1
|
Kimpel J, Kim Y, Schomaker H, Hinojosa DR, Asatryan J, Martín J, Kroon R, Sommer M, Müller C. Open-flask, ambient temperature direct arylation synthesis of mixed ionic-electronic conductors. SCIENCE ADVANCES 2025; 11:eadv8168. [PMID: 40333976 PMCID: PMC12057656 DOI: 10.1126/sciadv.adv8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Conjugated polymers are widely studied for application areas ranging from energy technology to wearable electronics and bioelectronics. To develop a truly sustainable technology, environmentally benign synthesis is essential. Here, the open-flask synthesis of a multitude of conjugated polymers at room temperature by ambient direct arylation polymerization (ADAP) is demonstrated. The batch synthesis of over 100 grams of polymer in a green solvent and continuous droplet flow synthesis without any solid support is described. Polymers prepared by ADAP are characterized by improved structural order compared to materials prepared by other methods. Hence, organic electrochemical transistors (OECTs) feature beyond state-of-the-art electrical properties, i.e., an OECT hole mobility μ as high as 6 cm2 V-1 s-1, a volumetric capacitance C* over 200 F cm-3, and thus a figure of merit [μC*] exceeding 1100 F cm-1 V-1 s-1. Thus, ADAP paves the way for the benign and large-scale production of high-performance conjugated polymers.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | - Diego R. Hinojosa
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Michael Sommer
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Gańczarczyk R, Rudowska M, Gryszel M, Proń A, Rybakiewicz-Sekita R, Głowacki ED. In Situ Electropolymerized Ambipolar Copolymers for Vertical OECTs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411219. [PMID: 40304204 DOI: 10.1002/smll.202411219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Indexed: 05/02/2025]
Abstract
A novel approach is reported for obtaining ambipolar electroactive polymers via in situ electropolymerization for vertical organic electrochemical transistor (vOECT) applications. It is shown that electropolymerization is a practical and efficient method to obtain copolymers without contamination from chemical polymerization processes. To this end, two monomers, G-DTP-Bu-NDI and G-DTP-G-NDI, are proposed, comprising naphthalene diimide (NDI) as the acceptor core and dithienopyrrole (DTP) as the donor unit, capable of forming carbon-carbon bonds under the influence of an electric current. The incorporation of oligo(oxyethylene) (OEG) side groups ensures their amphiphilicity. Both compounds underwent successful electrochemical polymerization, resulting in thin, porous, uniform polymer layers on the electrode surface. The synthesized polymers are further examined using electrochemical and spectroelectrochemical techniques in both organic and aqueous electrolytes. Regardless of the electrolyte medium (aqueous or non-aqueous), poly(G-DTP-Bu-NDI), and poly(G-DTP-G-NDI) exhibit stable electroactivity, as demonstrated by numerous scans showing ambipolar redox behavior. Both polymers are tested as components of vertical OECTs, following in situ electrochemical deposition within a 350 nm channel. The recorded transfer characteristics suggest that the fabricated donor-acceptor (D-A) compounds hold promise for developing a new generation of ambipolar ECT devices.
Collapse
Affiliation(s)
- Roman Gańczarczyk
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw, 00-664, Poland
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Magdalena Rudowska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Maciej Gryszel
- Linköping University, Laboratory of Organic Electronics, ITN, Bredgatan 33, Norrköping, 60174, Sweden
| | - Adam Proń
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Renata Rybakiewicz-Sekita
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw, 00-664, Poland
- Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences, School of Exact Sciences, Woycickiego 1/3, Warsaw, 01-938, Poland
| | - Eric D Głowacki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw, 00-664, Poland
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| |
Collapse
|
3
|
Chen Z, Ding X, Wang J, Guo X, Shao S, Feng K. π-Conjugated Polymers for High-Performance Organic Electrochemical Transistors: Molecular Design Strategies, Applications and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202423013. [PMID: 39743846 DOI: 10.1002/anie.202423013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The last decade has witnessed significant progress in organic electrochemical transistors (OECTs) due to their enormous potential applications in various bioelectronic devices, such as artificial synapses, biological interfaces, and biosensors. The remarkable advance in this field is highly powered by the development of novel organic mixed ionic/electronic conductors (OMIECs). π-Conjugated polymers (CPs), which are widely used in various optoelectronics, are emerging as key channel materials for OECTs. In this review, after briefly introducing OECT, we then mainly focus on the latest progress in CPs for high-performance OECTs. The correlations of their structure, basic physicochemical properties, and device performance are elucidated by evaluating their electronic characters, optoelectronic properties, and OECT performance. Then, the applications of CP-based OECTs are briefly presented. Finally, we discuss several remaining issues or challenges in this field and give our insights into advancing CPs for enhanced OECT performance.
Collapse
Affiliation(s)
- Zhicai Chen
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xinliang Ding
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Shiyang Shao
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
4
|
Yu H, Marks A, Tuladhar SM, Siemons N, Anderson I, Bidinger S, Keene ST, Quill TJ, Wu R, Gough O, Wu G, Eisner F, Salleo A, Rivnay J, Malliaras GG, Barnes PRF, McCulloch I, Nelson J. The Influence of Alkyl Spacers and Molecular Weight on the Charge Transport and Storage Properties of Oxy-Bithiophene-Based Conjugated Polymers. Angew Chem Int Ed Engl 2025; 64:e202417897. [PMID: 39714022 PMCID: PMC11795722 DOI: 10.1002/anie.202417897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 12/24/2024]
Abstract
Conjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear. In this work, we design two oxy-bithiophene-based CP series, each featuring progressively extended alkyl spacer lengths and two distinct molecular weight (MW) distributions. Using operando characterisations, we evaluate the (spectro)electrochemical and swelling properties of the polymer thin films, and their performance in organic field-effect transistors and organic electrochemical transistors. Surprisingly, alkyl spacers negatively impact the hole mobility of our polymers, with higher MW amplifying this effect. Using molecular dynamics simulations, we show that it is thermodynamically favourable for adjacent non-polar alkyl spacers to aggregate in polar electrolytes, leading to backbone twisting. Further spectroscopic measurements corroborate this prediction. Our findings demonstrate the active interactions between side chain structure, MW and electrolyte/solvent polarity in influencing polymer performance, underscoring the importance of considering solvation environment effects on polymer conformation when designing new mixed conducting CPs for electrochemical applications.
Collapse
Affiliation(s)
- Hang Yu
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Adam Marks
- Department of ChemistryUniversity of OxfordOX1 2JDOxfordUnited Kingdom
- Department of Materials Science and EngineeringStanford University94305StanfordCAUnited States
| | - Sachetan M. Tuladhar
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Nicholas Siemons
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Iona Anderson
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Sophia Bidinger
- Department of EngineeringUniversity of CambridgeCB3 0FACambridgeUnited Kingdom
| | - Scott T. Keene
- Department of EngineeringUniversity of CambridgeCB3 0FACambridgeUnited Kingdom
| | - Tyler J. Quill
- Department of Materials Science and EngineeringStanford University94305StanfordCAUnited States
| | - Ruiheng Wu
- Department of Biomedical EngineeringNorthwestern University60208EvanstonILUnited States
| | - Olivia Gough
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Guanchen Wu
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Flurin Eisner
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Alberto Salleo
- Department of Materials Science and EngineeringStanford University94305StanfordCAUnited States
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern University60208EvanstonILUnited States
| | - George G. Malliaras
- Department of EngineeringUniversity of CambridgeCB3 0FACambridgeUnited Kingdom
| | - Piers R. F. Barnes
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOX1 2JDOxfordUnited Kingdom
- Andlinger Center for Energy and the EnvironmentDepartment of Electrical and Computer EngineeringPrinceton University08544PrincetonNJUnited States
| | - Jenny Nelson
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSW7 2AZLondonUnited Kingdom
| |
Collapse
|
5
|
Zhang J, Zhong Y, Jiang H, Zhao Z, Wang H, Wang R, Chen Z, Liang Q, Wang X, Sun F, Xing Y, Duan X, Li H, Feng LW, Zhu M, Sun H, Wang G. Trace Dual-Crosslinkable Additives Enable Direct Microlithography for Enhanced Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417452. [PMID: 39901478 DOI: 10.1002/adma.202417452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Indexed: 02/05/2025]
Abstract
Similar to silicon-based electronics, the implementation of micro/nano-patterning to facilitate complex device architectures and high-density integration is crucial to the development of organic electronics. Among various patterning techniques, direct microlithography (DML) is highly applicable and extensively adopted in organic electronics, such as organic electrochemical transistors (OECTs). However, conventional DML often requires high crosslinker concentrations, leading to compromised electrical performance. To address this challenge, a novel strategy is developed that combines supramolecular and covalent interactions by incorporating a polyrotaxane supramolecular crosslinker (PR) into poly(benzodifurandione) (PBFDO). The PR forms a hydrogen bonding network with PBFDO and undergoes UV-triggered covalent crosslinking among its molecules, providing solvent resistance even at trace loading levels (<0.1 wt%). This approach enables precise patterning of PBFDO with feature sizes below 1 µm while preserving high electrical performance. Notably, PR also serves as a performance enhancer, promoting molecular ordering and ionic conduction within PBFDO. OECTs fabricated with PR-crosslinked PBFDO exhibit about one-order-of-magnitude increase in ON/OFF ratio, a 42% increase in µC* (reaching 2460 F cm-1 V-1 s-1), and elevated operational stability compared to pristine ones. This multifunctional crosslinker offers a scalable solution for high-performance, high-density organic electronics and opens new avenues for supramolecular chemistry applications in this field.
Collapse
Affiliation(s)
- Jingling Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueheng Zhong
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hao Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhikang Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haoyu Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ruizhe Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhu Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Qicheng Liang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangyu Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fengqiang Sun
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yi Xing
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hengda Sun
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Pingdingshan Industrial Technology Research Institute, Henan Academy of Sciences, Henan, Zhengzhou, 450046, China
| | - Gang Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Yu Z, Jiang X, Shi C, Shi Y, Huang L, Han Y, Deng Y, Geng Y. Anisole Processible n-Type Conjugated Polymers Synthesized via C─H/C─H Oxidative Direct Arylation Polycondensation for Organic Electrochemical Transistors. Macromol Rapid Commun 2025; 46:e2400757. [PMID: 39601675 DOI: 10.1002/marc.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The development of n-type polymers for organic electrochemical transistors (OECTs) has lagged significantly behind their p-type counterparts. Moreover, these polymers are often synthesized via Stille polycondensation. Herein, three polymers with thiazole-flanked diketopyrrolopyrrole is synthesized as the monomer through C─H/C─H oxidative direct arylation polycondensation (Oxi-DArP). This protocol employs unfunctionalized (C─H terminated) monomers, and the generated byproducts are environmentally benign. The electron-deficient polymer backbone confers these polymers with LUMO energy levels below -4.20 eV, enabling all of them to exhibit n-type behavior in OECTs. Additionally, the resulting polymers are soluble in the green solvent anisole. With an optimized alkyl spacer between oligo(ethylene glycol) side chain and conjugated backbone, the polymer gTzDPP-C8 showed the best device performance with geometry normalized transconductance (gm,norm) up to 6.31 S cm-1 and µC* up to 23.1 F V-1 cm-1 s-1. This work has successfully proved that C─H/C─H Oxi-DArP is a promising method for synthesizing n-type OMIECs to fulfill high-performance OECTs.
Collapse
Affiliation(s)
- Zerui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yibo Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yang Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Liao H, Savva A, Marsh AV, Yang YY, Faber H, Rimmele M, Sanviti M, Zhou R, Emwas AH, Martín J, Anthopoulos TD, Heeney M. High Performance Organic Mixed Ionic-Electronic Polymeric Conductor with Stability to Autoclave Sterilization. Angew Chem Int Ed Engl 2025; 64:e202416288. [PMID: 39291657 DOI: 10.1002/anie.202416288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We present a series of newly developed donor-acceptor (D-A) polymers designed specifically for organic electrochemical transistors (OECTs) synthesized by a straightforward route. All polymers exhibited accumulation mode behavior in OECT devices, and tuning of the donor comonomer resulted in a three-order-of-magnitude increase in transconductance. The best polymer gFBT-g2T, exhibited normalized peak transconductance (gm,norm) of 298±10.4 S cm-1 with a corresponding product of charge-carrier mobility and volumetric capacitance, μC*, of 847 F V-1 cm-1 s-1 and a μ of 5.76 cm2 V-1 s-1, amongst the highest reported to date. Furthermore, gFBT-g2T exhibited exceptional temperature stability, maintaining the outstanding electrochemical performance even after undergoing a standard (autoclave) high pressure steam sterilization procedure. Steam treatment was also found to promote film porosity, with the formation of circular 200-400 nm voids. These results demonstrate the potential of gFBT-g2T in p-type accumulation mode OECTs, and pave the way for the use in implantable bioelectronics for medical applications.
Collapse
Affiliation(s)
- Hailiang Liao
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
| | - Achilleas Savva
- Delft University of Technology, Fac. EEMCS, Mekelweg 4, 2628 CD, Delft, The Netherlands
| | - Adam V Marsh
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
| | - Yu-Ying Yang
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
| | - Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, London, United Kingdom
| | - Matteo Sanviti
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Campus Esteiro S/N, 15403, Ferrol, Spain
| | - Renqian Zhou
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), KAUST core lab, 23955, Thuwal, Saudi Arabia
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Campus Esteiro S/N, 15403, Ferrol, Spain
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
- Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Martin Heeney
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences & Engineering, 23955, Thuwal, Saudi Arabia
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, London, United Kingdom
| |
Collapse
|
8
|
Xie Z, Zhuge C, Li C, Zhao Y, Jiang J, Zhou J, Fu Y, Li Y, Xie Z, Wang Q, Lu L, Wang Y, Yue W, He D. Dual-Modal Memory Enabled by a Single Vertical N-Type Organic Artificial Synapse for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3698-3708. [PMID: 39815462 DOI: 10.1021/acsami.4c14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping. As a volatile synaptic device, the resulting VNOST demonstrated an unprecedented operating current density of MA cm-2. Meanwhile, it is capable of 150 analog states, symmetric conductance modulation, and good state retention (100 s) for a nonvolatile synapse. Importantly, the artificial neural networks (ANNs) for recognition accuracy of the handwritten digital data sets recognition rate up to 94% based on its nonvolatile feature. This study provides a promising platform for building organic neuromorphic network circuits in complex application scenarios where high-performing n-type organic synapse transistors with dual-mode memory characters are necessitated.
Collapse
Affiliation(s)
- Zhichao Xie
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Chenyu Zhuge
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Chunyang Li
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Yanfei Zhao
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Jiandong Jiang
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Jianhong Zhou
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Yujun Fu
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Yingtao Li
- School of Physical Science and Technology, Lanzhou University (LZU), Lanzhou 730000, China
| | - Zhuang Xie
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Wang
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| | - Lin Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yazhou Wang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan Yue
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, China
| | - Deyan He
- School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China
| |
Collapse
|
9
|
Cho Y, Gao L, Yao Y, Kim J, Zhang D, Forti G, Duplessis I, Wang Y, Pankow RM, Ji X, Rivnay J, Marks TJ, Facchetti A. Small-Molecule Mixed Ionic-Electronic Conductors for Efficient N-Type Electrochemical Transistors: Structure-Function Correlations. Angew Chem Int Ed Engl 2025; 64:e202414180. [PMID: 39312509 DOI: 10.1002/anie.202414180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The fundamental challenge in electron-transporting organic mixed ionic-electronic conductors (OMIECs) is simultaneous optimization of electron and ion transport. Beginning from Y6-type/U-shaped non-fullerene solar cell acceptors, we systematically synthesize and characterize molecular structures that address the aforementioned challenge, progressively introducing increasing numbers of oligoethyleneglycol (OEG; g) sidechains from 1 g to 3 g, affording OMIECs 1gY, 2gY, and 3gY, respectively. The crystal structure of 1gY preserves key structural features of the Yn series: a U-shaped/planar core, close π-π molecular stacking, and interlocked acceptor groups. Versus inactive Y6 and Y11, all of the new glycolated compounds exhibit mixed ion-electron transport in both conventional organic electrochemical transistor (cOECT) and vertical OECT (vOECT) architectures. Notably, 3gY with the highest OEG density achieves a high transconductance of 16.5 mS, an on/off current ratio of ~106, and a turn-on/off response time of 94.7/5.7 ms in vOECTs. Systematic optoelectronic, electrochemical, architectural, and crystallographic analysis explains the superior 3gY-based OECT performance in terms of denser ngY OEG content, increased crystallite dimensions with decreased long-range crystalline order, and enhanced film hydrophilicity which facilitates ion transport and efficient redox processes. Finally, we demonstrate an efficient small-molecule-based complementary inverter using 3gY vOECTs, showcasing the bioelectronic applicability of these new small-molecule OMIECs.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Lin Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yao Yao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jaehyun Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Dayong Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Giacomo Forti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Isaiah Duplessis
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yuyang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Robert M Pankow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Ge GY, Xu J, Wang X, Sun W, Yang M, Mei Z, Deng XY, Li P, Pan X, Li JT, Wang XQ, Zhang Z, Lv S, Dai X, Lei T. On-site biosignal amplification using a single high-spin conjugated polymer. Nat Commun 2025; 16:396. [PMID: 39755691 DOI: 10.1038/s41467-024-55369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025] Open
Abstract
On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification. Here, we propose using high-spin, hydrophilic conjugated polymers and a computational screening approach to address this challenge. We designed a high-spin polymer, namely P(TII-2FT), which exhibits satisfactory, stable, and balanced ambipolar OECT performance. The figure-of-merits achieved by the P(TII-2FT) devices surpass those of the current leading materials by 5 to 20 times, resulting in remarkable voltage gains while maintaining a compact form factor. Based on this amplifier, we have successfully achieved on-site capture and amplification of various electrophysiological signals with greatly enhanced signal quality.
Collapse
Affiliation(s)
- Gao-Yang Ge
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jingcao Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xinyue Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Wenxi Sun
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mo Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zi Mei
- School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xin-Yu Deng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peiyun Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiran Pan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jia-Tong Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xue-Qing Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhi Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shixian Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaochuan Dai
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Ting Lei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
11
|
Surgailis J, Flagg LQ, Richter LJ, Druet V, Griggs S, Wu X, Moro S, Ohayon D, Kousseff CJ, Marks A, Maria IP, Chen H, Moser M, Costantini G, McCulloch I, Inal S. The Role of Side Chains and Hydration on Mixed Charge Transport in n-Type Polymer Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313121. [PMID: 38554042 PMCID: PMC11656037 DOI: 10.1002/adma.202313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Indexed: 04/01/2024]
Abstract
Introducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well-established synthetic strategy for designing organic mixed ion-electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron-transporting (n-type) OMIECs. Here, the authors investigate the effect of the length of branched EG chains on mixed charge transport of n-type OMIECs based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene backbone. Atomic force microscopy (AFM), grazing-incidence wide-angle X-ray scattering (GIWAXS), and scanning tunneling microscopy (STM) are used to establish the similarities between the common-backbone films in dry conditions. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and in situ GIWAXS measurements reveal stark changes in film swelling properties and microstructure during electrochemical doping, depending on the side chain length. It is found that even in the loss of the crystallite content upon contact with the aqueous electrolyte, the films can effectively transport charges and that it is rather the high water content that harms the electronic interconnectivity within the OMIEC films. These results highlight the importance of controlling water uptake in the films to impede charge transport in n-type electrochemical devices.
Collapse
Affiliation(s)
- Jokūbas Surgailis
- King Abdullah University of Science and Technology (KAUST)Biological and Environmental Science and Engineering DivisionOrganic Bioelectronics LabThuwal23955–6900Saudi Arabia
| | - Lucas Q. Flagg
- National Institute of Standards and Technology (NIST)Materials Science and Engineering DivisionGaithersburgMD20899USA
| | - Lee J. Richter
- National Institute of Standards and Technology (NIST)Materials Science and Engineering DivisionGaithersburgMD20899USA
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST)Biological and Environmental Science and Engineering DivisionOrganic Bioelectronics LabThuwal23955–6900Saudi Arabia
| | - Sophie Griggs
- University of OxfordDepartment of ChemistryChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Xiaocui Wu
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Stefania Moro
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST)Biological and Environmental Science and Engineering DivisionOrganic Bioelectronics LabThuwal23955–6900Saudi Arabia
| | - Christina J. Kousseff
- University of OxfordDepartment of ChemistryChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Adam Marks
- Department of Materials Science and EngineeringStanford University450 Serra MallStanfordCA94305USA
| | - Iuliana P. Maria
- University of OxfordDepartment of ChemistryChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Hu Chen
- KAUSTKAUST Solar CenterPhysical Science and Engineering DivisionThuwal23955–6900Saudi Arabia
| | - Maximilian Moser
- University of OxfordDepartment of ChemistryChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Giovanni Costantini
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Iain McCulloch
- University of OxfordDepartment of ChemistryChemistry Research LaboratoryOxfordOX1 3TAUK
- KAUSTKAUST Solar CenterPhysical Science and Engineering DivisionThuwal23955–6900Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST)Biological and Environmental Science and Engineering DivisionOrganic Bioelectronics LabThuwal23955–6900Saudi Arabia
| |
Collapse
|
12
|
Dallaire N, Boileau NT, Myers I, Brixi S, Ourabi M, Raluchukwu E, Cranston R, Lamontagne HR, King B, Ronnasi B, Melville OA, Manion JG, Lessard BH. High Throughput Characterization of Organic Thin Film Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406105. [PMID: 39149766 DOI: 10.1002/adma.202406105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Automation is vital to accelerating research. In recent years, the application of self-driving labs to materials discovery and device optimization has highlighted many benefits and challenges inherent to these new technologies. Successful automated workflows offer tangible benefits to fundamental science and industrial scale-up by significantly increasing productivity and reproducibility all while enabling entirely new types of experiments. However, it's implemtation is often time-consuming and cost-prohibitive and necessitates establishing multidisciplinary teams that bring together domain-specific knowledge with specific skillsets in computer science and engineering. This perspective article provides a comprehensive overview of how the research group has adopted "hybrid automation" over the last 8 years by using simple automatic electrical testers (autotesters) as a tool to increase productivity and enhance reproducibility in organic thin film transistor (OTFT) research. From wearable and stretchable electronics to next-generation sensors and displays, OTFTs have the potential to be a key technology that will enable new applications from health to aerospace. The combination of materials chemistry, device manufacturing, thin film characterization and electrical engineering makes OTFT research challenging due to the large parameter space created by both diverse material roles and device architectures. Consequently, this research stands to benefit enormously from automation. By leveraging the multidisciplinary team and taking a user-centered design approach in the design and continued improvement of the autotesters, the group has meaningfully increased productivity, explored research avenues impossible with traditional workflows, and developed as scientists and engineers capable of effectively designing and leveraging automation to build the future of their fields to encourage this approach, the files for replicating the infrastructure are included, and questions and potential collaborations are welcomed.
Collapse
Affiliation(s)
- Nicholas Dallaire
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| | - Nicholas T Boileau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Ian Myers
- University of Ottawa Electronics shop, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Samantha Brixi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Ewenike Raluchukwu
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Rosemary Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Halynne R Lamontagne
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benjamin King
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Bahar Ronnasi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Owen A Melville
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Acceleration Consortium, University of Toronto, 80 St George St, Toronto, ON, M5S 3H6, Canada
| | - Joseph G Manion
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
13
|
Dai Y, Wai S, Li P, Shan N, Cao Z, Li Y, Wang Y, Liu Y, Liu W, Tang K, Liu Y, Hua M, Li S, Li N, Chatterji S, Fry HC, Lee S, Zhang C, Weires M, Sutyak S, Shi J, Zhu C, Xu J, Gu X, Tian B, Wang S. Soft hydrogel semiconductors with augmented biointeractive functions. Science 2024; 386:431-439. [PMID: 39446940 DOI: 10.1126/science.adp9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Hydrogels, known for their mechanical and chemical similarity to biological tissues, are widely used in biotechnologies, whereas semiconductors provide advanced electronic and optoelectronic functionalities such as signal amplification, sensing, and photomodulation. Combining semiconducting properties with hydrogel designs can enhance biointeractive functions and intimacy at biointerfaces, but this is challenging owing to the low hydrophilicity of polymer semiconductors. We developed a solvent affinity-induced assembly method that incorporates water-insoluble polymer semiconductors into double-network hydrogels. These semiconductors exhibited tissue-level moduli as soft as 81 kilopascals, stretchability of 150% strain, and charge-carrier mobility up to 1.4 square centimeters per volt per second. When they are interfaced with biological tissues, their tissue-level modulus enables alleviated immune reactions. The hydrogel's high porosity enhances molecular interactions at semiconductor-biofluid interfaces, resulting in photomodulation with higher response and volumetric biosensing with higher sensitivity.
Collapse
Affiliation(s)
- Yahao Dai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kan Tang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shivani Chatterji
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sean Lee
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Max Weires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Sean Sutyak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- CZ Biohub Chicago, LLC, Chicago, IL 60642, USA
| |
Collapse
|
14
|
Duan J, Xiao M, Zhu G, Chen J, Hou H, Gámez-Valenzuela S, Zelewski SJ, Dai L, Tao X, Ran C, Jay N, Lin Y, Guo X, Yue W. Molecular Ordering Manipulation in Fused Oligomeric Mixed Conductors for High-Performance n-Type Organic Electrochemical Transistors. ACS NANO 2024; 18:28070-28080. [PMID: 39370661 DOI: 10.1021/acsnano.4c07219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Advanced n-type organic electrochemical transistors (OECTs) play an important part in bioelectronics, facilitating the booming of complementary circuits-based biosensors. This necessitates the utilization of both n-type and p-type organic mixed ionic-electronic conductors (OMIECs) exhibiting a balanced performance. However, the observed subpar electron charge transport ability in most n-type OMIECs presents a significant challenge to the overall functionality of the circuits. In response to this issue, we achieve high-performance OMIECs by leveraging a series of fused electron-deficient monodisperse oligomers with mixed alkyl and glycol chains. Through molecular ordering manipulation by optimizing of their alkyl side chains, we attained a record-breaking OECT electron mobility of 0.62 cm2/(V s) and μC* of 63.2 F/(cm V s) for bgTNR-3DT with symmetrical alkyl chains. Notably, the bgTNR-3DT film also exhibits the highest structural ordering, smallest energetic disorder, and the lowest trap density among the series, potentially explaining its ideal charge transport property. Additionally, we demonstrate an organic inverter incorporating bgTNR-3DT OECTs with a gain above 30, showcasing the material's potential for constructing organic circuits. Our findings underscore the indispensable role of alkyl chain optimization in the evolution of prospective high performance OMIECs for constructing advanced organic complementary circuits.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mingfei Xiao
- The Microsystem Research Center, Department of Instruments Science and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology, Wuhan 430074, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K
| | - Xudong Tao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Chong Ran
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nathan Jay
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
15
|
Nugraha MI, Ling Z, Aniés F, Ardhi REA, Gedda M, Naphade D, Tsetseris L, Heeney M, Anthopoulos TD. Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron-Transporting Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310933. [PMID: 38949017 DOI: 10.1002/adma.202310933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/11/2024] [Indexed: 07/02/2024]
Abstract
Molecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI), a thermally activated organic n-type dopant. Adding CO2-DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n-ZnO heterojunctions with increased electron field-effect mobility of 32.6 cm2 V-1 s-1 compared to 18.5 cm2 V-1 s-1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n-ZnO heterojunctions as the electron-transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all-around improved OPV performance originates from synergistic effects associated with CO2-DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.
Collapse
Affiliation(s)
- Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Filip Aniés
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Ryanda Enggar Anugrah Ardhi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Murali Gedda
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Dipti Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Leonidas Tsetseris
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR-15780, Greece
| | - Martin Heeney
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Thuwal, 23955-6900, Saudi Arabia
- Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
17
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
18
|
Kimpel J, Kim Y, Asatryan J, Martín J, Kroon R, Müller C. High-mobility organic mixed conductors with a low synthetic complexity index via direct arylation polymerization. Chem Sci 2024; 15:7679-7688. [PMID: 38784738 PMCID: PMC11110131 DOI: 10.1039/d4sc01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Through direct arylation polymerization, a series of mixed ion-electron conducting polymers with a low synthetic complexity index is synthesized. A thieno[3,2-b]thiophene monomer with oligoether side chains is used in direct arylation polymerization together with a wide range of aryl bromides with varying electronic character from electron-donating thiophene to electron-accepting benzothiadiazole. The obtained polymers are less synthetically complex than other mixed ion-electron conducting polymers due to higher yield, fewer synthetic steps and less toxic reagents. Organic electrochemical transistors (OECTs) based on a newly synthesized copolymer comprising thieno[3,2-b]thiophene with oligoether side chains and bithiophene exhibit excellent device performance. A high charge-carrier mobility of up to μ = 1.8 cm2 V-1 s-1 was observed, obtained by dividing the figure of merit [μC*] from OECT measurements by the volumetric capacitance C* from electrochemical impedance spectroscopy, which reached a value of more than 215 F cm-3.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University Norrköping Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University Norrköping Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| |
Collapse
|
19
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
20
|
Quill TJ, LeCroy G, Marks A, Hesse SA, Thiburce Q, McCulloch I, Tassone CJ, Takacs CJ, Giovannitti A, Salleo A. Charge Carrier Induced Structural Ordering And Disordering in Organic Mixed Ionic Electronic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310157. [PMID: 38198654 DOI: 10.1002/adma.202310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Operational stability underpins the successful application of organic mixed ionic-electronic conductors (OMIECs) in a wide range of fields, including biosensing, neuromorphic computing, and wearable electronics. In this work, both the operation and stability of a p-type OMIEC material of various molecular weights are investigated. Electrochemical transistor measurements reveal that device operation is very stable for at least 300 charging/discharging cycles independent of molecular weight, provided the charge density is kept below the threshold where strong charge-charge interactions become likely. When electrochemically charged to higher charge densities, an increase in device hysteresis and a decrease in conductivity due to a drop in the hole mobility arising from long-range microstructural disruptions are observed. By employing operando X-ray scattering techniques, two regimes of polaron-induced structural changes are found: 1) polaron-induced structural ordering at low carrier densities, and 2) irreversible structural disordering that disrupts charge transport at high carrier densities, where charge-charge interactions are significant. These operando measurements also reveal that the transfer curve hysteresis at high carrier densities is accompanied by an analogous structural hysteresis, providing a microstructural basis for such instabilities. This work provides a mechanistic understanding of the structural dynamics and material instabilities of OMIEC materials during device operation.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Iain McCulloch
- Department of Chemistry University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Simatos D, Jacobs IE, Dobryden I, Nguyen M, Savva A, Venkateshvaran D, Nikolka M, Charmet J, Spalek LJ, Gicevičius M, Zhang Y, Schweicher G, Howe DJ, Ursel S, Armitage J, Dimov IB, Kraft U, Zhang W, Alsufyani M, McCulloch I, Owens RM, Claesson PM, Knowles TPJ, Sirringhaus H. Effects of Processing-Induced Contamination on Organic Electronic Devices. SMALL METHODS 2023; 7:e2300476. [PMID: 37661594 DOI: 10.1002/smtd.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Indexed: 09/05/2023]
Abstract
Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties. Nuclear magnetic resonance spectroscopy is used to detect and quantify contaminants originating from the glovebox atmosphere and common laboratory consumables used during device fabrication. Importantly, this in-depth understanding of the sources of contamination allows the establishment of clean fabrication protocols, and the fabrication of organic field effect transistors (OFETs) with improved performance and stability. This study highlights the role of unintentional contaminants in organic electronic devices, and demonstrates that certain stringent processing conditions need to be met to avoid scientific misinterpretation, ensure device reproducibility, and facilitate performance stability. The experimental procedures and conditions used herein are typical of those used by many groups in the field of solution-processed organic semiconductors. Therefore, the insights gained into the effects of contamination are likely to be broadly applicable to studies, not just of OFETs, but also of other devices based on these materials.
Collapse
Affiliation(s)
- Dimitrios Simatos
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ian E Jacobs
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Illia Dobryden
- RISE Research Institutes of Sweden, Division of Bioeconomy and Health, Department of Material and Surface Design, RISE Research Institutes of Sweden, 11486, Stockholm, Sweden
| | - Małgorzata Nguyen
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 OAS, UK
| | - Deepak Venkateshvaran
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Mark Nikolka
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jérôme Charmet
- School of Engineering-HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000, Neuchâtel, Switzerland
| | - Leszek J Spalek
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Mindaugas Gicevičius
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Youcheng Zhang
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Guillaume Schweicher
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), 1050, Bruxelles, Belgium
| | - Duncan J Howe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sarah Ursel
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - John Armitage
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ulrike Kraft
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Weimin Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maryam Alsufyani
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 OAS, UK
| | - Per M Claesson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, 10044, Stockholm, Sweden
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
22
|
Kim J, Ren X, Zhang Y, Fazzi D, Manikandan S, Andreasen JW, Sun X, Ursel S, Un H, Peralta S, Xiao M, Town J, Marathianos A, Roesner S, Bui T, Ludwigs S, Sirringhaus H, Wang S. Efficient N-Type Organic Electrochemical Transistors and Field-Effect Transistors Based on PNDI-Copolymers Bearing Fluorinated Selenophene-Vinylene-Selenophenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303837. [PMID: 37551064 PMCID: PMC10582458 DOI: 10.1002/advs.202303837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
n-Type organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) are less developed than their p-type counterparts. Herein, polynaphthalenediimide (PNDI)-based copolymers bearing novel fluorinated selenophene-vinylene-selenophene (FSVS) units as efficient materials for both n-type OECTs and n-type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7-FSVS), affords a high µC* of > 0.2 F cm-1 V-1 s-1 , outperforming the benchmark n-type Pg4NDI-T2 and Pg4NDI-gT2 by two orders of magnitude. The deep-lying LUMO of -4.63 eV endows P(NDIEG7-FSVS) with an ultra-low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD-FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra-low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2 V-1 s-1 in n-type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next-generation efficient n-type organic electronics.
Collapse
Affiliation(s)
- Jongho Kim
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
- Present address:
Department of Textile System Eng.Kyungpook National UniversityDaegu41566Republic of Korea
| | - Xinglong Ren
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Youcheng Zhang
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Daniele Fazzi
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaVia F. Selmi 2Bologna40126Italy
| | - Suraj Manikandan
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Xiuming Sun
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sarah Ursel
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Hio‐Ieng Un
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Sébastien Peralta
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Mingfei Xiao
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - James Town
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Stefan Roesner
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Thanh‐Tuan Bui
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Henning Sirringhaus
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Suhao Wang
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| |
Collapse
|
23
|
Berl AJ, Sklar JH, Yun YJ, Kalow JA. Side-Chain Engineering in Hydrophilic n-Type π-Conjugated Polymers for Enhanced Reactivity. ACS Macro Lett 2023; 12:503-509. [PMID: 37011181 DOI: 10.1021/acsmacrolett.3c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Minor changes to side chains in conjugated polymers (CPs) can have pronounced effects on polymer properties by altering backbone planarity, solubility, and interaction with ions. Here, we report the photocontrolled synthesis of hydrophilic CPs from Grignard monomers and find that switching from alkyl to oligo(ethylene glycol) (OEG) side chains changes their photoreactivity. Specifically, installing hydrophilic side chains on the same monomer core yields higher molecular weight polymers and allows polymerization to proceed with lower-energy red light. Additionally, we discover a side chain decomposition pathway for N-OEG monomers, which are prevalent in CP research. Decomposition can be overcome by adding an extra methylene unit in the side chains without compromising polymer molecular weight or hydrophilicity. Importantly, this polymerization does not require transition metal catalysts and is a promising approach to the preparation of n-type conjugated block copolymers.
Collapse
Affiliation(s)
- Alexandra J Berl
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan H Sklar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Young Ju Yun
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|