provide a strong rationale for the clinical development of IL-12 cytokine factories.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jonathon DeBonis
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Danna Murungi
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Bertha Castillo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Fangheng Hu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Courtney Chambers
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Annie Nguyen
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Andrea Hernandez
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Zeshi Wang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Center for Theoretical Biological Physics, Rice University, HoustON, Texas, USA
| | - Jose Oberholzer
- Celltrans, Chicago, Illinois, USA
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - H Courtney Hodges
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathan Reticker-Flynn
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
13
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
14
|
Zhang C, Formalik F, Lv D, Sha F, Kirlikovali KO, Wang X, Tang X, Su S, Xie H, Chen Y, Li Z, Snurr RQ, Farha OK. Lowering Linker Symmetry to Access Zirconium Metal-Organic Frameworks for Inverse Alkane/Alkene Separations. Angew Chem Int Ed Engl 2025; 64:e202424260. [PMID: 39831698 DOI: 10.1002/anie.202424260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach. A tritopic carboxylate linker with reduced symmetry and flexible triangular geometry was designed to construct three Zr-based MOFs (denoted as NU-57, NU-58, and NU-59) by modulating synthetic conditions. Notably, the conformational flexibility and reduced symmetry of the linker generated two unprecedented topologies in NU-58 and NU-59. Furthermore, solvent removal in NU-58 via thermal activation process produced missing linker defects. Finally, the adsorption behavior of these MOFs toward alkanes and alkenes was studied to gain insights into their structure-property relationships, which demonstrated that NU-57 and NU-58 exhibit unusual reverse selectivity for alkanes in alkane/alkene separations. Overall, this work highlights the rational design of linkers using a desymmetrization strategy as a powerful method to enrich the structural diversity of MOFs and to access novel MOFs with unique properties.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Filip Formalik
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
- Department of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Daofei Lv
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Xianhui Tang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Yongwei Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, United States
| |
Collapse
|
15
|
Hill J, Schoenfeld JD. Immunotherapy With Curative Intent Radiotherapy for Patients With Cancers of the Head and Neck. Semin Radiat Oncol 2025; 35:214-223. [PMID: 40090748 DOI: 10.1016/j.semradonc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/18/2025]
Affiliation(s)
- Jordan Hill
- Banner MD Anderson Cancer Center, Gilbert, AZ.
| | | |
Collapse
|
16
|
Thawani R, Bestvina CM, Vokes EE, Juloori A. Rationale for Investigation of Neoadjuvant Chemoimmunotherapy Before Chemoradiation in Unresectable Stage III Non-Small Cell Lung Cancer. J Clin Oncol 2025:JCO2402355. [PMID: 40146965 DOI: 10.1200/jco-24-02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Affiliation(s)
- Rajat Thawani
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Christine M Bestvina
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Everett E Vokes
- Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Aditya Juloori
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL
| |
Collapse
|
17
|
Wang MX, Mauch BE, Williams AF, Barazande-Pour T, Araujo Hoffmann F, Harris SH, Lathrop CP, Turkal CE, Yung BS, Paw MH, Gervasio DAG, Tran T, Stuhlfire AE, Guo T, Daniels GA, Park SJ, Gutkind JS, Hangauer MJ. Antigenic cancer persister cells survive direct T cell attack. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643359. [PMID: 40166148 PMCID: PMC11956947 DOI: 10.1101/2025.03.14.643359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug-tolerant persister cancer cells were first reported fifteen years ago as a quiescent, reversible cell state which tolerates unattenuated cytotoxic drug stress. It remains unknown whether a similar phenomenon contributes to immune evasion. Here we report a persister state which survives weeks of direct cytotoxic T lymphocyte (CTL) attack. In contrast to previously known immune evasion mechanisms that avoid immune attack, antigenic persister cells robustly activate CTLs which deliver Granzyme B, secrete IFNγ, and induce tryptophan starvation resulting in apoptosis initiation. Instead of dying, persister cells paradoxically leverage apoptotic caspase activity to avoid inflammatory death. Furthermore, persister cells acquire mutations and epigenetic changes which enable outgrowth of CTL-resistant cells. Persister cell features are enriched in inflamed tumors which regressed during immunotherapy in vivo and in surgically resected human melanoma tissue under immune stress ex vivo. These findings reveal a persister cell state which is a barrier to immune-mediated tumor clearance.
Collapse
Affiliation(s)
- Michael X Wang
- Department of Dermatology, University of California San Diego
| | - Brandon E Mauch
- Department of Dermatology, University of California San Diego
| | | | | | | | - Sophie H Harris
- Department of Dermatology, University of California San Diego
| | | | - Claire E Turkal
- Department of Dermatology, University of California San Diego
| | - Bryan S Yung
- Department of Pharmacology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| | - Michelle H Paw
- Department of Dermatology, University of California San Diego
| | | | - Tiffany Tran
- Department of Dermatology, University of California San Diego
| | | | - Theresa Guo
- Moores Cancer Center, University of California San Diego
- Department of Otolaryngology, University of California San Diego
| | - Gregory A Daniels
- Moores Cancer Center, University of California San Diego
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego
| | - Soo J Park
- Moores Cancer Center, University of California San Diego
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| | - Matthew J Hangauer
- Department of Dermatology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| |
Collapse
|
18
|
Sato K, Faraji F, Cervantes-Villagrana RD, Wu X, Koshizuka K, Ishikawa T, Iglesias-Bartolome R, Chen L, Miliani de Marval PL, Gwaltney SL, Adler B, Gutkind JS. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett 2025; 612:217467. [PMID: 39826667 PMCID: PMC12044704 DOI: 10.1016/j.canlet.2025.217467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies. This prompted us to explore the potential benefit of pharmacologically targeting the YAP/TAZ-TEAD axis in this disease. Here, we provide the pre-clinical evidence for the antitumor activity of novel smTEADi, SW-682 in HPV-negative HNSCC. By the use of multiple complementary experimental approaches, including siRNA knockdown, expression of a genetically encoded TEAD inhibitor peptide (pTEADi), and SW-682, we revealed that disruption of YAP/TAZ-TEAD interaction suppresses YAP/TAZ-TEAD-dependent target gene transcription and growth of HNSCC tumors. HNSCC cells with genetic alterations in FAT1 were more sensitive to TEADi compared to FAT1-wild type cells. Mechanistically, TEADi suppressed cell cycle progression and promoted the expression of terminal differentiation gene programs, resulting in tumor growth inhibition. A HNSCC-specific TEADi target gene set was defined from RNA-seq data, which is highly expressed in HNSCC tissues and predicts poor prognosis of HPV-negative HNSCC patients. Our results underscore that YAP/TAZ-TEAD-mediated growth-promoting programs represent a vulnerability in HPV-negative HNSCC, thus providing a pre-clinical rationale for the future evaluation of YAP/TAZ-TEAD targeting strategies as a therapeutic approach for HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA, USA
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- SpringWorks Therapeutics, Inc., Stamford, CT, USA
| | | | | | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Chang TG, Spathis A, Schäffer AA, Gavrielatou N, Kuo F, Jia D, Mukherjee S, Sievers C, Economopoulou P, Anastasiou M, Moutafi M, Pal LR, Vos J, Lee AS, Lam S, Zhao K, Jiang P, Allen CT, Foukas P, Gomatou G, Altan-Bonnet G, Morris LGT, Psyrri A, Ruppin E. Tumor and blood B-cell abundance outperforms established immune checkpoint blockade response prediction signatures in head and neck cancer. Ann Oncol 2025; 36:309-320. [PMID: 39551185 PMCID: PMC11845298 DOI: 10.1016/j.annonc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Immunotherapy has improved the outcomes for some patients with head and neck squamous-cell carcinoma (HNSCC). However, the low and variable response rates observed highlight the need for robust response biomarkers to select patients for treatment. PATIENTS AND METHODS We assembled and analyzed a large HNSCC dataset, encompassing 11 clinical cohorts including 1232 patient samples, spanning a variety of disease subtypes and immune checkpoint blockade (ICB) treatment types, tissue sources, data modalities, and timing of measurements. We conducted a comprehensive evaluation of the predictive power of various cell types, traditional biomarkers, and emerging predictors in both blood and tumor tissues of HNSCC patients. RESULTS Tumor B-cell infiltration emerged as a strong and robust predictor of both patient survival and ICB response. It outperformed all other established biomarkers of response to ICB, including the tertiary lymphoid structure signature and numerous T-cell-based signatures. B-cell infiltration was associated with a 'hot' antitumor microenvironment that promotes tumor eradication. Furthermore, B-cell levels in peripheral blood mononuclear cells (PBMCs) correlated strongly with tumor B-cell levels and demonstrated high predictive value for ICB response, with high odds ratios (≥7.8) in two independent clinical cohorts. CONCLUSION B-cell abundance, whether assessed in PBMCs or tumor tissues, is one of the strongest predictors of ICB response in HNSCC. For translation to patient care, measuring B-cell abundance in PBMCs via cytometry offers a practical and accessible tool for clinical decision making.
Collapse
Affiliation(s)
- T-G Chang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - A Spathis
- Department of Pathology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - A A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - N Gavrielatou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - F Kuo
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D Jia
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, CCR, NCI, Bethesda, USA
| | - S Mukherjee
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - C Sievers
- Surgical Oncology Program, CCR, NCI, NIH, Bethesda, USA
| | - P Economopoulou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - M Anastasiou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - M Moutafi
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - L R Pal
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - J Vos
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A S Lee
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - S Lam
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K Zhao
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - P Jiang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA
| | - C T Allen
- Surgical Oncology Program, CCR, NCI, NIH, Bethesda, USA; Center for Immune-Oncology, CCR, NCI, NIH, Bethesda, USA
| | - P Foukas
- Department of Pathology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - G Gomatou
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - G Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, CCR, NCI, Bethesda, USA
| | - L G T Morris
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - A Psyrri
- Internal Medicine/Section of Department of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece.
| | - E Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
20
|
Morris ZS, Demaria S, Monjazeb AM, Formenti SC, Weichselbaum RR, Welsh J, Enderling H, Schoenfeld JD, Brody JD, McGee HM, Mondini M, Kent MS, Young KH, Galluzzi L, Karam SD, Theelen WSME, Chang JY, Huynh MA, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji QH, Nguyen AT, Patel RB, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera TA, Ong IM, Herrera F, Menon H, Smart D, Ahmed J, Gartrell RD, Roland CL, Fekrmandi F, Chakraborty B, Bent EH, Berg TJ, Hutson A, Khleif S, Sikora AG, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol 2025; 26:e152-e170. [PMID: 40049206 DOI: 10.1016/s1470-2045(24)00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/09/2025]
Abstract
Radiotherapy both promotes and antagonises tumour immune recognition. Some clinical studies show improved patient outcomes when immunotherapies are integrated with radiotherapy. Safe, greater than additive, clinical response to the combination is limited to a subset of patients, however, and how radiotherapy can best be combined with immunotherapies remains unclear. The National Cancer Institute-Immuno-Oncology Translational Network-Society for Immunotherapy of Cancer-American Association of Immunology Workshop on Combining Immunotherapy with Radiotherapy was convened to identify and prioritise opportunities and challenges for radiotherapy and immunotherapy combinations. Sessions examined the immune effects of radiation, barriers to anti-tumour immune response, previous clinical trial data, immunological and computational assessment of response, and next-generation radiotherapy-immunotherapy combinations. Panel recommendations included: developing and implementing patient selection and biomarker-guided approaches; applying mechanistic understanding to optimise delivery of radiotherapy and selection of immunotherapies; using rigorous preclinical models including companion animal studies; embracing data sharing and standardisation, advanced modelling, and multidisciplinary cross-institution collaboration; interrogating clinical data, including negative trials; and incorporating novel clinical endpoints and trial designs.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandra Demaria
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, Sacramento, CA, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Heiko Enderling
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M McGee
- Department of Radiation Oncology and Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michael S Kent
- Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joe Y Chang
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mai Anh Huynh
- Brigham and Women's Hospital-Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Daib
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Caroline Chung
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Serre
- Aix Marseille University, SMARTc Unit, Inserm S 911 CRO2, Marseille, France
| | | | - Jie Deng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quaovi H Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony T Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, USA
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, Department of Radiology, New York, NY, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Logan Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Irene M Ong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Hari Menon
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jalal Ahmed
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina L Roland
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Eric H Bent
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Fong
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Mastrolonardo EV, Nunes KL, Llerena P, Nikitina A, Sobol A, Scott ER, Tuluc M, Davitt CJH, Scher J, Tekumalla S, Mann D, Henao C, Jegede V, Gargano S, Harshyne LA, Alnemri A, Tyshevich A, Kushnarev V, Chasse M, Sookiasian D, Axelrod R, Zhan T, Leiby BE, Old M, Seim N, Mahoney MG, Martinez-Outschoorn U, Cognetti DM, Curry JM, Prendergast G, Argiris A, South AP, Linnenbach AJ, Johnson JM, Luginbuhl AJ. Response-Adaptive Surgical Timing in Neoadjuvant Immunotherapy Demonstrates Enhanced Pathologic Treatment Response in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2025; 31:515-528. [PMID: 39585339 PMCID: PMC11973698 DOI: 10.1158/1078-0432.ccr-24-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE We evaluated whether indoleamine 2,3-dioxygenase (IDO1) inhibitor (IDOi) BMS986205 + PD-1 inhibitor nivolumab enhanced T-cell activity and augmented immune-mediated antitumor responses in untreated, resectable head and neck squamous cell carcinoma (HNSCC). We employed response-adaptive surgical timing to identify responders to immunotherapy and enhance their response. PATIENTS AND METHODS Patients with HNSCC were 3:1 randomized to receive nivolumab with or without BMS986205 orally daily (NCT03854032). In the combination arm, BMS986205 was initiated 7 days prior to nivolumab. Patients were stratified by human papillomavirus (HPV) status. Response-adaptive surgical timing involved response assessment by radiographic criteria 4 weeks after treatment with nivolumab in both arms. Nonresponders underwent surgical resection, whereas responders received 4 more weeks of randomized therapy before surgery. Biomarker analysis utilized pathologic treatment response (pTR) and RNA sequencing. RESULTS Forty-two patients were enrolled, and the addition of IDOi to nivolumab did not result in greater rate of radiographic response (P = 0.909). Treatment was well tolerated, with only 2 (5%) patients experiencing grade 3 immune-related adverse events. The addition of IDOi augmented rates of pTR in patients with high baseline IDO1 RNA expression (P < 0.05). Response-adaptive surgical timing demonstrated reliability in differentiating pathologic responders versus nonresponders (P = 0.009). A pretreatment NK cell signature, PD-L1 status, and IFN-γ expression in the HPV- cohort correlated with response. The HPV+ cohort found B-cell and cancer-associated fibroblast signatures predictive of response/nonresponse. CONCLUSIONS Response-adaptive surgical timing enhanced treatment response. IDOi BMS986205 augmented pTR in patients with high IDO1 expression in baseline samples, indicating a need for identifying and targeting resistant nodes to immunotherapy. HPV status-dependent signatures predicting response to immunotherapy in HNSCC warrant further study.
Collapse
Affiliation(s)
- Eric V Mastrolonardo
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kathryn L Nunes
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pablo Llerena
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - E Reilly Scott
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Sruti Tekumalla
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Derek Mann
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Camilo Henao
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Victor Jegede
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stacey Gargano
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Larry A Harshyne
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Angela Alnemri
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | - Rita Axelrod
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E Leiby
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew Old
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio
| | - Nolan Seim
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio
| | - My G Mahoney
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ubaldo Martinez-Outschoorn
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David M Cognetti
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph M Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Athanassios Argiris
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew P South
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alban J Linnenbach
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer M Johnson
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam J Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Kawaguchi Y, Nakatsugawa M, Nishioka N, Nakamura T, Imai K, Aoki T, Kajiwara N, Ikeda N. Predictive Role of Lymph Node Germinal Centers in Postoperative Recurrence of Non-Small Cell Lung Cancer Treated With Immune Checkpoint Inhibitor Therapy. Cureus 2025; 17:e79521. [PMID: 40135037 PMCID: PMC11936490 DOI: 10.7759/cureus.79521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction The germinal center (GC) in lymph nodes plays an important role in immune responses; however, their relevance to the effects of immune checkpoint inhibitor (ICI) remains unclear. The relationship between GC and ICI efficacy is investigated in this study. Materials and methods This investigation included 16 non-small cell lung cancer (NSCLC) patients with postoperative recurrence who were treated with immune checkpoint inhibitors (ICI) between January 2016 and April 2022. Patients were categorized into two groups based on the presence of GC in the lymph nodes. Additionally, the association between the number of lymph nodes dissected during pulmonary resection and ICI efficacy was evaluated. Results Sixteen patients were included with eight GC+ patients and eight GC- patients. The presence of GC positively influenced ICI efficacy, with the objective response rate (ORR) being significantly higher in the GC+ group (62.5%) compared to the GC- group (12.5%) (p=0.039). Disease control rate (DCR) was also more favorable in the GC+ group (100%) compared to the GC- group (50%) (p=0.021). Additionally, patients with fewer lymph nodes dissected at surgery had a better progression-free survival (median: 15.7 months) than those with more lymph nodes dissected (median: 7.4 months) (p=0.027). Conclusion GC in the lymph nodes can enhance the efficacy of ICI in treating NSCLC. Moreover, the number of dissected lymph nodes has emerged as a crucial prognostic factor that influences the effectiveness of treatment. These findings underscore the importance of considering lymph node characteristics in personalized ICI therapy for NSCLC.
Collapse
Affiliation(s)
- Yohei Kawaguchi
- Department of Thoracic Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Munehide Nakatsugawa
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Nanako Nishioka
- Department of Pharmacology, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Taiyo Nakamura
- Department of Thoracic Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Kentaro Imai
- Department of Thoracic Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Takuya Aoki
- Department of Clinical Oncology, Tokyo Medical University Hachioji Medical center, Hachioji, JPN
| | - Naohiro Kajiwara
- Department of Thoracic Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, JPN
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Shinjuku, JPN
| |
Collapse
|
23
|
Wei LY, Li ZZ, Xu ZY, Wang GR, Xiao Y, Liu B, Bu LL. The ending is not the end: Lymph node metastasis in oral squamous cell carcinoma. Int Immunopharmacol 2025; 146:113917. [PMID: 39721451 DOI: 10.1016/j.intimp.2024.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Lymph node metastasis is an important biological feature of oral squamous cell carcinoma, bearing poorly prognostic implications. However, the role of lymph node metastasis in cancer progression remains inconclusive. On the one hand, lymph nodes are pivotal sites for initiating specific immunity, which is crucial for maintaining antitumor immune response. On the other hand, they also serve as primary conduits for tumor metastasis, with lymph node colonization potentially inducing systemic immune dysfunction, thereby further promoting tumor progression. Considering this paradoxical role of lymph nodes, comprehending their impact on the primary tumor and immunity becomes paramount. Furthermore, leveraging these distinctive attributes of lymph nodes presents novel avenues for enhancing current therapeutic strategies against oral squamous cell carcinoma. This review summarizes the anatomical and molecular profiles of lymph node metastasis in oral squamous cell carcinoma, elucidating how lymphatic involvement compromises antitumor immunity, thus facilitating primary tumor and distant metastases. Additionally, it explores avenues for harnessing these mechanisms to optimize clinical interventions.
Collapse
Affiliation(s)
- Li-Ya Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhen-Yu Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
24
|
Zhang L, Zhang B, Zhang MJ, Li W, Li H, Jiao Y, Yang QC, Wang S, Liu YT, Song A, Feng HT, Sun J, Kwok RTK, Lam JWY, Tang BZ, Sun ZJ. Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy. Nat Commun 2025; 16:44. [PMID: 39747845 PMCID: PMC11696883 DOI: 10.1038/s41467-024-55430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging. Here, inspired by the mechanism of artificially cultivated pearls, a covalent organic framework (COF) is employed to induce TLS formation. Single-cell sequencing analysis reveals that this is achieved by promotion of cytokine hypersecretion, which facilitates the maturation, proliferation, and migration of T and B cells, critical for triggering TLS formation. Furthermore, the efficacy of COF-mediated phototherapy in inducing TLS formation is validated in both the MC38 and 4MOSC1 female tumor models. Notably, a strong synergistic effect between COF-mediated phototherapy and αCTLA-4 is observed, resulting in the effective eradication of both primary and distant tumors, while also inhibiting tumor recurrence.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China
| | - Boxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenlang Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yantian Jiao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hai-Tao Feng
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shanxi, China
| | - Jianwei Sun
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong, China.
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Zhou H, Menzel L, Baish JW, O'Melia MJ, Darragh LB, Specht E, Effiom DN, Czapla J, Lei PJ, Rajotte JJ, Liu L, Nikmaneshi MR, Razavi MS, Vander Heiden MG, Ubellacker JM, Munn LL, Karam SD, Boland GM, Cohen S, Padera TP. Cancer immunotherapy response persists after lymph node resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.19.558262. [PMID: 37781599 PMCID: PMC10541098 DOI: 10.1101/2023.09.19.558262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Lymphatic transport facilitates the presentation of cancer antigens in tumor-draining lymph nodes (tdLNs), leading to T cell activation and the generation of systemic antitumor immune surveillance. Surgical removal of LNs to control cancer progression is routine in clinical practice. However, whether removing tdLNs impairs immune checkpoint blockade (ICB) is still controversial. Our analysis demonstrates that melanoma patients remain responsive to PD-1 checkpoint blockade after LN dissection. We were able to recapitulate the persistent response to ICB after complete LN resection in murine melanoma and mammary carcinoma models. Mechanistically, soluble antigen and antigen-carrying migratory dendritic cells are diverted to non-directly tumor draining LNs (non-tdLNs) after tdLN dissection. Consistently, robust ICB responses in patients with head and neck cancer after primary tumor and tdLN resection correlated with the presence of reactive LNs in distant areas. These findings indicate that non-tdLNs sufficiently compensate for the removal of direct tdLNs and sustain the response to ICB.
Collapse
|
26
|
Kiyota N. Patients with head and neck cancer unfit for cisplatin-what next? Lancet Oncol 2024; 25:1513-1514. [PMID: 39551067 DOI: 10.1016/s1470-2045(24)00597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Naomi Kiyota
- Kobe University Hospital, Cancer Center, Kobe, Hyogo, Japan.
| |
Collapse
|
27
|
Gualtieri P, Lee BI, Beeney A, Hart C, Leary D, Martin T, Boss MK. Response of Spontaneous Oral Tumors in Canine Cancer Patients Treated with Stereotactic Body Radiation Therapy (SBRT). Radiat Res 2024; 202:807-824. [PMID: 39478420 DOI: 10.1667/rade-24-00079.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024]
Abstract
The objective of this study is describe outcome and toxicity for dogs with oral tumors, specifically oral malignant melanoma (OMM), squamous cell carcinoma (SCC), and soft tissue sarcoma (STS) after stereotactic body radiation therapy (SBRT). A single institution retrospective study was conducted. Outcomes were analyzed using Kaplan-Meier analysis and Cox proportional hazard analysis. Treatment responses at different time points were evaluated with Pearson's Chi-squared test to identify prognostic factors. Acute and late toxicities were recorded according to VRTOG criteria and were analyzed to identify risk factors. Adverse events other than acute and late toxicities were recorded. A total of 98 patients met the inclusion criteria (OMM n = 37; SCC n = 18; STS n = 43). The SBRT prescription was 1-6 fractions, with a total dose range of 12-40 Gy. Local progression-free survival (PFS) for OMM, SCC, and STS was 187, 253, and 161 days, respectively. Overall PFS was 152 days and median survival time (MST) was 270 days, with no statistical difference between tumor types. The presence of lymph node metastasis and the use of elective nodal irradiation (ENI) were associated with shorted PFS and MST. Severe acute toxicities to organs at risk affected 10/85 (11.8%) of patients. Osteoradionecrosis and oronasal fistula formation occurred in 23/81 (28.4%) of patients and was significantly associated with tumor type (SCC, P = 0.006). SBRT can be offered as a treatment option for oral tumors in dogs. Toxicities were common and warrant risk factor considerations and adjustments to current SBRT protocols.
Collapse
Affiliation(s)
- Patricia Gualtieri
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Ber-In Lee
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Amber Beeney
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Cullen Hart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany Martin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
28
|
Karamchandani S, Sahovaler A, Crosbie-Jones E, McGurk M, Thavaraj S, Alibhai M, Wan S, Forster MD, Sassoon I, Schilling C. Incidence and predictive factors for positive non-sentinel lymph nodes in completion neck dissection following a positive sentinel node biopsy in early oral cancer. Oral Oncol 2024; 159:107081. [PMID: 39426362 DOI: 10.1016/j.oraloncology.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Searan Karamchandani
- Head & Neck Academic Centre, Division of Surgery & Interventional Science, University College Hospital London, Charles Bell House, 43045 Foley St, London, W1W 7TS, United Kingdom
| | - Axel Sahovaler
- Head & Neck Academic Centre, Division of Surgery & Interventional Science, University College Hospital London, Charles Bell House, 43045 Foley St, London, W1W 7TS, United Kingdom
| | - Elizabeth Crosbie-Jones
- Head & Neck Academic Centre, Division of Surgery & Interventional Science, University College Hospital London, Charles Bell House, 43045 Foley St, London, W1W 7TS, United Kingdom
| | - Mark McGurk
- Head & Neck Academic Centre, Division of Surgery & Interventional Science, University College Hospital London, Charles Bell House, 43045 Foley St, London, W1W 7TS, United Kingdom
| | - Selvam Thavaraj
- Faculty of Dentistry, Oral and Craniofacial Science, King's College London, 4(th) Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Mustansir Alibhai
- Head and Neck Surgical Department, Guy's & St Thomas Hospital NHS Foundation Trust, 20 St Thomas Street, London, SE1 9RS, United Kingdom
| | - Simon Wan
- Institute of Nuclear Medicine, UCL/UCLH, 235 Euston Road, London, NW1 2BU, United Kingdom
| | - Martin D Forster
- UCL Cancer Institute/University College London Hospitals NHS Trust, 72 Huntley Street, WC1 6DD, United Kingdom
| | - Isabel Sassoon
- Department of Computer Science, Brunel University London, Kingstone Ln, London, Uxbridge, UB8 3PH, United Kingdom
| | - Clare Schilling
- Head & Neck Academic Centre, Division of Surgery & Interventional Science, University College Hospital London, Charles Bell House, 43045 Foley St, London, W1W 7TS, United Kingdom.
| |
Collapse
|
29
|
Sarkis LM, Yao CM, Hendler A, Mohan R, Au M, Zhang H, Eskander A, Higgins K, MacNeil D, Tzelnick S, Goldstein D, Hosni A, de Almeida JR. A multi-institutional feasibility lead-in trial of lymphatic mapping with SPECT-CT for evaluating contralateral disease in lateralized oropharynx cancer using 99m-technetium sulfur colloid. Head Neck 2024; 46:3038-3045. [PMID: 39016220 DOI: 10.1002/hed.27871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Lymphatic mapping with SPECT-CT has been demonstrated to accurately define lymphatic drainage patterns in oropharyngeal cancer but there has yet to be a study demonstrating its feasibility across multiple institutions. METHODS Twelve adult patients with lateralized oropharyngeal carcinoma (T1-T3) who were planned for definitive or adjuvant radiotherapy without contralateral nodal disease underwent injection of 99-m technetium sulfur colloid followed by static planar lymphoscintigraphy to verify tracer migration, and SPECT-CT acquired at 30 ± 15 min (optional) and 3 h (±1 h) (mandatory time-point). RESULTS All 12 patients completed the study with 7/12 patients having the injections performed under local anesthetic and 5 patients requiring general anesthetic. There were no tracer migration failures and there were no serious adverse events or complications encountered. Four out of 12 patients (33%) showed contralateral drainage patterns. CONCLUSIONS Lymphatic mapping with SPECT-CT of lateralized oropharyngeal squamous cell carcinoma can be performed safely across multiple institutions.
Collapse
Affiliation(s)
- Leba Michael Sarkis
- Department of Otolaryngology - Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Mkl Yao
- Department of Otolaryngology - Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Hendler
- Department of Joint Medical Diagnostic Imaging, University Health Network, Toronto, Ontario, Canada
| | - Ravi Mohan
- Department of Joint Medical Diagnostic Imaging, University Health Network, Toronto, Ontario, Canada
| | - Michael Au
- Department of Otolaryngology - Head and Neck Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Han Zhang
- Department of Otolaryngology - Head and Neck Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Antoine Eskander
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kevin Higgins
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sharon Tzelnick
- Department of Otolaryngology - Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Goldstein
- Department of Otolaryngology - Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ali Hosni
- Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - John R de Almeida
- Department of Otolaryngology - Head and Neck Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Sannigrahi MK, Raghav L, Rich DJ, Schrank TP, Califano JA, Lukens JN, Sun L, Morgan IM, Cohen RB, Lin A, Liu X, Brown EJ, You J, Mirabello L, Mishra SK, Shimunov D, Brody RM, Pearson AT, Gimotty PA, Diab A, Jalaly JB, Basu D. Association of oropharyngeal cancer recurrence with tumor-intrinsic and immune-mediated sequelae of reduced genomic instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621311. [PMID: 39574723 PMCID: PMC11580908 DOI: 10.1101/2024.10.31.621311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Background Limited understanding of the biology predisposing certain human papillomavirus-related (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) to relapse impedes therapeutic personalization. We aimed to identify molecular traits that distinguish recurrence-prone tumors. Methods 50 HPV+ OPSCCs that later recurred (cases) and 50 non-recurrent controls matched for stage, therapy, and smoking history were RNA-sequenced. Groups were compared by gene set enrichment analysis, and select differences were validated by immunohistochemistry. Features discriminating groups were scored in each tumor using gene set variation analysis, and scores were evaluated for recurrence prediction ability. Results Cases downregulated pathways linked to anti-tumor immunity (FDR-adjusted p<.05) and contained fewer tumor-infiltrating lymphocytes (p<.001), including cytotoxic T-cells (p=.005). Cases also upregulated pathways related to cell division and other aspects of tumor progression. Upregulated and downregulated pathways were respectively used to define a tumor progression score (TPS) and immune suppression score (ISS) for each tumor. Correlation between TPS and ISS (r=.603, p<.001) was potentially explained by observed upregulation of DNA repair pathways in cases, which might enhance their progression directly and by limiting cytosolic DNA-induced inflammation. Accordingly, cases contained fewer double-strand breaks based on staining for phospho-RPA32 (p=.006) and γ-H2AX (p=.005) and downregulated pro-inflammatory components of the cytoplasmic DNA sensing pathway. A combined score derived from TPS and ISS optimized recurrence prediction and stratified survival in a manner generalizable to three external cohorts. Conclusions We provide novel evidence that limiting genomic instability makes tumor-intrinsic and immune-mediated contributions to HPV+ OPSCC recurrence risk, opening opportunities to detect and target this treatment-resistant biology.
Collapse
Affiliation(s)
- Malay K. Sannigrahi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Lovely Raghav
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Dominick J. Rich
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Travis P. Schrank
- Department of Otorhinolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joseph A. Califano
- Department of Otolaryngology-Head and Neck Surgery, U. California San Diego, San Diego, CA
| | - John N. Lukens
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Lova Sun
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Roger B. Cohen
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Xinyi Liu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Eric J. Brown
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA
| | - Jianxin You
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Lisa Mirabello
- Division of Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Sambit K. Mishra
- Division of Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - David Shimunov
- Department of Otolaryngology-Head and Neck Surgery, Stony Brook, NY
| | - Robert M Brody
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | | | - Phyllis A. Gimotty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ahmed Diab
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Yoneyama M, Zormpas-Petridis K, Robinson R, Sobhani F, Provenzano E, Steel H, Lightowlers S, Towns C, Castillo SP, Anbalagan S, Lund T, Wennerberg E, Melcher A, Coles CE, Roxanis I, Yuan Y, Somaiah N. Longitudinal Assessment of Tumor-Infiltrating Lymphocytes in Primary Breast Cancer Following Neoadjuvant Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:862-874. [PMID: 38677525 DOI: 10.1016/j.ijrobp.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TILs) have prognostic significance in several cancers, including breast cancer. Despite interest in combining radiation therapy with immunotherapy, little is known about the effect of radiation therapy itself on the tumor-immune microenvironment, including TILs. Here, we interrogated longitudinal dynamics of TILs and systemic lymphocytes in patient samples taken before, during, and after neoadjuvant radiation therapy (NART) from PRADA and Neo-RT breast clinical trials. METHODS AND MATERIALS We manually scored stromal TILs (sTILs) from longitudinal tumor samples using standardized guidelines as well as deep learning-based scores at cell-level (cTIL) and cell- and tissue-level combination analyses (SuperTIL). In parallel, we interrogated absolute lymphocyte counts from routine blood tests at corresponding time points during treatment. Exploratory analyses studied the relationship between TILs and pathologic complete response (pCR) and long-term outcomes. RESULTS Patients receiving NART experienced a significant and uniform decrease in sTILs that did not recover at the time of surgery (P < .0001). This lymphodepletive effect was also mirrored in peripheral blood. Our SuperTIL deep learning score showed good concordance with manual sTILs and importantly performed comparably to manual scores in predicting pCR from diagnostic biopsies. The analysis suggested an association between baseline sTILs and pCR, as well as sTILs at surgery and relapse, in patients receiving NART. CONCLUSIONS This study provides novel insights into TIL dynamics in the context of NART in breast cancer and demonstrates the potential for artificial intelligence to assist routine pathology. We have identified trends that warrant further interrogation and have a bearing on future radioimmunotherapy trials.
Collapse
Affiliation(s)
- Miki Yoneyama
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ruth Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Faranak Sobhani
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Elena Provenzano
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Sara Lightowlers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Towns
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Simon P Castillo
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Selvakumar Anbalagan
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Tom Lund
- Integrated Pathology Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Alan Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Charlotte E Coles
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
32
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
33
|
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X, Xu X. Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells. Cell Mol Immunol 2024; 21:1296-1308. [PMID: 39300319 PMCID: PMC11528031 DOI: 10.1038/s41423-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xiaohui Fan
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, 310000, Hangzhou, China.
| |
Collapse
|
34
|
Boreel DF, Sandker GGW, Ansems M, van den Bijgaart RJE, Peters JPW, Span PN, Adema GJ, Heskamp S, Bussink J. MHC-I and PD-L1 Expression is Associated with Decreased Tumor Outgrowth and is Radiotherapy-inducible in the Murine Head and Neck Squamous Cell Carcinoma Model MOC1. Mol Imaging Biol 2024; 26:835-846. [PMID: 39009951 PMCID: PMC11436446 DOI: 10.1007/s11307-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Combined radiotherapy and immune checkpoint inhibition is a potential treatment option for head and neck squamous cell carcinoma (HNSCC). Immunocompetent mouse models can help to successfully develop radio- immunotherapy combinations and to increase our understanding of the effects of radiotherapy on the tumor microenvironment for future clinical translation. Therefore, the aim of this study was to develop a homogeneous, reproducible HNSCC model originating from the Mouse Oral Cancer 1 (MOC1) HNSCC cell line, and to explore the radiotherapy-induced changes in its tumor microenvironment, using flow cytometry and PD-L1 microSPECT/CT imaging. MATERIALS AND METHODS In vivo growing tumors originating from the parental MOC1 line were used to generate single cell derived clones. These clones were screened in vitro for their ability to induce programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class I (MHC-I) following IFNγ exposure. Clones with different IFNγ sensitivity were inoculated in C57BL/6 mice and assessed for tumor outgrowth. The composition of the tumor microenvironment of a stably growing (non)irradiated MOC1-derived clone was assessed by immunohistochemistry, flow cytometry and PD-L1 microSPECT/CT. RESULTS Low in vitro inducibility of MHC-I and PD-L1 by IFNγ was associated with increased tumor outgrowth of MOC1 clones in vivo. Flow cytometry analysis of cells derived from a stable in vivo growing MOC1 clone MOC1.3D5low showed expression of MHC-I and PD-L1 on several cell populations within the tumor. Upon irradiation, MHC-I and PD-L1 increased on leukocytes (CD45.2+) and cancer associated fibroblasts (CD45.2-/EpCAM-/CD90.1+). Furthermore, PD-L1 microSPECT/CT showed increased tumor uptake of radiolabeled PD-L1 antibodies with a heterogeneous spatial distribution of the radio signal, which co-localized with PD-L1+ and CD45.2+ areas. DISCUSSION PD-L1 and MHC-I inducibility by IFNγ in vitro is associated with tumor outgrowth of MOC1 clones in vivo. In tumors originating from a stably growing MOC1-derived clone, expression of these immune-related markers was induced by irradiation shown by flow cytometry on several cell populations within the tumor microenvironment such as immune cells and cancer associated fibroblasts. PD-L1 microSPECT/CT showed increased tumor uptake following radiotherapy, and autoradiography showed correlation of uptake with areas that are heavily infiltrated by immune cells. Knowledge of radiotherapy-induced effects on the tumor microenvironment in this model can help optimize timing and dosage for radio- immunotherapy combination strategies in future research.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands.
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands.
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Renske J E van den Bijgaart
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Johannes P W Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| |
Collapse
|
35
|
He R, Jiang H, Zhang C, Chen Y, Liu W, Deng X, Zhu X, Liu Y, Zheng C, Zhang Y, Shao C, Duan Y, Xu J. CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels. J Zhejiang Univ Sci B 2024; 26:92-106. [PMID: 39815613 PMCID: PMC11735913 DOI: 10.1631/jzus.b2400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 01/18/2025]
Abstract
Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16 (CXCL16) in cancer correlates with poor prognosis, as well as tumor cell proliferation, migration, and invasion. While CXCL16 can serve as a tumor biomarker, the underlying mechanism in modulating head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism. Hereby, we determined the high expression of CXCL16 in The Cancer Genome Atlas (TCGA) database, as well as in tissue samples from patients with HNSCC at our central hospital and from HNSCC cell lines. The results showed that CXCL16 knockdown inhibited the proliferation, migration, and invasion of HNSCC cells. Mechanistically, transcriptome sequencing revealed that CXCL16 may affect HNSCC cell growth by regulating the antioxidant pathway of glutathione peroxidase 1 (GPX1). The reactive oxygen species (ROS) levels were elevated in small interfering CXCL16 (si-CXCL16) cells, which may contribute to the inhibition of cell proliferation, migration, and invasion. Moreover, treatment of cells with the GPX1 inhibitor eldecalcitol (ED-71) revealed that HNSCC cell growth was significantly inhibited in the synergistic group of si-CXCL16 and GPX1 inhibitor compared to the si-CXCL16 group. In conclusion, CXCL16 contributed to the development of HNSCC cells by modulating the GPX1-mediated antioxidant pathway. Thus, targeting cellular CXCL16 expression seems to be a promising strategy for treating HNSCC.
Collapse
Affiliation(s)
- Ru He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Hongyi Jiang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Chengchi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenshun Liu
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinyue Deng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Yining Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengying Shao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanting Duan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China. ,
| |
Collapse
|
36
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
37
|
Payne K, Nenclares P, Schilling C. The impact of elective cervical lymph node treatment on the tumour immune response in head and neck squamous cell carcinoma: time for a change in treatment strategy? BJC REPORTS 2024; 2:68. [PMID: 39516703 PMCID: PMC11524052 DOI: 10.1038/s44276-024-00095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
The elective ablation of cervical lymph nodes, via surgery or irradiation, is a mainstay in the treatment of head and neck squamous cell carcinoma (HNSCC). In this setting, the decision to treat the clinically node negative neck is based upon risk analysis of various factors, primarily derived from tumour features. However, the impact of ablation of tumour-draining lymph nodes upon the tumour-immune response and immunocompetence is largely unknown. In this review we highlight recent evidence of the communication between tumour and tumour-draining lymph nodes and the fundamental importance of this axis. We will provide a perspective of how recent cancer biology discoveries may juxtapose with current treatment pathways, with potential translational line of site for future research. In particular, neo-adjuvant therapy or biomarkers from tumour-draining lymph nodes may present opportunities to preserve lymphatics and harness improved immunocompetence in HNSCC patients.
Collapse
Affiliation(s)
- Karl Payne
- Head & Neck Academic Centre, University College London, London, UK.
- Department of Head & Neck Surgery, University College London Hospitals, London, UK.
| | - Pablo Nenclares
- Department of Clinical Oncology, Barts Cancer Centre, London, UK
| | - Clare Schilling
- Head & Neck Academic Centre, University College London, London, UK
- Department of Head & Neck Surgery, University College London Hospitals, London, UK
| |
Collapse
|
38
|
Xia YY, Liao AT, Liu RM, Yang SY, Kuo CC, Ke CH, Lin CS, Lee JJ. Immunotherapeutic allogeneic dendritic cell and autologous tumor cell fusion vaccine alone or combined with radiotherapy in canine oral malignant melanoma is safe and potentially effective. Front Vet Sci 2024; 11:1397518. [PMID: 39229600 PMCID: PMC11368852 DOI: 10.3389/fvets.2024.1397518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Immunotherapy represents a promising breakthrough in cancer management and is being explored in canine melanomas. Dendritic cells (DCs) play a crucial role in priming T-cell-mediated immune reactions through the antigen-presenting function. Combining immunotherapy and radiation therapy may generate more substantial anti-cancer efficacy through immunomodulation. Objectives Our research reported a preliminary result of the safety and outcome of a kind of immunotherapy, the allogeneic dendritic cell and autologous tumor cell fusion vaccine, alone or in combination with hypofractionated radiation therapy, in canine oral malignant melanoma. Methods Two groups of dogs with histopathological diagnoses of oral malignant melanoma were recruited. In group 1 (DCRT), dogs received a combination of DC fusion vaccine and radiotherapy. In group 2 (DC), dogs received DC fusion vaccine alone. DC vaccination was given once every 2 weeks for four doses. Radiotherapy was performed weekly for five fractions. Dogs that received carboplatin were retrospectively collected as a control group (group 3). Results Five dogs were included in group 1 (two stage II, three stage III), 11 in group 2 (three stage I/II, eight stage III/IV), and eight (two stage I/II, six stage III/IV) in the control group. Both DC and DCRT were well-tolerated, with only mild adverse events reported, including mucositis, gastrointestinal discomfort, and injection site reactions. The median progression-free intervals in groups 1, 2, and 3 were 214 (95% CI, NA, due to insufficient data), 100 (95% CI, 27-237), and 42 days (95% CI, NA-170), respectively, which were not significantly different. The 1-year survival rates were 20, 54.5, and 12.5% in groups 1, 2, and 3. Dogs in the DCRT group exhibited significantly higher TGF-β signals than the DC group throughout the treatment course, indicating a possible higher degree of immunosuppression. Conclusion The manuscript demonstrated the safety of dendritic cell/tumor cell fusion vaccine immunotherapy, alone or in combination with radiotherapy. The results support further expansion of this immunotherapy, modification of combination treatment and protocols, and investigation of combining DC vaccine with other treatment modalities. Clinical trial registration Preclinical Trials, PCTE0000475.
Collapse
Affiliation(s)
- Yuan-Yuan Xia
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert TaiChing Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Min Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ya Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chun Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Fay M, Sievers C, Robbins Y, Yang X, Huynh A, Redman JM, Hodge JW, Schlom J, Gulley JL, Allen CT, Craveiro M. TGF-β neutralization attenuates tumor residency of activated T cells to enhance systemic immunity in mice. iScience 2024; 27:110520. [PMID: 39139402 PMCID: PMC11321305 DOI: 10.1016/j.isci.2024.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
A tissue resident-like phenotype in tumor infiltrating T cells can limit systemic anti-tumor immunity. Enhanced systemic anti-tumor immunity is observed in head and neck cancer patients after neoadjuvant PD-L1 immune checkpoint blockade (ICB) and transforming growth factor β (TGF-β) neutralization. Using T cell receptor (TCR) sequencing and functional immunity assays in a syngeneic model of oral cancer, we dissect the relative contribution of these treatments to enhanced systemic immunity. The addition of TGF-β neutralization to ICB resulted in the egress of expanded and exhausted CD8+ tumor infiltrating lymphocytes (TILs) into circulation and greater systemic anti-tumor immunity. This enhanced egress associated with reduced expression of Itgae (CD103) and its upstream regulator Znf683. Circulating CD8+ T cells expressed higher Cxcr3 after treatment, an observation also made in samples from patients treated with dual TGF-β neutralization and ICB. These findings provide the scientific rationale for the use of PD-L1 ICB and TGF-β neutralization in newly diagnosed patients with carcinomas prior to definitive treatment of locoregional disease.
Collapse
Affiliation(s)
- Magdalena Fay
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cem Sievers
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason M. Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Fuster MM. Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm. Front Oncol 2024; 14:1417621. [PMID: 39165679 PMCID: PMC11333800 DOI: 10.3389/fonc.2024.1417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
An array of published cell-based and small animal studies have demonstrated a variety of exposures of cancer cells or experimental carcinomas to electromagnetic (EM) wave platforms that are non-ionizing and non-thermal. Overall effects appear to be inhibitory, inducing cancer cell stress or death as well as inhibition in tumor growth in experimental models. A variety of physical input variables, including discrete frequencies, amplitudes, and exposure times, have been tested, but drawing methodologic rationale and mechanistic conclusions across studies is challenging. Nevertheless, outputs such as tumor cytotoxicity, apoptosis, tumor membrane electroporation and leak, and reactive oxygen species generation are intriguing. Early EM platforms in humans employ pulsed electric fields applied either externally or using interventional tumor contact to induce tumor cell electroporation with stromal, vascular, and immunologic sparing. It is also possible that direct or external exposures to non-thermal EM waves or pulsed magnetic fields may generate electromotive forces to engage with unique tumor cell properties, including tumor glycocalyx to induce carcinoma membrane disruption and stress, providing novel avenues to augment tumor antigen release, cross-presentation by tumor-resident immune cells, and anti-tumor immunity. Integration with existing checkpoint inhibitor strategies to boost immunotherapeutic effects in carcinomas may also emerge as a broadly effective strategy, but little has been considered or tested in this area. Unlike the use of chemo/radiation and/or targeted therapies in cancer, EM platforms may allow for the survival of tumor-associated immunologic cells, including naïve and sensitized anti-tumor T cells. Moreover, EM-induced cancer cell stress and apoptosis may potentiate endogenous tumor antigen-specific anti-tumor immunity. Clinical studies examining a few of these combined EM-platform approaches are in their infancy, and a greater thrust in research (including basic, clinical, and translational work) in understanding how EM platforms may integrate with immunotherapy will be critical in driving advances in cancer outcomes under this promising combination.
Collapse
Affiliation(s)
- Mark M. Fuster
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Pulmonary & Critical Care Division, University of California, San Diego, San Diego, CA, United States
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, San Diego, CA, United States
- Veterans Medical Research Foundation, San Diego, CA, United States
| |
Collapse
|
41
|
Basto PA, Reticker-Flynn NE. Interrogating the roles of lymph node metastasis in systemic immune surveillance. Clin Exp Metastasis 2024; 41:351-359. [PMID: 38315348 PMCID: PMC11298577 DOI: 10.1007/s10585-023-10261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Lymph nodes (LNs) are principal orchestrators of the adaptive immune response, yet in the context of malignancy, they are typically the first sites of metastasis. When tumors spread to LNs, they alter the immune repertoire, ultimately reconditioning it in a manner that suppresses anti-tumor immunity and promotes further metastatic dissemination. Conversely, activation of anti-tumor immunity within LNs is essential for immunotherapy, suggesting clinical approaches to radiotherapy in LNs and lymphadenectomy may need to be reconsidered in the context of immune checkpoint blockade (ICB). Herein, we discuss our understanding of the immune remodeling that coincides with LN metastasis as well as recent clinical studies exploring neoadjuvant immunotherapy and the roles of LNs in treatment of solid organ malignancies.
Collapse
Affiliation(s)
- Pamela A Basto
- Division of Hematology and Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nathan E Reticker-Flynn
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
42
|
Kerr CP, Sheehan-Klenk J, Grudzinski JJ, Adam DP, Nguyen TPT, Ferreira CA, Bates AM, Jin WJ, Kwon O, Olson AP, Lin W, Hyun M, Jagodinsky JC, Powers M, Sriramaneni RN, Clark PA, Shea AG, Rojas HC, Choi C, Massey CF, Zangl LM, Pinchuk AN, Aluicio-Sarduy E, Kim K, Engle JW, Hernandez R, Bednarz BP, Weichert JP, Morris ZS. Effects of clinically relevant radionuclides on the activation of a type I interferon response by radiopharmaceuticals in syngeneic murine tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602990. [PMID: 39071353 PMCID: PMC11275738 DOI: 10.1101/2024.07.10.602990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Radiopharmaceutical therapies (RPT) activate a type I interferon (IFN1) response in tumor cells. We hypothesized that the timing and amplitude of this response varies by isotope. We compared equal doses delivered by 90 Y, 177 Lu, and 225 Ac in vitro as unbound radionuclides and in vivo when chelated to NM600, a tumor-selective alkylphosphocholine. Response in murine MOC2 head and neck carcinoma and B78 melanoma was evaluated by qPCR and flow cytometry. Therapeutic response to 225 Ac-NM600+anti-CTLA4+anti-PD-L1 immune checkpoint inhibition (ICI) was evaluated in wild-type and stimulator of interferon genes knockout (STING KO) B78. The timing and magnitude of IFN1 response correlated with radionuclide half-life and linear energy transfer. CD8 + /Treg ratios increased in tumors 7 days after 90 Y- and 177 Lu-NM600 and day 21 after 225 Ac-NM600. 225 Ac-NM600+ICI improved survival in mice with WT but not with STING KO tumors, relative to monotherapies. Immunomodulatory effects of RPT vary with radioisotope and promote STING-dependent enhanced response to ICIs in murine models. Teaser This study describes the time course and nature of tumor immunomodulation by radiopharmaceuticals with differing physical properties.
Collapse
|
43
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Abbosh C, Hodgson D, Doherty GJ, Gale D, Black JRM, Horn L, Reis-Filho JS, Swanton C. Implementing circulating tumor DNA as a prognostic biomarker in resectable non-small cell lung cancer. Trends Cancer 2024; 10:643-654. [PMID: 38839544 DOI: 10.1016/j.trecan.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Systemic treatment of resectable non-small cell lung cancer (NSCLC) is evolving with emerging neoadjuvant, perioperative, and adjuvant immunotherapy approaches. Circulating tumor DNA (ctDNA) detection at clinical diagnosis, during neoadjuvant therapy, or after resection may discern high-risk patients who might benefit from therapy escalation or switch. This Review summarizes translational implications of data supporting ctDNA-based risk determination in NSCLC and outstanding questions regarding ctDNA validity/utility as a prognostic biomarker. We discuss emerging ctDNA capabilities to refine clinical tumor-node-metastasis (TNM) staging in lung adenocarcinoma, ctDNA dynamics during neoadjuvant therapy for identifying patients deriving suboptimal benefit, and postoperative molecular residual disease (MRD) detection to escalate systemic therapy. Considering differential relapse characteristics in landmark MRD-negative/MRD-positive patients, we propose how ctDNA might integrate with pathological response data for optimal postoperative risk stratification.
Collapse
Affiliation(s)
- Chris Abbosh
- Cancer Biomarker Development, Early Oncology AstraZeneca, Cambridge, UK
| | - Darren Hodgson
- Cancer Biomarker Development, Early Oncology AstraZeneca, Cambridge, UK
| | | | - Davina Gale
- Cancer Biomarker Development, Early Oncology AstraZeneca, Cambridge, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Leora Horn
- Clinical Development, Late Oncology, AstraZeneca, Nashville, TN, USA
| | - Jorge S Reis-Filho
- Cancer Biomarker Development, Early Oncology, AstraZeneca, Gaithersburg, MD, USA
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
45
|
Telarovic I, Yong CSM, Kurz L, Vetrugno I, Reichl S, Fernandez AS, Cheng HW, Winkler R, Guckenberger M, Kipar A, Ludewig B, Pruschy M. Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease. Nat Commun 2024; 15:5500. [PMID: 38951172 PMCID: PMC11217506 DOI: 10.1038/s41467-024-49873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Cancer resistance to immune checkpoint inhibitors motivated investigations into leveraging the immunostimulatory properties of radiotherapy to overcome immune evasion and to improve treatment response. However, clinical benefits of radiotherapy-immunotherapy combinations have been modest. Routine concomitant tumor-draining lymph node irradiation (DLN IR) might be the culprit. As crucial sites for generating anti-tumor immunity, DLNs are indispensable for the in situ vaccination effect of radiotherapy. Simultaneously, DLN sparing is often not feasible due to metastatic spread. Using murine models of metastatic disease in female mice, here we demonstrate that delayed (adjuvant), but not neoadjuvant, DLN IR overcomes the detrimental effect of concomitant DLN IR on the efficacy of radio-immunotherapy. Moreover, we identify IR-induced disruption of the CCR7-CCL19/CCL21 homing axis as a key mechanism for the detrimental effect of DLN IR. Our study proposes delayed DLN IR as a strategy to maximize the efficacy of radio-immunotherapy across different tumor types and disease stages.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Irene Vetrugno
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabrina Reichl
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alba Sanchez Fernandez
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rona Winkler
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Gatfield ER, Tadross J, Ince W. Immune checkpoint inhibitor use in head and neck squamous cell carcinoma: the current landscape and future perspectives. Future Oncol 2024; 20:1695-1711. [PMID: 38889284 PMCID: PMC11485897 DOI: 10.1080/14796694.2024.2362612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Immune checkpoint inhibitors are licensed for use in patients with unresectable, recurrent or metastatic head and neck squamous cell carcinoma. Multiple published and ongoing trials are assessing efficacy in the curative management of patients in the concomitant, neoadjuvant and/or adjuvant settings, as well as part of multimodality treatment in patients with metastatic disease. This review evaluates the evidence for use of immune checkpoint inhibitors in all stages of head and neck squamous cell carcinoma and considers future approaches.
Collapse
Affiliation(s)
- Elinor R Gatfield
- Oncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John Tadross
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ,UK
| | - William Ince
- Oncology Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
47
|
Saddawi-Konefka R, Schokrpur S, Gutkind JS. Let it be: Preserving tumor-draining lymph nodes in the era of immuno-oncology. Cancer Cell 2024; 42:930-933. [PMID: 38861928 DOI: 10.1016/j.ccell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Solid cancers often progress via metastasis to lymph nodes. Consequently, lymphadenectomy is central to stage cancers and eradicates disease spread. However, mounting evidence suggests that cancer immunotherapies drive antitumor immune responses within lymph nodes. This implies that immunotherapy, delivered with standard oncologic therapies, may require specific treatment sequencing to initiate immunosurveillance and affect primary tumor responses. As supported by recent preclinical and clinical studies, lymphatic-preserving strategies may offer the best promise for driving the next generation of breakthrough immunotherapy approaches.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, USA; Gleiberman Head and Neck Cancer Center, UC San Diego, La Jolla, CA, USA.
| | - Shiruyeh Schokrpur
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA; Gleiberman Head and Neck Cancer Center, UC San Diego, La Jolla, CA, USA; Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine, San Diego, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA; Gleiberman Head and Neck Cancer Center, UC San Diego, La Jolla, CA, USA; Department of Pharmacology, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Suzuki S, Tsuzuki T, Saito M, Ishii T, Takahara T, Satou A, Inukai D, Yamanaka S, Yoshikawa K, Ueda R, Ogawa T. Regulatory T-cells activated in metastatic draining lymph nodes possibly suppress cancer immunity in cancer tissues of head and neck squamous cell cancer. Pathol Int 2024; 74:327-336. [PMID: 38712798 DOI: 10.1111/pin.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Regulatory T cells (Tregs) play an important role in creating an immunosuppressive microenvironment in cancer tissues. However, the mechanisms by which Tregs are activated and suppress cancer immunity remain unclear. To elucidate these mechanisms, we performed a T cell receptor (TCR) repertoire analysis of Tregs and conventional T cells in peripheral blood, draining lymph nodes (DLNs), and cancer tissues of patients with head and neck squamous cell cancer (HNSCC). We found that the TCR repertoire was skewed in cancer tissue and metastatic DLNs (M-DLNs) compared with non-metastatic DLNs, and TCR repertoire similarities in Tregs and CD8+ T cells between M-DLNs and cancer tissue were high compared with those at other sites. These results suggest that Tregs and CD8+ T cells are activated in M-DLNs and cancer tissues by cancer antigens, such as neoantigens, and shared antigens and Tregs suppress CD8+ T cell function in a cancer antigen-specific manner in M-DLNs and cancer tissue. Moreover, M-DLNs might be a source of Tregs and CD8+ T cells recruited into the cancer tissue. Therefore, targeting Tregs in M-DLNs in an antigen-specific manner is expected to be a novel immunotherapeutic strategy for HNSCCs.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Masato Saito
- Translational Research Unit, R&D Division, Kyowa Kirin, Tokyo, Japan
| | | | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shunpei Yamanaka
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
50
|
Liao Z, Fan H, Weng J, Zhou J, Zheng Y. FAP Serves as a Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2024; 2024:8810804. [PMID: 38826849 PMCID: PMC11142855 DOI: 10.1155/2024/8810804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses significant challenges with poor survival rates and limited therapeutic strategies. Our study, using The Cancer Genome Atlas (TCGA) data, assesses cancer-associated fibroblast (CAF) gene signatures' clinical relevance. In our analysis across TCGA tumor types, differential gene expression analysis revealed that fibroblast activation protein (FAP) is upregulated in tumor tissues and associated with poorer survival rates in HNSCC. Furthermore, mechanistic studies employing gene-silencing techniques substantiated that FAP knockout led to a significant decrease in cellular proliferation, invasion, and migration in HNSCC cell lines. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we established that high FAP expression correlates with vital biological processes such as extracellular matrix organization, angiogenesis, and cellular motility. Importantly, FAP was found to regulate these processes by promoting the expression of key proteins involved in epithelial-mesenchymal transition-related pathways. Additionally, our analysis revealed a significant correlation between FAP expression and the expression profiles of immune checkpoint molecules, underscoring its potential role in immune modulation. Collectively, our findings illuminate FAP's pivotal role in HNSCC pathogenesis and its potential as a prognostic biomarker and therapeutic target. This research lays the groundwork for understanding the multifaceted roles and regulatory mechanisms of CAFs in HNSCC, thereby offering valuable perspectives for the development of targeted therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Zhanpeng Liao
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Junquan Weng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Zhou
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|