1
|
Honda-Okubo Y, Sajkov D, Wauchope B, Turner JV, Vote B, Antipov A, André G, Lebedin Y, Petrovsky N. Immunogenicity and safety study of a single dose of SpikoGen® vaccine as a heterologous or homologous intramuscular booster following a primary course of mRNA, adenoviral vector or recombinant protein COVID-19 vaccine in ambulatory adults. Vaccine 2025; 49:126744. [PMID: 39914274 DOI: 10.1016/j.vaccine.2025.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND SpikoGen® is a subunit recombinant Wuhan spike protein produced in insect cells and formulated with Advax-CpG55.2™ adjuvant. It is approved for adult and pediatric use in the Middle East. This study tested the safety and immunogenicity of SpikoGen® as a 3rd, 4th or 5th dose booster following a primary immunisation course of mRNA, adenovirus or SpikoGen® vaccine. METHODS The trial recruited participants who had received a previous doses of COVID-19 vaccine more than 3 months prior. Each received a single intramuscular booster dose of SpikoGen® vaccine. Spike and nuclear protein antibody levels were measured at 1 and 3 months post-booster, together with collection of data on SARS-CoV-2 breakthrough infections and symptoms of long COVID. RESULTS One-month post-booster, anti-spike IgG, sVNT, and pVNT levels were increased in all groups and there was ∼4-fold neutralizing antibodies against the heterologous Omicron BA.2 and BA.4/5 strains. The SpikoGen®-prime group had the highest levels of anti-spike IgG3, consistent with the Advax-CpG adjuvant driving IgG3 induction. There was no effect of age on the vaccine response. The booster dose was well tolerated with no vaccine-associated serious adverse events. Nine participants (9/74, 12.2 %) had a breakthrough SARS-CoV-2 infection between 2 weeks and 3 months post-booster. No long COVID was observed after breakthrough infections. Breakthrough infection was negatively correlated with baseline anti-nuclear protein IgG seropositivity. CONCLUSION A single SpikoGen® booster was well tolerated and stimulated cross- antibody responses against Omicron variants, regardless of the primary vaccine course received. With SARS-CoV-2 variants continuing to evolve, ongoing research is needed into optimum booster strategies. CLINICALTRIALS gov registration. NCT05542862.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/adverse effects
- Immunization, Secondary/methods
- Male
- Adult
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Middle Aged
- SARS-CoV-2/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Injections, Intramuscular
- Immunogenicity, Vaccine
- Adenoviridae/genetics
- Young Adult
- Immunoglobulin G/blood
- Genetic Vectors
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | - Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | - Bruce Wauchope
- Bedford Clinic, South Road, Adelaide, SA 5039, Australia
| | - Joseph V Turner
- School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia
| | - Brendan Vote
- Tasmanian Eye Institute Ltd, Launceston, Tasmania 7250, Australia
| | - Anna Antipov
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia
| | - Greiciely André
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia.
| |
Collapse
|
2
|
Jin Y, Yang F, Rank CM, Letovsky S, Ramge P, Jochum S. SARS-CoV-2 SPIKE Antibody Levels can Indicate Immuno-Resilience to Re-infection: a Real-World Study. Infect Dis Ther 2025; 14:229-243. [PMID: 39724513 PMCID: PMC11782789 DOI: 10.1007/s40121-024-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION The use of antibody titers against SARS-CoV-2, as a method of estimating subsequent infection following infection or vaccination, is unclear. Here, we investigate whether specific levels of antibodies, as markers of adaptive immunity, can serve to estimate the risk of symptomatic SARS-CoV-2 (re-) infection. METHODS In this real-world study, laboratory data from individuals tested for SARS-CoV-2 antibodies under routine clinical conditions were linked through tokenization to a United States medical insurance claims database to determine the risk of symptomatic/severe SARS-CoV-2 infection outcomes. Antibody titer levels were determined using the Elecsys® Anti-SARS-CoV-2 S assay. Study outcomes included the first symptomatic SARS-CoV-2 infection (per ICD-10 diagnostic codes, occurring ≥ 7 days post-antibody titer test), and severe SARS-CoV-2 infection, characterized by adverse outcomes including hospitalization, intensive care unit admission, intubation, mechanical ventilation, or death within 30 days of infection. All outcomes were assessed for 12 months following antibody measurement. Hazard ratios of subsequent symptomatic and severe infections were estimated using Cox regression with inverse probability weighting. RESULTS Of 268,844 individuals with antibody data (April 2021-June 2022), those with levels ≥ 0.8 to < 1,000 U/mL had a 42% reduced risk of symptomatic infection within 12 months, compared with < 0.8 U/mL (HR = 0.58, 95% CI [0.55, 0.61]). The risk decreased by 53% (HR = 0.47, 95% CI [0.45, 0.49]) with ≥ 1000 to < 2500 U/mL and by 62% (HR = 0.38 [0.36, 0.39]) for ≥ 2500 U/mL. Risk of severe SARS-CoV-2 outcomes was also reduced. Subgroup analyses showed a consistent association between antibody levels and infection risk, by immune status and age. Clinically meaningful thresholds of antibody titers varied between Delta and Omicron infections. CONCLUSION Higher antibody titer levels indicated reduced risk of developing symptomatic or severe COVID-19. Titers of ≥ 2500 U/mL indicated a 62-87% reduced infection risk. The quantitative determination of antibody titers allowed scaling of the correlate of risk to new variants.
Collapse
Affiliation(s)
- Yue Jin
- Roche Information Solutions, Roche Molecular Systems Inc, 2881 Scott Blvd, Santa Clara, CA, 95050, USA.
| | - Fei Yang
- Roche Information Solutions, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | | | | | - Peter Ramge
- Roche Diagnostics Solutions, Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Simon Jochum
- Roche Diagnostics GmbH, Nonnenwald 2, 81377, Penzberg, Germany.
| |
Collapse
|
3
|
Petrovsky N. Clinical development of SpikoGen®, an Advax-CpG55.2 adjuvanted recombinant spike protein vaccine. Hum Vaccin Immunother 2024; 20:2363016. [PMID: 38839044 PMCID: PMC11155708 DOI: 10.1080/21645515.2024.2363016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Research Department, Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia
- Research Department, Vaxine Pty Ltd, Warradale, Australia
| |
Collapse
|
4
|
Augello M, Wagenhäuser I, Krone M, Dauby N, Ferrara P, Sabbatucci M, Ruta S, Rezahosseini O, Velikov P, Gkrania-Klotsas E, Montes J, Franco-Paredes C, Goodman AL, Küçükkaya S, Tuells J, Harboe ZB, Epaulard O. Should SARS-CoV-2 serological testing be used in the decision to deliver a COVID-19 vaccine booster? A pro-con assessment. Vaccine 2024; 42:126184. [PMID: 39097440 DOI: 10.1016/j.vaccine.2024.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Anti-SARS-CoV-2 vaccination has saved millions of lives in the past few years. To maintain a high level of protection, particularly in at-risk populations, booster doses are recommended to counter the waning of circulating antibody levels over time and the continuous emergence of immune escape variants of concern (VOCs). As anti-spike serology is now widely available, it may be considered a useful tool to identify individuals needing an additional vaccine dose, i.e., to screen certain populations to identify those whose plasma antibody levels are too low to provide protection. However, no recommendations are currently available on this topic. We reviewed the relevant supporting and opposing arguments, including areas of uncertainty, and concluded that in most populations, spike serology should not be used to decide about the administration of a booster dose. The main counterarguments are as follows: correlates of protection are imperfectly characterised, essentially owing to the emergence of VOCs; spike serology has an intrinsic inability to comprehensively reflect the whole immune memory; and booster vaccines are now VOC-adapted, while the commonly available commercial serological assays explore antibodies against the original virus.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Isabell Wagenhäuser
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Manuel Krone
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Environmental health and occupational health, School of Public Health, Université Libre de Bruxelles (ULB), Brussel, Belgium
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan - Bicocca, Monza, Italy; IRCCS Istituto Auxologico Italiano, Laboratory of Public Health, Milan, Italy
| | | | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Omid Rezahosseini
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, Hillerød, Denmark
| | - Petar Velikov
- Clinic for Pediatric Infectious Diseases, Infectious Disease Hospital "Prof. Ivan Kirov", Sofia, Bulgaria; Department of Global Public Health, University of Tsukuba, Tsukuba, Japan
| | | | - Jose Montes
- Investigación en Resistencia Antibiótica (INVERA), Buenos Aires, Argentina; Fundación del Centro de Estudios Infectológicos (FUNCEI), Buenos Aires, Argentina
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA; Hospital Infantil de Mexico, Mexico City, Mexico
| | - Anna L Goodman
- Centre for Infection Diagnostics research, Department of Infection at at King's College London and Guys' and St Thomas NHS Foundation trust, London, UK
| | - Sertaç Küçükkaya
- Department of Medical Microbiology, Istanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Jose Tuells
- Departamento de Enfermería Comunitaria, Medicina Preventiva y Salud Pública e historia de la ciencia, Universidad de Alicante, Alicante, Spain
| | | | - Olivier Epaulard
- Université Grenoble Alpes, Infectiologie, CHU Grenoble Alpes, Grenoble, France.
| |
Collapse
|
5
|
Zhao XJ, Li M, Zhang S, Li K, Wei WQ, Chen JJ, Xu Q, Lv CL, Liu T, Wang GL, Fang LQ. Epidemiological and immunological characteristics of middle-aged and elderly people in housing estates after Omicron BA.5 wave in Jinan, China. Heliyon 2024; 10:e38382. [PMID: 39398026 PMCID: PMC11467590 DOI: 10.1016/j.heliyon.2024.e38382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
A great number of COVID-19 patients was caused by Omicron BA.5 subvariant between December 2022 and January 2023 after the end of the zero-COVID-19 policy in China. In this study, we clarified the epidemiological and immunological characteristics of 457 enrolled middle-aged and elderly population in two housing estates after Omicron BA.5 wave. A total of 89.9 % (411/457) individuals have suffered Omicron BA.5 infection, among which 78.1 % (321/411) were symptomatic. The elderly patients were more likely to show fatigue and had longer symptomatic period than that of middle-aged patients post Omicron BA.5 infection. Omicron XBB and BA.2.86 subvariants extensively escaped the immunity elicited by Omicron BA.5 infection. The level of neutralizing antibody was mostly affected by vaccination doses rather than underlying disease status in these participants. It is very important to strengthen the epidemiological investigation and immune resistance assessment among elderly population for control of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ke Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Juhl AK, Dietz LL, Søgaard OS, Reekie J, Nielsen H, Johansen IS, Benfield T, Wiese L, Stærke NB, Jensen TØ, Olesen R, Iversen K, Fogh K, Bodilsen J, Madsen LW, Lindvig SO, Raben D, Andersen SD, Hvidt AK, Andreasen SR, Baerends EAM, Lundgren J, Østergaard L, Tolstrup M. Longitudinal Evaluation of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Immunity Over 2 Years Following Vaccination and Infection. J Infect Dis 2024; 230:e605-e615. [PMID: 38687181 PMCID: PMC11420770 DOI: 10.1093/infdis/jiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Within a year of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine-induced immunity led to implementation of additional vaccine boosters. METHODS This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2-vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 spike-specific T cells were determined after each vaccine dose using the activation-induced marker assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS We found a significant increase in SARS-CoV-2 spike-specific CD4+ and CD8+ T-cell responses following the third dose of a SARS-CoV-2 messenger RNA vaccine as well as enhanced CD8+ T-cell responses after the fourth dose. Furthermore, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSIONS Our findings highlight the boosting effect on T-cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T-cell immunity, although with reduced levels in the elderly.
Collapse
Affiliation(s)
- Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark, Odense
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital–Amager and Hvidovre, Hvidovre
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Tomas Østergaard Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Kasper Iversen
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Kamille Fogh
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital
- Department of Regional Health Research, University of Southern Denmark, Odense
| | | | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | | | | | | | | | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
- Department of Infectious Diseases, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| |
Collapse
|
7
|
Liu X, DeVries AC. Prediction of daily new COVID-19 cases - Difficulties and possible solutions. PLoS One 2024; 19:e0307092. [PMID: 39178243 PMCID: PMC11343419 DOI: 10.1371/journal.pone.0307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/30/2024] [Indexed: 08/25/2024] Open
Abstract
Epidemiological compartmental models, such as SEIR (Susceptible, Exposed, Infectious, and Recovered) models, have been generally used in analyzing epidemiological data and forecasting the trajectory of transmission of infectious diseases such as COVID-19. Experience shows that accurately forecasting the trajectory of COVID-19 transmission curve is a big challenge for researchers in the field of epidemiological modeling because multiple unquantified factors can affect the trajectory of COVID-19 transmission. In the past years, we used a new compartmental model, l-i SEIR model, to analyze the COVID-19 transmission trend in the United States. Unlike the conventional SEIR model and the delayed SEIR model that use or partially use the approximation of temporal homogeneity, the l-i SEIR model takes into account chronological order of infected individuals in both latent (l) period and infectious (i) period, and thus improves the accuracy in forecasting the trajectory of transmission of infectious diseases, especially during periods of rapid rise or fall in the number of infections. This paper describes (1) how to use the new SEIR model (a mechanistic model) combined with fitting methods to simulate or predict trajectory of COVID-19 transmission, (2) how social interventions and new variants of COVID-19 significantly change COVID-19 transmission trends by changing transmission rate coefficient βn, the fraction of susceptible people (Sn/N), and the reinfection rate, (3) why accurately forecasting COVID-19 transmission trends is difficult, (4) what are the strategies that we have used to improve the forecast outcome and (5) what are some successful examples that we have obtained.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Medicine, Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University Health Science Center, Morgantown, West Virginia, United States of America
| | - A. Courtney DeVries
- Department of Medicine, Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University Health Science Center, Morgantown, West Virginia, United States of America
| |
Collapse
|
8
|
Seekircher L, Astl M, Tschiderer L, Wachter GA, Penz J, Pfeifer B, Huber A, Afonso PM, Gaber M, Schennach H, Siller A, Willeit P. Anti-Spike IgG antibodies as correlates of protection against SARS-CoV-2 infection in the pre-Omicron and Omicron era. J Med Virol 2024; 96:e29839. [PMID: 39105391 DOI: 10.1002/jmv.29839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Anti-Spike IgG antibodies against SARS-CoV-2, which are elicited by vaccination and infection, are correlates of protection against infection with pre-Omicron variants. Whether this association can be generalized to infections with Omicron variants is unclear. We conducted a retrospective cohort study with 8457 blood donors in Tyrol, Austria, analyzing 15,340 anti-Spike IgG antibody measurements from March 2021 to December 2022 assessed by Abbott SARS-CoV-2 IgG II chemiluminescent microparticle immunoassay. Using a Bayesian joint model, we estimated antibody trajectories and adjusted hazard ratios for incident SARS-CoV-2 infection ascertained by self-report or seroconversion of anti-Nucleocapsid antibodies. At the time of their earliest available anti-Spike IgG antibody measurement (median November 23, 2021), participants had a median age of 46.0 years (IQR 32.8-55.2), with 45.3% being female, 41.3% having a prior SARS-CoV-2 infection, and 75.5% having received at least one dose of a COVID-19 vaccine. Among 6159 participants with endpoint data, 3700 incident SARS-CoV-2 infections with predominantly Omicron sublineages were recorded over a median of 8.8 months (IQR 5.7-12.4). The age- and sex-adjusted hazard ratio for SARS-CoV-2 associated with having twice the anti-Spike IgG antibody titer was 0.875 (95% credible interval 0.868-0.881) overall, 0.842 (0.827-0.856) during 2021, and 0.884 (0.877-0.891) during 2022 (all p < 0.001). The associations were similar in females and males (Pinteraction = 0.673) and across age (Pinteraction = 0.590). Higher anti-Spike IgG antibody titers were associated with reduced risk of incident SARS-CoV-2 infection across the entire observation period. While the magnitude of association was slightly weakened in the Omicron era, anti-Spike IgG antibody continues to be a suitable correlate of protection against newer SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lisa Seekircher
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Astl
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Lena Tschiderer
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor A Wachter
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Julia Penz
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Bernhard Pfeifer
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, Innsbruck, Austria
- Division for Healthcare Network and Telehealth, UMIT-Private University for Health Sciences, Medical Informatics and Technology GmbH, Hall, Austria
| | - Andreas Huber
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Pedro M Afonso
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Manfred Gaber
- Blood donor service Tyrol of the Austrian Red Cross, Rum, Austria
| | - Harald Schennach
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Anita Siller
- Central Institute for Blood Transfusion and Immunology, University Hospital Innsbruck, Tirol Kliniken GmbH, Innsbruck, Austria
| | - Peter Willeit
- Institute of Clinical Epidemiology, Public Health, Health Economics, Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Liu WD, Lin MS, Sun HY, Shih MC, Chuang YC, Huang YS, Lin KY, Li GC, Wu PY, Chen LY, Liu WC, Su YC, He PC, Chen YT, Lin CY, Cheng YC, Yao Y, Yeh YC, Liu CC, Pan MY, Luo YZ, Chang HY, Wang JT, Sheng WH, Hsieh SM, Chang SY, Hung CC. Effectiveness and evolution of anti-SARS-CoV-2 spike protein titers after three doses of COVID-19 vaccination in people with HIV. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:554-563. [PMID: 38429206 DOI: 10.1016/j.jmii.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Real-world vaccine effectiveness following the third dose of vaccination against SARS-CoV-2 remains less investigated among people with HIV (PWH). METHODS PWH receiving the third dose of BNT162b2 and mRNA-1273 (either 50- or 100-μg) were enrolled. Participants were followed for 180 days until the fourth dose of COVID-19 vaccination, SARS-CoV-2 infection, seroconversion of anti-nucleocapsid IgG, death, or loss to follow-up. Anti-spike IgG was determined every 1-3 months. RESULTS Of 1427 participants undergoing the third-dose COVID-19 vaccination, 632 (44.3%) received 100-μg mRNA-1273, 467 (32.8%) 50-μg mRNA-1273, and 328 (23.0%) BNT162b2 vaccine and the respective rate of SARS-CoV-2 infection or seroconversion of anti-nucleocapsid IgG was 246.1, 280.8 and 245.2 per 1000 person-months of follow-up (log-rank test, p = 0.28). Factors associated with achieving anti-S IgG titers >1047 BAU/mL included CD4 count <200 cells/mm3 (adjusted odds ratio [aOR], 0.11; 95% CI, 0.04-0.31), plasma HIV RNA >200 copies/mL (aOR, 0.27; 95% CI, 0.09-0.80), having achieved anti-spike IgG >141 BAU/mL within 3 months after primary vaccination (aOR, 3.69; 95% CI, 2.68-5.07), receiving BNT162b2 vaccine as the third dose (aOR, 0.20; 95% CI, 0.10-0.41; reference, 100-μg mRNA-1273), and having previously received two doses of mRNA vaccine in primary vaccination (aOR, 2.46; 95% CI, 1,75-3.45; reference, no exposure to mRNA vaccine). CONCLUSIONS PWH receiving different types of the third dose of COVID-19 vaccine showed similar vaccine effectiveness against SARS-CoV-2 infection. An additional dose with 100-μg mRNA-1273 could generate a higher antibody response than with 50-μg mRNA-1273 and BNT162b2 vaccine.
Collapse
Affiliation(s)
- Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Meng-Shuan Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Chieh Shih
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kuan-Yin Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Guei-Chi Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pei-Ying Wu
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ya Chen
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wen-Chun Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ching Su
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pu-Chi He
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chia-Yi Lin
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Chen Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi Yao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Chen Yeh
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chia-Chi Liu
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Mei-Yan Pan
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Zhen Luo
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hsi-Yen Chang
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan; Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhao XJ, Liu XL, Liang YM, Zhang S, Liu T, Li LB, Jiang WG, Chen JJ, Xu Q, Lv CL, Jiang BG, Kou ZQ, Wang GL, Fang LQ. Epidemiological characteristics and antibody kinetics of elderly population with booster vaccination following both Omicron BA.5 and XBB waves in China. J Med Virol 2024; 96:e29640. [PMID: 38699969 DOI: 10.1002/jmv.29640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao-Lin Liu
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yu-Min Liang
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Ti Liu
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Li-Bo Li
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Wen-Guo Jiang
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Zeng-Qiang Kou
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Swadźba J, Panek A, Wąsowicz P, Anyszek T, Martin E. High Concentration of Anti-SARS-CoV-2 Antibodies 2 Years after COVID-19 Vaccination Stems Not Only from Boosters but Also from Widespread, Often Unrecognized, Contact with the Virus. Vaccines (Basel) 2024; 12:471. [PMID: 38793722 PMCID: PMC11125768 DOI: 10.3390/vaccines12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This study follows 99 subjects vaccinated with Pfizer/BioNTech COVID-19 vaccines over two years, with particular focus on the last year of observation (between days 360 and 720). The response to the vaccination was assessed with Diasorin's SARS-CoV-2 TrimericSpike IgG. Screening for SARS-CoV-2 infection was performed with Abbott's SARS-CoV-2 Nucleocapsid IgG immunoassay. Data from questionnaires were also analyzed. Two years after the first vaccine dose administration, 100% of the subjects were positive for anti-spike SARS-CoV-2 IgG and the median antibody level was still high (3600 BAU/mL), dropping insignificantly over the last year. Simultaneously, a substantial increase in seropositivity in anti-nucleocapsid SARS-CoV-2 IgG was noted, reaching 33%. There was no statistically significant agreement between anti-N seropositivity and reported COVID-19. Higher anti-spike concentrations and lower COVID-19 incidence was seen in the older vaccinees. It was noted that only subjects boosted between days 360 and 720 showed an increase in anti-spike IgG concentrations. The higher antibody concentrations (median 7440 BAU/mL) on day 360 were noted in participants not infected over the following year. Vaccination, including booster administrations, and natural, even unrecognized, contact with SARS-CoV-2 entwined two years after the primary vaccination, leading to high anti-spike antibody concentrations.
Collapse
Affiliation(s)
- Jakub Swadźba
- Medical Faculty, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (J.S.); (T.A.)
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Andrzej Panek
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Paweł Wąsowicz
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Tomasz Anyszek
- Medical Faculty, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (J.S.); (T.A.)
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Emilia Martin
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| |
Collapse
|
12
|
van Leeuwen LPM, Grobben M, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk FL, van Gils MJ, de Vries RD, Dalm VASH. Immunogenicity of COVID-19 booster vaccination in IEI patients and their one year clinical follow-up after start of the COVID-19 vaccination program. Front Immunol 2024; 15:1390022. [PMID: 38698851 PMCID: PMC11063285 DOI: 10.3389/fimmu.2024.1390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.
Collapse
Affiliation(s)
- Leanne P. M. van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Pauline M. Ellerbroek
- Department of Internal Medicine, Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Judith Potjewijd
- Department of Internal Medicine, Division Clinical Immunology, Maastricht UMC, Maastricht, Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
13
|
Jaiswal SJ, Gadaleta M, Quer G, Radin JM, Waalen J, Ramos E, Pandit J, Owens RL. Objectively measured peri-vaccination sleep does not predict COVID-19 breakthrough infection. Sci Rep 2024; 14:4655. [PMID: 38409137 PMCID: PMC10897487 DOI: 10.1038/s41598-024-53743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Prior studies have shown that sleep duration peri-vaccination influences an individual's antibody response. However, whether peri-vaccination sleep affects real-world vaccine effectiveness is unknown. Here, we tested whether objectively measured sleep around COVID-19 vaccination affected breakthrough infection rates. DETECT is a study of digitally recruited participants who report COVID-19-related information, including vaccination and illness data. Objective sleep data are also recorded through activity trackers. We compared the impact of sleep duration, sleep efficiency, and frequency of awakenings on reported breakthrough infection after the 2nd vaccination and 1st COVID-19 booster. Logistic regression models were created to examine if sleep metrics predicted COVID-19 breakthrough infection independent of age and gender. Self-reported breakthrough COVID-19 infection following 2nd COVID-19 vaccination and 1st booster. 256 out of 5265 individuals reported a breakthrough infection after the 2nd vaccine, and 581 out of 2583 individuals reported a breakthrough after the 1st booster. There was no difference in sleep duration between those with and without breakthrough infection. Increased awakening frequency was associated with breakthrough infection after the 1st booster with 3.01 ± 0.65 awakenings/hour in the breakthrough group compared to 2.82 ± 0.65 awakenings/hour in those without breakthrough (P < 0.001). Cox proportional hazards modeling showed that age < 60 years (hazard ratio 2.15, P < 0.001) and frequency of awakenings (hazard ratio 1.17, P = 0.019) were associated with breakthrough infection after the 1st booster. Sleep duration was not associated with breakthrough infection after COVID vaccination. While increased awakening frequency during sleep was associated with breakthrough infection beyond traditional risk factors, the clinical implications of this finding are unclear.
Collapse
Affiliation(s)
| | | | - Giorgio Quer
- The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jill Waalen
- The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Ramos
- The Scripps Research Institute, La Jolla, CA, USA
| | - Jay Pandit
- The Scripps Research Institute, La Jolla, CA, USA
| | - Robert L Owens
- University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
15
|
Christophorou E, Nilsson AC, Petersen I, Lindvig SO, Davidsen JR, Abazi R, Poulsen MK, Pedersen RM, Justesen US, Johansen NE, Bistrup C, Madsen LW, Johansen IS. Humoral antibody response following mRNA vaccines against SARS-CoV-2 in solid organ transplant recipients; a status after a fifth and bivalent vaccine dose. Front Immunol 2023; 14:1270814. [PMID: 38090591 PMCID: PMC10711048 DOI: 10.3389/fimmu.2023.1270814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background In solid organ transplant (SOT) recipients, the humoral response following COVID-19 vaccination is reduced, as a result of their immunosuppressed treatment. In this study, we investigated antibody concentrations after booster vaccinations until the fifth dose, the latter by monovalent or bivalent BA1 or BA4/5 vaccines. In addition, we evaluated the efficacy of vaccination by recording breakthrough infections, hospitalizations, and deaths. Method This prospective cohort study included 438 SOT recipients (>18 years) vaccinated with mRNA vaccines against COVID-19 from January 2021 until March 2023. Blood samples were drawn before and after each vaccination and tested for SARS-CoV-2 spike RBD IgG antibodies with the lowest and highest cut-off at 7.1 and 5,680 BAU/mL, respectively. Vaccine information, breakthrough infections, and hospitalizations were collected from the medical records. Results Most participants received BNT162b2 and 61.4% received five vaccine doses. The response proportion in SOT recipients increased from 86.7% after the fourth dose to 93.0% following the fifth dose. Antibody concentration decreased with 142.7 BAU/mL between the third and fourth dose (median 132 days, Quartile 1: 123, Quartile 3: 148) and 234.3 BAU/mL between the fourth and fifth (median 250 days, Quartile 1: 241, Quartile 3: 262) dose among those without breakthrough infection (p=0.34). When comparing the Omicron BA.1 or Omicron BA.4/BA.5 adapted vaccines, no significant differences in antibody concentration were found, but 20.0% of SOT recipients receiving a monovalent fifth vaccine dose had a breakthrough infection compared to 4.0% and 7.9% among those who received BA.1 and BA.4/BA.5 adapted vaccines, respectively (p=0.04). Since January 2021, 240 (54.8%) participants had a breakthrough infection, and 22 were hospitalized, but no deaths were observed. Conclusions The fifth COVID-19 vaccine dose raised antibody response to 93.0% of the study population. Additional booster doses, as well as bivalent vaccines, led to higher levels of antibody concentration in SOT recipients. We found a lower incidence of breakthrough infections among SOT recipients after receiving a bivalent vaccine as a fifth dose compared to those receiving a monovalent dose. Antibody concentrations did not wane when the time between doses was prolonged from four to eight months.
Collapse
Affiliation(s)
- Emma Christophorou
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Inge Petersen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper R. Davidsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
| | - Rozeta Abazi
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Mikael K. Poulsen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Rune M. Pedersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Ulrik S. Justesen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Nicolai E. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Lillebaelt Hospital, Kolding, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Hvidt AK, Guo H, Andersen R, Lende SSF, Vibholm LK, Søgaard OS, Schleimann MH, Russell V, Cheung AMW, Paramithiotis E, Olesen R, Tolstrup M. Long-term humoral and cellular immunity after primary SARS-CoV-2 infection: a 20-month longitudinal study. BMC Immunol 2023; 24:45. [PMID: 37974069 PMCID: PMC10652616 DOI: 10.1186/s12865-023-00583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2 remains a world-wide health issue. SARS-CoV-2-specific immunity is induced upon both infection and vaccination. However, defining the long-term immune trajectory, especially after infection, is limited. In this study, we aimed to further the understanding of long-term SARS-CoV-2-specific immune response after infection. RESULTS We conducted a longitudinal cohort study among 93 SARS-CoV-2 recovered individuals. Immune responses were continuously monitored for up to 20 months after infection. The humoral responses were quantified by Spike- and Nucleocapsid-specific IgG levels. T cell responses to Spike- and non-Spike epitopes were examined using both intercellular cytokine staining (ICS) assay and Activation-Induced marker (AIM) assay with quantification of antigen-specific IFNγ production. During the 20 months follow-up period, Nucleocapsid-specific antibody levels and non-Spike-specific CD4 + and CD8 + T cell frequencies decreased in the blood. However, a majority of participants maintained a durable immune responses 20 months after infection: 59% of the participants were seropositive for Nucleocapsid-specific IgG, and more than 70% had persisting non-Spike-specific T cells. The Spike-specific response initially decreased but as participants were vaccinated against COVID-19, Spike-specific IgG levels and T cell frequencies were boosted reaching similar or higher levels compared to 1 month post-infection. The trajectory of infection-induced SARS-CoV-2-specific immunity decreases, but for the majority of participants it persists beyond 20 months. The T cell response displays a greater durability. Vaccination boosts Spike-specific immune responses to similar or higher levels as seen after primary infection. CONCLUSIONS For most participants, the response persists 20 months after infection, and the cellular response appears to be more long-lived compared to the circulating antibody levels. Vaccination boosts the S-specific response but does not affect the non-S-specific response. Together, these findings support the understanding of immune contraction, and with studies showing the immune levels required for protection, adds to the knowledge of durability of protection against future SARS-CoV-2.
Collapse
Affiliation(s)
- Astrid Korning Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Rebecca Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Sofie Frank Lende
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line Khalidan Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne Hoegsbjerg Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Victoria Russell
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Angela Man-Wei Cheung
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Novak F, Bajwa HM, Coia JE, Nilsson AC, Nielsen C, Holm DK, Østergaard K, Hvidt MVM, Byg KE, Johansen IS, Mittl K, Rowles W, Zamvil SS, Bove R, Sabatino JJ, Sejbaek T. Low protection from breakthrough SARS-CoV-2 infection and mild disease course in ocrelizumab-treated patients with multiple sclerosis after three mRNA vaccine doses. J Neurol Neurosurg Psychiatry 2023; 94:934-937. [PMID: 37185261 PMCID: PMC10579504 DOI: 10.1136/jnnp-2022-330757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Our study investigated the rate of breakthrough SARS-CoV-2 infection and clinical outcomes in a cohort of multiple sclerosis (MS) patients who were treated with the anti-CD20 monoclonal antibody (Ab), ocrelizumab, before first, second and third BNT162b2 mRNA vaccinations. To correlate clinical outcomes with the humoral and cellular response. METHODS The study was a prospective non-randomised controlled multicentre trial observational study. Participants with a diagnosis of MS who were treated for at least 12 months with ocrelizumab prior to the first BNT162b2 mRNA vaccination were prospectively followed up from January 2021 to June 2022. RESULTS Out of 54 participants, 32 (59.3%) developed a positive SARS-CoV-2 PCR test in the study period. Mild infection was observed in all infected participants. After the third vaccination, the non-infected participants had higher mean Ab levels compared to the infected participants (54.3 binding antibody unit (BAU)/mL vs 26.5 BAU/mL, p=0.030). The difference in reactivity between spike-specific CD4+ and CD8+ T lymphocytes in the two groups was not significant. CONCLUSION AND RELEVANCE The study results demonstrate rates of 59% in breakthrough infections after the third SARS-CoV-2 mRNA vaccination in ocrelizumab-treated patients with MS, without resulting in critical disease courses. These findings suggest the need for continuous development of prophylactic treatments when proved important in the protection of severe breakthrough infection.
Collapse
Affiliation(s)
- Frederik Novak
- Neurology, Southwest Jutland Hospital, Esbjerg, Region of Southern Denmark, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Hamza Mahmood Bajwa
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Southwest Jutland Hospital, Esbjerg, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Dorte K Holm
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | | | - Keld-Erik Byg
- Department of Rheumatology, Odense Universitetshospital, Odense, Denmark
| | - Isik S Johansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Kristen Mittl
- Department of Neurology, University California San Francisco, San Francisco, California, USA
| | - William Rowles
- Department of Neurology, University California San Francisco, San Francisco, California, USA
| | - Scott S Zamvil
- Department of Neurology, University California San Francisco, San Francisco, California, USA
| | - Riley Bove
- Department of Neurology, Multiple Sclerosis Center at UCSF, San Francisco, California, USA
| | - Joseph J Sabatino
- Department of Neurology, University California San Francisco, San Francisco, California, USA
| | - Tobias Sejbaek
- Department of Neurology, Southwest Jutland Hospital, Esbjerg, Denmark
- Department of Regional Health Research, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
18
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Crick COVID Immunity Pipeline, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S, On behalf of the PITCH Consortium. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Tani N, Ikematsu H, Goto T, Kondo S, Gondo K, Fujiyoshi N, Minami J, Harada Y, Nagano S, Horiuchi T, Kuwano H, Akashi K, Shimono N, Chong Y. Correlation between specific antibody response to wild-type BNT162b2 booster and the risk of breakthrough infection with omicron variants: Impact of household exposure in hospital healthcare workers. Vaccine 2023; 41:6672-6678. [PMID: 37775465 DOI: 10.1016/j.vaccine.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The emergence of omicron variants exhibiting antigenic changes has led to an increase in breakthrough infection among individuals with a wild-type SARS-CoV-2 vaccine booster. The correlation between post-booster spike-specific antibodies and omicron infection risk remains unclear. METHODS This prospective cohort study included SARS-CoV-2-naive healthcare workers with three-dose BNT162b2. Post-booster spike-specific IgG and interferon-γ levels were measured. Breakthrough infection was documented during a 10-month omicron-predominant period. Household and healthcare contacts were followed to identify subsequent infections. The IgG titers were additionally measured at the end of follow-up, and the titers at exposure were estimated from the two-point titers. RESULTS Of 333 participants, 89 developed infection, of whom 37 (41.6 %) were household contacts. Kaplan-Meier curves indicated that higher IgG titers were significantly correlated with lower cumulative infection incidence (p = 0.029), whereas the interferon-γ levels were not (p = 0.926). Multivariate Cox analysis showed that increasing IgG titers were associated with a reduced hazard ratio (HR) of 0.26 (95% CI, 0.12-0.55). Household exposure posed a greater infection risk than healthcare exposure (HRs, 11.24 [6.88-18.40] vs. 2.82 [1.37-5.44]). The difference in geometric mean IgG titers of infected and uninfected participants was significant among household contacts (20,244 AU/mL vs. 13,842 AU/mL, p = 0.031). Estimation of IgG titers at exposure showed a significantly higher infection incidence in those exposed with titers of <3,000 AU/mL than in those with higher titers (79.2 % vs. 32.3 %, p < 0.001). CONCLUSIONS Spike-specific antibodies induced by a wild-type SARS-CoV-2 vaccine booster are suggested to be effective in protecting against omicron infection. Household exposure would be a significant source of infection for hospital healthcare workers.
Collapse
Affiliation(s)
- Naoki Tani
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | - Takeyuki Goto
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoko Kondo
- Department of Nursing, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Kei Gondo
- Clinical Laboratory, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Naoko Fujiyoshi
- Department of Infectious Diseases, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Junya Minami
- Department of Infectious Diseases, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Yukiko Harada
- Department of Infectious Diseases, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Sukehisa Nagano
- Department of Neurology, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | | | | | - Koichi Akashi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Nobuyuki Shimono
- Center for the Study of Global Infection, Kyushu University Hospital, 812-8582 Fukuoka, Japan
| | - Yong Chong
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
20
|
Karl T, Schuster A, Stangassinger LM, Stiboller T, Cadamuro J, Oostingh GJ. Factors Affecting SARS-CoV-2 IgG Production after Vaccination and/or Disease: A Large-Scale Seroprevalence Study. Vaccines (Basel) 2023; 11:1615. [PMID: 37897017 PMCID: PMC10611123 DOI: 10.3390/vaccines11101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at identifying factors influencing SARS-CoV-2-specific IgG antibody levels after vaccination and/or infection. Between January 2022 and March 2023, 2000 adults (≥18 years, Salzburg, Austria) participated in this population-based seroprevalence study by providing 3 mL of blood to detect SARS-CoV-2-specific IgG antibodies using an anti-SARS-CoV-2 IgG quantitative assay and by completing a self-designed questionnaire including anthropometric factors, vaccination information, and medical history. For 77 of the participants, a time-course study up to 24 weeks post vaccination or quarantine end was performed. Convalescent-only subjects had the lowest median antibody titer (65.6 BAU/mL) compared to vaccinated and hybrid immunized subjects (p-value < 0.0001) The type of vaccine as well as vaccine combinations significantly influenced the levels of SARS-CoV-2 spike-protein-specific IgG, ranging from a median antibody level of 770.5 BAU/mL in subjects who were vaccinated only to 3020.0 BAU/mL in hybrid immunized subjects (p-value < 0.0001). Over time, a significant decline in the levels of neutralizing antibodies was found. Depending on the subpopulation analyzed, further significant influencing factors included sex assigned at birth, disease severity, chronic diseases, and medication. A hybrid immunization resulted in more robust immune responses. Nevertheless, there were multiple other factors impacting these responses. This knowledge should be included in future vaccination strategies and serve as a guide in the development of personalized medicine.
Collapse
Affiliation(s)
- Tanja Karl
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
- Research Program of Medical Sciences, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Schuster
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Lea Maria Stangassinger
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Tanja Stiboller
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Gertie Janneke Oostingh
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| |
Collapse
|
21
|
Liu S, Wang P, Shi X, Weng T, Zhong J, Zhang X, Qu J, Chen L, Xu Q, Meng X, Xiong H, Wu D, Fang D, Peng B, Zhang D. Maternal antibody transfer rate of vaccination against SARS-CoV-2 before or during early pregnancy and its protective effectiveness on offspring. J Med Virol 2023; 95:e29125. [PMID: 37800607 DOI: 10.1002/jmv.29125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
This study focuses on maternal antibody transfer following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) before or during early pregnancy and its potential protective effects on infants, providing scientific evidence for vaccination strategies. This prospective study tested the samples for SARS-CoV-2 IgG antibody titers and neutralizing capacity and tracked the infections after birth. Perform multivariate analysis of factors influencing antibody transfer rate, newborn antibody titers, and infant infection. Total 87.1% (122/140) women received coronavirus disease 2019 (COVID-19) vaccine before or during early pregnancy, and 28 of them had breakthrough infection. The maternal and neonatal IgG positive rates at delivery were 60.7% (85/140) and 60.8% (87/143), respectively. A positive correlation was found between neonatal and maternal IgG antibody titers. Compared with the median IgG antibody transfer rate of infected pregnant women, that of vaccinated but not infected pregnant women was higher (1.21 versus: 1.53 [two doses], 1.71 [three doses]). However, neonatal IgG antibodies were relatively low (174.91 versus: 0.99 [two doses], 8.18 [three doses]), and their neutralizing capacity was weak. The overall effectiveness of maternal vaccination in preventing infant infection was 27.0%, and three doses had higher effectiveness than two doses (64.3% vs. 19.6%). Multivariate analysises showed that in vaccination group women receiving three doses or in infection group women with longer interval between infection and delivery had a higher antibody transfer rate and neonatal IgG antibody titer. More than half of women vaccinated before or during early pregnancy can achieve effective antibody transfer to newborns. However, the neonatal IgG antibody titer is low and has a weak neutralizing capacity, providing limited protection to infants.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Xiaolu Shi
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tingsong Weng
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Zhang
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Qu
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Long Chen
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qing Xu
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Meng
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Husheng Xiong
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dawei Wu
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dajun Fang
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Bo Peng
- Department of Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dingmei Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Baerends EA, Hvidt AK, Reekie J, Søgaard OS, Stærke NB, Raben D, Nielsen H, Petersen KT, Juhl MR, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Knudsen LS, Iversen MB, Benfield T, Iversen KK, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Fischer TK, Erikstrup C, Valentiner-Branth P, Lundgren J, Østergaard L, Tolstrup M. SARS-CoV-2 vaccine-induced antibodies protect against Omicron breakthrough infection. iScience 2023; 26:107621. [PMID: 37682631 PMCID: PMC10481355 DOI: 10.1016/j.isci.2023.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV-2 Omicron quickly spread globally, also in regions with high vaccination coverage, emphasizing the importance of exploring the immunological requirements for protection against Omicron breakthrough infection. The test-negative matched case-control study (N = 964) characterized Omicron breakthrough infections in triple-vaccinated individuals from the ENFORCE cohort. Within 60 days before a PCR test spike-specific IgG levels were significantly lower in cases compared to controls (GMR [95% CI] for BA.2: 0.83 [0.73-0.95], p = 0.006). Multivariable logistic regression showed significant associations between high antibody levels and lower odds of infection (aOR [95% CI] for BA.2 spike-specific IgG: 0.65 [0.48-0.88], p = 0.006 and BA.2 ACE2-blocking antibodies: 0.46 [0.30-0.69], p = 0.0002). A sex-stratified analysis showed more pronounced associations for females than males. High levels of vaccine-induced antibodies provide partial protection against Omicron breakthrough infections. This is important knowledge to further characterize a threshold for protection against new variants and to estimate the necessity and timing of booster vaccination.
Collapse
Affiliation(s)
- Eva A.M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lene S. Knudsen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B. Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea K. Fischer
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hillerød, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Jing X, Han M, Wang X, Zhou L. SARS-CoV-2 vaccine breakthrough infection in the older adults: a meta-analysis and systematic review. BMC Infect Dis 2023; 23:577. [PMID: 37667195 PMCID: PMC10478381 DOI: 10.1186/s12879-023-08553-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Corona Virus Disease 2019 (COVID-19) mRNA vaccine effectiveness (VE) has recently declined, and reports about COVID-19 breakthrough infection have increased. We aimed to conduct a meta-analysis on population-based studies of the prevalence and incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection amongst older adults worldwide. METHODS Studies from PubMed, Embase, Cochrane Library, and Web of Science were systematically screened to determine the prevalence and incidence of SARS-CoV-2 breakthrough infection in older adults from inception to November 2, 2022. Our meta-analysis included 30 studies, all published in English. Pooled estimates were calculated using a random-effect model through the inverse variance method. Publication bias was tested through funnel plots and Egger's regression test, and sensitivity analyses were performed to confirm the robustness of the results. This research was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Thirty publications were included in this meta-analysis (17 on prevalence, 17 on incidence, and 4 on both). The pooled prevalence of COVID-19 breakthrough infection among older adults was 7.7 per 1,000 persons (95% confidence interval [95%CI] 4.0-15.0). At the same time, the pooled incidence was 29.1 per 1000 person-years (95%CI 15.2-55.7). CONCLUSIONS This meta-analysis provides estimates of prevalence and incidence in older adults. We concluded that the prevalence and incidence of SARS-CoV-19 breakthrough infection in older people was low. The prevalence and incidence of breakthrough infection admitted to hospital, severe-critical, and deathly was significantly lower. Otherwise, there was considerable heterogeneity among estimates in this study, which should be considered when interpreting the results.
Collapse
Affiliation(s)
- Xiaohui Jing
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China.
| | - Menglin Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| | - Xiaoxuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| | - Li Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| |
Collapse
|
24
|
Roy A, Saade C, Josset L, Clément B, Morfin F, Destras G, Valette M, Icard V, Billaud G, Oblette A, Debombourg M, Garrigou C, Brengel-Pesce K, Generenaz L, Saker K, Hernu R, Pozzetto B, Lina B, Trabaud MA, Trouillet-Assant S, Bal A. Determinants of protection against SARS-CoV-2 Omicron BA.1 and Delta infections in fully vaccinated outpatients. J Med Virol 2023; 95:e28984. [PMID: 37503561 DOI: 10.1002/jmv.28984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-receptor binding domain (RBD) IgG levels and interferon-gamma (IFN-γ) release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The frequency of Omicron BA.1 infection in patients with anti-RBD IgG concentrations ≥1000 binding antibody units (BAU)/mL was 51.0% and decreased to 34.4% in patients with concentrations ≥3000 BAU/mL. For Delta infection, the frequency of infection was significantly lower when applying the same anti-RBD IgG thresholds (13.3% and 5.3% respectively, p < 0.05). In addition, individuals in the hybrid immunity group had a 4.5 times lower risk of Delta infection compared to the homologous vaccination group (aOR = 0.22, 95% CI: [0.05-0.64]. No significant decrease in the risk of Omicron BA.1 infection was observed in the hybrid group compared to the homologous group, but the risk decreased within the hybrid group as anti-RBD IgG titers increased (aOR = 0.08, 95% CI: [0.01-0.41], p = 0.008). IFN-γ release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p > 0.05). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant (www.clinicaltrials.gov; ID NCT05060939).
Collapse
Affiliation(s)
- Alvaro Roy
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carla Saade
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Laurence Josset
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Bénédicte Clément
- Services des urgences, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Grégory Destras
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Martine Valette
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Vinca Icard
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Geneviéve Billaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Antoine Oblette
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Marion Debombourg
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Christine Garrigou
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Laurence Generenaz
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Kahina Saker
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Romain Hernu
- Services des urgences, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Bruno Pozzetto
- Team GIMAP, CIRI-Centre International de Recherche en Infectiologie, Université Jean Monnet de Saint-Etienne, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, Saint-Etienne, France
- Laboratoire des Agents Infectieux et d'Hygiène, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Mary-Anne Trabaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Sophie Trouillet-Assant
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Antonin Bal
- Laboratoire de Virologie, Institut des Agents Infectieux, Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
25
|
Seekircher L, Bánki Z, Kimpel J, Rössler A, Schäfer H, Falkensammer B, Bante D, Forer L, Schönherr S, Harthaller T, Sacher M, Ower C, Tschiderer L, Ulmer H, Krammer F, von Laer D, Borena W, Willeit P. Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: an open-label, observational phase 4 trial. THE LANCET. MICROBE 2023; 4:e612-e621. [PMID: 37354911 PMCID: PMC10284585 DOI: 10.1016/s2666-5247(23)00107-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Correlates of protection could help to assess the extent to which a person is protected from SARS-CoV-2 infection after vaccination (so-called breakthrough infection). We aimed to clarify associations of antibody and T-cell responses after vaccination against COVID-19 with risk of a SARS-CoV-2 breakthrough infection and whether measurement of these responses enhances risk prediction. METHODS We did an open-label, phase 4 trial in two community centres in the Schwaz district of the Federal State of Tyrol, Austria, before the emergence of the omicron (B.1.1.529) variant of SARS-CoV-2. We included individuals (aged ≥16 years) a mean of 35 days (range 27-43) after they had received a second dose of the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. We quantified associations between immunological parameters and breakthrough infection and assessed whether information on these parameters improves risk discrimination. The study is registered with the European Union Drug Regulating Authorities Clinical Trials Database, 2021-002030-16. FINDINGS 2760 individuals (1682 [60·9%] female, 1078 [39·1%] male, mean age 47·4 years [SD 14·5]) were enrolled into this study between May 15 and May 21, 2021, 712 (25·8%) of whom had a previous SARS-CoV-2 infection. Over a median follow-up of 5·9 months, 68 (2·5%) participants had a breakthrough infection. In models adjusted for age, sex, and previous infection, hazard ratios for breakthrough infection for having twice the immunological parameter level at baseline were 0·72 (95% CI 0·60-0·86) for anti-spike IgG, 0·80 (0·70-0·92) for neutralising antibodies in a surrogate virus neutralisation assay, 0·84 (0·58-1·21) for T-cell response after stimulation with a CD4 peptide pool, and 0·77 (0·54-1·08) for T-cell response after stimulation with a combined CD4 and CD8 peptide pool. For neutralising antibodies measured in a nested case-control sample using a pseudotyped virus neutralisation assay, the corresponding odds ratio was 0·78 (0·62-1·00). Among participants with previous infection, the corresponding hazard ratio was 0·73 (0·61-0·88) for anti-nucleocapsid Ig. Addition of anti-spike IgG information to a model containing information on age and sex improved the C-index by 0·085 (0·027-0·143). INTERPRETATION In contrast to T-cell response, higher levels of binding and neutralising antibodies were associated with a reduced risk of breakthrough SARS-CoV-2 infection. The assessment of anti-spike IgG enhances the prediction of incident breakthrough SARS-CoV-2 infection and could therefore be a suitable correlate of protection in practice. Our phase 4 trial measured both humoral and cellular immunity and had a 6-month follow-up period; however, the longer-term protection against emerging variants of SARS-CoV-2 remains unclear. FUNDING None.
Collapse
Affiliation(s)
- Lisa Seekircher
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helena Schäfer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Harthaller
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Sacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Ower
- Department of Surgery, University Hospital of Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Tschiderer
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hanno Ulmer
- Institute of Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krammer
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Willeit
- Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria; Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Narita K, Ikeda D, Seki M, Fukumoto A, Tabata R, Uesugi Y, Miura D, Takeuchi M, Doi M, Umezawa Y, Otsuka Y, Matsue K. Prevalence and Clinical Outcome of Omicron Breakthrough Infection in Patients With Hematologic Disease: A Prospective Observational Cohort Study. Hemasphere 2023; 7:e905. [PMID: 37292116 PMCID: PMC10247214 DOI: 10.1097/hs9.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Kentaro Narita
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Daisuke Ikeda
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Mizuki Seki
- Postgraduate Education Center, Kameda Medical Center, Kamogawa-shi, Japan
| | - Ami Fukumoto
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Rikako Tabata
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Yuka Uesugi
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Daisuke Miura
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Masami Takeuchi
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| | - Masahiro Doi
- Central laboratory, Kameda Medical Center, Kamogawa-shi, Japan
| | - Yuka Umezawa
- Central laboratory, Kameda Medical Center, Kamogawa-shi, Japan
| | | | - Kosei Matsue
- Division of Hematology/Oncology, Department of Medicine, Kameda Medical Center, Kamogawa-shi, Japan
| |
Collapse
|
28
|
Woudenberg T, Pinaud L, Garcia L, Tondeur L, Pelleau S, De Thoisy A, Donnadieu F, Backovic M, Attia M, Hozé N, Duru C, Koffi AD, Castelain S, Ungeheuer MN, Fernandes Pellerin S, Planas D, Bruel T, Cauchemez S, Schwartz O, Fontanet A, White M. Estimated protection against COVID-19 based on predicted neutralisation titres from multiple antibody measurements in a longitudinal cohort, France, April 2020 to November 2021. Euro Surveill 2023; 28:2200681. [PMID: 37347417 PMCID: PMC10288827 DOI: 10.2807/1560-7917.es.2023.28.25.2200681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/28/2023] [Indexed: 06/23/2023] Open
Abstract
BackgroundThe risk of SARS-CoV-2 (re-)infection remains present given waning of vaccine-induced and infection-acquired immunity, and ongoing circulation of new variants.AimTo develop a method that predicts virus neutralisation and disease protection based on variant-specific antibody measurements to SARS-CoV-2 antigens.MethodsTo correlate antibody and neutralisation titres, we collected 304 serum samples from individuals with either vaccine-induced or infection-acquired SARS-CoV-2 immunity. Using the association between antibody and neutralisation titres, we developed a prediction model for SARS-CoV-2-specific neutralisation titres. From predicted neutralising titres, we inferred protection estimates to symptomatic and severe COVID-19 using previously described relationships between neutralisation titres and protection estimates. We estimated population immunity in a French longitudinal cohort of 905 individuals followed from April 2020 to November 2021.ResultsWe demonstrated a strong correlation between anti-SARS-CoV-2 antibodies measured using a low cost high-throughput assay and antibody response capacity to neutralise live virus. Participants with a single vaccination or immunity caused by infection were especially vulnerable to symptomatic or severe COVID-19. While the median reduced risk of COVID-19 from Delta variant infection in participants with three vaccinations was 96% (IQR: 94-98), median reduced risk among participants with infection-acquired immunity was only 42% (IQR: 22-66).ConclusionOur results are consistent with data from vaccine effectiveness studies, indicating the robustness of our approach. Our multiplex serological assay can be readily adapted to study new variants and provides a framework for development of an assay that would include protection estimates.
Collapse
Affiliation(s)
- Tom Woudenberg
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laurie Pinaud
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laura Garcia
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Laura Tondeur
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Stéphane Pelleau
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Alix De Thoisy
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Françoise Donnadieu
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Marija Backovic
- Structural Virology Unit, Department of Virology and CNRS UMR 3569, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, Paris, France
| | - Nathanael Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris-Cité, UMR2000, CNRS, Paris, France
| | - Cécile Duru
- Hôpital de Crépy-en-Valois, Crépy-en-Valois, France
| | | | | | - Marie-Noelle Ungeheuer
- Clinical Investigation and Access to Research Bioresources (ICAReB) platform, Center for Translational Science, Institut Pasteur, Paris, France
| | | | - Delphine Planas
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris-Cité, UMR2000, CNRS, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Arnaud Fontanet
- PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université Paris-Cité, Paris, France
| |
Collapse
|
29
|
Barros-Martins J, Hammerschmidt SI, Morillas Ramos G, Cossmann A, Hetzel L, Odak I, Köhler M, Stankov MV, Ritter C, Friedrichsen M, Ravens I, Schimrock A, Ristenpart J, Janssen A, Willenzon S, Bernhardt G, Lichtinghagen R, Bošnjak B, Behrens GMN, Förster R. Omicron infection-associated T- and B-cell immunity in antigen-naive and triple-COVID-19-vaccinated individuals. Front Immunol 2023; 14:1166589. [PMID: 37215123 PMCID: PMC10196199 DOI: 10.3389/fimmu.2023.1166589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.
Collapse
Affiliation(s)
| | | | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Laura Hetzel
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Miriam Köhler
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi V. Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Dietz LL, Juhl AK, Søgaard OS, Reekie J, Nielsen H, Johansen IS, Benfield T, Wiese L, Stærke NB, Jensen TØ, Jakobsen SF, Olesen R, Iversen K, Fogh K, Bodilsen J, Petersen KT, Larsen L, Madsen LW, Lindvig SO, Holden IK, Raben D, Andersen SD, Hvidt AK, Andreasen SR, Baerends EAM, Lundgren J, Østergaard L, Tolstrup M. Impact of age and comorbidities on SARS-CoV-2 vaccine-induced T cell immunity. COMMUNICATIONS MEDICINE 2023; 3:58. [PMID: 37095240 PMCID: PMC10124939 DOI: 10.1038/s43856-023-00277-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. METHODS In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51-72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. RESULTS We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. CONCLUSIONS SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization.
Collapse
Affiliation(s)
- Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tomas Østergaard Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stine Finne Jakobsen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Iversen
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Kamille Fogh
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Lykke Larsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan Olaf Lindvig
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Inge Kristine Holden
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Dept of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Antibody response durability following three-dose coronavirus disease 2019 vaccination in people with HIV receiving suppressive antiretroviral therapy. AIDS 2023; 37:709-721. [PMID: 36545783 PMCID: PMC9994797 DOI: 10.1097/qad.0000000000003469] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN Longitudinal observational cohort. METHODS We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.
Collapse
|
32
|
Buscot M, Cremoni M, Graça D, Brglez V, Courjon J, Allouche J, Teisseyre M, Boyer L, Barrière J, Chamorey E, Carles M, Seitz-Polski B. Breakthrough infections due to SARS-CoV-2 Delta variant: relation to humoral and cellular vaccine responses. Front Immunol 2023; 14:1145652. [PMID: 37063916 PMCID: PMC10101330 DOI: 10.3389/fimmu.2023.1145652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionCOVID-19 vaccines are expected to provide effective protection. However, emerging strains can cause breakthrough infection in vaccinated individuals. The immune response of vaccinated individuals who have experienced breakthrough infection is still poorly understood.MethodsHere, we studied the humoral and cellular immune responses of fully vaccinated individuals who subsequently experienced breakthrough infection due to the Delta variant of SARS-CoV-2 and correlated them with the severity of the disease.ResultsIn this study, an effective humoral response alone was not sufficient to induce effective immune protection against severe breakthrough infection, which also required effective cell-mediated immunity to SARS-CoV-2. Patients who did not require oxygen had significantly higher specific (p=0.021) and nonspecific (p=0.004) cellular responses to SARS-CoV-2 at the onset of infection than those who progressed to a severe form.DiscussionKnowing both humoral and cellular immune response could allow to adapt preventive strategy, by better selecting patients who would benefit from additional vaccine boosters.Trial registration numbershttps://clinicaltrials.gov, identifier NCT04355351; https://clinicaltrials.gov, identifier NCT04429594.
Collapse
Affiliation(s)
- Matthieu Buscot
- Infectious Diseases Department, Nice University Hospital, Nice, France
| | - Marion Cremoni
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d’Azur (UR2CA), Côte d’Azur University, Nice, France
| | - Daisy Graça
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
| | - Vesna Brglez
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d’Azur (UR2CA), Côte d’Azur University, Nice, France
| | - Johan Courjon
- Infectious Diseases Department, Nice University Hospital, Nice, France
- Mediterranean Center for Molecular Medicine (C3M), Côte d’Azur University, Nice, France
| | - Jonathan Allouche
- Clinical Research Unit Côte d’Azur (UR2CA), Côte d’Azur University, Nice, France
| | - Maxime Teisseyre
- Clinical Research Unit Côte d’Azur (UR2CA), Côte d’Azur University, Nice, France
| | - Laurent Boyer
- Mediterranean Center for Molecular Medicine (C3M), Côte d’Azur University, Nice, France
| | - Jérôme Barrière
- Department of Oncology, Clinique St Jean, Cagnes sur Mer, France
| | - Emmanuel Chamorey
- Department of Biostatistics, Centre Antoine Lacassagne, Nice, France
| | - Michel Carles
- Infectious Diseases Department, Nice University Hospital, Nice, France
| | - Barbara Seitz-Polski
- Immunology Laboratory, Archet 1 Hospital, Nice University Hospital, Nice, France
- Clinical Research Unit Côte d’Azur (UR2CA), Côte d’Azur University, Nice, France
- *Correspondence: Barbara Seitz-Polski,
| |
Collapse
|
33
|
Mwimanzi F, Lapointe HR, Cheung PK, Sang Y, Yaseen F, Kalikawe R, Datwani S, Burns L, Young L, Leung V, Ennis S, Brumme CJ, Montaner JSG, Dong W, Prystajecky N, Lowe CF, DeMarco ML, Holmes DT, Simons J, Niikura M, Romney MG, Brumme ZL, Brockman MA. Impact of Age and Severe Acute Respiratory Syndrome Coronavirus 2 Breakthrough Infection on Humoral Immune Responses After Three Doses of Coronavirus Disease 2019 mRNA Vaccine. Open Forum Infect Dis 2023; 10:ofad073. [PMID: 36910697 PMCID: PMC10003738 DOI: 10.1093/ofid/ofad073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
Background Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.
Collapse
Affiliation(s)
- Francis Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Hope R Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Peter K Cheung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Fatima Yaseen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Rebecca Kalikawe
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Sneha Datwani
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Laura Burns
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Landon Young
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Victor Leung
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Julio S G Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Natalie Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Daniel T Holmes
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Janet Simons
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | | | | | - Mark A Brockman
- Correspondence: Mark A. Brockman, PhD, Professor, Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada ()
| |
Collapse
|
34
|
Humoral and cellular immune correlates of protection against COVID-19 in kidney transplant recipients. Am J Transplant 2023; 23:649-658. [PMID: 36773936 PMCID: PMC9911984 DOI: 10.1016/j.ajt.2023.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.
Collapse
|
35
|
O’Shea KM, Schuler CF, Chen J, Troost JP, Wong PT, Chen K, O’Shea DR, Peng W, Gherasim C, Manthei DM, Valdez R, Baldwin JL, Baker JR. Wild-type SARS-CoV-2 neutralizing immunity decreases across variants and over time but correlates well with diagnostic testing. Front Immunol 2023; 14:1055429. [PMID: 36845123 PMCID: PMC9945103 DOI: 10.3389/fimmu.2023.1055429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Importance The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.
Collapse
Affiliation(s)
- Kelly M. O’Shea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Charles F. Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jesse Chen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan P. Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, United States
| | - Pamela T. Wong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kelsea Chen
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel R. O’Shea
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Westley Peng
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Carmen Gherasim
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - David M. Manthei
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - James L. Baldwin
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - James R. Baker
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States,*Correspondence: James R. Baker Jr.,
| |
Collapse
|
36
|
Khaleeq S, Sengupta N, Kumar S, Patel UR, Rajmani RS, Reddy P, Pandey S, Singh R, Dutta S, Ringe RP, Varadarajan R. Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses 2023; 15:346. [PMID: 36851560 PMCID: PMC9961482 DOI: 10.3390/v15020346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.
Collapse
Affiliation(s)
- Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Unnatiben Rajeshbhai Patel
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Poorvi Reddy
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Suman Pandey
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Randhir Singh
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
37
|
Tan KS, Ang AXY, Tay DJW, Somani J, Ng AJY, Peng LL, Chu JJH, Tambyah PA, Allen DM. Detection of hospital environmental contamination during SARS-CoV-2 Omicron predominance using a highly sensitive air sampling device. Front Public Health 2023; 10:1067575. [PMID: 36703815 PMCID: PMC9873263 DOI: 10.3389/fpubh.2022.1067575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background and objectives The high transmissibility of SARS-CoV-2 has exposed weaknesses in our infection control and detection measures, particularly in healthcare settings. Aerial sampling has evolved from passive impact filters to active sampling using negative pressure to expose culture substrate for virus detection. We evaluated the effectiveness of an active air sampling device as a potential surveillance system in detecting hospital pathogens, for augmenting containment measures to prevent nosocomial transmission, using SARS-CoV-2 as a surrogate. Methods We conducted air sampling in a hospital environment using the AerosolSenseTM air sampling device and compared it with surface swabs for their capacity to detect SARS-CoV-2. Results When combined with RT-qPCR detection, we found the device provided consistent SARS-CoV-2 detection, compared to surface sampling, in as little as 2 h of sampling time. The device also showed that it can identify minute quantities of SARS-CoV-2 in designated "clean areas" and through a N95 mask, indicating good surveillance capacity and sensitivity of the device in hospital settings. Conclusion Active air sampling was shown to be a sensitive surveillance system in healthcare settings. Findings from this study can also be applied in an organism agnostic manner for surveillance in the hospital, improving our ability to contain and prevent nosocomial outbreaks.
Collapse
Affiliation(s)
- Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Kai Sen Tan ✉
| | - Alicia Xin Yu Ang
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jyoti Somani
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Alexander Jet Yue Ng
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
| | - Li Lee Peng
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Paul Anantharajah Tambyah
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - David Michael Allen
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore,David Michael Allen ✉
| |
Collapse
|
38
|
Woelfel S, Dütschler J, König M, Graf N, Oikonomou V, Krieger C, Truniger S, Franke A, Eckhold A, Forsch K, Wyss J, Krupka N, Albrich W, Frei N, Geissler N, Schaub P, STAR SIGN Study Investigators, Friedrich M, Misselwitz B, Korte W, Bürgi JJ, Brand S. Systemic and T cell-associated responses to SARS-CoV-2 immunisation in gut inflammation (STAR SIGN study): effects of biologics on vaccination efficacy of the third dose of mRNA vaccines against SARS-CoV-2. Aliment Pharmacol Ther 2023; 57:103-116. [PMID: 36307899 PMCID: PMC9874447 DOI: 10.1111/apt.17264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Immunosuppressed patients with inflammatory bowel disease (IBD) experience increased risk of vaccine-preventable diseases such as COVID-19. AIMS To assess humoral and cellular immune responses following SARS-CoV-2 booster vaccination in immunosuppressed IBD patients and healthy controls. METHODS In this prospective, multicentre, case-control study, 139 IBD patients treated with biologics and 110 healthy controls were recruited. Serum anti-SARS-CoV-2 spike IgG concentrations were measured 2-16 weeks after receiving a third mRNA vaccine dose. The primary outcome was to determine if humoral immune responses towards booster vaccines differ in IBD patients under anti-TNF versus non-anti-TNF therapy and healthy controls. Secondary outcomes were antibody decline, impact of previous infection and SARS-CoV-2-targeted T cell responses. RESULTS Anti-TNF-treated IBD patients showed reduced anti-spike IgG concentrations (geometric mean 2357.4 BAU/ml [geometric SD 3.3]) when compared to non-anti-TNF-treated patients (5935.7 BAU/ml [3.9]; p < 0.0001) and healthy controls (5481.7 BAU/ml [2.4]; p < 0.0001), respectively. In multivariable modelling, prior infection (geometric mean ratio 2.00 [95% CI 1.34-2.90]) and vaccination with mRNA-1273 (1.53 [1.01-2.27]) increased antibody concentrations, while anti-TNF treatment (0.39 [0.28-0.54]) and prolonged time between vaccination and antibody measurement (0.72 [0.58-0.90]) decreased anti-SARS-CoV-2 spike antibodies. Antibody decline was comparable in IBD patients independent of anti-TNF treatment and antibody concentrations could not predict breakthrough infections. Cellular and humoral immune responses were uncoupled, and more anti-TNF-treated patients than healthy controls developed inadequate T cell responses (15/73 [20.5%] vs 2/100 [2.0%]; p = 0.00031). CONCLUSIONS Anti-TNF-treated IBD patients have impaired humoral and cellular immunogenicity following SARS-CoV-2 booster vaccination. Fourth dose administration may be beneficial for these patients.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of MedicineLudwig Maximilian University of MunichMunichGermany,Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Joel Dütschler
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland,Outpatient ClinicAmbulatory Services RorschachRorschachSwitzerland
| | - Marius König
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Nicole Graf
- Clinical Trials UnitCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Vasileios Oikonomou
- Department of Visceral Surgery and Medicine, Inselspital Bern University HospitalUniversity of BernBernSwitzerland
| | - Claudia Krieger
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Samuel Truniger
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland,Outpatient ClinicAmbulatory Services RorschachRorschachSwitzerland
| | - Annett Franke
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland,Outpatient ClinicAmbulatory Services RorschachRorschachSwitzerland
| | - Annika Eckhold
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Kristina Forsch
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital Bern University HospitalUniversity of BernBernSwitzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital Bern University HospitalUniversity of BernBernSwitzerland
| | - Werner Albrich
- Department of Infectious DiseasesCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Nicola Frei
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Nora Geissler
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Peter Schaub
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| | | | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern University HospitalUniversity of BernBernSwitzerland
| | | | | | - Stephan Brand
- Department of Gastroenterology and HepatologyCantonal Hospital St. GallenSt. GallenSwitzerland
| |
Collapse
|
39
|
Stærke NB, Reekie J, Johansen IS, Nielsen H, Benfield T, Wiese L, Søgaard OS, Tolstrup M, Iversen KK, Tarp B, Larsen FD, Larsen L, Lindvig SO, Holden IK, Iversen MB, Knudsen LS, Fogh K, Jakobsen ML, Traytel AK, Ostergaard L, Lundgren J. Cohort Profile:The Danish National Cohort Study of Effectiveness and Safety of SARS-CoV-2 vaccines (ENFORCE). BMJ Open 2022; 12:e069065. [PMID: 36585137 PMCID: PMC9809224 DOI: 10.1136/bmjopen-2022-069065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The ENFORCE cohort is a national Danish prospective cohort of adults who received a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine as part of the Danish National SARS-CoV-2 vaccination programme. It was designed to investigate the long-term effectiveness, safety and durability of SARS-CoV-2 vaccines used in Denmark. PARTICIPANTS A total of 6943 adults scheduled to receive a SARS-CoV-2 vaccine in the Danish COVID-19 vaccination programme were enrolled in the study prior to their first vaccination. Participants will be followed for a total of 2 years with five predetermined follow-up visits and additional visits in relation to any booster vaccination. Serology measurements are performed after each study visit. T-cell immunity is evaluated at each study visit for a subgroup of 699 participants. Safety information is collected from participants at visits following each vaccination. Data on hospital admissions, diagnoses, deaths and SARS-CoV-2 PCR results are collected from national registries throughout the study period. The median age of participants was 64 years (IQR 53-75), 56.6% were women and 23% were individuals with an increased risk of a serious course of COVID-19. A total of 340 (4.9%) participants tested positive for SARS-CoV-2 spike IgG at baseline. FINDINGS TO DATE Results have been published on risk factors for humoral hyporesponsiveness and non-durable response to SARS-CoV-2 vaccination, the risk of breakthrough infections at different levels of SARS-CoV-2 spike IgG by viral variant and on the antibody neutralising capacity against different SARS-CoV-2 variants following primary and booster vaccinations. FUTURE PLANS The ENFORCE cohort will continuously generate studies investigating immunological response, effectiveness, safety and durability of the SARS-CoV-2 vaccines. TRIAL REGISTRATION NUMBER NCT04760132.
Collapse
Affiliation(s)
- Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense Universitetshospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Karmark Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Britta Tarp
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Fredrikke Dam Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lykke Larsen
- Department of Infectious Diseases, Odense Universitetshospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan Olaf Lindvig
- Department of Infectious Diseases, Odense Universitetshospital, Odense, Denmark
| | | | | | | | - Kamille Fogh
- Department of Cardiology and Department of Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Marie Louise Jakobsen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| | - Anna Katrin Traytel
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| | - Lars Ostergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
40
|
Stirrup O, Shrotri M, Adams NL, Krutikov M, Nacer-Laidi H, Azmi B, Palmer T, Fuller C, Irwin-Singer A, Baynton V, Tut G, Moss P, Hayward A, Copas A, Shallcross L. Clinical Effectiveness of SARS-CoV-2 Booster Vaccine Against Omicron Infection in Residents and Staff of Long-term Care Facilities: A Prospective Cohort Study (VIVALDI). Open Forum Infect Dis 2022; 10:ofac694. [PMID: 36713473 PMCID: PMC9874026 DOI: 10.1093/ofid/ofac694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Background Successive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have caused severe disease in long-term care facility (LTCF) residents. Primary vaccination provides strong short-term protection, but data are limited on duration of protection following booster vaccines, particularly against the Omicron variant. We investigated the effectiveness of booster vaccination against infections, hospitalizations, and deaths among LTCF residents and staff in England. Methods We included residents and staff of LTCFs within the VIVALDI study (ISRCTN 14447421) who underwent routine, asymptomatic testing (December 12, 2021-March 31, 2022). Cox regression was used to estimate relative hazards of SARS-CoV-2 infection, and associated hospitalization and death at 0-13, 14-48, 49-83, 84-111, 112-139, and 140+ days after dose 3 of SARS-CoV-2 vaccination compared with 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex, LTCF capacity, and local SARS-CoV-2 incidence. Results A total of 14 175 residents and 19 793 staff were included. In residents without prior SARS-CoV-2 infection, infection risk was reduced 0-111 days after the first booster, but no protection was apparent after 112 days. Additional protection following booster vaccination waned but was still present at 140+ days for COVID-associated hospitalization (adjusted hazard ratio [aHR], 0.20; 95% CI, 0.06-0.63) and death (aHR, 0.50; 95% CI, 0.20-1.27). Most residents (64.4%) had received primary course vaccine of AstraZeneca, but this did not impact pre- or postbooster risk. Staff showed a similar pattern of waning booster effectiveness against infection, with few hospitalizations and no deaths. Conclusions Our findings suggest that booster vaccination provided sustained protection against severe outcomes following infection with the Omicron variant, but no protection against infection from 4 months onwards. Ongoing surveillance for SARS-CoV-2 in LTCFs is crucial.
Collapse
Affiliation(s)
- Oliver Stirrup
- Correspondence: Oliver Stirrup, PhD, UCL Institute for Global Health, 222 Euston Road, London NW1 2DA, UK ()
| | | | | | - Maria Krutikov
- UCL Institute of Health Informatics, London, United Kingdom
| | | | - Borscha Azmi
- UCL Institute of Health Informatics, London, United Kingdom
| | - Tom Palmer
- Institute for Global Health, University College London, London, United Kingdom
| | | | | | - Verity Baynton
- Department of Health and Social Care, London, United Kingdom
| | - Gokhan Tut
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Hayward
- UCL Institute of Epidemiology & Healthcare, London, United Kingdom,Health Data Research UK, London, United Kingdom
| | - Andrew Copas
- Institute for Global Health, University College London, London, United Kingdom
| | | |
Collapse
|
41
|
Balsby D, Nilsson AC, Petersen I, Lindvig SO, Davidsen JR, Abazi R, Poulsen MK, Holden IK, Justesen US, Bistrup C, Johansen IS. Humoral immune response following a third SARS-CoV-2 mRNA vaccine dose in solid organ transplant recipients compared with matched controls. Front Immunol 2022; 13:1039245. [PMID: 36569919 PMCID: PMC9780530 DOI: 10.3389/fimmu.2022.1039245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Solid organ transplant (SOT) recipients have shown suboptimal antibody response following COVID-19 vaccination. Several risk factors for the diminished response have been identified including immunosuppression and older age, but the influence of different comorbidities is not fully elucidated. Method This case-control study consisted of 420 Danish adult SOT recipients and 840 sex- and age-matched controls, all vaccinated with a third homologous dose of either BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine. The primary outcome was differences in humoral immune response. The secondary outcome was breakthrough infections. Additionally, we looked for factors that could predict possible differences between the two groups. Results Response rate increased from 186/382 (49%) to 275/358 (77%) in SOT recipients and remained on 781/790 (99%) to 601/609 (99%) in controls following a third vaccine dose. SOT recipients had significantly lower median antibody concentrations after third dose compared to controls (332.6 BAU/ml vs 46,470.0 BAU/ml, p <0.001). Lowest median antibody concentrations were seen in SOT recipients with liver disease (10.3 BAU/ml, IQR 7.1-319) and diabetes (275.3 BAU/ml, IQR 7.3-957.4). Breakthrough infections occurred similarly frequent, 150 (40%) among cases and 301 (39%) among controls (p = 0.80). Conclusion A third COVID-19 vaccine dose resulted in a significant increase in humoral immunogenicity in SOT recipients and maintained high response rate in controls. Furthermore, SOT recipients were less likely to produce antibodies with overall lower antibody concentrations and humoral immunity was highly influenced by the presence of liver disease and diabetes. The prevalence of breakthrough infections was similar in the two groups.
Collapse
Affiliation(s)
- Daniel Balsby
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Inge Petersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Rømhild Davidsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
| | - Rozeta Abazi
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Mikael K. Poulsen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Inge K. Holden
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ulrik S. Justesen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
42
|
Anzinger JJ, Cameron-McDermott SM, Phillips YZR, Mendoza L, Anderson M, Cloherty G, Strachan-Johnson S, Lindo JF, Figueroa JP. Prevalence of SARS-CoV-2 antibodies after the Omicron surge, Kingston, Jamaica, 2022. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100124. [PMID: 36415687 PMCID: PMC9671617 DOI: 10.1016/j.jcvp.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
A cross-sectional SARS-CoV-2 serosurvey was conducted after the Omicron surge in Jamaica using 1,540 samples collected during March - May 2022 from persons attending antenatal, STI and non-communicable diseases clinics in Kingston, Jamaica. SARS-CoV-2 spike receptor binding domain (RBD) and/or nucleocapsid IgG antibodies were detected for 88.4% of the study population, with 77.0% showing evidence of previous SARS-CoV-2 infection. Of persons previously infected with SARS-CoV-2 and/or with COVID-19 vaccination, 9.6% were negative for spike RBD IgG, most of which were unvaccinated previously infected persons. Amongst unvaccinated previously infected people, age was associated with testing spike RBD IgG negative. When considering all samples, median spike RBD IgG levels were 131.6 BAU/mL for unvaccinated persons with serological evidence of past infection, 90.3 BAU/mL for vaccinated persons without serological evidence of past infection, and 896.1 BAU/mL for vaccinated persons with serological evidence of past infection. Our study of the first reported SARS-CoV-2 serosurvey in Jamaica shows extensive SARS-CoV-2 population immunity, identifies a substantial portion of the population lacking spike RBD IgG, and provides additional evidence for increasing COVID-19 vaccine coverage in Jamaica.
Collapse
Affiliation(s)
- Joshua J Anzinger
- The University of the West Indies, Kingston, Jamaica
- The Global Virus Network Jamaica Affiliate, Kingston, Jamaica
- Abbott Pandemic Defense Coalition, The University of the West Indies, Mona, Jamaica
| | | | | | | | - Mark Anderson
- Abbott Laboratories, Infectious Disease Research, Abbott Park, IL, United States of America
- Abbott Pandemic Defense Coalition, Abbott Park, Illinois, United States of America
| | - Gavin Cloherty
- Abbott Laboratories, Infectious Disease Research, Abbott Park, IL, United States of America
- Abbott Pandemic Defense Coalition, Abbott Park, Illinois, United States of America
| | | | - John F Lindo
- The University of the West Indies, Kingston, Jamaica
| | | |
Collapse
|
43
|
Błaszczuk A, Michalski A, Sikora D, Malm M, Drop B, Polz-Dacewicz M. Antibody Response after SARS-CoV-2 Infection with the Delta and Omicron Variant. Vaccines (Basel) 2022; 10:vaccines10101728. [PMID: 36298593 PMCID: PMC9612121 DOI: 10.3390/vaccines10101728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
The SARS-CoV-2 virus caused a worldwide COVID-19 pandemic. So far, 6,120,834 confirmed cases of COVID-19 with 116,773 deaths have been reported in Poland. According to WHO, a total of 54,662,485 vaccine doses have been administered. New variants emerge that become dominant. The aim of this study was a comparison of antibody level after infection caused by Delta and Omicron variants. The study included 203 persons who underwent mild COVID-19 despite two doses of vaccine. The obtained results indicate that a significantly lower titer was observed in patients with the Omicron variant infection. Therefore, these patients may be at risk of reinfection with new strains of the Omicron variant. Due to the possibility of reinfection, booster vaccinations are necessary. Further epidemiological and clinical studies are necessary to develop new prevention strategies.
Collapse
Affiliation(s)
- Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Aleksander Michalski
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland
| | - Dominika Sikora
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Maria Malm
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
44
|
Hvidt AK, Baerends EAM, Søgaard OS, Stærke NB, Raben D, Reekie J, Nielsen H, Johansen IS, Wiese L, Benfield TL, Iversen KK, Mustafa AB, Juhl MR, Petersen KT, Ostrowski SR, Lindvig SO, Rasmussen LD, Schleimann MH, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Lundgren J, Østergaard L, Tolstrup M, the ENFORCE Study Group. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front Med (Lausanne) 2022; 9:994160. [PMID: 36262278 PMCID: PMC9574042 DOI: 10.3389/fmed.2022.994160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,*Correspondence: Astrid K. Hvidt,
| | - Eva A. M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Eva A. M. Baerends,
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas L. Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Deparment of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Ahmed B. Mustafa
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse R. Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Line D. Rasmussen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
45
|
Williams E, Colson J, Valiathan R, Carreño JM, Krammer F, Hoffer M, Pallikkuth S, Pahwa S, Andrews D. Permissive omicron breakthrough infections in individuals with binding or neutralizing antibodies to ancestral SARS-CoV-2. Vaccine 2022; 40:5868-5872. [PMID: 36088193 PMCID: PMC9424516 DOI: 10.1016/j.vaccine.2022.08.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breakthrough infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has occurred in populations with high vaccination rates. METHODS In a longitudinal cohort study, pre-breakthrough infection sera for Omicron breakthroughs (n = 12) were analyzed. Assays utilized include a laboratory-developed solid phase binding assay to recombinant spike protein, a commercial assay to the S1 domain of the spike protein calibrated to the World Health Organization (WHO) standard, and a commercial solid-phase surrogate neutralizing activity (SNA) assay. All assays employed spike protein preparations based on sequences from the Wuhan-Hu-1 strain. RESULTS Pre-breakthrough binding antibody titers ranged from 1:800 to 1:51,200 for the laboratory-developed binding assay, which correlated well and agreed quantitatively with the commercial spike S1 domain WHO calibrated assay. SNA was detected in 10/12 (83%) samples. CONCLUSIONS Neither high binding titers nor SNA were markers of protection from Omicron infection/re-infection.
Collapse
Affiliation(s)
- Erin Williams
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL 33136, USA
| | - Jordan Colson
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ranjini Valiathan
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - David Andrews
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
46
|
Anzinger JJ, Cameron-McDermott SM, Phillips YZ, Mendoza L, Anderson M, Cloherty G, Strachan-Johnson S, Lindo JF, Figueroa JP. Prevalence of SARS-CoV-2 Antibodies after the Omicron Surge, Kingston, Jamaica, 2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.20.22280173. [PMID: 36172133 PMCID: PMC9516860 DOI: 10.1101/2022.09.20.22280173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cross-sectional SARS-CoV-2 serosurvey was conducted after the Omicron surge in Jamaica using 1,540 samples collected during March â€" May 2022 from persons attending antenatal, STI and non-communicable diseases clinics in Kingston, Jamaica. SARS-CoV-2 spike receptor binding domain (RBD) and/or nucleocapsid IgG antibodies were detected for 88.4% of the study population, with 77.0% showing evidence of previous SARS-CoV-2 infection. Of persons previously infected with SARS-CoV-2 and/or with COVID-19 vaccination, 9.6% were negative for spike RBD IgG, most of which were unvaccinated previously infected persons. Amongst unvaccinated previously infected people, age was associated with testing spike RBD IgG negative. When considering all samples, median spike RBD IgG levels were 131.6 BAU/mL for unvaccinated persons with serological evidence of past infection, 90.3 BAU/mL for vaccinated persons without serological evidence of past infection, and 896.1 BAU/mL for vaccinated persons with serological evidence of past infection. Our study of the first reported SARS-CoV-2 serosurvey in Jamaica shows extensive SARS-CoV-2 population immunity, identifies a substantial portion of the population lacking spike RBD IgG, and provides additional evidence for increasing COVID-19 vaccine coverage in Jamaica.
Collapse
Affiliation(s)
- Joshua J. Anzinger
- The University of the West Indies, Kingston, Jamaica
- The Global Virus Network Jamaica Affiliate, Kingston, Jamaica
- Abbott Pandemic Defense Coalition, The University of the West Indies, Mona, Jamaica
| | | | | | | | - Mark Anderson
- Abbott Laboratories, Infectious Disease Research, Abbott Park, Illinois, United States of America
- Abbott Pandemic Defense Coalition, Abbott Park, Illinois, United States of America
| | - Gavin Cloherty
- Abbott Laboratories, Infectious Disease Research, Abbott Park, Illinois, United States of America
- Abbott Pandemic Defense Coalition, Abbott Park, Illinois, United States of America
| | | | - John F. Lindo
- The University of the West Indies, Kingston, Jamaica
| | | |
Collapse
|
47
|
Dimeglio C, Migueres M, Bouzid N, Chapuy-Regaud S, Gernigon C, Da-Silva I, Porcheron M, Martin-Blondel G, Herin F, Izopet J. Antibody Titers and Protection against Omicron (BA.1 and BA.2) SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1548. [PMID: 36146626 PMCID: PMC9506424 DOI: 10.3390/vaccines10091548] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of the SARS-CoV-2 variants of concern has greatly influenced the immune correlates of protection, and there are little data about the antibody threshold concentrations to protect against infection with SARS-CoV-2 Omicron BA.1 or BA.2. We analyzed the antibody responses of 259 vaccinated healthcare workers, some of whom had been previously infected by SARS-CoV-2. The median follow-up was 179 days (IQR: 171-182) after blood collection. We detected 88 SARS-CoV-2 Omicron infections during the follow-up period, 55 (62.5%) with SARS-CoV-2 BA.1, and 33 (37.5%) with SARS-CoV-2 BA.2. A neutralizing antibody titer below 8 provided no protection against a BA.1 infection, a titer of 16 or 32 gave 73.2% protection, and a titer of 64 or 128 provided 78.4% protection. Conversely, the BA.2 infection rate did not vary as a function of anti-BA.2 neutralizing antibody titers. Binding antibody concentrations below 6000 BAU/mL provided no protection against Omicron BA.1 infection, 6000-20,000 BAU/mL provided 55.6% protection, and 20,000 or more provided 87.7% protection. There was no difference in BA.2 infection depending on the binding antibody concentration. Further studies are needed to investigate the relationship between antibody concentrations and infection with the Omicron BA.4/5 variants that are becoming predominant worldwide.
Collapse
Affiliation(s)
- Chloé Dimeglio
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| | - Marion Migueres
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| | - Naémie Bouzid
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
| | - Sabine Chapuy-Regaud
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| | - Caroline Gernigon
- Occupational Diseases Department, Toulouse University Hospital, 31000 Toulouse, France
- UMR1295, Unité Mixte INSERM—Université Toulouse III Paul Sabatier, Centre for Epidemiology and Research in Population Health Unit (CERPOP), 31000 Toulouse, France
| | - Isabelle Da-Silva
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
| | - Marion Porcheron
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
| | - Guillaume Martin-Blondel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
- Infectious and Tropical Diseases Department, Toulouse University Hospital, 31300 Toulouse, France
| | - Fabrice Herin
- Occupational Diseases Department, Toulouse University Hospital, 31000 Toulouse, France
- UMR1295, Unité Mixte INSERM—Université Toulouse III Paul Sabatier, Centre for Epidemiology and Research in Population Health Unit (CERPOP), 31000 Toulouse, France
| | - Jacques Izopet
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), 31300 Toulouse, France
| |
Collapse
|
48
|
Seekircher L, Siller A, Astl M, Tschiderer L, Wachter GA, Pfeifer B, Huber A, Gaber M, Schennach H, Willeit P. Seroprevalence of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Updated Analysis Involving 22,607 Blood Donors Covering the Period October 2021 to April 2022. Viruses 2022; 14:1877. [PMID: 36146684 PMCID: PMC9502884 DOI: 10.3390/v14091877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Because a large proportion of the Austrian population has been infected with SARS-CoV-2 during high incidence periods in winter 2021/2022, up-to-date estimates of seroprevalence of anti-SARS-CoV-2 antibodies are required to inform upcoming public health policies. We quantified anti-Spike IgG antibody levels in 22,607 individuals that donated blood between October 2021 and April 2022 across Tyrol, Austria (participation rate: 96.0%). Median age of participants was 45.3 years (IQR: 30.9−55.1); 41.9% were female. From October 2021 to April 2022, seropositivity increased from 84.9% (95% CI: 83.8−86.0%) to 95.8% (94.9−96.4%), and the geometric mean anti-Spike IgG levels among seropositive participants increased from 283 (95% CI: 271−296) to 1437 (1360−1518) BAU/mL. The percentages of participants in categories with undetectable levels and detectable levels at <500, 500−<1000, 1000−<2000, 2000−<3000, and ≥3000 BAU/mL were 15%, 54%, 15%, 10%, 3%, and 3% in October 2021 vs. 4%, 18%, 17%, 18%, 11%, and 32% in April 2022. Of 2711 participants that had repeat measurements taken a median 4.2 months apart, 61.8% moved to a higher, 13.9% to a lower, and 24.4% remained in the same category. Among seropositive participants, antibody levels were 16.8-fold in vaccinated individuals compared to unvaccinated individuals (95% CI: 14.2−19.9; p-value < 0.001). In conclusion, anti-SARS-CoV-2 seroprevalence in terms of seropositivity and average antibody levels has increased markedly during the winter 2021/2022 SARS-CoV-2 waves in Tyrol, Austria.
Collapse
Affiliation(s)
- Lisa Seekircher
- Clinical Epidemiology Team, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anita Siller
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
| | - Manfred Astl
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
| | - Lena Tschiderer
- Clinical Epidemiology Team, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Gregor A. Wachter
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
| | - Bernhard Pfeifer
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
- Division for Healthcare Network and Telehealth, UMIT-Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall, Austria
| | - Andreas Huber
- Tyrolean Federal Institute for Integrated Care, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
| | - Manfred Gaber
- Blood Donor Service Tyrol of the Austrian Red Cross, 6063 Rum, Austria
| | - Harald Schennach
- Central Institute for Blood Transfusion and Immunology, Tirol Kliniken GmbH, 6020 Innsbruck, Austria
| | - Peter Willeit
- Clinical Epidemiology Team, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| |
Collapse
|
49
|
Xu T, Cui Y. Seasonal Variation Analysis for Weekly Cases, Deaths, and Hospitalizations of COVID-19 in the United States. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|