1
|
Qu S, Dai H. Conjugated STING agonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102530. [PMID: 40291379 PMCID: PMC12032345 DOI: 10.1016/j.omtn.2025.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An innate immune system is the first line of defense and prevents the host from infection and attacks the invading pathogens. Stimulator of interferon genes (STING) plays a vital role in the innate immune system. STING activation by STING agonists leads to phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) with the release of type I interferons and proinflammatory cytokines, further promoting the adaptive immune response and activating T cells by increased antigen presentation. Natural STING agonist cyclic dinucleotides (CDNs) encounter many defects such as high polarity by negative charges, low stability and circulative half-life, off-target systemic toxicity, and low response efficacy in clinical trials. To overcome these challenges, massive efforts have addressed chemical modifications of CDNs, development of non-CDN STING agonists, and delivery of these STING agonists either by conjugation or liposomes/nanoparticles. Considering there have been a great number of reports regarding nanosystem-aided delivery, here, we examine the development of STING agonists, especially for non-CDNs and their delivery specifically by conjugation strategy, with a focus on the STING agonists in clinical trials and current challenges of their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuhao Qu
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Hou H, Zhou J, Sui Q, Zhang C, Su Z, Cui R, Shan B, Xu P, Chen Z, Jiang B, Li M, Zhang K, Wang Y, Ma N, Teng D, Zheng M, Zhang S. Discovery of 3-(Fluoro-imidazolyl)pyridazine Derivatives as Potent STING Agonists with Antitumor Activity. J Med Chem 2025. [PMID: 40344198 DOI: 10.1021/acs.jmedchem.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Stimulator of interferon genes (STING) represents a promising therapeutic target for cancer and infectious diseases due to its ability to activate innate immune responses. Herein, we describe the discovery of 3-(fluoro-imidazolyl) pyridazine derivatives as potent STING agonists. Our comprehensive investigation, including structural and functional analysis as well as molecular dynamics simulation, suggests that appropriate spatial dimensions may play a crucial role in determining agonist efficacy. Notably, our representative STING agonist A4 demonstrates remarkable binding affinities to various hSTING variants and mSTING, effectively activating STING in both human THP1 and mouse RAW 264.7 cells with EC50 values of 0.06 and 14.15 μM, respectively. Furthermore, Compound A4 exhibits an excellent pharmacokinetic profile in C57BL/6 mice, and its systemic administration led to significant tumor regression in the B16.F10 tumor-bearing mice, surpassing the efficacy of SR-717. These findings position A4 as a highly promising STING agonist warranting further advanced preclinical development for tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfa Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhaoming Su
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peijia Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhengyang Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Manjia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Keke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yajie Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ning Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Joo H, Olea XD, Zhuang A, Zheng B, Kim H, Ronai ZA. Epigenetic mechanisms in melanoma development and progression. Trends Cancer 2025:S2405-8033(25)00099-8. [PMID: 40328568 DOI: 10.1016/j.trecan.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Knowledge of cancer development and progression gained over the last few decades has enabled mapping of genetic and epigenetic changes unique to different phases of tumor evolution. Here we focus on epigenetic changes that drive melanoma development and progression. We highlight the importance of epigenetic mechanisms which encompass crosstalk with melanoma microenvironment that affect metastasis and therapy resistance. This review summarizes recent advances and describes potential strategies to leverage this knowledge to devise new therapies.
Collapse
Affiliation(s)
- Hyunjeong Joo
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ximena Diaz Olea
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aojia Zhuang
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Zheng
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyungsoo Kim
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ze'ev A Ronai
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Translational Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Gehrcken L, Deben C, Smits E, Van Audenaerde JR. STING Agonists and How to Reach Their Full Potential in Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500296. [PMID: 40145387 PMCID: PMC12061341 DOI: 10.1002/advs.202500296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/19/2025] [Indexed: 03/28/2025]
Abstract
As cancer continues to rank among the leading causes of death, the demand for novel treatments has never been higher. Immunotherapy shows promise, yet many solid tumors such as pancreatic cancer or glioblastoma remain resistant. In these, the "cold" tumor microenvironment with low immune cell infiltration and inactive anti-tumoral immune cells leads to increased tumor resistance to these drugs. This resistance has driven the development of several drug candidates, including stimulators of interferon genes (STING) agonists to reprogram the immune system to fight off tumors. Preclinical studies demonstrated that STING agonists can trigger the cancer immunity cycle and increase type I interferon secretion and T cell activation, which subsequently induces tumor regression. Despite promising preclinical data, biological and physical challenges persist in translating the success of STING agonists into clinical trials. Nonetheless, novel combination strategies are emerging, investigating the combination of these agonists with other immunotherapies, presenting encouraging preclinical results. This review will examine these potential combination strategies for STING agonists and assess the benefits and challenges of employing them in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Gehrcken
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijk2610Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijk2610Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijk2610Belgium
| | - Jonas R.M. Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijk2610Belgium
| |
Collapse
|
5
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
6
|
Sattler M, Salgia R. The expanding role of the receptor tyrosine kinase MET as a therapeutic target in non-small cell lung cancer. Cell Rep Med 2025; 6:101983. [PMID: 40020676 PMCID: PMC11970332 DOI: 10.1016/j.xcrm.2025.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Aberrant regulation of MET receptor tyrosine kinase activity is a frequent event in non-small cell lung cancer (NSCLC), even though the frequency of oncogenic driver mutations of MET is low. Our discovery of oncogenic MET exon 14 skipping mutations, the characterization of the first prototype MET kinase inhibitor, and characterization of MET expression levels have led the way to novel therapeutic approaches with improved outcomes in NSCLC. MET exon 14 mutations are the most consequential but not the only alterations that can be targeted through small molecule tyrosine kinase inhibitors. The abundant expression of cellular MET (c-MET) in cancer cells has provided new opportunities for immuno-oncology approaches in a broader patient population, and the integration of MET-targeted personalized medicine with immunotherapy has not been fully exploited yet. Here, we highlight essential facets of MET as a therapeutic target in NSCLC and provide an outlook for future approaches.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
7
|
Qin T, Mattox AK, Campbell JS, Park JC, Shin KY, Li S, Sadow PM, Faquin WC, Micevic G, Daniels AJ, Haddad R, Garris CS, Pittet MJ, Mempel TR, ONeill A, Sartor MA, Pai SI. Epigenetic therapy sensitizes anti-PD-1 refractory head and neck cancers to immunotherapy rechallenge. J Clin Invest 2025; 135:e181671. [PMID: 40091844 PMCID: PMC11910227 DOI: 10.1172/jci181671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
BACKGROUNDImmune checkpoint blockade (ICB) is an effective treatment in a subset of patients diagnosed with head and neck squamous cell carcinoma (HNSCC); however, the majority of patients are refractory.METHODSIn a nonrandomized, open-label Phase 1b clinical trial, participants with recurrent and/or metastatic (R/M) HNSCC were treated with low-dose 5-azacytidine (5-aza) daily for either 5 or 10 days in combination with durvalumab and tremelimumab after progression on ICB. The primary objective was to assess the biologically effective dose of 5-aza as determined by molecular changes in paired baseline and on-treatment tumor biopsies; the secondary objective was safety.RESULTSThirty-eight percent (3 of 8) of participants with evaluable paired tissue samples had a greater-than 2-fold increase from baseline in IFN-γ signature and CD274 (programmed cell death protein 1 ligand, PD-L1) expression within the tumor microenvironment (TME), which was associated with increased CD8+ T cell infiltration and decreased infiltration of CD4+ T regulatory cells. The mean neutrophil-to-lymphocyte ratio (NLR) decreased by greater than 50%, from 14.2 (SD 22.6) to 6.9 (SD 5.2). Median overall survival (OS) was 16.3 months (95% CI 1.9, NA), 2-year OS rate was 24.7% (95% CI: 4.5%, 53.2%), and 58% (7 of 12) of treated participants demonstrated prolonged OS of greater than 12 months.CONCLUSIONOur findings suggest that low-dose 5-aza can reprogram systemic host immune responses and the local TME to increase IFN-γ and PD-L1 expression. The increased expression of these established biomarkers correlated with prolonged OS upon ICB rechallenge.TRIAL REGISTRATIONClinicalTrials.gov NCT03019003.FUNDINGNIH/NCI P01 CA240239.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin K. Mattox
- Department of Surgery, Division of Otolaryngology—Head and Neck Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jong Chul Park
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kee-Young Shin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William C. Faquin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Goran Micevic
- Department of Dermatology, and
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew J. Daniels
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Haddad
- Department of Medical Oncology, Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher S. Garris
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mikael J. Pittet
- University of Geneva, Geneva, Switzerland
- AGORA Cancer Center and Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Thorsten R. Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anne ONeill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara I. Pai
- Department of Surgery, and
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Yue B, Gao W, Lovell JF, Jin H, Huang J. The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges. Essays Biochem 2025; 69:EBC20253006. [PMID: 40052963 DOI: 10.1042/ebc20253006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a crucial component of the host's innate immunity and plays a central role in detecting cytosolic double-stranded DNA from endogenous and exogenous sources. Upon activation, cGAS synthesizes cGAMP, which binds to STING, triggering a cascade of immune responses, including the production of type I interferons and pro-inflammatory cytokines. In the context of cancers, the cGAS-STING pathway can exert dual roles: on the one hand, it promotes anti-tumor immunity by enhancing antigen presentation, stimulating T-cell responses, and inducing direct tumor cell apoptosis. On the other hand, chronic activation, particularly in tumors with chromosomal instability, can lead to immune suppression and tumor progression. Persistent cGAS-STING signaling results in the up-regulation of immune checkpoint molecules such as PD-L1, contributing to immune evasion and metastasis. Consequently, anti-tumor strategies targeting the cGAS-STING pathway have to consider the balance of immune activation and the immune tolerance caused by chronic activation. This review explores the mechanisms underlying both the anti-tumor and protumor roles of the cGAS-STING pathway, with a focus on potential therapeutic approaches, and the challenges faced in their clinical application, along with corresponding solutions.
Collapse
Affiliation(s)
- Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo Gao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, U.S.A
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| |
Collapse
|
9
|
Knox K, Jeltema D, Dobbs N, Yang K, Xing C, Song K, Tang Z, Torres-Ramirez G, Wang J, Gao S, Wu T, Yao C, Wang J, Yan N. Dynamic STING repression orchestrates immune cell development and function. Sci Immunol 2025; 10:eado9933. [PMID: 40053603 DOI: 10.1126/sciimmunol.ado9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025]
Abstract
STING is an essential component of the innate immune system, yet homeostatic STING expression patterns and regulation are unknown. Using Sting1IRES-EGFP reporter and conditional Sting1 transgenic mice, we found that regulation of STING expression is critical for immune cell development and functionality. STING expression was repressed in neutrophils, and forced STING expression or signaling drove systemic inflammatory disease. During T lymphocyte development, STING expression was restricted at the double-positive stage via epigenetic silencing by DNA methyltransferase 1. Forced STING expression or signaling impaired T lymphocyte development independent of type I interferon and promoted lineage commitment to innate-like γδ T cells over adaptive αβ T cells. In the tumor microenvironment, CD8+ T lymphocytes repressed STING expression, correlating with features of T cell exhaustion in syngeneic mouse tumors and human colorectal cancer. Our data demonstrate the necessity of controlled, rather than ubiquitous, STING expression, uncovering a previously unappreciated dimension of STING pathobiology.
Collapse
Affiliation(s)
- Kennady Knox
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Torres-Ramirez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiefu Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Shan Gao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
11
|
Luke JJ, Pinato DJ, Juric D, LoRusso P, Hosein PJ, Desai AM, Haddad R, de Miguel M, Cervantes A, Kim WS, Marabelle A, Zhang Y, Rong Y, Yuan X, Champiat S. Phase I dose-escalation and pharmacodynamic study of STING agonist E7766 in advanced solid tumors. J Immunother Cancer 2025; 13:e010511. [PMID: 39979069 PMCID: PMC11842995 DOI: 10.1136/jitc-2024-010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
E7766 is a novel stimulator of interferon genes (STING) agonist, capable of potent activation of immune cells and generating strong antitumor response in preclinical murine tumor models. Here we present the safety, efficacy, and biomarker results of the first-in-human phase I/Ib study of intratumoral E7766 in patients with advanced solid tumors. Eligible patients with relapsing/refractory cancers (n=24) were enrolled in dose-escalating cohorts to receive intratumoral injections of E7766 from 75 to 1000 µg. The most frequent treatment-related treatment-emergent adverse events were chills (50.0%; 85.7%), fever (40.0%; 85.7%), and fatigue (30.0%; 35.7%) in patients who received non-visceral and visceral injections, respectively. Eight patients (33.3%) achieved stable disease as their best response per modified Response Evaluation Criteria In Solid Tumors version 1.1 with variability between injected and non-injected lesions. Plasma levels of IFN-α, IFN-β, IFN-γ, TNF-α, IL-6, IP-10, MCP1, and MIP1b transiently increased in all evaluable patients within 10 hours postinjection, then dropped to baseline levels. Levels of blood and tumor gene expression increased in most interferon-related and STING genes tested. Further increases in programmed death ligand 1 and cluster of differentiation 8 expression at both the RNA and protein levels were also observed in some patients across dose levels. In total, E7766 generated on-target pharmacodynamic effects in patients with solid tumors. Further exploration in a homogeneous patient population is necessary to assess efficacy.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David J Pinato
- Imperial College London, London, UK
- University of Piemonte Orientale, Novara, Italy
| | - Dejan Juric
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Peter J Hosein
- University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Anupam M Desai
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert Haddad
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - María de Miguel
- START Madrid-HM CIOCC, Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Andrés Cervantes
- INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Instituto de Salud Carclos III. CIBERONC, Madrid, Spain
| | - Won Seog Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
Yu H, Liu W, Ding K, Wu J, Wang C, Wang S, Wu L, Tang Q, Yin X, Jiang K, Yan D, Wang X, Chen S, Yan S. Sequential Release HydroLipo System for STING Gene Epigenetic Reprogramming and Immune Activation in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408323. [PMID: 39661716 PMCID: PMC11792002 DOI: 10.1002/advs.202408323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) remains a daunting oncological challenge because of its aggressive nature and resistance to conventional therapies. Inhibition of the intrinsic STING pathway in GBM hampers the effectiveness of immunotherapies. To overcome this clinical limitation, a Sequential Release HydroLipo System (SRHLS) is developed, in which hydrogels and nanoparticles are combined for controlled drug release. The SRHLS sequentially released decitabine and STING agonists, thereby correcting STING signaling dysfunction through epigenetic reprogramming and enhancing antitumor immunity. According to in vitro and in vivo experiments, the SRHLS reshaped the tumor microenvironment and markedly inhibited tumor growth, recurrence, and metastasis. These findings underscore the potential of the SRHLS as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Wenjing Liu
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Kaikai Ding
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Jiangjie Wu
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Cheng Wang
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Siyuan Wang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Lingyun Wu
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Qiuying Tang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Xin Yin
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Kan Jiang
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Danfang Yan
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| | - Xu Wang
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Si Chen
- College of Materials Science and EngineeringZhejiang Key Laboratory of Plastic Modification and Processing TechnologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Senxiang Yan
- Department of Radiation Oncologythe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RoadHangzhouZhejiang310003P. R. China
| |
Collapse
|
13
|
Mahin J, Xu X, Li L, Zhang C. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Cell Commun Signal 2024; 22:553. [PMID: 39558334 PMCID: PMC11571982 DOI: 10.1186/s12964-024-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/29/2024] [Indexed: 11/20/2024] Open
Abstract
Melanoma, recognized as the most aggressive type of skin cancer, has experienced a notable increase in cases, especially within populations with fair skin. This highly aggressive cancer is largely driven by UV radiation exposure, resulting in the uncontrolled growth and malignant transformation of melanocytes. The cGAS-STING pathway, an immune signaling mechanism responsible for detecting double-stranded DNA in the cytoplasm, is essential for mediating the immune response against melanoma. This pathway serves a dual purpose: it enhances antitumor immunity by activating immune cells, but it can also promote tumor growth when chronically activated by creating an immunosuppressive environment. This review comprehensively examines the multifaceted implication of the cGAS-STING pathway in melanoma pathogenesis and treatment. We explore its molecular mechanisms, including epigenetic regulation, interaction with signaling pathways such as AR signaling, and modulation by various cellular effectors like TG2 and activin-A. The therapeutic potential of modulating the cGAS-STING pathway is highlighted, with promising results from STING agonists, combination therapies with immune checkpoint inhibitors, and novel drug delivery systems, including nanoparticles and synthetic drugs. Our findings underscore the importance of the cGAS-STING pathway in melanoma, presenting it as a critical target for enhancing anti-tumor immunity. By leveraging this pathway, future therapeutic strategies can potentially convert 'cold' tumors into 'hot' tumors, making them more susceptible to immune responses.
Collapse
Affiliation(s)
- Jafaridarabjerdi Mahin
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Ling Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
14
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Ribeiro ARS, Neuper T, Horejs-Hoeck J. The Role of STING-Mediated Activation of Dendritic Cells in Cancer Immunotherapy. Int J Nanomedicine 2024; 19:10685-10697. [PMID: 39464674 PMCID: PMC11512692 DOI: 10.2147/ijn.s477320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
The signaling pathway that comprises cyclic guanosine monophosphate-adenosine monophosphate (cGAMP or GMP-AMP) synthase (cGAS) and Stimulator of Interferon Genes (STING) is emerging as a druggable target for immunotherapy, with tumor-resident dendritic cells (DC) playing a critical role in mediating its effects. The STING receptor is part of the DNA-sensing cellular machinery, that can trigger the secretion of pro-inflammatory mediators, priming effector T cells and initiating specific antitumor responses. Yet, recent studies have highlighted the dual role of STING activation in the context of cancer: STING can either promote antitumor responses or enhance tumor progression. This dichotomy often depends on the cell type in which cGAS-STING signaling is induced and the activation mode, namely acute versus chronic. Of note, STING activation at the DC level appears to be particularly important for tumor eradication. This review outlines the contribution of the different conventional and plasmacytoid DC subsets and describes the mechanisms underlying STING-mediated activation of DCs in cancer. We further highlight how the STING pathway plays an intricate role in modulating the function of DCs embedded in tumor tissue. Additionally, we discuss the strategies being employed to harness STING activation for cancer treatment, such as the development of synthetic agonists and nano-based delivery systems, spotlighting the current techniques used to prompt STING engagement specifically in DCs.
Collapse
Affiliation(s)
- Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, 5020, Austria
- Center for Tumor biology and Immunology (CTBI), Salzburg, 5020, Austria
| |
Collapse
|
16
|
Sheehy T, Kwiatkowski AJ, Arora K, Kimmel BR, Schulman JA, Gibson-Corley KN, Wilson JT. STING-Activating Polymer-Drug Conjugates for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:1765-1781. [PMID: 39345818 PMCID: PMC11428287 DOI: 10.1021/acscentsci.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
The stimulator of interferon genes (STING) pathway links innate and adaptive antitumor immunity and therefore plays an important role in cancer immune surveillance. This has prompted widespread development of STING agonists for cancer immunotherapy, but pharmacological barriers continue to limit the clinical impact of STING agonists and motivate the development of drug delivery systems to improve their efficacy and/or safety. We developed SAPCon, a STING-activating polymer-drug conjugate platform based on strain-promoted azide-alkyne cycloaddition of a novel dimeric amidobenzimidazole (diABZI) STING prodrug to hydrophilic poly(dimethylacrylamide-co-azido-ethylmethacrylate) polymer chains through a cathepsin B-responsive linker to increase circulation time and enable passive tumor accumulation. We found that intravenously administered SAPCon accumulated at tumor sites, where it was endocytosed by tumor-associated myeloid cells, resulting in increased STING activation in the tumor tissue. Consequently, SAPCon promoted an immunogenic tumor microenvironment characterized by increased frequency of activated macrophages and dendritic cells and improved infiltration of CD8+ T cells, resulting in inhibition of tumor growth, prolonged survival, and enhanced response to anti-PD-1 immune checkpoint blockade in orthotopic breast cancer models. Collectively, these studies position SAPCon as a modular and programmable platform for improving the efficacy of systemically administered STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Taylor
L. Sheehy
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
18
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
19
|
Wang L, Cao L, Li Z, Shao Z, Chen X, Huang Z, He X, Zheng J, Liu L, Jia XM, Xiao H. ATP-elicited Cation Fluxes Promote Volume-regulated Anion Channel LRRC8/VRAC Transport cGAMP for Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:347-361. [PMID: 38847616 DOI: 10.4049/jimmunol.2300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-β response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-β response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-β response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.
Collapse
Affiliation(s)
- Li Wang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihong Li
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Zhugui Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Xia Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhicheng Huang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Chan FF, Yuen VWH, Shen J, Chin DWC, Law CT, Wong BPY, Chan CYK, Cheu JWS, Ng IOL, Wong CCL, Wong CM. Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma. Hepatology 2024; 80:295-311. [PMID: 38051950 DOI: 10.1097/hep.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Collapse
Affiliation(s)
- For-Fan Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Hin Yuen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jialing Shen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bowie Po-Yee Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Cerise Yuen-Ki Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jacinth Wing-Sum Cheu
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Suzuki Y, Sato T, Sugimori M, Kanemaru Y, Onodera S, Tsuchiya H, Nakamori Y, Tsuyuki S, Ikeda A, Ikeda R, Goda Y, Kaneko H, Irie K, Sue S, Maeda S. Activation of STING in pancreatic cancer-associated fibroblasts exerts an antitumor effect by enhancing tumor immunity. Sci Rep 2024; 14:17071. [PMID: 39048609 PMCID: PMC11269671 DOI: 10.1038/s41598-024-68061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate; therefore, the development of effective treatments is a priority. The stimulator of interferon genes (STING) pathway enhances tumor immunity by inducing the production of type 1 interferon (IFN) and proinflammatory cytokines and chemokines and promoting the infiltration of cytotoxic T cells. To assess the function of STING on pancreatic tumorigenesis, Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP mice (KPC mice) and Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP/STING-/- mice (KPCS mice) were generated. However, STING deletion did not affect pancreatic tumorigenesis in mice. Because STING is expressed not only in immune cells but also in cancer-associated fibroblasts (CAFs), we evaluated the STING function in PDAC CAFs. A mouse STING agonist 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) was administered to KPC mice and CAFs from KPC mice and the resulting immune response was evaluated. DMXAA activated STING in PDAC CAFs in KPC mice, promoting cytotoxic T cell infiltration by secreting proinflammatory cytokines and enhancing tumor immunity. We next generated STING-deficient PDAC cells and subcutaneous tumors in which STING was expressed only in CAFs by performing bone marrow transplantation and assessed the antitumor effect of STING-activated CAFs. The administration of DMXAA to subcutaneous tumors expressing STING only in CAFs sustained the antitumor effect of DMXAA. About half of human PDACs lacked STING expression in the cancer stroma, suggesting that STING activation in PDAC CAFs exerts an antitumor effect, and STING agonists can be more effective in tumors with high than in those with low STING expression in the stroma.
Collapse
Affiliation(s)
- Yoshimasa Suzuki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Sugimori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yushi Kanemaru
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sho Onodera
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromi Tsuchiya
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshinori Nakamori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Sho Tsuyuki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Aya Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ryosuke Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshihiro Goda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
22
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
23
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
24
|
Wilson JT. Controlling the STING pathway to improve immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:718-720. [PMID: 38528109 DOI: 10.1038/s41565-024-01637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
25
|
Xiao S, Ma S, Sun B, Pu W, Duan S, Han J, Hong Y, Zhang J, Peng Y, He C, Yi P, Caligiuri MA, Yu J. The tumor-intrinsic role of the m 6A reader YTHDF2 in regulating immune evasion. Sci Immunol 2024; 9:eadl2171. [PMID: 38820140 PMCID: PMC12068375 DOI: 10.1126/sciimmunol.adl2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yaqun Hong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Yi
- Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
26
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
27
|
Tani T, Mathsyaraja H, Campisi M, Li ZH, Haratani K, Fahey CG, Ota K, Mahadevan NR, Shi Y, Saito S, Mizuno K, Thai TC, Sasaki N, Homme M, Yusuf CFB, Kashishian A, Panchal J, Wang M, Wolf BJ, Barbie TU, Paweletz CP, Gokhale PC, Liu D, Uppaluri R, Kitajima S, Cain J, Barbie DA. TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity. Cancer Discov 2024; 14:752-765. [PMID: 38227896 PMCID: PMC11062818 DOI: 10.1158/2159-8290.cd-23-0700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Contributed equally
| | | | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline G. Fahey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiichi Ota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yingxiao Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tran C. Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Choudhury Fabliha B. Yusuf
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Min Wang
- Gilead Sciences, Foster City, CA, USA
| | | | - Thanh U. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
28
|
Sampaio LR, Dias RDB, Goes JVC, de Melo RPM, de Paula Borges D, de Lima Melo MM, de Oliveira RTG, Ribeiro-Júnior HL, Magalhães SMM, Pinheiro RF. Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice. Med Oncol 2024; 41:128. [PMID: 38656461 DOI: 10.1007/s12032-024-02376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.
Collapse
Affiliation(s)
- Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ricardo Dyllan Barbosa Dias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Renata Pinheiro Martins de Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mayara Magna de Lima Melo
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
29
|
Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y, Chen Q. cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci 2024; 81:149. [PMID: 38512518 PMCID: PMC10957617 DOI: 10.1007/s00018-024-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.
Collapse
Affiliation(s)
- Guohao Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yundi Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
30
|
Zhao X, Zheng R, Zhang B, Zhao Y, Xue W, Fang Y, Huang Y, Yin M. Sulfonated Perylene as Three-in-One STING Agonist for Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202318799. [PMID: 38230819 DOI: 10.1002/anie.202318799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
Activation of stimulator of interferon genes (STING) by cyclic dinucleotides (CDNs) has been considered as a powerful immunotherapy strategy. While promising, the clinical translation of CDNs is still overwhelmed by its limited biostability and the resulting systemic immunotoxicity. Being differentiating from current application of exogenous CDNs to address these challenges, we herein developed one perylene STING agonist PDIC-NS, which not only promotes the production of endogenous CDNs but also inhibits its hydrolysis. More significantly, PDIC-NS can well reach lung-selective enrichment, and thus mitigates the systemic immunotoxicity upon intravenous administration. As a result, PDIC-NS had realized remarkable in vivo antitumor activity, and backward verified on STING knock out mice. Overall, this study states that PDIC-NS can function as three-in-one small-molecule STING agonist characterized by promoting the content and biostability of endogenous CDNs as well as possessing good tissue specificity, and hence presents an innovative strategy and platform for tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Xuejie Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Bianbian Zhang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Wanli Xue
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yingfei Fang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Wang L, Yu Z, Zhang J, Guo J. Nanoformulations of chemotherapeutic activators of the cGAS-STING pathway in tumor chemoimmunotherapy. Drug Discov Today 2024; 29:103892. [PMID: 38272174 DOI: 10.1016/j.drudis.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapeutic drugs to activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway have been exploited for tumor chemoimmunotherapy. The clinical translation of chemotherapeutic cGAS-STING activators is hindered by the lack of safe, efficient, and specific delivery strategies. Nanodrug delivery systems (NDDS) designed for reducing toxic effects and improving transport effectiveness potentiate in vivo delivery of chemotherapeutic cGAS-STING activators. cGAS-STING monotherapy often encounters tumor resistance without providing satisfactory therapeutic benefit; therefore combination therapy is desirable. This review describes NDDS strategies for surmounting delivery obstacles of chemotherapeutic cGAS-STING activators and highlights combinatorial regimens, which utilize therapeutics that work by different mechanisms, for optimal therapy.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
32
|
Moshnikova A, DuPont M, Iraca M, Klumpp C, Visca H, Allababidi D, Pelzer P, Engelman DM, Andreev OA, Reshetnyak YK. Targeted intracellular delivery of dimeric STINGa by two pHLIP peptides for treatment of solid tumors. Front Pharmacol 2024; 15:1346756. [PMID: 38495104 PMCID: PMC10940318 DOI: 10.3389/fphar.2024.1346756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: We have developed a delivery approach that uses two pHLIP peptides that collaborate in the targeted intracellular delivery of a single payload, dimeric STINGa (dMSA). Methods: dMSA was conjugated with two pHLIP peptides via S-S cleavable self-immolating linkers to form 2pHLIP-dMSA. Results: Biophysical studies were carried out to confirm pH-triggered interactions of the 2pHLIP-dMSA with membrane lipid bilayers. The kinetics of linker self-immolation and dMSA release, the pharmacokinetics, the binding to plasma proteins, the stability of the agent in plasma, the targeting and resulting cytokine activation in tumors, and the biodistribution of the construct was investigated. This is the first study demonstrating that combining the energy of the membrane-associated folding of two pHLIPs can be utilized to enhance the targeted intracellular delivery of large therapeutic cargo payloads. Discussion: Linking two pHLIPs to the cargo extends blood half-life, and targeted delivery of dimeric STINGa induces tumor eradication and the development of robust anti-cancer immunity.
Collapse
Affiliation(s)
- Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Marissa Iraca
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Craig Klumpp
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Hannah Visca
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Dana Allababidi
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Phoebe Pelzer
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, New Haven, CT, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
33
|
Li C, Liang G, Yan K, Wang Y. NRF2 mutation enhances the immune escape of hepatocellular carcinoma by reducing STING activation. Biochem Biophys Res Commun 2024; 698:149536. [PMID: 38271834 DOI: 10.1016/j.bbrc.2024.149536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor usually hyperactivated in hepatocellular carcinoma (HCC). In addition, about 14 % of HCC patients carry mutation in NRF2 or Kelch-like ECH-associated protein 1 (Keap1), a NRF2 inhibitor, both of which lead to constitutive activation of NRF2. It has been widely reported that NRF2 plays important roles in the proliferation, differentiation and metastasis of tumor cells. But as an important gene involved in antioxidation and anti-inflammation, little studies have focused on its role in tumor immune escape. Here we found that NRF2 gain-of-function mutation leads to reduced expression of STING and decreased infiltration of peripheral immune cells through which way it helps the tumor cells to evade from immune surveillance. This phenomenon can be reversed by STING overexpression. Our study also revealed that NRF2 mutation greatly reduced the effect of STING activating based immunotherapy. It is important to simultaneously inhibit the activity of NRF2 when using STING agonist for the treatment of HCC patients carrying NRF2 mutation.
Collapse
Affiliation(s)
- Cheng Li
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Gang Liang
- Department of General Surgery, NO.215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, China
| | - Ke Yan
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Yongheng Wang
- Department of Oncological Surgery, Shaanxi Provincial People's Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China.
| |
Collapse
|
34
|
Pinjusic K, Ambrosini G, Lourenco J, Fournier N, Iseli C, Guex N, Egorova O, Nassiri S, Constam DB. Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING. Front Immunol 2024; 14:1335207. [PMID: 38304252 PMCID: PMC10830842 DOI: 10.3389/fimmu.2023.1335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
The transforming growth factor-β (TGF-β) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8+ T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Joao Lourenco
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Olga Egorova
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Sina Nassiri
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| |
Collapse
|
35
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
36
|
Fang Y, Huang S, Hu Q, Zhang J, King JA, Wang Y, Wei Z, Lu J, He Z, Kong X, Yang X, Ji J, Li J, Zhai G, Ye L. Injectable Zwitterionic Physical Hydrogel with Enhanced Chemodynamic Therapy and Tumor Microenvironment Remodeling Properties for Synergistic Anticancer Therapy. ACS NANO 2023; 17:24883-24900. [PMID: 37883579 DOI: 10.1021/acsnano.3c05898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Surgical resection is the first-line therapy for breast cancer. However, residual tumor cells and the highly immunosuppressive tumor microenvironment (TME) continue to have a serious impact on tumor recurrence and metastasis postresection. Implantation of an in situ hydrogel system postresection has shown to be an effective treatment with great clinical potential. Herein, an injectable zwitterionic hydrogel system was developed for local drug delivery with enhanced immune activation and prevention of tumor recurrence. Driven by electrostatic interactions, poly(sulfobetaine methacrylate) (PSBMA) self-assembles into a hydrogel in saline, achieving low protein adsorption and tunable biodegradability. The chemotherapy drug doxorubicin (DOX) was loaded into copper peroxide nanoparticles (CuO2/DOX), which were coated with macrophage membranes to form tumor-targeting nanoparticles (M/CuO2/DOX). Next, M/CuO2/DOX and the stimulator of interferon genes (STING) agonist 2',3'-cGAMP were coloaded into PSBMA hydrogel (Gel@M/CuO2/DOX/STING). The hydrophilic STING agonist was first released by diffusion from hydrogel to activate the STING pathway and upregulate interferon (IFN) signaling related genes, remodeling the immunosuppressive TME. Then, M/CuO2/DOX targeted the residual tumor cells, combining with DOX-induced DNA damage, immunogenic tumor cell death, and copper death. Hence, this work combines chemodynamic therapy with STING pathway activation in TME, encouraging residual tumor cell death, promoting the maturation of dendritic cells, enhancing tumor-specific CD8+ T cell infiltration, and preventing postoperative recurrence and metastasis.
Collapse
Affiliation(s)
- Yuelin Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Susu Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qiaoying Hu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jicheng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Julia A King
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Lu
- Department of Hernia and Abdominal Wall Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhijing He
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinru Kong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaoye Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guangxi Zhai
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Ye
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
37
|
Zhao K, Huang J, Zhao Y, Wang S, Xu J, Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188983. [PMID: 37717857 DOI: 10.1016/j.bbcan.2023.188983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key pathway through which the host regulates immune responses by recognizing cytoplasmic double-stranded DNA of abnormal origin, and it plays an important role in tumor growth as well as metastasis, with relevant molecular details constantly being explored and updated. The significant immunomodulatory effects make STING an attractive target for cancer immunotherapy, and STING agonists have been receiving great attention for their development and clinical translation. Despite exciting results in preclinical work, the application of STING agonists to cancer therapy remains challenging due to their poor pharmacokinetic and physicochemical properties, as well as toxic side effects they produce. Here, we summarize the dichotomous role of cGAS-STING in cancer and discuss the limitations of cancer immunotherapy based on STING activation as well as feasible strategies to overcome them to achieve tumor regression.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
38
|
Cho W, Lee JH, Park SB. STING upregulation strategies to potentiate STING immunotherapy. Future Med Chem 2023; 15:1819-1822. [PMID: 37791535 DOI: 10.4155/fmc-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
- Wansang Cho
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jung Ho Lee
- Department of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Department of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, Korea
- SPARK Biopharma, Inc., 134 Gwanak-ro Gwanak-gu, Seoul, 08791, Korea
| |
Collapse
|