1
|
Della Volpe A, Bruno C, De Luca P, Ralli M, Di Stadio A. Adelmidrol to fight upper airways inflammation in children: a pilot case control study to safety and efficacy. Eur Arch Otorhinolaryngol 2025; 282:3075-3083. [PMID: 40258991 PMCID: PMC12122658 DOI: 10.1007/s00405-025-09375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE Inflammations of the upper respiratory tract (URT) are common both in adults and children and they are generally treated using aerosol therapy with mucolytic medications and steroids. When these inflammations affect children, the treatment must be rapid and resolutive to prevent complications. Steroids present some contraindications, i.e. alteration of smell, that must be considered especially in children. Therefore, alternative treatments that have similar efficacy but limited adverse effects should be considered. This study aims at evaluating the efficacy of Adelmidrol to treat inflammation of the URT in children. METHODS Case-Control study. Control group used standard treatment for URT inflammation (mucolytics and steroids); treatment groups were treated by Adelmidrol spray. Sixty children (age range 2.5-4.5 years) were randomly assigned to (i) control group, (ii) treatment group 1 (TG1)- Adelmidrol nasal spray only and (iii) treatment group 2 (TG2), in which Adelmidrol was administered in both nasal and oral spray solution. The URT and the tympanic membrane were evaluated at T0, T1 (30 days) and T2 (90 days). The treatments were performed for 90 consecutive days. RESULTS At the end of the treatment, TG2 (combination of nasal and oral sprays) had the best outcomes both on URT findings (χ²: p = 0.0004) and tympanic membrane conditions (χ²: p = 0.03). TG1 showed similar outcome of CG. CONCLUSIONS These preliminary results in our group of 60 children showed that Adelmidrol had the same efficacy of standard treatment when used as nasal spray only and was better than the standard treatment when used combining nasal and oral sprays. The molecule seems to offer the same benefit of standard treatment without side effects. If confirmed on a larger sample, the use of Adelmidrol could be suggested as an alternative to traditional treatment for the inflammation of URT in children.
Collapse
Affiliation(s)
- Antonio Della Volpe
- Otolaryngology Department, Santobono-Posillipon Hospital, Via Mario Fiore 6, 80129, Naples, Italy
| | - Chiara Bruno
- Otolaryngology Department, Santobono-Posillipon Hospital, Via Mario Fiore 6, 80129, Naples, Italy
| | - Pietro De Luca
- Department of Otolaryngology, Tiberina-Isola Gemelli Hospital, Via di Ponte Quattro capi, 39, 00186, Rome, Italy
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza of Rome, Via del Policlinico 155, 00161, Rome, Italy
| | - Arianna Di Stadio
- ENT Department, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Huang YJ. The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations. Immunol Rev 2025; 330:e70015. [PMID: 40072031 PMCID: PMC11899502 DOI: 10.1111/imr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma. Despite significant existing knowledge in the above, divergent clinical trajectories and outcomes are still observed, even among individuals with similar risk profiles, biomarkers, and optimal medical management. This suggests uncaptured biological interactions that contribute to asthma's heterogeneity, for which the role of host microbiota has lately attracted much research attention. This review will highlight recent evidence in this area, focusing on bedside-to-bench investigations that have leveraged omic technologies to uncover microbiome links to asthma outcomes and immunobiology. Studies centered on the respiratory system and the use of multi-omics are noted in particular. These represent a new generation of reverse-translational investigations revealing potential functional crosstalk in host microbiomes that may drive phenotypic heterogeneity in chronic diseases like asthma. Multi-omic data offer a wide lens into ecosystem interactions within a host. This informs new hypotheses and experimental work to elucidate mechanistic pathways for unresolved asthma endotypes. Further incorporation of multi-omics into patient-centered investigations can yield new insights that hopefully lead to even more precise, microbiome-informed strategies to reduce asthma burden.
Collapse
Affiliation(s)
- Yvonne J. Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
3
|
Zhu Z, Shibata R, Hoffman KL, Cormier J, Mansbach JM, Liang L, Camargo CA, Hasegawa K. Integrated nasopharyngeal airway metagenome and asthma genetic risk endotyping of severe bronchiolitis in infancy and risk of childhood asthma. Eur Respir J 2024; 64:2401130. [PMID: 39326916 DOI: 10.1183/13993003.01130-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Infants with bronchiolitis are at increased risk of developing asthma. Growing evidence suggests bronchiolitis is a heterogeneous condition. However, little is known about its biologically distinct subgroups based on the integrated metagenome and asthma genetic risk signature and their longitudinal relationships with asthma development. METHODS In a multicentre prospective cohort study of infants with severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation), we profiled nasopharyngeal airway metagenome and virus at hospitalisation, and calculated the polygenic risk score of asthma. Using similarity network fusion clustering approach, we identified integrated metagenome-asthma genetic risk endotypes. In addition, we examined their longitudinal association with the risk of developing asthma by the age of 6 years. RESULTS Out of 450 infants with bronchiolitis (median age 3 months), we identified five distinct endotypes, characterised by their nasopharyngeal metagenome, virus and asthma genetic risk profiles. Compared with endotype A infants (who clinically resembled "classic" bronchiolitis), endotype E infants (characterised by a high abundance of Haemophilus influenzae, high proportion of rhinovirus (RV)-A and RV-C infections and high asthma genetic risk) had a significantly higher risk of developing asthma (16.7% versus 35.9%; adjusted OR 2.24, 95% CI 1.02-4.97; p=0.046). The pathway analysis showed that endotype E had enriched microbial pathways (e.g. glycolysis, l-lysine, arginine metabolism) and host pathways (e.g. interferons, interleukin-6/Janus kinase/signal transducers and activators of transcription-3, fatty acids, major histocompatibility complex and immunoglobin-related) (false discovery rate (FDR)<0.05). Additionally, endotype E had a significantly higher proportion of neutrophils (FDR<0.05). CONCLUSION In this multicentre prospective cohort study of infant bronchiolitis, the clustering analysis of integrated-omics data identified biologically distinct endotypes with differential risks of developing asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Juwan Cormier
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Hanyuda A, Raita Y, Ninomiya T, Hashimoto K, Takada N, Sato K, Inoue J, Koshiba S, Tamiya G, Narita A, Akiyama M, Omodaka K, Tsuda S, Yokoyama Y, Himori N, Yamamoto Y, Taniguchi T, Negishi K, Nakazawa T. Metabolomic Profiling of Open-Angle Glaucoma Etiologic Endotypes: Tohoku Multi-Omics Glaucoma Study. Invest Ophthalmol Vis Sci 2024; 65:44. [PMID: 39565301 PMCID: PMC11583989 DOI: 10.1167/iovs.65.13.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose The purpose of this study was to investigate biologically meaningful endotypes of open-angle glaucoma (OAG) by applying unsupervised machine learning to plasma metabolites. Methods This retrospective longitudinal cohort study enrolled consecutive patients aged ≥20 years with OAG at Tohoku University Hospital from January 2017 to January 2020. OAG was confirmed based on comprehensive ophthalmic examinations. Among the 523 patients with OAG with available clinical metabolomic data, 173 patients were longitudinally followed up for ≥2 years, with available data from ≥5 reliable visual field (VF) tests without glaucoma surgery. We collected fasting blood samples and clinical data at enrollment and nuclear magnetic resonance spectroscopy to profile 45 plasma metabolites in a targeted approach. After computing a distance matrix of preprocessed metabolites with Pearson distance, gap statistics determined the optimal number of OAG endotypes. Its risk factors, clinical presentations, metabolomic profiles, and progression rate of sector-based VF loss were compared across endotypes. Results Five distinct OAG endotypes were identified. The highest-risk endotype (endotype B) showed a significant faster progression of central VF loss (P = 0.007). Compared with patients with other endotypes, those with endotype B were more likely to have a high prevalence of dyslipidemia, cold extremities, oxidative stress, and low OAG genetic risk scores. Pathway analysis of metabolomic profiles implicated altered fatty acid and ketone body metabolism in this endotype, with 34 differentially enriched pathways (false discovery rate [FDR] < 0.05). Conclusions Integrated metabolomic profiles identified five distinct etiologic endotypes of OAG, suggesting pathological mechanisms related with a high-risk group of central vision loss progression in the Japanese population.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoshihiko Raita
- Department of Nephrology, Okinawa Prefectural Chubu Hospital, Uruma City, Naha, Japan
| | - Takahiro Ninomiya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoko Takada
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Gen Tamiya
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Aoba-ku, Sendai, Miyagi, Japan
| | - Yasuko Yamamoto
- Ophthalmic Innovation Center, Santen Pharmaceutical Co., Ltd, Ikoma-shi, Nara, Japan
| | - Takazumi Taniguchi
- Ophthalmic Innovation Center, Santen Pharmaceutical Co., Ltd, Ikoma-shi, Nara, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Miyachi H, Shibata R, Makrinioti H, Kyo M, Camargo CA, Zhu Z, Hasegawa K. Association between nasopharyngeal airway lipidome signatures of infants with severe bronchiolitis and risk of recurrent wheeze: A prospective multicenter cohort study. Pediatr Allergy Immunol 2024; 35:e14274. [PMID: 39503262 PMCID: PMC11807286 DOI: 10.1111/pai.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Infants hospitalized for bronchiolitis are at high risk for developing recurrent wheeze in childhood. The role of airway lipids in the link between these two conditions remains unclear. This study aimed to identify the association between airway lipids in infants hospitalized for bronchiolitis and the development of recurrent wheeze, with a focus on immunoglobulin E (IgE) sensitization. METHODS In a multicenter prospective cohort study of 919 infants (age <1 year) hospitalized for bronchiolitis, we performed lipidomic profiling of nasopharyngeal airway specimens collected at hospitalization. We first identified lipid modules composed of highly correlated lipids by performing weighted correlation network analysis. We then examined the longitudinal association of those lipid modules with the rate of recurrent wheeze by age 3 years after discharge from hospitalization for bronchiolitis. We also examined the associations of lipid modules with IgE non-sensitized (i.e., neither sensitized at admission nor at age 3 years) and IgE-sensitized (i.e., sensitized at admission and/or at age 3 years) recurrent wheeze by age 3 years, respectively. RESULTS Our analysis identified 15 distinct lipid modules in the nasopharyngeal airway lipidome data. Overall, lipid modules composed of triacylglycerols (hazard ratio [HR] 1.78, 95% confidence interval [CI] 1.26-2.51, FDR < 0.01) and sphingolipids (HR 1.74, 95% CI 1.25-2.44, FDR <0.01) had the strongest associations with recurrent wheeze development. Stratification by IgE sensitization revealed differential associations. For example, the module composed of triacylglycerols was significantly associated with IgE non-sensitized recurrent wheeze, whereas the module composed of sphingolipids was significantly associated with IgE-sensitized recurrent wheeze (both FDR <0.05). CONCLUSION Distinct nasopharyngeal airway lipid modules are associated with recurrent wheeze development following severe bronchiolitis, with different patterns based on IgE sensitization status.
Collapse
Affiliation(s)
- Hideaki Miyachi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Shibata R, Raita Y, Zhu Z. Salivary polyreactive antibodies, airway bacteria, and recurrent respiratory infection severity. Eur Respir J 2024; 64:2401526. [PMID: 39362677 DOI: 10.1183/13993003.01526-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoshihiko Raita
- Department of Nephrology, Okinawa Chubu Hospital, Uruma, Japan
- TXP Medical Co. Ltd., Tokyo, Japan
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Ooka T, Usuyama N, Shibata R, Kyo M, Mansbach JM, Zhu Z, Camargo CA, Hasegawa K. Integrated-omics analysis with explainable deep networks on pathobiology of infant bronchiolitis. NPJ Syst Biol Appl 2024; 10:93. [PMID: 39174575 PMCID: PMC11341550 DOI: 10.1038/s41540-024-00420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Bronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severity. Here, we integrated nasopharyngeal transcriptome and metabolome data of 397 infants hospitalized with bronchiolitis in a 17-center prospective cohort study. Using an explainable deep network model, we identified an omics-cluster comprising 401 transcripts and 38 metabolites that distinguishes bronchiolitis severity (test-set AUC, 0.828). This omics-cluster derived a molecular network, where innate immunity-related metabolites (e.g., ceramides) centralized and were characterized by toll-like receptor (TLR) and NF-κB signaling pathways (both FDR < 0.001). The network analyses identified eight modules and 50 existing drug candidates for repurposing, including prostaglandin I2 analogs (e.g., iloprost), which promote anti-inflammatory effects through TLR signaling. Our approach facilitates not only the identification of molecular networks underlying infant bronchiolitis but the development of pioneering treatment strategies.
Collapse
Affiliation(s)
- Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Miyachi H, Ooka T, Pérez-Losada M, Camargo CA, Hasegawa K, Zhu Z. Nasopharyngeal airway long noncoding RNAs of infants with bronchiolitis and subsequent risk of developing childhood asthma. J Allergy Clin Immunol 2024; 153:1729-1735.e7. [PMID: 38272372 PMCID: PMC11162336 DOI: 10.1016/j.jaci.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Severe bronchiolitis (ie, bronchiolitis requiring hospitalization) during infancy is a major risk factor for developing childhood asthma. However, the biological mechanisms linking these 2 conditions remain unclear. OBJECTIVE We sought to investigate the longitudinal relationship between nasopharyngeal airway long noncoding RNA (lncRNA) in infants with severe bronchiolitis and subsequent asthma development. METHODS In this multicenter prospective cohort study of infants with severe bronchiolitis, we performed RNA sequencing of nasopharyngeal airway lncRNAs at index hospitalization. First, we identified differentially expressed lncRNAs (DE-lncRNAs) associated with asthma development by age 6 years. Second, we investigated the associations of DE-lncRNAs with asthma-related clinical characteristics. Third, to characterize the function of DE-lncRNAs, we performed pathway analysis for mRNA targeted by DE-lncRNAs. Finally, we examined the associations of DE-lncRNAs with nasal cytokines at index hospitalization. RESULTS Among 343 infants with severe bronchiolitis (median age, 3 months), we identified 190 DE-lncRNAs (false-discovery rate [FDR] < 0.05) associated with asthma development (eg, LINC02145, RAMP2-AS1, and PVT1). These DE-lncRNAs were associated with asthma-related clinical characteristics (FDR < 0.05), for example, respiratory syncytial virus or rhinovirus infection, infant eczema, and IgE sensitization. Furthermore, DE-lncRNAs were characterized by asthma-related pathways, including mitogen-activated protein kinase, FcɛR, and phosphatidylinositol 3-kinase (PI3K)-protein kinase B signaling pathways (FDR < 0.05). These DE-lncRNAs were also associated with nasal cytokines (eg, IL-1β, IL-4, and IL-13; FDR < 0.05). CONCLUSIONS In a multicenter cohort study of infants with severe bronchiolitis, we identified nasopharyngeal airway lncRNAs associated with childhood asthma development, characterized by asthma-related clinical characteristics, asthma-related pathways, and nasal cytokines. Our approach identifies lncRNAs underlying the bronchiolitis-asthma link and facilitates the early identification of infants at high risk of subsequent asthma development.
Collapse
Affiliation(s)
- Hideaki Miyachi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, The George Washington University, Washington, DC
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Uehara M, Inoue T, Hase S, Sasaki E, Toyoda A, Sakakibara Y. Decoding host-microbiome interactions through co-expression network analysis within the non-human primate intestine. mSystems 2024; 9:e0140523. [PMID: 38557130 PMCID: PMC11097647 DOI: 10.1128/msystems.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.
Collapse
Affiliation(s)
- Mika Uehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Zheng A, Shaw J, Yu YW. Mora: abundance aware metagenomic read re-assignment for disentangling similar strains. BMC Bioinformatics 2024; 25:161. [PMID: 38649836 PMCID: PMC11035124 DOI: 10.1186/s12859-024-05768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Taxonomic classification of reads obtained by metagenomic sequencing is often a first step for understanding a microbial community, but correctly assigning sequencing reads to the strain or sub-species level has remained a challenging computational problem. RESULTS We introduce Mora, a MetagenOmic read Re-Assignment algorithm capable of assigning short and long metagenomic reads with high precision, even at the strain level. Mora is able to accurately re-assign reads by first estimating abundances through an expectation-maximization algorithm and then utilizing abundance information to re-assign query reads. The key idea behind Mora is to maximize read re-assignment qualities while simultaneously minimizing the difference from estimated abundance levels, allowing Mora to avoid over assigning reads to the same genomes. On simulated diverse reads, this allows Mora to achieve F1 scores comparable to other algorithms while having less runtime. However, Mora significantly outshines other algorithms on very similar reads. We show that the high penalty of over assigning reads to a common reference genome allows Mora to accurately infer correct strains for real data in the form of E. coli reads. CONCLUSIONS Mora is a fast and accurate read re-assignment algorithm that is modularized, allowing it to be incorporated into general metagenomics and genomics workflows. It is freely available at https://github.com/AfZheng126/MORA .
Collapse
Affiliation(s)
- Andrew Zheng
- Mathematics, University of Toronto, 27 King's College Circle, Toronto, Ontario, M3R 0A3, Canada
| | - Jim Shaw
- Mathematics, University of Toronto, 27 King's College Circle, Toronto, Ontario, M3R 0A3, Canada.
| | - Yun William Yu
- Mathematics, University of Toronto, 27 King's College Circle, Toronto, Ontario, M3R 0A3, Canada.
- Computer and Mathematical Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
11
|
Makrinioti H, Zhu Z, Saglani S, Camargo CA, Hasegawa K. Infant Bronchiolitis Endotypes and the Risk of Developing Childhood Asthma: Lessons From Cohort Studies. Arch Bronconeumol 2024; 60:215-225. [PMID: 38569771 DOI: 10.1016/j.arbres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
Severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) during infancy is a heterogeneous condition associated with a high risk of developing childhood asthma. Yet, the exact mechanisms underlying the bronchiolitis-asthma link remain uncertain. Birth cohort studies have reported this association at the population level, including only small groups of patients with a history of bronchiolitis, and have attempted to identify the underlying biological mechanisms. Although this evidence has provided valuable insights, there are still unanswered questions regarding severe bronchiolitis-asthma pathogenesis. Recently, a few bronchiolitis cohort studies have attempted to answer these questions by applying unbiased analytical approaches to biological data. These cohort studies have identified novel bronchiolitis subtypes (i.e., endotypes) at high risk for asthma development, representing essential and enlightening evidence. For example, one distinct severe respiratory syncytial virus (RSV) bronchiolitis endotype is characterized by the presence of Moraxella catarrhalis and Streptococcus pneumoniae, higher levels of type I/II IFN expression, and changes in carbohydrate metabolism in nasal airway samples, and is associated with a high risk for childhood asthma development. Although these findings hold significance for the design of future studies that focus on childhood asthma prevention, they require validation. However, this scoping review puts the above findings into clinical context and emphasizes the significance of future research in this area aiming to offer new bronchiolitis treatments and contribute to asthma prevention.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Lapidot R, Faits T, Ismail A, Allam M, Khumalo Z, MacLeod W, Kwenda G, Mupila Z, Nakazwe R, Segrè D, Johnson WE, Thea DM, Mwananyanda L, Gill CJ. Nasopharyngeal Dysbiosis Precedes the Development of Lower Respiratory Tract Infections in Young Infants, a Longitudinal Infant Cohort Study. Gates Open Res 2024; 6:48. [PMID: 39050991 PMCID: PMC11266592 DOI: 10.12688/gatesopenres.13561.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Infants suffering from lower respiratory tract infections (LRTIs) have distinct nasopharyngeal (NP) microbiome profiles that correlate with severity of disease. Whether these profiles precede the infection or are a consequence of it, is unknown. In order to answer this question, longitudinal studies are needed. Methods We conducted a retrospective analysis of NP samples collected in a longitudinal birth cohort study of Zambian mother-infant pairs. Samples were collected every two weeks from 1-week through 14-weeks of age. Ten of the infants in the cohort who developed LRTI were matched 1:3 with healthy comparators. We completed 16S rRNA gene sequencing on the samples each of these infants contributed and compared the NP microbiome of the healthy infants to infants who developed LRTI. Results The infant NP microbiome maturation was characterized by transitioning from Staphylococcus dominant to respiratory-genera dominant profiles during the first three months of life, similar to what is described in the literature. Interestingly, infants who developed LRTI had distinct NP microbiome characteristics before infection, in most cases as early as the first week of life. Their NP microbiome was characterized by the presence of Novosphingobium, Delftia, high relative abundance of Anaerobacillus, Bacillus, and low relative abundance of Dolosigranulum, compared to the healthy controls. Mothers of infants with LRTI also had low relative abundance of Dolosigranulum in their baseline samples compared to mothers of infants that did not develop an LRTI. Conclusions Our results suggest that specific characteristics of the NP microbiome precede LRTI in young infants and may be present in their mothers as well. Early dysbiosis may play a role in the causal pathway leading to LRTI or could be a marker of underlying immunological, environmental, or genetic characteristics that predispose to LRTI.
Collapse
Affiliation(s)
- Rotem Lapidot
- Pediatric Infectious Diseases, Boston Medical Center, Boston, MA, 02118, USA
- Pediatrics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Tyler Faits
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Zamantungwak Khumalo
- Sequencing Core Facility, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, 0002, South Africa
| | - William MacLeod
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Ruth Nakazwe
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, MA, 02118, USA
- Department of Physics, Boston University, Boston, MA, 02118, USA
- Department of Biology, Boston University, Boston, MA, 02118, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02118, USA
| | - William Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Donald M Thea
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | | | - Christopher J Gill
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| |
Collapse
|
13
|
Krohmaly KI, Perez-Losada M, Ramos-Tapia I, Zhu Z, Hasegawa K, Camargo Jr. CA, Harmon B, Espinola JA, Reck Cechinel L, Batabyal R, Freishtat RJ, Hahn A. Bacterial small RNAs may mediate immune response differences seen in respiratory syncytial virus versus rhinovirus bronchiolitis. Front Immunol 2024; 15:1330991. [PMID: 38410509 PMCID: PMC10895043 DOI: 10.3389/fimmu.2024.1330991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bronchiolitis, a viral lower respiratory infection, is the leading cause of infant hospitalization, which is associated with an increased risk for developing asthma later in life. Bronchiolitis can be caused by several respiratory viruses, such as respiratory syncytial virus (RSV), rhinovirus (RV), and others. It can also be caused by a solo infection (e.g., RSV- or RV-only bronchiolitis) or co-infection with two or more viruses. Studies have shown viral etiology-related differences between RSV- and RV-only bronchiolitis in the immune response, human microRNA (miRNA) profiles, and dominance of certain airway microbiome constituents. Here, we identified bacterial small RNAs (sRNAs), the prokaryotic equivalent to eukaryotic miRNAs, that differ between infants of the 35th Multicenter Airway Research Collaboration (MARC-35) cohort with RSV- versus RV-only bronchiolitis. We first derived reference sRNA datasets from cultures of four bacteria known to be associated with bronchiolitis (i.e., Haemophilus influenzae, Moraxella catarrhalis, Moraxella nonliquefaciens, and Streptococcus pneumoniae). Using these reference sRNA datasets, we found several sRNAs associated with RSV- and RV-only bronchiolitis in our human nasal RNA-Seq MARC-35 data. We also determined potential human transcript targets of the bacterial sRNAs and compared expression of the sRNAs between RSV- and RV-only cases. sRNAs are known to downregulate their mRNA target, we found that, compared to those associated with RV-only bronchiolitis, sRNAs associated with RSV-only bronchiolitis may relatively activate the IL-6 and IL-8 pathways and relatively inhibit the IL-17A pathway. These data support that bacteria may be contributing to inflammation differences seen in RSV- and RV-only bronchiolitis, and for the first time indicate that the potential mechanism in doing so may be through bacterial sRNAs.
Collapse
Affiliation(s)
- Kylie I. Krohmaly
- Integrated Biomedical Sciences, The George Washington University, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
| | - Marcos Perez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, The George Washington University, Washington, DC, United States
| | - Ignacio Ramos-Tapia
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Carlos A. Camargo Jr.
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
| | - Janice A. Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Reck Cechinel
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
| | - Rachael Batabyal
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children’s National Research and Innovation Center, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Infectious Diseases, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW In this review, we discuss recent research that has furthered our understanding of microbiome development during childhood, the role of the microbiome in infections during this life stage, and emerging opportunities for microbiome-based therapies for infection prevention or treatment in children. RECENT FINDINGS The microbiome is highly dynamic during childhood and shaped by a variety of host and environmental factors. In turn, the microbiome influences risk and severity of a broad range of infections during childhood, with recent studies highlighting potential roles in respiratory, gastrointestinal, and systemic infections. The microbiome exerts this influence through both direct interactions with potential pathogens and indirectly through modulation of host immune responses. The elucidation of some of these mechanisms by recent studies and the development of effective microbiome-based therapies for adults with recurrent Clostridioides difficile infection highlight the enormous promise that targeting the microbiome has for reducing the burden of infectious diseases during childhood. SUMMARY The microbiome has emerged as a key modifier of infection susceptibility and severity among children. Further research is needed to define the roles of microbes other than bacteria and to elucidate the mechanisms underlying microbiome-host and microbiome-pathogen interactions of importance to infectious diseases in children.
Collapse
Affiliation(s)
- Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Sarah M. Heston
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| |
Collapse
|
15
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Green AE, Pottenger S, Monshi MS, Barton TE, Phelan M, Neill DR. Airway metabolic profiling during Streptococcus pneumoniae infection identifies branched chain amino acids as signatures of upper airway colonisation. PLoS Pathog 2023; 19:e1011630. [PMID: 37669280 PMCID: PMC10503754 DOI: 10.1371/journal.ppat.1011630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and bacteraemia and is capable of remarkable phenotypic plasticity, responding rapidly to environmental change. Pneumococcus is a nasopharyngeal commensal, but is responsible for severe, acute infections following dissemination within-host. Pneumococcus is adept at utilising host resources, but the airways are compartmentalised and those resources are not evenly distributed. Challenges and opportunities in metabolite acquisition within different airway niches may contribute to the commensal-pathogen switch when pneumococcus moves from nasopharynx into lungs. We used NMR to characterise the metabolic landscape of the mouse airways, in health and during infection. Using paired nasopharynx and lung samples from naïve animals, we identified fundamental differences in metabolite bioavailability between airway niches. Pneumococcal pneumonia was associated with rapid and dramatic shifts in the lung metabolic environment, whilst nasopharyngeal carriage led to only modest change in upper airway metabolite profiles. NMR spectra derived from the nasopharynx of mice infected with closely-related pneumococcal strains that differ in their colonisation potential could be distinguished from one another using multivariate dimensionality reduction methods. The resulting models highlighted that increased branched-chain amino acid (BCAA) bioavailability in nasopharynx is a feature of infection with the high colonisation potential strain. Subsequent analysis revealed increased expression of BCAA transport genes and increased intracellular concentrations of BCAA in that same strain. Movement from upper to lower airway environments is associated with shifting challenges in metabolic resource allocation for pneumococci. Efficient biosynthesis, liberation or acquisition of BCAA is a feature of adaptation to nasopharyngeal colonisation.
Collapse
Affiliation(s)
- Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manal S. Monshi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marie Phelan
- Highfield NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Molecular, Systems and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Shibata R, Zhu Z, Kyo M, Ooka T, Freishtat RJ, Mansbach JM, Pérez-Losada M, Camargo CA, Hasegawa K. Nasopharyngeal fungal subtypes of infant bronchiolitis and disease severity risk. EBioMedicine 2023; 95:104742. [PMID: 37536062 PMCID: PMC10415709 DOI: 10.1016/j.ebiom.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING This study was supported by the National Institutes of Health.
Collapse
Affiliation(s)
- Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA; Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Roggiani S, Zama D, D’Amico F, Rocca A, Fabbrini M, Totaro C, Pierantoni L, Brigidi P, Turroni S, Lanari M. Gut, oral, and nasopharyngeal microbiota dynamics in the clinical course of hospitalized infants with respiratory syncytial virus bronchiolitis. Front Cell Infect Microbiol 2023; 13:1193113. [PMID: 37680746 PMCID: PMC10482328 DOI: 10.3389/fcimb.2023.1193113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospitalization in infants worldwide. The nasopharyngeal microbiota has been suggested to play a role in influencing the clinical course of RSV bronchiolitis, and some evidence has been provided regarding oral and gut microbiota. However, most studies have focused on a single timepoint, and none has investigated all three ecosystems at once. Methods Here, we simultaneously reconstructed the gut, oral and nasopharyngeal microbiota dynamics of 19 infants with RSV bronchiolitis in relation to the duration of hospitalization (more or less than 5 days). Fecal samples, oral swabs, and nasopharyngeal aspirates were collected at three timepoints (emergency room admission, discharge and six-month follow-up) and profiled by 16S rRNA amplicon sequencing. Results Interestingly, all ecosystems underwent rearrangements over time but with distinct configurations depending on the clinical course of bronchiolitis. In particular, infants hospitalized for longer showed early and persistent signatures of unhealthy microbiota in all ecosystems, i.e., an increased representation of pathobionts and a depletion of typical age-predicted commensals. Discussion Monitoring infant microbiota during RSV bronchiolitis and promptly reversing any dysbiotic features could be important for prognosis and long-term health.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Rocca
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Totaro
- Specialty School of Pediatrics, University of Bologna, Bologna, Italy
| | - Luca Pierantoni
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marcello Lanari
- Paediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Zhu Z, Freishtat RJ, Harmon B, Hahn A, Teach SJ, Pérez-Losada M, Hasegawa K, Camargo CA. Nasal airway microRNA profiling of infants with severe bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2023; 62:2300502. [PMID: 37321621 PMCID: PMC10578345 DOI: 10.1183/13993003.00502-2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Stephen J Teach
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Orzołek I, Ambrożej D, Makrinioti H, Zhu Z, Jartti T, Feleszko W. Severe bronchiolitis profiling as the first step towards prevention of asthma. Allergol Immunopathol (Madr) 2023; 51:99-107. [PMID: 37169566 DOI: 10.15586/aei.v51i3.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 05/13/2023]
Abstract
Bronchiolitis is the most common respiratory infection leading to hospitalization and constitutes a significant healthcare burden. The two main viral agents causing bronchiolitis, respiratory syncytial virus (RSV) and rhinovirus (RV), have distinct cytopathic, immune response, and clinical characteristics. Different approaches have been suggested for subtyping bronchiolitis based on viral etiology, atopic status, transcriptome profiles in blood, airway metabolome, lipidomic data, and airway microbiota. The highest risk of asthma at school age has been in a subgroup of bronchiolitis characterized by older age, high prevalence of RV infection, previous breathing problems, and/or eczema. Regarding solely viral etiology, RV-bronchiolitis in infancy has been linked to a nearly three times higher risk of developing asthma than RSV-bronchiolitis. Although treatment with betamimetics and systemic corticosteroids has been found ineffective in bronchiolitis overall, it can be beneficial for infants with severe RV bronchiolitis. Thus, there is a need to develop a more individualized therapeutic approach for bronchiolitis and follow-up strategies for infants at higher risk of asthma in the future perspective.
Collapse
Affiliation(s)
- Izabela Orzołek
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tuomas Jartti
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland;
| |
Collapse
|