1
|
Xin D, Kurien L, Briggs K, Schimek A, Dambra R, Hochdorfer D, Arnouk TA, Brgles M, Gautam S, Hotter D, Solzin J, Kriehuber T, Ashour J, Vigil A, Hawley M, He X. Characterization of VSV-GP morphology by cryo-EM imaging and SEC-MALS. Mol Ther Methods Clin Dev 2025; 33:101429. [PMID: 40083959 PMCID: PMC11904549 DOI: 10.1016/j.omtm.2025.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025]
Abstract
Vesicular stomatitis virus expressing the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP) is a promising platform for oncolytic viruses and cancer vaccines. In this work, cryoelectron microscopy (cryo-EM) imaging was employed to directly visualize VSV-GP particles. Several different subpopulations of virus particle morphology were observed. Definition and fraction counting of subpopulations enabled quantitative comparison of subpopulation profiles between several VSV-GP samples. In developing an orthogonal method with higher throughput, we showed that the morphological profile of the VSV-GP particles can be characterized by size exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS) based on a novel shape-based separation mechanism. Together, the two complementary techniques enable the analysis of morphological profile for VSV-GP and potentially other non-spherical viruses or nanoparticles.
Collapse
Affiliation(s)
- Dongyue Xin
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Leela Kurien
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Katherine Briggs
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | | | - Richard Dambra
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Daniel Hochdorfer
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tanja A. Arnouk
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Marija Brgles
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Saurabh Gautam
- ViraTherapeutics GmbH, Innsbruck, Austria
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Dominik Hotter
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Johannes Solzin
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Kriehuber
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Joseph Ashour
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Adam Vigil
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Michael Hawley
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Xiaorong He
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
2
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Chenavier F, Zarkadas E, Freslon LL, Stelfox A, Schoehn G, Ruigrok RH, Ballandras-Colas A, Crépin T. Influenza a virus antiparallel helical nucleocapsid-like pseudo-atomic structure. Nucleic Acids Res 2025; 53:gkae1211. [PMID: 39673795 PMCID: PMC11797009 DOI: 10.1093/nar/gkae1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Influenza A viruses are responsible for human seasonal epidemics and severe animal pandemics with a risk of zoonotic transmission to humans. The viral segmented RNA genome is encapsidated by nucleoproteins (NP) and attached to the heterotrimeric polymerase, forming the viral ribonucleoproteins (vRNPs). Flexible helical vRNPs are central for viral transcription and replication. In this study, we present an advanced biological tool, the antiparallel helical RNP-like complex, assembled from recombinant N-terminally truncated NP and short synthetic RNA. The 3.0 Å cryo-electron microscopy structure details for the first time the whole RNA pathway across NP as well as NP-NP interactions that drive the antiparallel helical assembly accommodating major and minor grooves. Our findings show that the surface of the protein can harbour several conformations of the RNA, confirming that the number of nucleobases that binds to NP is not fixed, but ranges probably between 20 and 24. Taking all together, our data provide details to further understand the genome encapsidation and explain the inherent flexibility of influenza A virus vRNPs.
Collapse
Affiliation(s)
- Florian Chenavier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Eleftherios Zarkadas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Lily-Lorette Freslon
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Alice J Stelfox
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Rob W H Ruigrok
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | | | - Thibaut Crépin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
4
|
Cai X, Zhou K, Alvarez-Cabrera AL, Si Z, Wang H, He Y, Li C, Zhou ZH. Structural Heterogeneity of the Rabies Virus Virion. Viruses 2024; 16:1447. [PMID: 39339924 PMCID: PMC11437398 DOI: 10.3390/v16091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Rabies virus (RABV) is among the first recognized viruses of public health concern and has historically contributed to the development of viral vaccines. Despite these significances, the three-dimensional structure of the RABV virion remains unknown due to the challenges in isolating structurally homogenous virion samples in sufficient quantities needed for structural investigation. Here, by combining the capabilities of cryogenic electron tomography (cryoET) and microscopy (cryoEM), we determined the three-dimensional structure of the wild-type RABV virion. Tomograms of RABV virions reveal a high level of structural heterogeneity among the bullet-shaped virion particles encompassing the glycoprotein (G) trimer-decorated envelope and the nucleocapsid composed of RNA, nucleoprotein (N), and matrix protein (M). The structure of the trunk region of the virion was determined by cryoEM helical reconstruction, revealing a one-start N-RNA helix bound by a single layer of M proteins at an N:M ratio of 1. The N-M interaction differs from that in fellow rhabdovirus vesicular stomatitis virus (VSV), which features two layers of M stabilizing the N-RNA helix at an M:N ratio of 2. These differences in both M-N stoichiometry and binding allow RABV to flex its N-RNA helix more freely and point to different mechanisms of viral assembly between these two bullet-shaped rhabdoviruses.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Kang Zhou
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Ana Lucia Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Zhu Si
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Cally Li
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
- Alsion Montessori High School, 750 Witherly Ln., Fremont, CA 94539, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| |
Collapse
|
5
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
6
|
Basu R, Dambra R, Jiang D, Schätzlein SA, Njiyang S, Ashour J, Chiramel AI, Vigil A, Papov VV. Absolute quantification of viral proteins from pseudotyped VSV-GP using UPLC-MRM. Microbiol Spectr 2024; 12:e0365123. [PMID: 38916347 PMCID: PMC11302727 DOI: 10.1128/spectrum.03651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
The rapidly developing field of oncolytic virus (OV) therapy necessitates the development of new and improved analytical approaches for the characterization of the virus during production and development. Accurate monitoring and absolute quantification of viral proteins are crucial for OV product characterization and can facilitate the understanding of infection, immunogenicity, and development stages of viral replication. Targeted mass spectrometry methods like multiple reaction monitoring (MRM) offer a robust way to directly detect and quantify specific targeted proteins represented by surrogate peptides. We have leveraged the power of MRM by combining ultra-high performance liquid chromatography (UPLC) with a Sciex 6500 triple-stage quadrupole mass spectrometer to develop an assay that accurately and absolutely quantifies the structural proteins of a pseudotyped vesicular stomatitis virus (VSV) intended for use as a new biotherapeutic (designated hereafter as VSV-GP to differentiate it from native VSV). The new UPLC-MRM method provides absolute quantification with the use of heavy-labeled reference standard surrogate peptides. When added in known exact amounts to standards and samples, the reference standards normalize and account for any small perturbations during sample preparation and/or instrument performance, resulting in accurate and precise quantification. Because of the multiplexed nature of MRM, all targeted proteins are quantified at the same time. The optimized assay has been enhanced to quantify the ratios of the processed GP1 and GP2 proteins while simultaneously measuring any remaining or unprocessed form of the envelope protein GP complex (GPC; full-length GPC). IMPORTANCE The development of oncolytic viral therapy has gained considerable momentum in recent years. Vesicular stomatitis virus glycoprotein (VSV-GP) is a new biotherapeutic emerging in the oncolytic viral therapy platform. Novel analytical assays that can accurately and precisely quantify the viral proteins are a necessity for the successful development of viral vector as a biotherapeutic. We developed an ultra-high performance liquid chromatography multiple reaction monitoring-based assay to quantify the absolute concentrations of the different structural proteins of VSV-GP. The complete processing of GP complex (GPC) is a prerequisite for the infectivity of the virus. The assay extends the potential for quantifying full-length GPC, which provides an understanding of the processing of GPC (along with the quantification of GP1 and GP2 separately). We used this assay in tracking GPC processing in HEK-293-F production cell lines infected with VSV-GP.
Collapse
Affiliation(s)
- Rajeswari Basu
- Materials and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Richard Dambra
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Di Jiang
- Materials and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Sophia A. Schätzlein
- Therapeutic Virus Development Group, Virus Therapeutic Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Shu Njiyang
- Therapeutic Virus Development Group, Virus Therapeutic Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Joseph Ashour
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Abhilash I. Chiramel
- Therapeutic Virus Development Group, Virus Therapeutic Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Adam Vigil
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Vladimir V. Papov
- Materials and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| |
Collapse
|
7
|
Sibert BS, Kim JY, Yang JE, Ke Z, Stobart CC, Moore ML, Wright ER. Assembly of respiratory syncytial virus matrix protein lattice and its coordination with fusion glycoprotein trimers. Nat Commun 2024; 15:5923. [PMID: 39004634 PMCID: PMC11247094 DOI: 10.1038/s41467-024-50162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped, filamentous, negative-strand RNA virus that causes significant respiratory illness worldwide. RSV vaccines are available, however there is still significant need for research to support the development of vaccines and therapeutics against RSV and related Mononegavirales viruses. Individual virions vary in size, with an average diameter of ~130 nm and ranging from ~500 nm to over 10 µm in length. Though the general arrangement of structural proteins in virions is known, we use cryo-electron tomography and sub-tomogram averaging to determine the molecular organization of RSV structural proteins. We show that the peripheral membrane-associated RSV matrix (M) protein is arranged in a packed helical-like lattice of M-dimers. We report that RSV F glycoprotein is frequently observed as pairs of trimers oriented in an anti-parallel conformation to support potential interactions between trimers. Our sub-tomogram averages indicate the positioning of F-trimer pairs is correlated with the underlying M lattice. These results provide insight into RSV virion organization and may aid in the development of RSV vaccines and anti-viral targets.
Collapse
Affiliation(s)
- Bryan S Sibert
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Joseph Y Kim
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zunlong Ke
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | | | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
8
|
Xia X, Sung PY, Martynowycz MW, Gonen T, Roy P, Zhou ZH. RNA genome packaging and capsid assembly of bluetongue virus visualized in host cells. Cell 2024; 187:2236-2249.e17. [PMID: 38614100 PMCID: PMC11182334 DOI: 10.1016/j.cell.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Po-Yu Sung
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael W Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
de Sautu M, Herrmann T, Scanavachi G, Jenni S, Harrison SC. The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2. PLoS Pathog 2024; 20:e1011750. [PMID: 38574119 PMCID: PMC11020617 DOI: 10.1371/journal.ppat.1011750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.
Collapse
Affiliation(s)
- Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Tobias Herrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo Scanavachi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Donnelly CM, Stewart M, Roby JA, Sundaramoorthy V, Forwood JK. Structural Determination of the Australian Bat Lyssavirus Nucleoprotein and Phosphoprotein Complex. Viruses 2023; 16:33. [PMID: 38229694 PMCID: PMC7615531 DOI: 10.3390/v16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that is crucial for viral assembly, and understanding the interface between these two proteins has the potential to provide insight into a key feature: the viral lifecycle. In this study, we used recombinant chimeric protein expression and X-ray crystallography to determine the structure of ABLV nucleoprotein bound to residues 1-40 of its phosphoprotein chaperone. Comparison of our results with the recently generated structure of RABV CVS-11 N0P demonstrated a highly conserved interface in this complex. Because the N0P interface is conserved in the lyssaviruses of phylogroup I, it is an attractive therapeutic target for multiple rabies-causing viral species.
Collapse
Affiliation(s)
- Camilla M. Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
12
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
13
|
Meng XY, Jiang QQ, Yu XD, Zhang QY, Ke F. Eukaryotic translation elongation factor 1 alpha (eEF1A) inhibits Siniperca chuatsi rhabdovirus (SCRV) infection through two distinct mechanisms. J Virol 2023; 97:e0122623. [PMID: 37861337 PMCID: PMC10688370 DOI: 10.1128/jvi.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.
Collapse
Affiliation(s)
- Xian-Yu Meng
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Qi Jiang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Dong Yu
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Whitehead JD, Decool H, Leyrat C, Carrique L, Fix J, Eléouët JF, Galloux M, Renner M. Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus. Nat Commun 2023; 14:7627. [PMID: 37993464 PMCID: PMC10665349 DOI: 10.1038/s41467-023-43434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.
Collapse
Affiliation(s)
- Jack D Whitehead
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hortense Decool
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Loic Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| | - Max Renner
- Department of Chemistry, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
15
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Zhao C, Lu D, Zhao Q, Ren C, Zhang H, Zhai J, Gou J, Zhu S, Zhang Y, Gong X. Computational methods for in situ structural studies with cryogenic electron tomography. Front Cell Infect Microbiol 2023; 13:1135013. [PMID: 37868346 PMCID: PMC10586593 DOI: 10.3389/fcimb.2023.1135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/29/2023] [Indexed: 10/24/2023] Open
Abstract
Cryo-electron tomography (cryo-ET) plays a critical role in imaging microorganisms in situ in terms of further analyzing the working mechanisms of viruses and drug exploitation, among others. A data processing workflow for cryo-ET has been developed to reconstruct three-dimensional density maps and further build atomic models from a tilt series of two-dimensional projections. Low signal-to-noise ratio (SNR) and missing wedge are two major factors that make the reconstruction procedure challenging. Because only few near-atomic resolution structures have been reconstructed in cryo-ET, there is still much room to design new approaches to improve universal reconstruction resolutions. This review summarizes classical mathematical models and deep learning methods among general reconstruction steps. Moreover, we also discuss current limitations and prospects. This review can provide software and methods for each step of the entire procedure from tilt series by cryo-ET to 3D atomic structures. In addition, it can also help more experts in various fields comprehend a recent research trend in cryo-ET. Furthermore, we hope that more researchers can collaborate in developing computational methods and mathematical models for high-resolution three-dimensional structures from cryo-ET datasets.
Collapse
Affiliation(s)
- Cuicui Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Da Lu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Qian Zhao
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Chongjiao Ren
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Huangtao Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaqi Zhai
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Jiaxin Gou
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Shilin Zhu
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Yaqi Zhang
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xinqi Gong
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China
- Beijing Academy of Intelligence, Beijing, China
| |
Collapse
|
17
|
Wawra S, Kessler S, Egel A, Solzin J, Burkert O, Hochdorfer D. Hydrodynamic characterization of a vesicular stomatitis virus-based oncolytic virus using analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:379-386. [PMID: 37133524 PMCID: PMC10444643 DOI: 10.1007/s00249-023-01649-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
Determination of the size, density, and mass of viral particles can provide valuable information to support process and formulation studies in clinical development. Analytical ultracentrifugation (AUC), as a first principal method, has been shown to be a beneficial tool for the characterization of the non-enveloped adeno associated virus (AAV). Here, we demonstrate the suitability of AUC for the challenging characterization of a representative for enveloped viruses, which usually are expected to exhibit higher dispersity than non-enveloped viruses. Specifically, the vesicular stomatitis virus (VSV)-based oncolytic virus VSV-GP was used to evaluate potential occurrence of non-ideal sedimentation by testing different rotor speeds and loading concentrations. The partial specific volume was determined via density gradients and density contrast experiments. Additionally, nanoparticle tracking analysis (NTA) was used to determine the hydrodynamic diameter of VSV-GP particles to calculate their molecular weight via the Svedberg equation. Overall, this study demonstrates the applicability of AUC and NTA for the characterization of size, density, and molar mass of an enveloped virus, namely VSV-GP.
Collapse
Affiliation(s)
- Simon Wawra
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Analytical Development Biologicals, Biberach, Germany.
| | - Sophia Kessler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| | - Arina Egel
- Boehringer Ingelheim Therapeutics GmbH, Innovation Unit, Viral Therapeutics Center, Ochsenhausen, Germany
| | - Johannes Solzin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| | - Oliver Burkert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Analytical Development Biologicals, Biberach, Germany
| | - Daniel Hochdorfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Viral Therapeutics Center, Biberach, Germany
| |
Collapse
|
18
|
Shepherd JG, Davis C, Streicker DG, Thomson EC. Emerging Rhabdoviruses and Human Infection. BIOLOGY 2023; 12:878. [PMID: 37372162 PMCID: PMC10294888 DOI: 10.3390/biology12060878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Rhabdoviridae is a large viral family, with members infecting a diverse range of hosts including, vertebrate species, arthropods, and plants. The predominant human pathogen within the family is Rabies lyssavirus, the main cause of human rabies. While rabies is itself a neglected disease, there are other, less well studied, rhabdoviruses known to cause human infection. The increasing application of next-generation sequencing technology to clinical samples has led to the detection of several novel or rarely detected rhabdoviruses associated with febrile illness. Many of these viruses have been detected in low- and middle-income countries where the extent of human infection and the burden of disease remain largely unquantified. This review describes the rhabdoviruses other than Rabies lyssavirus that have been associated with human infection. The discovery of the Bas Congo virus and Ekpoma virus is discussed, as is the re-emergence of species such as Le Dantec virus, which has recently been detected in Africa 40 years after its initial isolation. Chandipura virus and the lyssaviruses that are known to cause human rabies are also described. Given their association with human disease, the viruses described in this review should be prioritised for further study.
Collapse
Affiliation(s)
- James G. Shepherd
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Chris Davis
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Daniel G. Streicker
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emma C. Thomson
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| |
Collapse
|
19
|
Modrego A, Carlero D, Arranz R, Martín-Benito J. CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses. Viruses 2023; 15:v15030653. [PMID: 36992363 PMCID: PMC10053253 DOI: 10.3390/v15030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Collapse
Affiliation(s)
- Andrea Modrego
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Diego Carlero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Rocío Arranz
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| |
Collapse
|
20
|
Zhou K, Si Z, Ge P, Tsao J, Luo M, Zhou ZH. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat Commun 2022; 13:5980. [PMID: 36216930 PMCID: PMC9549855 DOI: 10.1038/s41467-022-33664-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhu Si
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Departments of Chemistry and Biochemistry and Biological Chemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Ming Luo
- The Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|