1
|
Song W, Duan X, Phyu Win PE, Huang X, Wang J. Tuning the electrochemical redox-mediated mechanism of oxygen evolution on cobalt sites by hydroxide ion coupling. Chem Sci 2025; 16:8889-8896. [PMID: 40271039 PMCID: PMC12012628 DOI: 10.1039/d5sc01674f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Heterogeneous molecular catalysts (HMCs) with cobalt (Co) active sites are potent for the electrochemical oxygen evolution reaction (OER) in energy conversion applications. Such catalysts typically operate through the classical redox-mediated mechanism, where dynamic equilibria of Co2+/3+ and Co3+/4+ redox states are present before and throughout the OER cycle. However, the generation of low-valent Co2+ sites is disadvantageous for catalysis. To address this, sulfate groups embedded in graphene were developed to link a model Co-2,2'-bipyridine complex, resulting in the synthesis of a novel Co-based HMC that generates a specific CoN2O4S1 coordination moiety. These molecular Co sites were induced to oxidize from +2 to +3 oxidation state at open-circuit conditions, due to their proton-coupled electron transfer nature. This process ultimately eliminated the generation of the Co2+ state from its redox equilibrium and efficiently improved the turnover frequencies of Co sites toward OER, showing a two-order dependence on the concentrations of OH- ions. This work provides a novel mechanistic perspective for the rational design of high-performance HMCs.
Collapse
Affiliation(s)
- Wenjuan Song
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215006 P. R. China
| | - Xiaoyue Duan
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215006 P. R. China
| | - Poe Ei Phyu Win
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215006 P. R. China
| | - Xiang Huang
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong) Shenzhen 518045 China
| | - Jiong Wang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215006 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
2
|
Jia X, Zhou Z, Liu F, Wang T, Wang Y, Zhang D, Liu H, Wang Y, Ye S, Amezawa K, Wei L, Li H. Closed-Loop Framework for Discovering Stable and Low-Cost Bifunctional Metal Oxide Catalysts for Efficient Electrocatalytic Water Splitting in Acid. J Am Chem Soc 2025. [PMID: 40387853 DOI: 10.1021/jacs.5c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Electrocatalytic water splitting, comprising the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), provides a sustainable route for hydrogen production. While low-cost metal oxides (MOs) are appealing as alternatives to noble metal electrocatalysts, their application in acidic media remains challenging. However, the dynamic nature of some MO surface structures under electrochemical conditions offers an opportunity for rational catalyst design to achieve bifunctionality in acidic OER and HER. Here, we present a closed-loop framework that integrates potential catalyst exploration (front-end), synthesis and electrochemical tests (mid-end), and advanced characterizations (back-end). This framework combines crucial steps in electrocatalyst exploration, including data mining, surface state analysis, microkinetic modeling, and proof-of-concept experiments to identify stable and cost-effective MO catalysts for acidic water splitting. Using this approach, RbSbWO6 is identified as a promising bifunctional catalyst for the first time, with experimental validation demonstrating its exceptional stability and performance under acidic OER and HER. Notably, RbSbWO6 outperforms many other reported non-noble stoichiometric MO catalysts that have not undergone major modifications for acidic water splitting. These findings, derived from our Digital Catalysis Platform (DigCat), establish RbSbWO6 as a highly effective non-noble stoichiometric bifunctional MO catalyst and underscore the power of our closed-loop workflow for accelerating catalyst discovery. This framework begins with the DigCat platform, concludes with experimental validation, and feeds into the platform, demonstrating its potential for designing electrocatalysts in other systems such as metal nitrides or carbides. This study demonstrates the importance and high efficiency of data-driven approaches as a new scientific discovery paradigm.
Collapse
Affiliation(s)
- Xue Jia
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Zihan Zhou
- School of Chemical and Biomolecule Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecule Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yuhang Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yong Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Songbo Ye
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Koji Amezawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecule Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Zubair M, Shen L, Hyeong Lee T, Qian Y, Joon Kang D. Stabilizing Polyoxometalate for Enhanced OER Performance Using a Porous Manganese Oxide Support. CHEMSUSCHEM 2025; 18:e202402294. [PMID: 39726113 DOI: 10.1002/cssc.202402294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions. This study enhances the performance and stability of polyoxometalates (POMs) for OER by anchoring keggin-type POM [TiCoW11O40]7- nanosheets onto a conductive, carbon-protected manganese oxide (C-Mn2O3) nanospheres support. The acquired porous framework enhances POM/C-Mn₂O₃ (PCM) contact, improving stability, reaction kinetics, and redox activity by offering nucleation sites, electronic pathways, and abundant active sites, significantly boosting OER activity. The resulting PCM nanohybrid demonstrates remarkable OER activity in 1 M KOH, requiring only a 300 mV overpotential to achieve a current density of 10 mA cm-2 with a Tafel slope of 88 mV/dec. The PCM electrocatalyst also shows high mass activity (784 A/g at 1.6 V) and maintains stability over 100 hours at 100 mA cm-2 without performance fatigue. Consequently, this study offers a viable strategy for developing efficient, durable electrocatalysts using low-cost materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Lin Shen
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Hyeong Lee
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongteng Qian
- Pharmaceutical Engineering College, Jinhua University of Vocational Technology, Jinhua, Zhejiang Province, 321007, P.R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
4
|
Ta XMC, Trần-Phú T, Nguyen TKA, Wang Q, Tricoli A. Environmentally Friendly and Earth-Abundant Self-Healing Electrocatalyst Systems for Durable and Efficient Acidic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25327-25336. [PMID: 40259598 DOI: 10.1021/acsami.5c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Electrochemical water splitting under acidic conditions is an efficient route for green hydrogen production from renewable electricity. Its implementation on a globally relevant scale is hindered by the lack of abundant and low-cost electrocatalysts for the oxygen evolution reaction that can operate stably and efficiently under highly acidic anodic conditions. Here, we report the design of stable and efficient acidic OER electrocatalysts consisting of a self-healing bismuth (Bi)-based matrix hosting transition metal active sites. Comprehensive structural performance investigation of Co- and Ni-BiOx electrodes provides insights into the role of the electrolyte composition and pH in the self-healing mechanism under anodic conditions. Our best-performing [Co-Bi]Ox and [Ni-Bi]Ox anodes achieve over 200 h of continuous electrolysis at a catalytic current of 10 mA cm-2 with an overpotential of 590 and 670 mV at a pH of 1 in a 0.1 M H2SO4 electrolyte. Notably, while the [Bi]Ox matrix did not contribute to the catalytic activity, it was essential to stabilize the active Co and Ni sites during the acidic OER. Our findings provide a promising strategy for the engineering of earth-abundant materials for efficient acidic water splitting, as an alternative to the use of poorly scalable and expensive noble metal catalysts.
Collapse
Affiliation(s)
- Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Thành Trần-Phú
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Qi Wang
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Azmani K, Besora M, Yu J, Teillout AL, de Oliveira P, Mbomekallé IM, Soriano-López J, Poblet JM, Galán-Mascarós JR. Water Oxidation Electrocatalysis in Acidic Media with Fe-Containing POMs/Carbon Composites. Inorg Chem 2025; 64:4260-4266. [PMID: 39998328 DOI: 10.1021/acs.inorgchem.4c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Iron-based catalysts are very appealing in terms of applications due to the low cost of Fe and to its abundance in the Earth's crust. In the field of water oxidation, unfortunately, iron oxides cannot match the activity of Co or Ni oxides, much less than the activity of noble metal oxides (IrO2). The activity of transition metals to promote the oxygen evolution reaction (OER) can be tuned and enhanced by their incorporation into polyoxometalate frameworks (POMs). In comparison with metal oxides, POMs offer a controlled, discrete structure and a tailor-made environment. Fe-POMs still show a low OER activity in neutral or basic media when compared to Co-POMs. When moving to highly acidic media, we have found an unexpected electrochemical response in carbon paste electrodes containing salts of the [Fe4III(H2O)2(PW9O34)2]6- (Fe4) polyanion. In oxidative conditions, these electrodes showed lower onset potentials and higher current densities than their Co-based analogues, contrary to computational expectations. Careful analyses have shown the excellent stability of the Fe4 in these pH < 1 conditions, but a poor selectivity. CO2 is the dominant product, in addition to O2. The capability of Fe4 to oxidize amorphous carbon under acidic conditions appears to be unique since it is not found in Fe oxides or simple Fe salts. Thus, Fe-POMs, in acidic conditions, are still modest OER catalysts, but exhibit a unique performance when electrochemically oxidizing carbon.
Collapse
Affiliation(s)
- Khalid Azmani
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16. Tarragona E-43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain
| | - Jiahao Yu
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16. Tarragona E-43007, Spain
| | - Anne-Lucie Teillout
- Equipe d'Electrochimie et de Photo-Électrochimie, Institut de Chimie Physique, UMR 8000, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - Pedro de Oliveira
- Equipe d'Electrochimie et de Photo-Électrochimie, Institut de Chimie Physique, UMR 8000, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - Israël-Martyr Mbomekallé
- Equipe d'Electrochimie et de Photo-Électrochimie, Institut de Chimie Physique, UMR 8000, CNRS, Université Paris-Saclay, Orsay F-91405, France
| | - Joaquín Soriano-López
- Institut de Ciència Molecular, Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain
| | - José-Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16. Tarragona E-43007, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Li G, Priyadarsini A, Xie Z, Kang S, Liu Y, Chen X, Kattel S, Chen JG. Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrO x over Co 3O 4. J Am Chem Soc 2025; 147:7008-7016. [PMID: 39945409 DOI: 10.1021/jacs.4c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir-O-Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm-2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Adyasa Priyadarsini
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Kattel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
7
|
Han J, Liu Q, Yang Y, Wu HB. Noble-metal-free catalysts for the oxygen evolution reaction in acids. Chem Sci 2025; 16:3788-3809. [PMID: 39950065 PMCID: PMC11815483 DOI: 10.1039/d4sc08400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Oxygen evolution catalysts are critical components of proton exchange membrane water electrolysers (PEMWEs), playing a decisive role in determining both the performance and cost of these devices. Non-noble metal-based oxygen evolution catalysts have recently drawn significant attention as potential alternatives to expensive noble metal catalysts. This review systematically summarizes the mechanism of non-noble metal catalysts for the oxygen evolution reaction in acids with respect to their activity and stability, incorporating theoretical calculations and the Pourbaix diagram. Advanced in situ techniques are highlighted as powerful tools for probing intermediate evolution and valence changes and further elucidating the catalytic mechanism. Furthermore, key strategies for enhancing catalytic activity and durability, such as elemental doping, the support effect, surface protection and novel phase design, are discussed. Finally, this review provides insights into the remaining challenges and emerging opportunities for advancing practical oxygen evolution catalysts in PEMWEs.
Collapse
Affiliation(s)
- Junwei Han
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qian Liu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yue Yang
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Hao Bin Wu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Zuo S, Wu ZP, Xu D, Ahmad R, Zheng L, Zhang J, Zhao L, Huang W, Al Qahtani H, Han Y, Cavallo L, Zhang H. Local compressive strain-induced anti-corrosion over isolated Ru-decorated Co 3O 4 for efficient acidic oxygen evolution. Nat Commun 2024; 15:9514. [PMID: 39496587 PMCID: PMC11535344 DOI: 10.1038/s41467-024-53763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Enhancing corrosion resistance is essential for developing efficient electrocatalysts for acidic oxygen evolution reaction (OER). Herein, we report the strategic manipulation of the local compressive strain to reinforce the anti-corrosion properties of the non-precious Co3O4 support. The incorporation of Ru single atoms, larger in atomic size than Co, into the Co3O4 lattice (Ru-Co3O4), triggers localized strain compression and lattice distortion on the Co-O lattice. A comprehensive exploration of the correlation between this specific local compressive strain and electrocatalytic performance is conducted through experimental and theoretical analyses. The presence of the localized strain in Ru-Co3O4 is confirmed by operando X-ray absorption studies and supported by quantum calculations. This local strain, presented in a shortened Co-O bond length, enhances the anti-corrosion properties of Co3O4 by suppressing metal dissolutions. Consequently, Ru-Co3O4 shows satisfactory stability, maintaining OER for over 400 hours at 30 mA cm-2 with minimal decay. This study demonstrates the potential of the local strain effect in fortifying catalyst stability for acidic OER and beyond.
Collapse
Affiliation(s)
- Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Zhi-Peng Wu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Wenhuan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | | | - Yu Han
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
10
|
Li H, Lin Y, Duan J, Wen Q, Liu Y, Zhai T. Stability of electrocatalytic OER: from principle to application. Chem Soc Rev 2024; 53:10709-10740. [PMID: 39291819 DOI: 10.1039/d3cs00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogen energy, derived from the electrolysis of water using renewable energy sources such as solar, wind, and hydroelectric power, is considered a promising form of energy to address the energy crisis. However, the anodic oxygen evolution reaction (OER) poses limitations due to sluggish kinetics. Apart from high catalytic activity, the long-term stability of electrocatalytic OER has garnered significant attention. To date, several research studies have been conducted to explore stable electrocatalysts for the OER. A comprehensive review is urgently warranted to provide a concise overview of the recent advancements in the electrocatalytic OER stability, encompassing both electrocatalyst and device developments. This review aims to succinctly summarize the primary factors influencing OER stability, including morphological/phase change and electrocatalyst dissolution, as well as mechanical detachment, alongside chemical, mechanical, and operational degradation observed in devices. Furthermore, an overview of contemporary approaches to enhance stability is provided, encompassing electrocatalyst design (structural regulation, protective layer coating, and stable substrate anchoring) and device optimization (bipolar plates, gas diffusion layers, and membranes). Hopefully, more attention will be paid to ensuring the stable operation of electrocatalytic OER and the future large-scale water electrolysis applications. This review presents design principles aimed at addressing challenges related to the stability of electrocatalytic OER.
Collapse
Affiliation(s)
- HuangJingWei Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Yu Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430205, P. R. China
| | - Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
11
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
12
|
Han W, Cai X, Liao J, He Y, Yu C, Zhang X. Regulating Strain and Electronic Structure of Indium Tin Oxide Supported IrO x Electrocatalysts for Highly Efficient Oxygen Evolution Reaction in Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47610-47619. [PMID: 39213613 DOI: 10.1021/acsami.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of proton exchange membrane water electrolysis is a promising technology for hydrogen production, which has always been restricted by the slow kinetics of the oxygen evolution reaction (OER). Although IrOx is one of the benchmark acidic OER electrocatalysts, there are still challenges in designing highly active and stable Ir-based electrocatalysts for commercial application. Herein, a Ru-doped IrOx electrocatalyst with abundant twin boundaries (TB-Ru0.3Ir0.7Ox@ITO) is reported, employing indium tin oxide with high conductivity as the support material. Combing the TB-Ru0.3Ir0.7Ox nanoparticles with ITO support could expose more active sites and accelerate the electron transfer. The TB-Ru0.3Ir0.7Ox@ITO exhibits a low overpotential of 203 mV to achieve 10 mA cm-2 and a high mass activity of 854.45 A g-1noble metal at 1.53 V vs RHE toward acidic OER, which exceeds most reported Ir-based OER catalysts. Moreover, improved long-term stability could be obtained, maintaining the reaction for over 110 h at 10 mA cm-2 with negligible deactivation. DFT calculations further reveal the activity enhancement mechanism, demonstrating the synergistic effects of Ru doping and strains on the optimization of the d-band center (εd) position and the adsorption free energy of oxygen intermediates. This work provides ideas to realize the trade-off between high catalytic activity and good stability for acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinuo Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiahong Liao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| |
Collapse
|
13
|
Ta XMC, Trần-Phú T, Yuwono JA, Nguyen TKA, Bui AD, Truong TN, Chang LC, Magnano E, Daiyan R, Simonov AN, Tricoli A. Optimal Coatings of Co 3O 4 Anodes for Acidic Water Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304650. [PMID: 37863809 DOI: 10.1002/smll.202304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Indexed: 10/22/2023]
Abstract
Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2O3, SiO2, TiO2, SnO2, and HfO2, prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3O4 following the order of HfO2 > SnO2 > TiO2 > Al2O3, SiO2. An optimal HfO2 layer thickness of 12 nm enhances the Co3O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2, revealing a major role of the HfO2|Co3O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.
Collapse
Affiliation(s)
- Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jodie A Yuwono
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
- College of Engineering and Computer Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Anh Dinh Bui
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Thien N Truong
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Li-Chun Chang
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elena Magnano
- IOM-CNR, Istituto Officina dei Materiali, AREA Science Park Basovizza, Trieste, 34149, Italy
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Antonio Tricoli
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Han C, Wang T. Understanding the catalytic performances of metal-doped Ta 2O 5 catalysts for acidic oxygen evolution reaction with computations. Chem Sci 2024:d4sc03554b. [PMID: 39165725 PMCID: PMC11331345 DOI: 10.1039/d4sc03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The design of stable and active alternative catalysts to iridium oxide for the anodic oxygen evolution reaction (OER) has been a long pursuit in acidic water splitting. Tantalum pentoxide (Ta2O5) has the merit of great acidic stability but poor OER performance, yet strategies to improve its intrinsic OER activity are highly desirable. Herein, by using density functional theory (DFT) calculations combined with aqueous stability assessment from surface Pourbaix diagrams, we systematically evaluated the OER activity and acidic stability of 14 different metal-doped Ta2O5 catalysts. Apart from the experimentally reported Ir-doped Ta2O5, we computationally identified Ru- and Nb-doped Ta2O5 catalysts as another two candidates with reasonably high stability and activity in acidic OER. Our study also underscores the essence of considering stable surface states of catalysts under working conditions before a reasonable activity trend can be computationally achieved.
Collapse
Affiliation(s)
- Congcong Han
- Department of Chemistry, Zhejiang University Hangzhou 310058 Zhejiang Province China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou 310000 Zhejiang China
| |
Collapse
|
15
|
Liang J, Li J, Dong H, Li Z, He X, Wang Y, Yao Y, Ren Y, Sun S, Luo Y, Zheng D, Li J, Liu Q, Luo F, Wu T, Chen G, Sun X, Tang B. Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions. Nat Commun 2024; 15:6208. [PMID: 39043681 PMCID: PMC11266351 DOI: 10.1038/s41467-024-50519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.
Collapse
Affiliation(s)
- Jie Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Zixiaozi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, China.
- Laoshan Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
16
|
Liu ZZ, Huang SL, Yang GY. High-Nuclear Co-Added Polyoxometalate-Based Chain: Electrocatalytic Oxygen Production. Inorg Chem 2024; 63:12803-12809. [PMID: 38957131 DOI: 10.1021/acs.inorgchem.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A high-nuclear Co-added polyoxometalate (CoAP) was synthesized via a hydrothermal reaction: H14.5K9Na7.5-{[Co8(μ2-OH)(μ3-OH)2(H2O)2(Co(H2O)GeW6O26)(B-α-GeW9O34)2][BO(OH)2][Co12(μ2-OH)(μ3-OH)5(H2O)3(Co(H2O)GeW6O26)(GeW6O26)(B-α-GeW9O34)]}·46H2O (1). The polyoxoanion of 1 contains a large Co20 cluster gathered by lacunary GeW6O26 and GeW9O34 subunits. 1 represents a one-dimensional (1D) chain formed by adjacent polyoxoanions coupling through a CoO6 double bridge, showing the first example of a high-nuclear CoAP-based inorganic chain. 1 served as an efficient electrocatalyst in oxygen evolution reactions (OERs).
Collapse
Affiliation(s)
- Zheng-Zheng Liu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
17
|
Ram R, Xia L, Benzidi H, Guha A, Golovanova V, Garzón Manjón A, Llorens Rauret D, Sanz Berman P, Dimitropoulos M, Mundet B, Pastor E, Celorrio V, Mesa CA, Das AM, Pinilla-Sánchez A, Giménez S, Arbiol J, López N, García de Arquer FP. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 2024; 384:1373-1380. [PMID: 38900890 DOI: 10.1126/science.adk9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
Collapse
Affiliation(s)
- Ranit Ram
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Hind Benzidi
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Anku Guha
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Viktoria Golovanova
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Alba Garzón Manjón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - David Llorens Rauret
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pol Sanz Berman
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marinos Dimitropoulos
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Mundet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ernest Pastor
- CNRS, Université de Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France
- CNRS, Université de Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Aparna M Das
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Adrián Pinilla-Sánchez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
18
|
Zhao F, Cheng T, Lu X, Ghorai N, Yang Y, Geletii YV, Musaev DG, Hill CL, Lian T. Charge Transfer Mechanism on a Cobalt-Polyoxometalate-TiO 2 Photoanode for Water Oxidation in Acid. J Am Chem Soc 2024; 146:14600-14609. [PMID: 38748814 PMCID: PMC11140742 DOI: 10.1021/jacs.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.
Collapse
Affiliation(s)
- Fengyi Zhao
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yiwei Yang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V. Geletii
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Centre for Scientific Computation, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Craig L. Hill
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Chen Z, Yang Z, Li X, Li L, Lin H. Dopamine-modified cobalt spinel nanoparticles as an active catalyst for the acidic oxygen evolution reaction. Dalton Trans 2024; 53:9011-9020. [PMID: 38726692 DOI: 10.1039/d4dt00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The development of efficient non-noble metal electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions remains a critical challenge. Herein, we report a N-doped carbonaceous component-engineered Co3O4 (NCEC) catalyst synthesized via the sol-gel method. Dopamine hydrochloride (DA)-derived nitrogen-doped carbonaceous components were found to boost the OER performance of Co3O4. The optimized catalyst can reach an overpotential as low as 330 mV in 1 M H2SO4 at a current density of 10 mA cm-2 and maintains a good long-term stability of 60 hours. In particular, we found that the thermodynamic overpotential was inversely proportional to the content of oxidized N and pyridinic N, whereas it was directly proportional to the pyrrolic-N content. Our experiments and density functional theory (DFT) calculations confirm that the optimized catalyst exhibits enhanced charge transfer and the oxidized N species on Co3O4 is responsible for the high catalytic activity. Our study suggests that the performance of NCEC in acidic media can be further optimized by enhancing the content of oxidized N species.
Collapse
Affiliation(s)
- Zhengle Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhiqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xinyuan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| |
Collapse
|
20
|
Zhu W, Gao X, Yao Y, Hu S, Li Z, Teng Y, Wang H, Gong H, Chen Z, Yang Y. Nanostructured High Entropy Alloys as Structural and Functional Materials. ACS NANO 2024; 18:12672-12706. [PMID: 38717959 DOI: 10.1021/acsnano.4c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since their introduction in 2004, high entropy alloys (HEAs) have attracted significant attention due to their exceptional mechanical and functional properties. Advances in our understanding of atomic-scale ordering and phase formation in HEAs have facilitated the development of fabrication techniques for synthesizing nanostructured HEAs. These materials hold immense potential for applications in various fields including automobile industries, aerospace engineering, microelectronics, and clean energy, where they serve as either structural or functional materials. In this comprehensive Review, we conduct an in-depth analysis of the mechanical and functional properties of nanostructured HEAs, with a particular emphasis on the roles of different nanostructures in modulating these properties. To begin, we explore the intrinsic and extrinsic factors that influence the formation and stability of nanostructures in HEAs. Subsequently, we delve into an examination of the mechanical and electrocatalytic properties exhibited by bulk or three-dimensional (3D) nanostructured HEAs, as well as nanosized HEAs in the form of zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, or two-dimensional (2D) nanosheets. Finally, we present an outlook on the current research landscape, highlighting the challenges and opportunities associated with nanostructure design and the understanding of structure-property relationships in nanostructured HEAs.
Collapse
Affiliation(s)
- Wenqing Zhu
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiang Gao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Yiyu Yao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Sijia Hu
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Zhixin Li
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yun Teng
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Hang Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Hao Gong
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Zhaoqi Chen
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Yong Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Department of System Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
21
|
Yang J, Xu F, Zhao W, Liu L, Weng B. Modulated Electronic Structure of Co 3O 4 by Single Atoms for Efficient Anodic Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309363. [PMID: 38098307 DOI: 10.1002/smll.202309363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Indexed: 05/25/2024]
Abstract
The challenge of the practical application of a water electrolyzer system lies in the development of low-manufacturing cost, highly active, and stable electrocatalysts to replace the noble metal ones, in order to enable environmentally friendly hydrogen production on a large scale. Herein, a facile method is proposed for boosting the performance of Co3O4 through the incorporation of large-sized single atoms. Due to the larger ionic radius of rare earth metals than that of Co, the incorporation elongates the bond length of Co─O, resulting in the narrowed d-p band centers and the high spin configuration, which is favorable for the interaction and charge transfer with absorbent (*OH). As a result, the Ce-incorporated Co3O4 with the longest Co─O bond length exhibits the best oxygen evolution reaction (OER) performance, specifically, the turnover frequency is over 17 times higher than that of pristine Co3O4 nanosheet under an overpotential of 400 mV. Powered by a commercial Si solar cell, a two-electrode solar water-splitting device combining Ce-incorporated Co3O4 and Pt delivers a solar-to-hydrogen conversion efficiency of 13.53%. The strategy could provide a new insight for improving the performance of OER electrocatalysts in acid toward practical applications.
Collapse
Affiliation(s)
- Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Luqiong Liu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| |
Collapse
|
22
|
Huang J, Borca CN, Huthwelker T, Yüzbasi NS, Baster D, El Kazzi M, Schneider CW, Schmidt TJ, Fabbri E. Surface oxidation/spin state determines oxygen evolution reaction activity of cobalt-based catalysts in acidic environment. Nat Commun 2024; 15:3067. [PMID: 38594282 PMCID: PMC11003995 DOI: 10.1038/s41467-024-47409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Co-based catalysts are promising candidates to replace Ir/Ru-based oxides for oxygen evolution reaction (OER) catalysis in an acidic environment. However, both the reaction mechanism and the active species under acidic conditions remain unclear. In this study, by combining surface-sensitive soft X-ray absorption spectroscopy characterization with electrochemical analysis, we discover that the acidic OER activity of Co-based catalysts are determined by their surface oxidation/spin state. Surfaces composed of only high-spin CoII are found to be not active due to their unfavorable water dissociation to form CoIII-OH species. By contrast, the presence of low-spin CoIII is essential, as it promotes surface reconstruction of Co oxides and, hence, OER catalysis. The correlation between OER activity and Co oxidation/spin state signifies a breakthrough in defining the structure-activity relationship of Co-based catalysts for acidic OER, though, interestingly, such a relationship does not hold in alkaline and neutral environments. These findings not only help to design efficient acidic OER catalysts, but also deepen the understanding of the reaction mechanism.
Collapse
Affiliation(s)
- Jinzhen Huang
- Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI, Switzerland.
| | | | - Thomas Huthwelker
- Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Nur Sena Yüzbasi
- Laboratory for High Performance Ceramics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dominika Baster
- Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Mario El Kazzi
- Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Christof W Schneider
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute for Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Emiliana Fabbri
- Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI, Switzerland.
| |
Collapse
|
23
|
Sun Y, Wang H, Yang Y, Wang S, Xu B, Huang Z, Liu H. Schottky Barrier-Based Built-In Electric Field for Enhanced Tumor Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15916-15930. [PMID: 38416419 DOI: 10.1021/acsami.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Photodynamic therapy's antitumor efficacy is hindered by the inefficient generation of reactive oxygen species (ROS) due to the photogenerated electron-hole pairs recombination of photosensitizers (PS). Therefore, there is an urgent need to develop efficient PSs with enhanced carrier dynamics. Herein, we designed Schottky junctions composed of cobalt tetroxide and palladium nanocubes (Co3O4@Pd) with a built-in electric field as effective PS. The built-in electric field enhanced photogenerated charge separation and migration, resulting in the generation of abundant electron-hole pairs and allowing effective production of ROS. Thanks to the built-in electric field, the photocurrent intensity and carrier lifetime of Co3O4@Pd were approximately 2 and 3 times those of Co3O4, respectively. Besides, the signal intensity of hydroxyl radical and singlet oxygen increased to 253.4% and 135.9%, respectively. Moreover, the localized surface plasmon resonance effect of Pd also enhanced the photothermal conversion efficiency of Co3O4@Pd to 40.50%. In vitro cellular level and in vivo xenograft model evaluations demonstrated that Co3O4@Pd could generate large amounts of ROS, trigger apoptosis, and inhibit tumor growth under near-infrared laser irradiation. Generally, this study reveals the contribution of the built-in electric field to improving photodynamic performance and provides new ideas for designing efficient inorganic PSs.
Collapse
Affiliation(s)
- Yun Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhan Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shunhao Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhijun Huang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Toledo-Carrillo EA, García-Rodríguez M, Sánchez-Moren LM, Dutta J. Decoupled supercapacitive electrolyzer for membrane-free water splitting. SCIENCE ADVANCES 2024; 10:eadi3180. [PMID: 38446878 PMCID: PMC10917338 DOI: 10.1126/sciadv.adi3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm-by-5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.
Collapse
Affiliation(s)
- Esteban A. Toledo-Carrillo
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Mario García-Rodríguez
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Lorena M. Sánchez-Moren
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Joydeep Dutta
- Functional NanoMaterials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| |
Collapse
|
25
|
Bai J, Zhou W, Xu J, Zhou P, Deng Y, Xiang M, Xiang D, Su Y. RuO 2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress. Molecules 2024; 29:537. [PMID: 38276614 PMCID: PMC10819928 DOI: 10.3390/molecules29020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Dongsheng Xiang
- School of Medicine and Health, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
26
|
Li Y, Li P, Jiang J, Zhao T, Xu G, Zhang L. Substrate self-derived porous rod-like NiS/Ni 9S 8/NF heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalton Trans 2023; 52:17826-17833. [PMID: 37971051 DOI: 10.1039/d3dt03056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A self-derivation strategy using conductive substrates is used to prepare one-piece highly efficient bifunctional electrodes, where the chosen substrate acts as both an active catalyst precursor and a conductive carrier. Here, a bifunctional catalyst, porous NiS/Ni9S8/NF-2 nanorods, was synthesized by low-temperature vulcanization after an oxalic acid etching process. To reach a current density of 10 mA cm-2, NiS/Ni9S8/NF-2 requires only a tiny overpotential of 115 mV for the HER and 176 mV for the OER, and demonstrates sustained activity for 100 hours with almost any degradation. The substrate self-derived NiS/Ni9S8/NF-2 catalyst for overall water splitting requires only a small voltage of 1.52 V to deliver 10 mA cm-2 with excellent stability. Experimental results show that the heterostructured electrocatalysts impart good catalytic properties of NiS/Ni9S8/NF-2 by modulating the electronic structure and promoting the reconstruction process from sulfides to hydroxides. This work demonstrates the success of the substrate self-derivation strategy to achieve high catalytic activity and provide a new autogenous growth technique for electrode fabrication.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Peiyan Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Jiahui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Ting Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, Xinjiang, PR China
| |
Collapse
|
27
|
Liu Z, Ji Q, Li N, Tang B, Lv L, Liu Y, Wang H, Hu F, Cai L, Yan W. Interface Engineering a High Content of Co 3+ Sites on Co 3O 4 Nanoparticles to Boost Acidic Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16415-16421. [PMID: 37933492 DOI: 10.1021/acs.langmuir.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Non-noble metal oxides have emerged as potential candidate electrocatalysts for acidic oxygen evolution reactions (OERs) due to their earth abundance; however, improving their catalytic activity and stability simultaneously in strong acidic electrolytes is still a major challenge. In this work, we report Co3O4@carbon core-shell nanoparticles on 2D graphite sheets (Co3O4@C-GS) as mixed-dimensional hybrid electrocatalysts for acidic OER. The obtained Co3O4@C-GS catalyst exhibits a low overpotential of 350 mV and maintains stability for 20 h at a current density of 10 mA cm-2 in H2SO4 (pH = 1) electrolyte. X-ray photoelectron and X-ray absorption spectroscopies illustrate that the higher content of Co3+ sites boosts acidic OER. Operando Raman spectroscopy reveals that the catalytic stability of Co3O4@C nanoparticles during the acidic OER is enhanced by the introduction of graphite sheets. This interface engineering of non-noble metal sites with high valence states provides an efficient approach to boost the catalytic activity and enhance the stability of noble-metal-free electrocatalysts for acidic OER.
Collapse
Affiliation(s)
- Ziyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liyang Lv
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026 China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liang Cai
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
28
|
Oms O, Maity N, Marrot J, Yu J, Rivière E, Shepard W, Benseghir Y, Talbi K, Dolbecq A, Ha-Thi MH, Galan-Mascaros JR, Mialane P. Structure and Electronic Properties of Large Oligomeric Heterometallic 3d/Ce IV Polyoxometalates. Inorg Chem 2023; 62:18856-18863. [PMID: 37921695 DOI: 10.1021/acs.inorgchem.3c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Merging the rich chemistry of Ce(IV) polyoxometalates (POMs) with that of 3d polyanions remains a challenge due to the strong competition between these highly oxophilic lanthanide cations and 3d metallic ions for coordination to lacunary molecular metal oxides. We report herein the characterization of an unprecedented water stable hexameric CeIV/CoII POM (Ce12Co6) made of two {(SiW9)2Ce6} units connected to a {(SiW10)2Co6(PO4)2} core. In addition, the pentameric CeIV/NiII compound Ce6Ni8, where two {PW9Ni3W} and a {PW10Ni2} fragments are grafted on a {(PW9)2Ce6} moiety, has been obtained. Magnetic studies of Ce6Ni8 revealed ferromagnetic interactions between the NiII centers constituting the {Ni3PW10} fragments, in agreement with the geometry of such a trinuclear cluster. Related insoluble barium salts of Ce12Co6 and Ce6Ni8 were also prepared, allowing their solid-state electrochemical investigations and showing in particular that in Ce12Co6, both the cobalt, cerium, and silicotungstate moieties are electroactive. Finally, photophysical studies demonstrate the formation of long-lived reduced POMs photosensitized by [Ru(bpy)3]2+, suggesting that Ce12Co6 and Ce6Ni8 could be used as efficient reservoirs of reduction equivalents for photocatalytic reactions.
Collapse
Affiliation(s)
- Olivier Oms
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Nishith Maity
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Jiahao Yu
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), ES-43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel. lí Domingo 1, 43007 Tarragona, Spain
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay, Bâtiment Henri Moissan, 19 Avenue des Sciences, 91400 Orsay, France
| | - William Shepard
- Dept PROXIMA2 A, Synchrotron Soleil, Saint-Aubin, BP 48, Gif-sur-Yvette 91192, France
| | - Youven Benseghir
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Khadija Talbi
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Anne Dolbecq
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | | | - Pierre Mialane
- Institut Lavoisier de Versailles (ILV), UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
29
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
30
|
Tanwar D, Jain P, Ahluwalia D, Sudheendranath A, Thomas SP, Ingole PP, Kumar U. A novel cobalt(ii) acetate complex bearing lutidine ligand: a promising electrocatalyst for oxygen evolution reaction. RSC Adv 2023; 13:24450-24459. [PMID: 37588977 PMCID: PMC10426729 DOI: 10.1039/d3ra04709a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Developing cost-effective electrocatalysts using earth-abundant metal as an alternative to expensive precious metal catalyst remains a key challenge for researchers. Several strategies are being researched/tested for making low-cost transition metal complexes with controlled electron-density and coordination flexibility around the metal center to enhance their catalytic activity. Herein, we report a novel lutidine coordinated cobalt(ii) acetate complex [(3,5-lutidine)2Co(OAc)2(H2O)2] (1) as a promising electrocatalyst for oxygen evolution reaction (OER). Complex 1 was characterized by FT-IR, elemental analysis, and single crystal X-ray diffraction data. The structure optimization of complex 1 was also done using DFT calculation and the obtained geometrical parameters were found to be in good agreement with the parameters obtained from the solid state structure obtained through single crystal X-ray diffraction data. Further, the molecular electrostatic potential (MEP) maps analysis of complex 1 observed electron rich centers that were found to be in agreement with the solid-state structure. It was understood that the coordination of lutidine as a Lewis base and acetate moiety as a flexible ligand will provide more coordination flexibility around the metal center to facilitate the catalytic reaction. Further, the electron rich centers around metal center will also support the enhancement of their catalytic activity. Complex 1 shows impressive OER activity, even better than the state-of-the-art IrO2 catalyst, in terms of turnover frequency (TOF: 0.05) and onset potential (1.50 V vs. RHE). The TOF for complex 1 is two and half times higher, while the onset potential is ca. 20 mV lower, than the benchmark IrO2 catalyst studied under identical conditions.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi New Delhi-110019 India
- Department of Chemistry, University of Delhi New Delhi-110007 India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Deepali Ahluwalia
- Department of Applied Chemistry, Delhi Technological University New Delhi-110042 India
| | | | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi New Delhi-110019 India
| |
Collapse
|
31
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
32
|
Mao Y, Fan S, Li X, Shi J, Wang M, Niu Z, Chen G. Trash to treasure: electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by Mn 0.1Ni 0.9Co 2O 4-δ RSFs spinel. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131743. [PMID: 37270957 DOI: 10.1016/j.jhazmat.2023.131743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Microplastic pollution has emerged as a pressing environmental issue of global concern due to its detrimental effects on the environment and ecology. Restricted to their characters of complex composition, it is a great challenge to propose a more cost-effective approach to achieve highly selective conversion of microplastic into add-value products. Here we demonstrate an upcycling strategy for converting PET microplastics into added-value chemicals (formate, terephthalic acid and K2SO4). PET is initially hydrolyzed in KOH solution to produce terephthalic acid and ethylene glycol, which is subsequently used as an electrolyte to produce formate at the anode. Meanwhile, the cathode undergoes hydrogen evolution reaction to produce H2. Preliminary techno-economic analysis suggests that this strategy has certain economic feasibility and a novel Mn0.1Ni0.9Co2O4-δ rod-shaped fiber (RSFs) catalyst we synthesized can achieve high Faradaic efficiency (> 95%) at 1.42 V vs. RHE with optimistic formate productivity. The high catalytic performance can be attributed to the doping of Mn changing the electronic structure and reducing the metal-oxygen covalency of NiCo2O4, reducing the lattice oxygen oxidation in spinel oxide OER electrocatalysts. This work not only put forward an electrocatalytic strategy for PET microplastic upcycling but also guides the design of electrocatalysts with excellent performance.
Collapse
Affiliation(s)
- Yan Mao
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jugong Shi
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mufan Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaodong Niu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
33
|
Zhao X, He D, Xia BY, Sun Y, You B. Ambient Electrosynthesis toward Single-Atom Sites for Electrocatalytic Green Hydrogen Cycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210703. [PMID: 36799551 DOI: 10.1002/adma.202210703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/18/2023]
Abstract
With the ultimate atomic utilization, well-defined configuration of active sites and unique electronic properties, catalysts with single-atom sites (SASs) exhibit appealing performance for electrocatalytic green hydrogen generation from water splitting and further utilization via hydrogen-oxygen fuel cells, such that a vast majority of synthetic strategies toward SAS-based catalysts (SASCs) are exploited. In particular, room-temperature electrosynthesis under atmospheric pressure offers a novel, safe, and effective route to access SASs. Herein, the recent progress in ambient electrosynthesis toward SASs for electrocatalytic sustainable hydrogen generation and utilization, and future opportunities are discussed. A systematic summary is started on three kinds of ambient electrochemically synthetic routes for SASs, including electrochemical etching (ECE), direct electrodeposition (DED), and electrochemical leaching-redeposition (ELR), associated with advanced characterization techniques. Next, their electrocatalytic applications for hydrogen energy conversion including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and oxygen reduction reaction are reviewed. Finally, a brief conclusion and remarks on future challenges regarding further development of ambient electrosynthesis of high-performance and cost-effective SASCs for many other electrocatalytic applications are presented.
Collapse
Affiliation(s)
- Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
34
|
Suhadolnik L, Bele M, Čekada M, Jovanovič P, Maselj N, Lončar A, Dražić G, Šala M, Hodnik N, Kovač J, Montini T, Melchionna M, Fornasiero P. Nanotubular TiO x N y -Supported Ir Single Atoms and Clusters as Thin-Film Electrocatalysts for Oxygen Evolution in Acid Media. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2612-2623. [PMID: 37008408 PMCID: PMC10061659 DOI: 10.1021/acs.chemmater.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Indexed: 06/19/2023]
Abstract
A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.
Collapse
Affiliation(s)
- Luka Suhadolnik
- Department
of Chemical and Pharmaceutical Sciences, CNR-ICCOM Trieste and INSTM
Trieste Research Units, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Miha Čekada
- Department
of Thin Films and Surfaces, Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nik Maselj
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Anja Lončar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska
13, SI-5000 Nova
Gorica, Slovenia
| | - Goran Dražić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska
13, SI-5000 Nova
Gorica, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tiziano Montini
- Department
of Chemical and Pharmaceutical Sciences, CNR-ICCOM Trieste and INSTM
Trieste Research Units, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, CNR-ICCOM Trieste and INSTM
Trieste Research Units, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, CNR-ICCOM Trieste and INSTM
Trieste Research Units, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
35
|
Guo C, Chen Q, Zhong J, Peng W, Li Y, Zhang F, Fan X. Constructing Amorphous–Crystalline Interfaces of Nickel–Iron Phosphides/Oxides for Oxygen Evolution Reaction. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Caixia Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Qiming Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Jiayi Zhong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
36
|
Wang Q, Cheng Y, Tao HB, Liu Y, Ma X, Li DS, Yang HB, Liu B. Long-Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216645. [PMID: 36546885 DOI: 10.1002/anie.202216645] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.
Collapse
Affiliation(s)
- Qilun Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yaqi Cheng
- School of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hua Bing Tao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuehu Ma
- Liaoning Key Laboratory of Clean Utilisation of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
37
|
Zhang Z, Tan G, Kumar A, Liu H, Yang X, Gao W, Bai L, Chang H, Kuang Y, Li Y, Sun X. First-principles study of oxygen evolution on Co3O4 with short-range ordered Ir doping. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Hanan A, Solangi MY, Jaleel Laghari A, Shah AA, Aftab U, Ibupoto ZA, Abro MI, Lakhan MN, Soomro IA, Dawi EA, Al Karim Haj Ismail A, Mustafa E, Vigolo B, Tahira A, Ibupoto ZH. PdO@CoSe 2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 2022; 13:743-755. [PMID: 36683771 PMCID: PMC9809149 DOI: 10.1039/d2ra07340d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.
Collapse
Affiliation(s)
- Abdul Hanan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Muhammad Yameen Solangi
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Abdul Jaleel Laghari
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Aqeel Ahmed Shah
- NED University of Engineering and Technology 75270 Karachi Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Zahoor Ahmed Ibupoto
- Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University Rawalpindi Pakistan
| | - Muhammad Ishaque Abro
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Muhammad Nazim Lakhan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology 100029 Beijing PR China
| | - Elmuez A Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Elfatih Mustafa
- Department of Science and Technology (ITN), Linköping University, Campus Norrköping 60174 Norrköping Sweden
| | | | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | | |
Collapse
|