1
|
Gauthier T, Lim YJ, Jin W, Liu N, Patiño LC, Chen W, Warren J, Martin D, Morell RJ, Dveksler G, Su GH, Chen W. Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis. J Clin Invest 2025; 135:e187063. [PMID: 40067393 PMCID: PMC12043092 DOI: 10.1172/jci187063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, and this activation is mediated by activin A in a TGF-β-independent manner. Specifically, infectious ligands, such as LPS, induced secretion of activin A through the transcription factor STAT5 in macrophages, and activin A signaling in turn activated pSmad3C. This activin A/Smad3 axis controlled mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an antiinflammatory mechanism. Consequently, mice with a deletion of activin A receptor 1b specifically in macrophages (Acvr1bfl/fl-Lyz2cre) succumbed more to sepsis as a result of uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an activin A-dependent manner.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiwei Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, Maryland, USA
| | - Gloria H. Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Du X, Lin L, Yu Y, Yang N, Gao S, Guo J, Fang L, Su P. The evolution and functional characterization of transcription factors E2Fs in lamprey, Lethenteron reissneri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105348. [PMID: 40031963 DOI: 10.1016/j.dci.2025.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The E2 promoter binding factors (E2Fs) are a group of transcriptional regulators that govern the cell cycle and play crucial roles in various cellular physiological processes, including proliferation and embryonic development. In this study, we identified four homologous genes-Lr-E2F3, Lr-E2F4, Lr-E2F5, and Lr-E2F8-from the lamprey (Lethenteron reissneri) genome database. Phylogenetic tree analysis was conducted to elucidate the evolutionary relationships within the E2F family across different species. Furthermore, analyses of motifs, domains, gene structures, and 3D structures reinforced the conservation of the E2F family. Notably, synteny analysis revealed that the neighboring genes of the Lr-E2Fs exhibited greater diversity compared to those in jawed vertebrates. Activity assays indicated that Lr-E2Fs may be involved in lamprey innate immunity mediated by NF-кB. Additionally, morphological observations of embryos microinjected with Cas9/sgRNA demonstrated that E2F-deficient lamprey embryos displayed embryonic lethality, suggesting that Lr-E2Fs play a significant role in lamprey embryonic development. In summary, our research not only provides new insights into the evolution of Lr-E2Fs but also offers valuable clues regarding their functional roles.
Collapse
Affiliation(s)
- Xinyu Du
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lin Lin
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Department of Gynaecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116001, China
| | - Yongcheng Yu
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Department of Computing Science and Artificial Intelligence, Liaoning Normal University, Dalian, 116081, China
| | - Ning Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Si Gao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jinyang Guo
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lingling Fang
- Department of Computing Science and Artificial Intelligence, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
3
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
4
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2025; 18:1-15. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
5
|
Cao T, Tian D, Wang S, Pan Y, Xia Z, Chen W, Yang S, Zeng Q, Zhao Y, Zheng L, Li N, Lai Z, Luo Y, Shen Z. Microglial DBP Signaling Mediates Behavioral Abnormality Induced by Chronic Periodontitis in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406269. [PMID: 39429161 PMCID: PMC11633467 DOI: 10.1002/advs.202406269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Several lines of evidence implicate that chronic periodontitis (CP) increases the risk of mental illnesses, such as anxiety and depression, yet, the associated molecular mechanism for this remains poorly defined. Here, it is reported that mice subjected to CP exhibited depression-like behaviors and hippocampal memory deficits, accompanied by synapse loss and neurogenesis impairment in the hippocampus. RNA microarray analysis disclosed that albumin D-site-binding protein (DBP) is identified as the most prominently upregulated target gene following CP, and in vivo and in vitro immunofluorescence methods showed that DBP is preferentially expressed in microglia but not neurons or astrocytes in the hippocampus. Interestingly, it is found that the expression of DBP is significantly increased in microglia after CP, and knockdown of microglial DBP ameliorated the behavioral abnormality, as well as reversed the synapse loss and hippocampal neurogenesis damage induced by CP. Furthermore, DBP knockdown improved the CP-induced hippocampal inflammation and microglial polarization. Collectively, these results indicate a critical role of DBP in orchestrating chronic periodontitis-related behavioral abnormality, hippocampal synapse loss and neurogenesis deficits, in which the microglial activation may be indispensably involved.
Collapse
Affiliation(s)
- Ting Cao
- Department of Children's StomatologyStomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and TreatmentXiamen361003China
| | - Dan Tian
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Si‐Ying Wang
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Yue Pan
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Zhi‐Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life ScienceHainan Medical UniversityHaikou571199China
| | - Wei‐Kai Chen
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Shao‐Wei Yang
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Qing‐Quan Zeng
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Yue‐Ling Zhao
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Ling Zheng
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| | - Ning Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Zhong‐Meng Lai
- Department of AnesthesiologyUnion Hospital, Fujian Medical UniversityFuzhou350001China
| | - Yi‐Xiao Luo
- Hunan Province People's HospitalThe First‐affiliated Hospital of Hunan Normal UniversityChangsha410002China
| | - Zu‐Cheng Shen
- Department of PharmacologySchool of PharmacyFujian Medical UniversityFuzhou350122China
| |
Collapse
|
6
|
Ye Y, Liu C, Wu R, Kang D, Gao H, Lv H, Feng Z, Shi Y, Liu Z, Chen L. Circadian clock component PER2 negatively regulates CD4 + T cell IFN-γ production in ulcerative colitis. Mucosal Immunol 2024; 17:1161-1173. [PMID: 39097147 DOI: 10.1016/j.mucimm.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Period circadian clock 2 (PER2) is involved in the pathogenesis of various inflammatory and autoimmune diseases. However, there are gaps in our understanding of the role of PER2 in regulating CD4+ T cells beyond its time-keeping function in ulcerative colitis (UC) pathogenesis. Our findings revealed PER2 was predominantly expressed in CD4+ T cells, while it was significantly decreased in the inflamed mucosa and peripheral blood CD4+ T cells of UC patients compared with that in Crohn's disease (CD) patients and healthy controls (HC). Notably, PER2 expression was significantly recovered in UC patients in remission (R-UC) compared to that in active UC patients (A-UC) but not in CD patients. It was negatively correlated with the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), Crohn's Disease Activity Index (CDAI), Simple Endoscopic Score for Crohn's disease (SES-CD), and C-reactive protein (CRP), respectively. Overexpression of PER2 markedly inhibited IFN-γ production in UC CD4+ T cells. RNA-seq analysis showed that overexpression of PER2 could repress the expression of a disintegrin and metalloproteinase 12 (ADAM12), a costimulatory molecule that determines Th1 cell fate. Mechanistically, cleavage under targets and tagmentation (CUT&Tag) analysis revealed that PER2 down-regulated ADAM12 expression by reducing its binding activity, thereby suppressing IFN-γ production in UC CD4+ T cells. Additionally, our data further demonstrated that ADAM12 was upregulated in CD4+ T cells and inflamed mucosa of A-UC patients compared to HC. Our study reveals a critical role of PER2 in regulating CD4+ T cell differentiation and highlights its potential as a therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Yulan Ye
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou 215008, China
| | - Changqin Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ruijin Wu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huiying Lv
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yanhong Shi
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China.
| |
Collapse
|
7
|
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y, Endo Y. Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. Cell Mol Immunol 2024; 21:1266-1281. [PMID: 39187636 PMCID: PMC11528006 DOI: 10.1038/s41423-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yuki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Takeru Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souta Yoshida
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuko Yamada
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan.
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
8
|
Lim YJ, Park SA, Wang D, Jin W, Ku WL, Zhang D, Xu J, Patiño LC, Liu N, Chen W, Kazmi R, Zhao K, Zhang YE, Sun L, Chen W. MicroRNA-19b exacerbates systemic sclerosis through promoting Th9 cells. Cell Rep 2024; 43:114565. [PMID: 39083380 PMCID: PMC11440512 DOI: 10.1016/j.celrep.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and multiple vital organs, but the immunological pathogenesis of SSc remains unclear. We show here that miR-19b promotes Th9 cells that exacerbate SSc. Specifically, miR-19b and interleukin (IL)-9 increase in CD4+ T cells in experimental SSc in mice induced with bleomycin. Inhibiting miR-19b reduces Th9 cells and ameliorates the disease. Mechanistically, transforming growth factor beta (TGF-β) plus IL-4 activates pSmad3-Ser213 and TRAF6-K63 ubiquitination by suppressing NLRC3. Activated TRAF6 sequentially promotes TGF-β-activated kinase 1 (TAK1) and nuclear factor κB (NF-κB) p65 phosphorylation, leading to the upregulation of miR-19b. Notably, miR-19b activated Il9 gene expression by directly suppressing atypical E2F family member E2f8. In patients with SSc, higher levels of IL9 and MIR-19B correlate with worse disease progression. Our findings reveal miR-19b as a key factor in Th9 cell-mediated SSc pathogenesis and should have clinical implications for patients with SSc.
Collapse
Affiliation(s)
- Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Sang-A Park
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Wai Lim Ku
- Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Junji Xu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Liliana C Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Weiwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rida Kazmi
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Son A, Baral I, Falduto GH, Schwartz DM. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp Mol Med 2024; 56:1331-1339. [PMID: 38825637 PMCID: PMC11263352 DOI: 10.1038/s12276-024-01241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease.
Collapse
Affiliation(s)
- Aran Son
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Ishita Baral
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Liu Z, Wang C, Tang Y, Zhang X, Pei J, Liu H, Yu Y, Gu W. ENO1 promotes trophoblast invasion regulated by E2F8 in recurrent miscarriage. FASEB J 2024; 38:e23631. [PMID: 38661062 DOI: 10.1096/fj.202302032rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyue Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Lee WH, Hong KJ, Li H, Lee GR. Transcription Factor Id1 Plays an Essential Role in Th9 Cell Differentiation by Inhibiting Tcf3 and Tcf4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305527. [PMID: 37867222 PMCID: PMC10724384 DOI: 10.1002/advs.202305527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
T helper type 9 (Th9) cells play important roles in immune responses by producing interleukin-9 (IL-9). Several transcription factors are responsible for Th9 cell differentiation; however, transcriptional regulation of Th9 cells is not fully understood. Here, it is shown that Id1 is an essential transcriptional regulator of Th9 cell differentiation. Id1 is induced by IL-4 and TGF-β. Id1-deficient naïve CD4 T cells fail to differentiate into Th9 cells, and overexpression of Id1 induce expression of IL-9. Mass spectrometry analysis reveals that Id1 interacts with Tcf3 and Tcf4 in Th9 cells. In addition, RNA-sequencing, chromatin immunoprecipitation, and transient reporter assay reveal that Tcf3 and Tcf4 bind to the promoter region of the Il9 gene to suppress its expression, and that Id1 inhibits their function, leading to Th9 differentiation. Finally, Id1-deficient Th9 cells ameliorate airway inflammation in an animal model of asthma. Thus, Id1 is a transcription factor that plays an essential role in Th9 cell differentiation by inhibiting Tcf3 and Tcf4.
Collapse
Affiliation(s)
- Woo Ho Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Kyung Jin Hong
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Hua‐Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of Medicine280 Chongqing South Rd, Building #5‐602Shanghai200025China
| | - Gap Ryol Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| |
Collapse
|
12
|
Gauthier T, Yao C, Dowdy T, Jin W, Lim YJ, Patiño LC, Liu N, Ohlemacher SI, Bynum A, Kazmi R, Bewley CA, Mitrovic M, Martin D, Morell RJ, Eckhaus M, Larion M, Tussiwand R, O’Shea J, Chen W. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal 2023; 16:eade0385. [PMID: 37552767 PMCID: PMC11145950 DOI: 10.1126/scisignal.ade0385] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Wenwen Jin
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Na Liu
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Andrew Bynum
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Rida Kazmi
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mladen Mitrovic
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Michael Eckhaus
- Division of Veterinary Resources, Pathology Service, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Roxane Tussiwand
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - John O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
13
|
Wang Y, Zhang F, Yao B, Hou L, Li Z, Song W, Kong Y, Tan Y, Fu X, Huang S. Notch4 participates in mesenchymal stem cell-induced differentiation in 3D-printed matrix and is implicated in eccrine sweat gland morphogenesis. BURNS & TRAUMA 2023; 11:tkad032. [PMID: 37397510 PMCID: PMC10309082 DOI: 10.1093/burnst/tkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Background Eccrine sweat gland (SG) plays a crucial role in thermoregulation but exhibits very limited regenerative potential. Although SG lineage-restricted niches dominate SG morphogenesis and benefit SG regeneration, rebuilding niches in vivo is challenging for stem cell therapeutic applications. Hence, we attempted to screen and tune the critical niche-responding genes that dually respond to both biochemical and structural cues, which might be a promising strategy for SG regeneration. Methods An artificial SG lineage-restricted niche consisting of mouse plantar dermis homogenates (i.e. biochemical cues) and 3D architecture (i.e. structural cues) was built in vitro by using an extrusion-based 3D bioprinting approach. Mouse bone marrow-derived mesenchymal stem cells (MSCs) were then differentiated into the induced SG cells in the artificial SG lineage-restricted niche. To decouple biochemical cues from structural cues, the transcriptional changes aroused by pure biochemical cues, pure structural cues and synergistic effects of both cues were analyzed pairwise, respectively. Notably, only niche-dual-responding genes that are differentially expressed in response to both biochemical and structural cues and participate in switching MSC fates towards SG lineage were screened out. Validations in vitro and in vivo were respectively conducted by inhibiting or activating the candidate niche-dual-responding gene(s) to explore the consequent effects on SG differentiation. Results Notch4 is one of the niche-dual-responding genes that enhanced MSC stemness and promoted SG differentiation in 3D-printed matrix in vitro. Furthermore, inhibiting Notch4 specifically reduced keratin 19-positive epidermal stem cells and keratin 14-positive SG progenitor cells, thus further delaying embryonic SG morphogenesis in vivo. Conclusions Notch4 not only participates in mouse MSC-induced SG differentiation in vitro but is also implicated in mouse eccrine SG morphogenesis in vivo.
Collapse
Affiliation(s)
| | | | | | - Linhao Hou
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110032, P. R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Yaxin Tan
- College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping District, Tianjin, 300070, P.R. China
| | | | - Sha Huang
- Correspondence. Xiaobing Fu, ; Sha Huang,
| |
Collapse
|
14
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|