1
|
Xu IR, Danzi MC, Raposo J, Züchner S. The continued promise of genomic technologies and software in neurogenetics. J Neuromuscul Dis 2025:22143602251325345. [PMID: 40208247 DOI: 10.1177/22143602251325345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The continued evolution of genomic technologies over the past few decades has revolutionized the field of neurogenetics, offering profound insights into the genetic underpinnings of neurological disorders. Identification of causal genes for numerous monogenic neurological conditions has informed key aspects of disease mechanisms and facilitated research into critical proteins and molecular pathways, laying the groundwork for therapeutic interventions. However, the question remains: has this transformative trend reached its zenith? In this review, we suggest that despite significant strides in genome sequencing and advanced computational analyses, there is still ample room for methodological refinement. We anticipate further major genetic breakthroughs corresponding with the increased use of long-read genomes, variant calling software, AI tools, and data aggregation databases. Genetic progress has historically been driven by technological advancements from the commercial sector, which are developed in response to academic research needs, creating a continuous cycle of innovation and discovery. This review explores the potential of genomic technologies to address the challenges of neurogenetic disorders. By outlining both established and modern resources, we aim to emphasize the importance of genetic technologies as we enter an era poised for discoveries.
Collapse
Affiliation(s)
- Isaac Rl Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Halvorsen MW, de Schipper E, Bäckman J, Strom NI, Hagen K, Lindblad-Toh K, Karlsson EK, Pedersen NL, Wallert J, Bulik CM, Fundín B, Landén M, Kvale G, Hansen B, Haavik J, Mattheisen M, Rück C, Mataix-Cols D, Crowley JJ. A burden of rare copy number variants in obsessive-compulsive disorder. Mol Psychiatry 2025; 30:1510-1517. [PMID: 39463448 PMCID: PMC11919692 DOI: 10.1038/s41380-024-02763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2248 deeply phenotyped OCD cases and 3608 unaffected controls from Sweden and Norway. Cases carry an elevated burden of CNVs ≥30 kb in size (OR = 1.12, P = 1.77 × 10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P = 2.58 × 10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR = 1.19, P = 3.08 × 10-4), particularly deletions impacting loss-of-function intolerant genes (pLI >0.995, OR = 4.12, P = 2.54 × 10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60 × 10-3). In cases where sufficient clinical data were available (n = 1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P < 0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P = 0.02). The results demonstrate a contribution of rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.
Collapse
Affiliation(s)
- Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
| | - Elles de Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Nora I Strom
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristen Hagen
- Department of Psychiatry, Molde Hospital, Molde, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John Wallert
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bengt Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Manuel Mattheisen
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Dalhousie University, Department of Community Health and Epidemiology & Faculty of Computer Science, Halifax, Nova Scotia, Canada
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| |
Collapse
|
3
|
Abdallah SB, Olfson E, Cappi C, Greenspun S, Zai G, Rosário MC, Willsey AJ, Shavitt RG, Miguel EC, Kennedy JL, Richter MA, Fernandez TV. Characterizing Rare DNA Copy-Number Variants in Pediatric Obsessive-Compulsive Disorder. J Am Acad Child Adolesc Psychiatry 2025:S0890-8567(25)00160-1. [PMID: 40122455 DOI: 10.1016/j.jaac.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Pediatric obsessive-compulsive disorder (OCD) is a common neuropsychiatric disorder in which genetic factors play an important role. Recent studies have demonstrated an enrichment of rare de novo DNA single-nucleotide variants in persons with OCD compared to controls, and larger studies have examined copy-number variants (CNVs) using microarray data. Our study examines rare de novo CNVs using whole-exome sequencing (WES) data to provide additional insight into genetic factors and biological processes underlying OCD. METHOD We detected CNVs using whole-exome DNA sequencing (WES) data from 183 OCD trio families (unaffected parents and children with OCD) and 771 control families to test the hypothesis that rare de novo CNVs are enriched in persons with OCD compared to controls. Our primary analysis used the eXome-Hidden Markov Model (XHMM) to identify CNVs in silico. We performed burden analyses comparing persons with OCD vs controls and downstream biological systems analyses of CNVs in probands with OCD. We then used a second algorithm (GATK-gCNV) to confirm our primary analysis. RESULTS Our findings demonstrate a higher rate of rare de novo CNVs detected by WES in persons with OCD (0.07 CNVs per proband) compared to controls (0.005) (corrected rate ratio = 11.7 95% CI = 3.6-50.0, p = 4.00×10-6). We confirmed this enrichment using GATK-gCNV. The majority of these rare de novo CNVs in persons with OCD are predicted to be pathogenic or likely pathogenic, and an examination of genes disrupted by rare de novo CNVs in persons with OCD finds enrichment of several Gene Ontology sets. CONCLUSION This study shows for the first time an enrichment of rare de novo CNVs detected by WES in OCD, complementing previous, larger CNV studies and providing additional insight into genetic factors underlying OCD risk.
Collapse
Affiliation(s)
| | - Emily Olfson
- Yale University School of Medicine, New Haven, Connecticut
| | - Carolina Cappi
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Gwyneth Zai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - A Jeremy Willsey
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Roseli G Shavitt
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Margaret A Richter
- Institute of Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Mendes M, Chen DZ, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, Howe JL, Pellecchia G, Nalpathamkalam T, Alexandrova R, Salazar NB, McKee EA, Rivera-Alfaro N, Lai MC, Bandres-Ciga S, Roshandel D, Bradley CA, Anagnostou E, Sun L, Scherer SW. Chromosome X-wide common variant association study in autism spectrum disorder. Am J Hum Genet 2025; 112:135-153. [PMID: 39706197 PMCID: PMC11739886 DOI: 10.1016/j.ajhg.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024] Open
Abstract
Autism spectrum disorder (ASD) displays a notable male bias in prevalence. Research into rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD suggests that females may require a higher genetic burden to manifest symptoms similar to those in males, yet the mechanisms remain unclear. Despite technological advances in genomics, the complexity of the biological nature of sex chromosomes leaves them underrepresented in genome-wide studies. Here, we conducted an X-chromosome-wide association study (XWAS) using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across Autism Speaks MSSNG, Simons Simplex Collection (SSC), and Simons Powering Autism Research (SPARK), alongside 8,981 population controls (43% males). We analyzed 418,652 X chromosome variants, identifying 59 associated with ASD (p values 7.9 × 10-6 to 1.51 × 10-5), surpassing Bonferroni-corrected thresholds. Key findings include significant regions on Xp22.2 (lead SNP rs12687599, p = 3.57 × 10-7) harboring ASB9/ASB11 and another encompassing DDX53 and the PTCHD1-AS long non-coding RNA (lead SNP rs5926125, p = 9.47 × 10-6). When mapping genes within 10 kb of the 59 most significantly associated SNPs, 91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, OFD1, CDKL5, GPRASP2, NXF5, and SH3KBP1). FGF13 emerged as an X-linked ASD candidate gene, highlighted by sex-specific differences in minor allele frequencies. These results reveal significant insights into X chromosome biology in ASD, confirming and nominating genes and pathways for further investigation.
Collapse
Affiliation(s)
- Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Desmond Zeya Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3E3, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ethan A McKee
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Natalia Rivera-Alfaro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5G 2C1, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Delnaz Roshandel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clarrisa A Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3E3, Canada; Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Hsu TW, Tsai SJ, Bai YM, Cheng CM, Su TP, Chen TJ, Liang CS, Chen MH. Parental mental disorders in patients with comorbid schizophrenia and obsessive-compulsive disorder: a nationwide family-link study. Eur Child Adolesc Psychiatry 2024; 33:4325-4334. [PMID: 38814466 PMCID: PMC11618191 DOI: 10.1007/s00787-024-02480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Schizophrenia is highly comorbid with obsessive-compulsive disorder (OCD); both conditions share numerous pathophysiological etiologies. We, thus, examined the risk of mental disorders in the parents of probands with schizophrenia, OCD, or both conditions. Between 2001 and 2011, we enrolled a nationwide cohort of 69,813 patients with schizophrenia, OCD, or both. The control cohort included 698,130 individuals matched for demographics. Poisson regression models were employed to examine the risk of six mental disorders in their parents, including schizophrenia, bipolar disorder, depressive disorder, OCD, alcohol use disorder, and substance use disorder. We stratified patients into schizophrenia-only, OCD-only, and dual-diagnosis groups, and the dual-diagnosis group was further divided into schizophrenia-first, OCD-first, and simultaneously diagnosed groups. Compared with controls, the schizophrenia, OCD, and dual-diagnosis groups had higher risks for the six mental disorders in their parents (range of odds ratio [OR] 1.50-7.83). The sub-analysis of the dual-diagnosis group showed that the schizophrenia-first, OCD-first, and simultaneously diagnosed groups had higher odds for schizophrenia, bipolar disorder, depressive disorder, and OCD (range of OR 1.64-6.45) in their parents than the control group; the simultaneously diagnosed and OCD-first diagnosed groups had a higher odds of parental substance use disorder, while the schizophrenia-first diagnosed group had a higher odds of parental alcohol use disorder. The interrelationship between OCD and schizophrenia is linked to bipolar disorder, depressive disorder, alcohol use disorder, and substance use disorder. The results have implications for mental health policy and future research.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin Hospital, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Hsinchu Branch, Taipei Veterans General Hospital, Hsinchu, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, No. 60, Xinmin Road, Beitou District, Taipei, 11217, Taiwan.
- Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan.
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Beitou District, No. 201, Sec. 2, Shihpai Road, Taipei, 11217, Taiwan.
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Errichiello E, Lecca M, Vantaggiato C, Motta Z, Zanotta N, Zucca C, Bertuzzo S, Piubelli L, Pollegioni L, Bonaglia MC. Further evidence supporting the role of GTDC1 in glycine metabolism and neurodevelopmental disorders. Eur J Hum Genet 2024; 32:920-927. [PMID: 38605125 PMCID: PMC11291697 DOI: 10.1038/s41431-024-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicoletta Zanotta
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Claudio Zucca
- Unit of Clinical Neurophysiology and Epilepsy Centre, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sara Bertuzzo
- Laboratory of Cytogenetics, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
7
|
Verbesselt J, Walsh LK, Mitchel MW, Taylor CM, Finucane BM, Breckpot J, Zink I, Swillen A. Association of behavioural and social-communicative profiles in children with 16p11.2 copy number variants: a multi-site study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:969-984. [PMID: 38657658 DOI: 10.1111/jir.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Despite the established knowledge that recurrent copy number variants (CNVs) at the 16p11.2 locus BP4-BP5 confer risk for behavioural and language difficulties, limited research has been conducted on the association between behavioural and social-communicative profiles. The current study aims to further delineate the prevalence, nature and severity of, and the association between, behavioural and social-communicative features of school-aged children with 16p11.2 deletion syndrome (16p11.2DS) and 16p11.2 duplication (16p11.2Dup). METHODS A total of 68 individuals (n = 47 16p11.2DS and n = 21 16p11.2Dup) aged 6-17 years participated. Standardised intelligence tests were administered, and behavioural and social-communicative skills were assessed by standardised questionnaires. Scores of both groups were compared with population norms and across CNVs. The influence of confounding factors was investigated, and correlation analyses were performed. RESULTS Compared with the normative sample, children with 16p11.2DS showed high rates of social responsiveness (67%) and communicative problems (69%), while approximately half (52%) of the patients displayed behavioural problems. Children with 16p11.2Dup demonstrated even higher rates of social-communicative problems (80-90%) with statistically significantly more externalising and overall behavioural challenges (89%). In both CNV groups, there was a strong positive correlation between behavioural and social-communicative skills. CONCLUSIONS School-aged children with 16p11.2 CNVs show high rates of behavioural, social responsiveness and communicative problems compared with the normative sample. These findings point to the high prevalence of autistic traits and diagnoses in these CNV populations. Moreover, there is a high comorbidity between behavioural and social-communicative problems. Patients with difficulties in both domains are vulnerable and need closer clinical follow-up and care.
Collapse
Affiliation(s)
- J Verbesselt
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - M W Mitchel
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - C M Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - B M Finucane
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - J Breckpot
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - I Zink
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- MUCLA, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - A Swillen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Reid M, Lin A, Farhat LC, Fernandez TV, Olfson E. The genetics of trichotillomania and excoriation disorder: A systematic review. Compr Psychiatry 2024; 133:152506. [PMID: 38833896 PMCID: PMC11513794 DOI: 10.1016/j.comppsych.2024.152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Trichotillomania (TTM) and excoriation disorder (ED) are impairing obsessive-compulsive related disorders that are common in the general population and for which there are no clear first-line medications, highlighting the need to better understand the underlying biology of these disorders to inform treatments. Given the importance of genetics in obsessive-compulsive disorder (OCD), evaluating genetic factors underlying TTM and ED may advance knowledge about the pathophysiology of these body-focused repetitive behaviors. AIM In this systematic review, we summarize the available evidence on the genetics of TTM and ED and highlight gaps in the field warranting further research. METHOD We systematically searched Embase, PsycInfo, PubMed, Medline, Scopus, and Web of Science for original studies in genetic epidemiology (family or twin studies) and molecular genetics (candidate gene and genome-wide) published up to June 2023. RESULTS Of the 3536 records identified, 109 studies were included in this review. These studies indicated that genetic factors play an important role in the development of TTM and ED, some of which may be shared across the OCD spectrum, but there are no known high-confidence specific genetic risk factors for either TTM or ED. CONCLUSIONS Our review underscores the need for additional genome-wide research conducted on the genetics of TTM and ED, for instance, genome-wide association and whole-genome/whole-exome DNA sequencing studies. Recent advances in genomics have led to the discovery of risk genes in several psychiatric disorders, including related conditions such as OCD, but to date, TTM and ED have remained understudied.
Collapse
Affiliation(s)
- Madison Reid
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; The University of the South, USA
| | - Ashley Lin
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thomas V Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Olfson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Mendes M, Chen DZ, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, Howe JL, Pellecchia G, Nalpathamkalam T, Alexandrova R, Salazar NB, McKee EA, Alfaro NR, Lai MC, Bandres-Ciga S, Roshandel D, Bradley CA, Anagnostou E, Sun L, Scherer SW. Chromosome X-Wide Common Variant Association Study (XWAS) in Autism Spectrum Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310640. [PMID: 39108515 PMCID: PMC11302709 DOI: 10.1101/2024.07.18.24310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Autism Spectrum Disorder (ASD) displays a notable male bias in prevalence. Research into rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD suggests that females may require a higher genetic burden to manifest similar symptoms as males, yet the mechanisms remain unclear. Despite technological advances in genomics, the complexity of the biological nature of sex chromosomes leave them underrepresented in genome-wide studies. Here, we conducted an X chromosome-wide association study (XWAS) using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across Autism Speaks MSSNG, Simons Simplex Cohort SSC, and Simons Foundation Powering Autism Research SPARK, alongside 8,981 population controls (43% males). We analyzed 418,652 X-chromosome variants, identifying 59 associated with ASD (p-values 7.9×10-6 to 1.51×10-5), surpassing Bonferroni-corrected thresholds. Key findings include significant regions on chrXp22.2 (lead SNP=rs12687599, p=3.57×10-7) harboring ASB9/ASB11, and another encompassing DDX53/PTCHD1-AS long non-coding RNA (lead SNP=rs5926125, p=9.47×10-6). When mapping genes within 10kb of the 59 most significantly associated SNPs, 91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, OFD1, CDKL5, GPRASP2, NXF5, SH3KBP1). FGF13 emerged as a novel X-linked ASD candidate gene, highlighted by sex-specific differences in minor allele frequencies. These results reveal significant new insights into X chromosome biology in ASD, confirming and nominating genes and pathways for further investigation.
Collapse
Affiliation(s)
- Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Desmond Zeya Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ethan Alexander McKee
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Natalia Rivera Alfaro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5G 2C1, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Delnaz Roshandel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Clarrisa A. Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lei Sun
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 3E3, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
10
|
Azidane S, Gallego X, Durham L, Cáceres M, Guney E, Pérez-Cano L. Identification of novel driver risk genes in CNV loci associated with neurodevelopmental disorders. HGG ADVANCES 2024; 5:100316. [PMID: 38850022 PMCID: PMC11264174 DOI: 10.1016/j.xhgg.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Copy-number variants (CNVs) are genome-wide structural variations involving the duplication or deletion of large nucleotide sequences. While these types of variations can be commonly found in humans, large and rare CNVs are known to contribute to the development of various neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). Nevertheless, given that these NDD-risk CNVs cover broad regions of the genome, it is particularly challenging to pinpoint the critical gene(s) responsible for the manifestation of the phenotype. In this study, we performed a meta-analysis of CNV data from 11,614 affected individuals with NDDs and 4,031 control individuals from SFARI database to identify 41 NDD-risk CNV loci, including 24 novel regions. We also found evidence for dosage-sensitive genes within these regions being significantly enriched for known NDD-risk genes and pathways. In addition, a significant proportion of these genes was found to (1) converge in protein-protein interaction networks, (2) be among most expressed genes in the brain across all developmental stages, and (3) be hit by deletions that are significantly over-transmitted to individuals with ASD within multiplex ASD families from the iHART cohort. Finally, we conducted a burden analysis using 4,281 NDD cases from Decipher and iHART cohorts, and 2,504 neurotypical control individuals from 1000 Genomes and iHART, which resulted in the validation of the association of 162 dosage-sensitive genes driving risk for NDDs, including 22 novel NDD-risk genes. Importantly, most NDD-risk CNV loci entail multiple NDD-risk genes in agreement with a polygenic model associated with the majority of NDD cases.
Collapse
Affiliation(s)
- Sara Azidane
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Gallego
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Lynn Durham
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute, Barcelona, Spain
| | - Emre Guney
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain.
| |
Collapse
|
11
|
Nishizawa Y, Thompson KC, Yamanashi T, Wahba NE, Saito T, Marra PS, Nagao T, Nishiguchi T, Shibata K, Yamanishi K, Hughes CG, Pandharipande P, Cho H, Howard MA, Kawasaki H, Toda H, Kanazawa T, Iwata M, Shinozaki G. Epigenetic signals associated with delirium replicated across four independent cohorts. Transl Psychiatry 2024; 14:275. [PMID: 38965205 PMCID: PMC11224347 DOI: 10.1038/s41398-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Delirium is risky and indicates poor outcomes for patients. Therefore, it is crucial to create an effective delirium detection method. However, the epigenetic pathophysiology of delirium remains largely unknown. We aimed to discover reliable and replicable epigenetic (DNA methylation: DNAm) markers that are associated with delirium including post-operative delirium (POD) in blood obtained from patients among four independent cohorts. Blood DNA from four independent cohorts (two inpatient cohorts and two surgery cohorts; 16 to 88 patients each) were analyzed using the Illumina EPIC array platform for genome-wide DNAm analysis. We examined DNAm differences in blood between patients with and without delirium including POD. When we compared top CpG sites previously identified from the initial inpatient cohort with three additional cohorts (one inpatient and two surgery cohorts), 11 of the top 13 CpG sites showed statistically significant differences in DNAm values between the delirium group and non-delirium group in the same directions as found in the initial cohort. This study demonstrated the potential value of epigenetic biomarkers as future diagnostic tools. Furthermore, our findings provide additional evidence of the potential role of epigenetics in the pathophysiology of delirium including POD.
Collapse
Affiliation(s)
- Yoshitaka Nishizawa
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Psychiatry, Osaka Medical and Pharmaceutical University School of Medicine, Osaka, Japan
| | - Kaitlyn C Thompson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Takehiko Yamanashi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori, Japan
| | - Nadia E Wahba
- Department of Psychiatry, Oregon Health and Science University, School of Medicine, Portland, OR, USA
| | - Taku Saito
- Department of Psychiatry, National Defense Medical College School of Medicine, Tokorozawa, Saitama, Japan
| | - Pedro S Marra
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Takaaki Nagao
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Neurosurgery (Sakura), Toho University School of Medicine Faculty of Medicine, Sakura-shi, Chiba, Japan
| | - Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori, Japan
| | - Kazuki Shibata
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Sumitomo Pharma Co, Ltd, Osaka, Osaka, Japan
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Neuropsychiatry, Hyogo Medical University, College of Medicine, Nishinomiya, Hyogo, Japan
| | - Christopher G Hughes
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pratik Pandharipande
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hyunkeun Cho
- University of Iowa, College of Public Health, Iowa City, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Hiroyuki Toda
- Department of Psychiatry, National Defense Medical College School of Medicine, Tokorozawa, Saitama, Japan
| | - Tetsufumi Kanazawa
- Department of Psychiatry, Osaka Medical and Pharmaceutical University School of Medicine, Osaka, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori, Japan
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
12
|
Massier M, Doco-Fenzy M, Egloff M, Le Guillou X, Le Guyader G, Redon S, Benech C, Le Millier K, Uguen K, Ropars J, Sacaze E, Audebert-Bellanger S, Apetrei A, Molin A, Gruchy N, Vincent-Devulder A, Spodenkiewicz M, Jacquin C, Loron G, Thibaud M, Delplancq G, Brisset S, Lesieur-Sebellin M, Malan V, Romana S, Rio M, Marlin S, Amiel J, Marquet V, Dauriat B, Moradkhani K, Mercier S, Isidor B, Arpin S, Pujalte M, Jedraszak G, Pebrel-Richard C, Salaun G, Laffargue F, Boudjarane J, Missirian C, Chelloug N, Toutain A, Chiesa J, Keren B, Mignot C, Gouy E, Jaillard S, Landais E, Poirsier C. 3q29 duplications: A cohort of 46 patients and a literature review. Am J Med Genet A 2024; 194:e63531. [PMID: 38421086 DOI: 10.1002/ajmg.a.63531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.
Collapse
Affiliation(s)
- Marie Massier
- Department of Genetics, Reims University Hospital, Reims, France
| | - Martine Doco-Fenzy
- Department of Genetics, Reims University Hospital, Reims, France
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Matthieu Egloff
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, INSERM, LNEC, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | - Xavier Le Guillou
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, CNRS, LMA, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | | | - Sylvia Redon
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Caroline Benech
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | | | - Kevin Uguen
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Juliette Ropars
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Elise Sacaze
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Séverine Audebert-Bellanger
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Andreea Apetrei
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Arnaud Molin
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Nicolas Gruchy
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Aline Vincent-Devulder
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | | | - Clémence Jacquin
- Department of Genetics, Reims University Hospital, Reims, France
| | - Gauthier Loron
- Department of Neonatal Medicine and Pediatric Intensive Care, University of Reims Champagne-Ardenne, CReSTIC, Reims University Hospital, Reims, France
| | - Marie Thibaud
- Department of Pediatrics, American Memorial Hospital, Reims, France
| | | | - Sophie Brisset
- Constitutional Genetics Unit, Versailles Hospital, Le Chesnay, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valérie Malan
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Serge Romana
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Sandrine Marlin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valentine Marquet
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | - Benjamin Dauriat
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | | | - Sandra Mercier
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Bertrand Isidor
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Stéphanie Arpin
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | | | - Guillaume Jedraszak
- Constitutional Genetic Laboratory, University Hospital of Amiens & UR4666 HEMATIM, University of Picardie Jules Verne, Amiens, France
| | - Céline Pebrel-Richard
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Gaëlle Salaun
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Fanny Laffargue
- Department of Medical Genetics, UIC ADDIR (GRIUC ADERGEN), Constitutive Reference Center CLAD South-East: Developmental anomalies and malformative syndromes, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - John Boudjarane
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Chantal Missirian
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Nora Chelloug
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Jean Chiesa
- Department of Genetics, Nimes, University Hospital, Nimes University Hospital, Nimes, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Evan Gouy
- Department of Genetics, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Jaillard
- Department of Cytogenetics and Cell Biology, Rennes university hospital, Rennes, France
| | - Emilie Landais
- Department of Genetics, Reims University Hospital, Reims, France
| | - Céline Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| |
Collapse
|
13
|
Maino E, Scott O, Rizvi SZ, Chan WS, Visuvanathan S, Zablah YB, Li H, Sengar AS, Salter MW, Jia Z, Rossant J, Cohn RD, Gu B, Ivakine EA. An Irak1-Mecp2 tandem duplication mouse model for the study of MECP2 duplication syndrome. Dis Model Mech 2024; 17:dmm050528. [PMID: 38881329 PMCID: PMC11552499 DOI: 10.1242/dmm.050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ori Scott
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Samar Z. Rizvi
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wing Suen Chan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Youssif Ben Zablah
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hongbin Li
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ameet S. Sengar
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W. Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengping Jia
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, the Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
15
|
Fichna JP, Chiliński M, Halder AK, Cięszczyk P, Plewczynski D, Żekanowski C, Janik P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. Int J Mol Sci 2024; 25:5758. [PMID: 38891944 PMCID: PMC11171586 DOI: 10.3390/ijms25115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.
Collapse
Affiliation(s)
- Jakub P. Fichna
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
16
|
Akkus N, Cubuk PO. Diagnostic yield of the chromosomal microarray analysis in turkish patients with unexplained development delay/ıntellectual disability(ID), autism spectrum disorders and/or multiple congenital anomalies and new clinical findings. Mol Biol Rep 2024; 51:577. [PMID: 38664339 DOI: 10.1007/s11033-024-09545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/11/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Chromosomal microarray analysis is an essential tool for copy number variants detection in patients with unexplained developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies. The study aims to determine the clinical significance of chromosomal microarray analysis in this patient group. Another crucial aspect is the evaluation of copy number variants detected in terms of the diagnosis of patients. METHODS AND RESULTS A Chromosomal microarray analysis was was conducted on a total of 1227 patients and phenotype-associated etiological diagnosis was established in 135 patients. Phenotype-associated copy number variants were detected in 11% of patients. Among these, 77 patients 77 (57%, 77/135) were diagnosed with well-recognized genetic syndromes and phenotype-associated copy number variants were found in 58 patients (42.9%, 58/135). The study was designed to collect data of patients in Kocaeli Derince Training and Research Hospital retrospectively. In our study, we examined 135 cases with clinically significant copy number variability among all patients. CONCLUSIONS In this study, chromosomal microarray analysis revealed pathogenic de novo copy number variants with new clinical features. Chromosomal microarray analysis in the Turkish population has been reported in the largest patient cohort to date.
Collapse
Affiliation(s)
- Nejmiye Akkus
- Department of Medical Genetics, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| | - Pelin Ozyavuz Cubuk
- Department of Medical Genetics, Ministry of Health Haseki Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
17
|
Cooper JN, Mittal J, Sangadi A, Klassen DL, King AM, Zalta M, Mittal R, Eshraghi AA. Landscape of NRXN1 Gene Variants in Phenotypic Manifestations of Autism Spectrum Disorder: A Systematic Review. J Clin Med 2024; 13:2067. [PMID: 38610832 PMCID: PMC11012327 DOI: 10.3390/jcm13072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Recent research has increasingly focused on the genetic underpinnings of ASD, with the Neurexin 1 (NRXN1) gene emerging as a key player. This comprehensive systematic review elucidates the contribution of NRXN1 gene variants in the pathophysiology of ASD. Methods: The protocol for this systematic review was designed a priori and was registered in the PROSPERO database (CRD42023450418). A risk of bias analysis was conducted using the Joanna Briggs Institute (JBI) critical appraisal tool. We examined various studies that link NRXN1 gene disruptions with ASD, discussing both the genotypic variability and the resulting phenotypic expressions. Results: Within this review, there was marked heterogeneity observed in ASD genotypic and phenotypic manifestations among individuals with NRXN1 mutations. The presence of NRXN1 mutations in this population emphasizes the gene's role in synaptic function and neural connectivity. Conclusion: This review not only highlights the role of NRXN1 in the pathophysiology of ASD but also highlights the need for further research to unravel the complex genetic underpinnings of the disorder. A better knowledge about the multifaceted role of NRXN1 in ASD can provide crucial insights into the neurobiological foundations of autism and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jaimee N. Cooper
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Akhila Sangadi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Delany L. Klassen
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Ava M. King
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Max Zalta
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research and Communication Disorders Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.N.C.); (J.M.); (A.S.); (D.L.K.); (A.M.K.); (M.Z.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Fehlings DL, Zarrei M, Engchuan W, Sondheimer N, Thiruvahindrapuram B, MacDonald JR, Higginbotham EJ, Thapa R, Behlim T, Aimola S, Switzer L, Ng P, Wei J, Danthi PS, Pellecchia G, Lamoureux S, Ho K, Pereira SL, de Rijke J, Sung WWL, Mowjoodi A, Howe JL, Nalpathamkalam T, Manshaei R, Ghaffari S, Whitney J, Patel RV, Hamdan O, Shaath R, Trost B, Knights S, Samdup D, McCormick A, Hunt C, Kirton A, Kawamura A, Mesterman R, Gorter JW, Dlamini N, Merico D, Hilali M, Hirschfeld K, Grover K, Bautista NX, Han K, Marshall CR, Yuen RKC, Subbarao P, Azad MB, Turvey SE, Mandhane P, Moraes TJ, Simons E, Maxwell G, Shevell M, Costain G, Michaud JL, Hamdan FF, Gauthier J, Uguen K, Stavropoulos DJ, Wintle RF, Oskoui M, Scherer SW. Comprehensive whole-genome sequence analyses provide insights into the genomic architecture of cerebral palsy. Nat Genet 2024; 56:585-594. [PMID: 38553553 DOI: 10.1038/s41588-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.
Collapse
Affiliation(s)
- Darcy L Fehlings
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neal Sondheimer
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ritesh Thapa
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Tarannum Behlim
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sabrina Aimola
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Lauren Switzer
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Pamela Ng
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prakroothi S Danthi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Ho
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jill de Rijke
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Mowjoodi
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siavash Ghaffari
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Whitney
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rohan V Patel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Omar Hamdan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rulan Shaath
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon Knights
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Dawa Samdup
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Anna McCormick
- Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn Hunt
- Grandview Children's Centre, Oshawa, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Anne Kawamura
- Division of Developmental Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ronit Mesterman
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Jan Willem Gorter
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Nomazulu Dlamini
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Deep Genomics Inc., Toronto, Ontario, Canada
- Vevo Therapeutics Inc., San Francisco, CA, USA
| | - Murto Hilali
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kyle Hirschfeld
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kritika Grover
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nelson X Bautista
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kara Han
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Padmaja Subbarao
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piush Mandhane
- Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Translation Medicine & Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - George Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Michael Shevell
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Gregory Costain
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacques L Michaud
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Julie Gauthier
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada
| | - Kevin Uguen
- CHU Sainte-Justine Azrieli Research Center, Montréal, Québec, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Oskoui
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Departments of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto MC, Sandoni L, Baravelli I, Cameli C, Rochat MJ, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody MC, Maestrini E, Bacchelli E. Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates. NPJ Genom Med 2024; 9:21. [PMID: 38519481 PMCID: PMC10959942 DOI: 10.1038/s41525-024-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
- Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Laura Sandoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Irene Baravelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessandro Vaisfeld
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
21
|
Chaves TF, Ocampos M, Barbato IT, de Camargo Pinto LL, de Luca GR, Barbato Filho JH, Bernardi P, Costa Netto Muniz Y, Francesca Maris A. A cohort study of neurodevelopmental disorders and/or congenital anomalies using high resolution chromosomal microarrays in southern Brazil highlighting the significance of ASD. Sci Rep 2024; 14:3762. [PMID: 38355898 PMCID: PMC10867078 DOI: 10.1038/s41598-024-54385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal microarray (CMA) is the reference in evaluation of copy number variations (CNVs) in individuals with neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and/or autism spectrum disorder (ASD), which affect around 3-4% of the world's population. Modern platforms for CMA, also include probes for single nucleotide polymorphisms (SNPs) that detect homozygous regions in the genome, such as long contiguous stretches of homozygosity (LCSH). These regions result from complete or segmental chromosomal homozygosis and may be indicative of uniparental disomy (UPD), inbreeding, population characteristics, as well as replicative DNA repair events. In this retrospective study, we analyzed CMA reading files requested by geneticists and neurologists for diagnostic purposes along with available clinical data. Our objectives were interpreting CNVs and assess the frequencies and implications of LCSH detected by Affymetrix CytoScan HD (41%) or 750K (59%) platforms in 1012 patients from the south of Brazil. The patients were mainly children with NDDs and/or congenital anomalies (CAs). A total of 206 CNVs, comprising 132 deletions and 74 duplications, interpreted as pathogenic, were found in 17% of the patients in the cohort and across all chromosomes. Additionally, 12% presented rare variants of uncertain clinical significance, including LPCNVs, as the only clinically relevant CNV. Within the realm of NDDs, ASD carries a particular importance, owing to its escalating prevalence and its growing repercussions for individuals, families, and communities. ASD was one clinical phenotype, if not the main reason for referral to testing, for about one-third of the cohort, and these patients were further analyzed as a sub-cohort. Considering only the patients with ASD, the diagnostic rate was 10%, within the range reported in the literature (8-21%). It was higher (16%) when associated with dysmorphic features and lower (7%) for "isolated" ASD (without ID and without dysmorphic features). In 953 CMAs of the whole cohort, LCSH (≥ 3 Mbp) were analyzed not only for their potential pathogenic significance but were also explored to identify common LCSH in the South Brazilians population. CMA revealed at least one LCSH in 91% of the patients. For about 11.5% of patients, the LCSH suggested consanguinity from the first to the fifth degree, with a greater probability of clinical impact, and in 2.8%, they revealed a putative UPD. LCSH found at a frequency of 5% or more were considered common LCSH in the general population, allowing us to delineate 10 regions as potentially representing ancestral haplotypes of neglectable clinical significance. The main referrals for CMA were developmental delay (56%), ID (33%), ASD (33%) and syndromic features (56%). Some phenotypes in this population may be predictive of a higher probability of indicating a carrier of a pathogenic CNV. Here, we present the largest report of CMA data in a cohort with NDDs and/or CAs from the South of Brazil. We characterize the rare CNVs found along with the main phenotypes presented by each patient and show the importance and usefulness of LCSH interpretation in CMA results that incorporate SNPs, as well as we illustrate the value of CMA to investigate CNV in ASD.
Collapse
Affiliation(s)
- Tiago Fernando Chaves
- Laboratório de Polimorfismos Genéticos (LAPOGE), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Maristela Ocampos
- Laboratory Neurogene (former), Florianopolis, SC, Brazil
- Mercolab Diagnóstica (actual), Florianopolis, SC, Brazil
| | | | | | | | | | - Priscila Bernardi
- University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | - Yara Costa Netto Muniz
- Laboratório de Polimorfismos Genéticos (LAPOGE), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelica Francesca Maris
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Children's Hospital Joana de Gusmão, Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Noort RJ, Zhu H, Flemmer RT, Moore CS, Belbin TJ, Esseltine JL. Apically localized PANX1 impacts neuroepithelial expansion in human cerebral organoids. Cell Death Discov 2024; 10:22. [PMID: 38212304 PMCID: PMC10784521 DOI: 10.1038/s41420-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Hanrui Zhu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Robert T Flemmer
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Thomas J Belbin
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
- Discipline of Oncology, Faculty of sp. Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada.
| |
Collapse
|
24
|
Halvorsen M, de Schipper E, Boberg J, Strom N, Hagen K, Lindblad-Toh K, Karlsson E, Pedersen N, Bulik C, Fundín B, Landén M, Kvale G, Hansen B, Haavik J, Mattheisen M, Rück C, Mataix-Cols D, Crowley J. A Burden of Rare Copy Number Variants in Obsessive-Compulsive Disorder. RESEARCH SQUARE 2024:rs.3.rs-3749504. [PMID: 38260575 PMCID: PMC10802697 DOI: 10.21203/rs.3.rs-3749504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from large, rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2,248 deeply phenotyped OCD cases and 3,608 unaffected controls from Sweden and Norway. We found that in general cases carry an elevated burden of large (>30kb, at least 15 probes) CNVs (OR=1.12, P=1.77×10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P=2.58×10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR=1.19, P=3.08×10-4), particularly deletions impacting loss-of-function intolerant genes (pLI>0.995, OR=4.12, P=2.54×10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60×10-3). In cases where sufficient clinical data were available (n=1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P<0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P=0.02). The results demonstrate a contribution of large, rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.
Collapse
|
25
|
Utyro O, Włoczkowska-Łapińska O, Jakubowski H. Association of GLOD4 with Alzheimer's Disease in Humans and Mice. J Alzheimers Dis 2024; 101:823-834. [PMID: 39302370 PMCID: PMC11492116 DOI: 10.3233/jad-240512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Background Glyoxalase domain containing protein 4 (GLOD4), a protein of an unknown function, is associated with Alzheimer's disease (AD). Three GLOD4 isoforms are known. The mechanism underlying GLOD4's association with AD was unknown. Objective To assess GLOD4's role in the central nervous system by studying GLOD4 isoforms expression in human frontal cerebral cortical tissues from AD patients and in brains of Blmh-/-5xFAD mouse AD model of AD. Methods GLOD4 protein and mRNA were quantified in human and mouse brains by western blotting and RT-qPCR, respectively. Mouse brain amyloid-β (Aβ) was quantified by western blotting. Behavioral assessments of mice were performed by cognitive/neuromotor testing. Glod4 gene in mouse neuroblastoma N2a-APPswe cells was silenced by RNA interference and Glod4, Aβ precursor protein (Aβpp), Atg5, p62, and Lc3 proteins and mRNAs were quantified. Results GLOD4 mRNA and protein isoforms were downregulated in cortical tissues from AD patients compared to non-AD controls. Glod4 mRNA was downregulated in brains of Blmh-/-5xFAD mice compared to Blmh+/+5xFAD sibling controls, but not in Blmh-/- mice without the 5xFAD transgene compared to Blmh+/+ sibling controls. The 5xFAD transgene downregulated Glod4 mRNA in Blmh-/- mice of both sexes and in Blmh+/+ males but not females. Attenuated Glod4 was associated with elevated Aβ and worsened memory/sensorimotor performance in Blmh-/-5xFAD mice. Glod4 depletion in N2a-APPswe cells upregulated AβPP, and downregulated autophagy-related Atg5, p62, and Lc3 genes. Conclusions These findings suggest that GLOD4 interacts with AβPP and the autophagy pathway, and that disruption of these interactions leads to Aβ accumulation and cognitive/neurosensory deficits.
Collapse
Affiliation(s)
- Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry &Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA
| |
Collapse
|
26
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
27
|
Woodbury-Smith M, D'Abate L, Stavropoulos DJ, Howe J, Drmic I, Hoang N, Zarrei M, Trost B, Iaboni A, Anagnostou E, Scherer SW. The Phenotypic variability of 16p11.2 distal BP2-BP3 deletion in a transgenerational family and in neurodevelopmentally ascertained samples. J Med Genet 2023; 60:1153-1160. [PMID: 37290907 PMCID: PMC10715508 DOI: 10.1136/jmg-2022-108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lia D'Abate
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Irene Drmic
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ron Joyce Children's Health Centre, Autism Spectrum Disorder (ASD) Program and Child and Youth Mental Health Program, McMaster Autism Research Team, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Kostic M, Raymond JJ, Freyre CAC, Henry B, Tumkaya T, Khlghatyan J, Dvornik J, Li J, Hsiao JS, Cheon SH, Chung J, Sun Y, Dolmetsch RE, Worringer KA, Ihry RJ. Patient Brain Organoids Identify a Link between the 16p11.2 Copy Number Variant and the RBFOX1 Gene. ACS Chem Neurosci 2023; 14:3993-4012. [PMID: 37903506 PMCID: PMC10655044 DOI: 10.1021/acschemneuro.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023] Open
Abstract
Copy number variants (CNVs) that delete or duplicate 30 genes within the 16p11.2 genomic region give rise to a range of neurodevelopmental phenotypes with high penetrance in humans. Despite the identification of this small region, the mechanisms by which 16p11.2 CNVs lead to disease are unclear. Relevant models, such as human cortical organoids (hCOs), are needed to understand the human-specific mechanisms of neurodevelopmental disease. We generated hCOs from 17 patients and controls, profiling 167,958 cells with single-cell RNA-sequencing analysis, which revealed neuronal-specific differential expression of genes outside the 16p11.2 region that are related to cell-cell adhesion, neuronal projection growth, and neurodevelopmental disorders. Furthermore, 16p11.2 deletion syndrome organoids exhibited reduced mRNA and protein levels of RBFOX1, a gene that can also harbor CNVs linked to neurodevelopmental phenotypes. We found that the genes previously shown to be regulated by RBFOX1 are also perturbed in organoids from patients with the 16p11.2 deletion syndrome and thus identified a novel link between independent CNVs associated with neuronal development and autism. Overall, this work suggests convergent signaling, which indicates the possibility of a common therapeutic mechanism across multiple rare neuronal diseases.
Collapse
Affiliation(s)
- Milos Kostic
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Joseph J. Raymond
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Christophe A. C. Freyre
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Beata Henry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Tayfun Tumkaya
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Jivan Khlghatyan
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jill Dvornik
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jingyao Li
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jack S. Hsiao
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Seon Hye Cheon
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Jonathan Chung
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, Cambridge 02139, Massachusetts, United States
| | - Yishan Sun
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Ricardo E. Dolmetsch
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Kathleen A. Worringer
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| | - Robert J. Ihry
- Neuroscience, Novartis Institutes for BioMedical Research, Cambridge 02139, Massachusetts, United
States
| |
Collapse
|
29
|
Bacchelli E, Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto M, Sandoni L, Baravelli I, Cameli C, Rochat M, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody M, Maestrini E. Whole genome analysis of rare deleterious variants adds further evidence to BRSK2 and other risk genes in Autism Spectrum Disorder. RESEARCH SQUARE 2023:rs.3.rs-3468592. [PMID: 37961520 PMCID: PMC10635364 DOI: 10.21203/rs.3.rs-3468592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
| | | | | | | | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | - Maria Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | - Magali Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Costa CIS, da Silva Campos G, da Silva Montenegro EM, Wang JYT, Scliar M, Monfardini F, Zachi EC, Lourenço NCV, Chan AJS, Pereira SL, Engchuan W, Thiruvahindrapuram B, Zarrei M, Scherer SW, Passos-Bueno MR. Three generation families: Analysis of de novo variants in autism. Eur J Hum Genet 2023; 31:1017-1022. [PMID: 37280359 PMCID: PMC10474020 DOI: 10.1038/s41431-023-01398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.
Collapse
Affiliation(s)
- Claudia I Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eduarda Morgana da Silva Montenegro
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila C V Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ada J S Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
32
|
Mudassir BU, Alotaibi MA, Kizilbash N, Alruwaili D, Alruwaili A, Alenezi M, Agha Z. Genome-wide CNV analysis uncovers novel pathogenic regions in cohort of five multiplex families with neurodevelopmental disorders. Heliyon 2023; 9:e19718. [PMID: 37810058 PMCID: PMC10558996 DOI: 10.1016/j.heliyon.2023.e19718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Structural reorganization of chromosomes by genomic duplications and/or deletions are known as copy number variations (CNVs). Pathogenic and disease susceptible CNVs alter gene dosage and its phenotypic expression that often leads to human genetic diseases including Neurological disorders. CNVs affecting same common genes in multiple neurodevelopmental disorders can better explain the shared clinical and genetic aetiology across brain diseases. Our study presents the novel copy number variations in a cohort of five multiplex consanguineous families with intellectual disability, microcephaly, ASD, epilepsy, and neurological syndromic features. Cytoscan HD microarray suite has revealed genome wide deletions, duplications and LOH regions which are co-segregating in the family members for the rare neurodevelopmental syndromic phenotypes. This study identifies 1q21.1 microduplication, 16p11.2 microduplication, Xp11.22 microduplication, 4p12 microdeletion and Xq21.1 microdeletion that significantly contribute to primary disease onset and its progression for the first time in Pakistani families. Our study has potential impact on the understanding of pathogenic genetic predisposition for appearance of complex and heterogeneous neurodevelopmental disorders with otherwise unexplained syndromic features. Identification of altered gene dosage across the genome is helpful in improved diagnosis, better disease management in day-to-day life activities of patients with cognitive impairment and genetic counselling of families where consanguinity is a tradition. Our study will contribute to expand the knowledge of genotype-phenotype expression and future gateways in therapeutics and precision medicine research will be open in Pakistan.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Daliyah Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Anwar Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Modhi Alenezi
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
33
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
34
|
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, Roslin NM, MacDonald JR, Pellecchia G, Nalpathamkalam T, Lamoureux S, Manshaei R, Howe J, Trost B, Thiruvahindrapuram B, Marshall CR, Yuen RKC, Wintle RF, Strug LJ, Stavropoulos DJ, Vorstman JAS, Arnold P, Merico D, Woodbury-Smith M, Crosbie J, Schachar RJ, Scherer SW. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet 2023; 32:2411-2421. [PMID: 37154571 PMCID: PMC10360394 DOI: 10.1093/hmg/ddad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Collapse
Affiliation(s)
- Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Christie L Burton
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sabah Shaikh
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lisa J Strug
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Departments of Statistical Sciences, Computer Science and Biostatistics, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacob A S Vorstman
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul Arnold
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Psychiatry & Medical Genetics, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Deep Genomics Inc., Toronto, ON M5G 1M1, Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Russell J Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
35
|
Liu X, Xu W, Leng F, Zhang P, Guo R, Zhang Y, Hao C, Ni X, Li W. NeuroCNVscore: a tissue-specific framework to prioritise the pathogenicity of CNVs in neurodevelopmental disorders. BMJ Paediatr Open 2023; 7:e001966. [PMID: 37407247 DOI: 10.1136/bmjpo-2023-001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional genome level in a tissue-specific manner. Despite the substantial increase in NDD studies employing whole-genome sequencing, there is no specific tool for prioritising the pathogenicity of CNVs in the context of NDDs. METHODS Using an XGBoost classifier, we integrated 189 features that represent genomic sequences, gene information and functional/genomic segments for evaluating genome-wide CNVs in a neuro/brain-specific manner, to develop a new tool, neuroCNVscore. We used Human Phenotype Ontology to construct an independent NDD-related set. RESULTS Our neuroCNVscore framework (https://github.com/lxsbch/neuroCNVscore) achieved high predictive performance (precision recall=0.82; area under curve=0.85) and outperformed an existing reference method SVScore. Notably, the predicted pathogenic CNVs showed enrichment in known genes associated with autism. CONCLUSIONS NeuroCNVscore prioritises functional, deleterious and pathogenic CNVs in NDDs at whole genome-wide level, which is important for genetic studies and clinical genomic screening of NDDs as well as for providing novel biological insights into NDDs.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Peng Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Yue Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- National Centre for Children's Health, Beijing, China
| | - Wei Li
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| |
Collapse
|
36
|
Greer SU, Botello J, Hongo D, Levy B, Shah P, Rabinowitz M, Miller DE, Im K, Kumar A. Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic. J Transl Med 2023; 21:378. [PMID: 37301971 PMCID: PMC10257846 DOI: 10.1186/s12967-023-04243-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications. METHODS We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth. RESULTS Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis. CONCLUSIONS We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.
Collapse
Affiliation(s)
| | | | - Donna Hongo
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Brynn Levy
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Premal Shah
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Matthew Rabinowitz
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
- Natera Inc., San Carlos, CA, USA
| | - Danny E Miller
- Department of Pediatrics, Department of Laboratory Medicine and Pathology, University of Washington, WA, Seattle, USA
| | - Kate Im
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA
| | - Akash Kumar
- MyOme Inc., 535 Middlefield Rd Suite 170, Menlo Park, CA, USA.
| |
Collapse
|
37
|
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther 2023; 31:1550-1561. [PMID: 36793211 PMCID: PMC10277896 DOI: 10.1016/j.ymthe.2023.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The human genome is pervasively transcribed, producing a majority of short and long noncoding RNAs (lncRNAs) that can influence cellular programs through a variety of transcriptional and post-transcriptional regulatory mechanisms. The brain houses the richest repertoire of long noncoding transcripts, which function at every stage during central nervous system development and homeostasis. An example of functionally relevant lncRNAs is species involved in spatiotemporal organization of gene expression in different brain regions, which play roles at the nuclear level and in transport, translation, and decay of other transcripts in specific neuronal sites. Research in the field has enabled identification of the contributions of specific lncRNAs to certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders, resulting in notions of potential therapeutic strategies that target these RNAs to recover the normal phenotype. Here, we summarize the latest mechanistic findings associated with lncRNAs in the brain, focusing on their dysregulation in neurodevelopmental or neurodegenerative disorders, their use as biomarkers for central nervous system (CNS) diseases in vitro and in vivo, and their potential utility for therapeutic strategies.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, PR, Brazil; Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain; Germans Trias i Pujol Health Science Research Institute, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
38
|
Cleary S, Teskey G, Mathews C, Sachachar RJ, Nicolson R, Weksberg R, Anagnostou E, Bowdish DME, Foster JA. Assessment of a multisite standardized biospecimen collection protocol for immune phenotyping in neurodevelopmental disorders. Sci Rep 2023; 13:6971. [PMID: 37117247 PMCID: PMC10147654 DOI: 10.1038/s41598-023-33380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Multisite collection and preservation of peripheral blood mononuclear cells (PBMCs) for centralized analysis is an indispensable strategy for large cohort immune phenotyping studies. However, the absence of cross-site standardized protocols introduces unnecessary sample variance. Here we describe the protocol implemented by the Province of Ontario Neurodevelopmental Disorders (POND) Network's immune platform for the multisite collection, processing, and cryopreservation of PBMCs. We outline quality control standards and evaluate the performance of our PBMC processing and storage protocol. We also describe the Child Immune History Questionnaire results, an assessment tool evaluating pre-existing immune conditions in children with neurodevelopmental disorders (NDDs). Cell viability was assessed in samples from 178 participants based on strict quality control criteria. Overall, 83.1% of samples passed quality control standards. Samples collected and processed at the same site had higher quality control pass rates than samples that were collected and subsequently shipped to another site for processing. We investigated if freezer time impacted sample viability and found no difference in mean freezer time between samples that passed and failed quality control. The Child Immune History Questionnaire had a response rate of 87.1%. The described protocol produces viable samples that may be used in future immune phenotyping experiments.
Collapse
Affiliation(s)
- Shane Cleary
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- The Research Institute at St. Joe's, Hamilton, ON, Canada
| | - Grace Teskey
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Craig Mathews
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- The Research Institute at St. Joe's, Hamilton, ON, Canada
| | - Russell J Sachachar
- Department of Psychiatry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert Nicolson
- Lawson Health Research Institute and Western University, London, ON, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics and Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institiute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Departments of Pediatrics, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Dawn M E Bowdish
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- The Research Institute at St. Joe's, Hamilton, ON, Canada.
| |
Collapse
|
39
|
Szalai R, Till A, Szabo A, Melegh B, Hadzsiev K, Czako M. Overlapping Interstitial Deletions of the Region 9q22.33 to 9q33.3 of Three Patients Allow Pinpointing Candidate Genes for Epilepsy and Cleft Lip and Palate. Mol Syndromol 2023; 14:109-122. [PMID: 37064343 PMCID: PMC10090976 DOI: 10.1159/000525976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients carrying interstitial deletions of the long arm of chromosome 9 show similar features. These phenotypes are often characterized by developmental delay, intellectual disability, short stature, and dysmorphism. Previously reported deletions differ in size and location spanning from 9q21 to 9q34 and were mostly detected by conventional cytogenetic techniques. Methods Based on clinical features suggesting primarily chromosomal diseases, aCGH analysis was indicated. We report on de novo overlapping interstitial 9q deletions in 3 unrelated individuals presenting neurodevelopmental disorder and multiple congenital anomalies. Results An 8.03-Mb (90 genes), a 15.71-Mb (193 genes), and a 15.81-Mb (203 genes) deletion were identified in 9q affecting 9q22.33q33.3. The overlapping region was 1.50 Mb, including 2 dosage-sensitive genes, namely EPB41L4B (OMIM #610340) and SVEP1 (OMIM #611691). These genes are thought to be involved in cellular adhesion, migration, and motility. The non-overlapping regions contain 24 dosage-sensitive genes. Conclusion Besides the frequently described symptoms (developmental delay, intellectual disability, skeletal abnormalities, short stature, and dysmorphic facial features) shared by the patients with interstitial deletions of chromosome 9q reported thus far, two of our patients showed distinct forms of epilepsy, which were successfully treated, and one had a bilateral cleft lip and palate. Possible candidate genes for epilepsy and cleft lip and palate are discussed.
Collapse
Affiliation(s)
- Renata Szalai
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Agnes Till
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Marta Czako
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
40
|
Carter MT, Srour M, Au PYB, Buhas D, Dyack S, Eaton A, Inbar-Feigenberg M, Howley H, Kawamura A, Lewis SME, McCready E, Nelson TN, Vallance H. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet 2023; 60:523-532. [PMID: 36822643 DOI: 10.1136/jmg-2022-108962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.
Collapse
Affiliation(s)
| | - Myriam Srour
- Division of Neurology, McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Ping-Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sarah Dyack
- Division of Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alison Eaton
- Department of Medical Genetics, Stollery Children's Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Howley
- Office of Research Services, CHEO Research Institute, Ottawa, Ontario, Canada
| | - Anne Kawamura
- Division of Developmental Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Mental Health and Developmental Disability Committee, Canadian Pediatric Society, Ottawa, ON, Canada
- Canadian Paediatric Society, Toronto, Ontario, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, McMaster University, Hamilton, ON, Canada, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Tanya N Nelson
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
42
|
Scheefhals N, Ciptasari U, van Hugte EJH, Nadif Kasri N. The OTUD7A-Ankyrin pathway: a newly identified disease mechanism for the 15q13.3 microdeletion disorder. Mol Psychiatry 2023; 28:1400-1401. [PMID: 36670197 DOI: 10.1038/s41380-023-01965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nicky Scheefhals
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eline J H van Hugte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
43
|
Abstract
The options for prenatal genetic testing have evolved rapidly in the past decade, and advances in sequencing technology now allow genetic diagnoses to be made down to the single-base-pair level, even before the birth of the child. This offers women the opportunity to obtain information regarding the foetus, thereby empowering them to make informed decisions about their pregnancy. As genetic testing becomes increasingly available to women, clinician knowledge and awareness of the options available to women is of great importance. Additionally, comprehensive pretest and posttest genetic counselling about the advantages, pitfalls and limitations of genetic testing should be provided to all women. This review article aims to cover the range of genetic tests currently available in prenatal screening and diagnosis, their current applications and limitations in clinical practice as well as what the future holds for prenatal genetics.
Collapse
Affiliation(s)
- Karen Mei Xian Lim
- Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Aniza Puteri Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Health System, Singapore,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: A/Prof Mahesh Choolani, Head and Senior Consultant, Department of Obstetrics and Gynaecology, National University Health System, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228, Singapore. E-mail:
| |
Collapse
|
44
|
Abstract
IMPORTANCE Autism spectrum disorder (ASD), characterized by deficits in social communication and the presence of restricted, repetitive behaviors or interests, is a neurodevelopmental disorder affecting approximately 2.3% children aged 8 years in the US and approximately 2.2% of adults. This review summarizes evidence on the diagnosis and treatment of ASD. OBSERVATIONS The estimated prevalence of ASD has been increasing in the US, from 1.1% in 2008 to 2.3% in 2018, which is likely associated with changes in diagnostic criteria, improved performance of screening and diagnostic tools, and increased public awareness. No biomarkers specific to the diagnosis of ASD have been identified. Common early signs and symptoms of ASD in a child's first 2 years of life include no response to name when called, no or limited use of gestures in communication, and lack of imaginative play. The criterion standard for the diagnosis of ASD is a comprehensive evaluation with a multidisciplinary team of clinicians and is based on semistructured direct observation of the child's behavior and semistructured caregiver interview focused on the individual's development and behaviors using standardized measures, such as the Autism Diagnostic Observation Schedule-Second Edition and the Autism Diagnostic Interview. These diagnostic measures have sensitivity of 91% and 80% and specificity of 76% and 72%, respectively. Compared with people without ASD, individuals with ASD have higher rates of depression (20% vs 7%), anxiety (11% vs 5%), sleep difficulties (13% vs 5%), and epilepsy (21% with co-occurring intellectual disability vs 0.8%). Intensive behavioral interventions, such as the Early Start Denver Model, are beneficial in children 5 years or younger for improvement in language, play, and social communication (small to medium effect size based on standardized mean difference). Pharmacotherapy is indicated for co-occurring psychiatric conditions, such as emotion dysregulation or attention-deficit/hyperactivity disorder. Risperidone and aripiprazole can improve irritability and aggression (standardized mean difference of 1.1, consistent with a large effect size) compared with placebo. Psychostimulants are effective for attention-deficit/hyperactivity disorder (standardized mean difference of 0.6, consistent with a moderate effect size) compared with placebo. These medications are associated with adverse effects including, most commonly, changes in appetite, weight, and sleep. CONCLUSIONS AND RELEVANCE ASD affects approximately 2.3% of children aged 8 years and approximately 2.2% of adults in the US. First-line therapy consists of behavioral interventions, while co-occurring psychiatric conditions, such as anxiety or aggression, may be treated with specific behavioral therapy or medication.
Collapse
Affiliation(s)
- Tomoya Hirota
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Bryan H King
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
45
|
Vashisth S, Chahrour MH. Genomic strategies to untangle the etiology of autism: A primer. Autism Res 2023; 16:31-39. [PMID: 36415077 PMCID: PMC10615252 DOI: 10.1002/aur.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, diminished social skills, and restrictive and repetitive behaviors and interests. ASD affects approximately 2.3% of the population and is highly heterogeneous, both phenotypically and genetically. As genomic technologies advance, our understanding of the genetic architecture of ASD is becoming clearer, encompassing spontaneous and inherited alterations throughout the genome, and delineating alterations that are either rare or common in the population. This commentary provides an overview of the genomic strategies and resulting major findings of genetic alterations associated with ASD.
Collapse
Affiliation(s)
- Shayal Vashisth
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maria H. Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
46
|
SCIP: software for efficient clinical interpretation of copy number variants detected by whole-genome sequencing. Hum Genet 2023; 142:201-216. [PMID: 36376761 PMCID: PMC9918589 DOI: 10.1007/s00439-022-02494-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visualization Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population frequency, inheritance pattern, and clinical relevance) on a single page-supported by modules providing variant filtration and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous curations. SCIP was efficient in filtration and prioritization: a median of just two CNVs per case were selected for review, yet it captured all P/LP findings (92.5% of which ranked 1st). SCIP was also able to identify one pathogenic CNV previously missed. SCIP was benchmarked against AnnotSV and a spreadsheet-based manual workflow and performed superiorly than both. In conclusion, SCIP is a novel software package for efficient clinical CNV interpretation, substantially faster and more accurate than previous tools (available at https://github.com/qd29/SCIP , a video tutorial series is available at https://bit.ly/SCIPVideos ).
Collapse
|
47
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Maihofer AX, Engchuan W, Huguet G, Klein M, MacDonald JR, Shanta O, Thiruvahindrapuram B, Jean-Louis M, Saci Z, Jacquemont S, Scherer SW, Ketema E, Aiello AE, Amstadter AB, Avdibegović E, Babic D, Baker DG, Bisson JI, Boks MP, Bolger EA, Bryant RA, Bustamante AC, Caldas-de-Almeida JM, Cardoso G, Deckert J, Delahanty DL, Domschke K, Dunlop BW, Dzubur-Kulenovic A, Evans A, Feeny NC, Franz CE, Gautam A, Geuze E, Goci A, Hammamieh R, Jakovljevic M, Jett M, Jones I, Kaufman ML, Kessler RC, King AP, Kremen WS, Lawford BR, Lebois LAM, Lewis C, Liberzon I, Linnstaedt SD, Lugonja B, Luykx JJ, Lyons MJ, Mavissakalian MR, McLaughlin KA, McLean SA, Mehta D, Mellor R, Morris CP, Muhie S, Orcutt HK, Peverill M, Ratanatharathorn A, Risbrough VB, Rizzo A, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rutten BPF, Schijven D, Seng JS, Sheerin CM, Sorenson MA, Teicher MH, Uddin M, Ursano RJ, Vinkers CH, Voisey J, Weber H, Winternitz S, Xavier M, Yang R, McD Young R, Zoellner LA, Salem RM, Shaffer RA, Wu T, Ressler KJ, Stein MB, Koenen KC, Sebat J, Nievergelt CM. Rare copy number variation in posttraumatic stress disorder. Mol Psychiatry 2022; 27:5062-5069. [PMID: 36131047 PMCID: PMC9763110 DOI: 10.1038/s41380-022-01776-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a heritable (h2 = 24-71%) psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that has been implicated in the etiology of psychiatric disorders, but no large-scale investigation of CNV in PTSD has been performed. We present an association study of CNV burden and PTSD symptoms in a sample of 114,383 participants (13,036 cases and 101,347 controls) of European ancestry. CNVs were called using two calling algorithms and intersected to a consensus set. Quality control was performed to remove strong outlier samples. CNVs were examined for association with PTSD within each cohort using linear or logistic regression analysis adjusted for population structure and CNV quality metrics, then inverse variance weighted meta-analyzed across cohorts. We examined the genome-wide total span of CNVs, enrichment of CNVs within specified gene-sets, and CNVs overlapping individual genes and implicated neurodevelopmental regions. The total distance covered by deletions crossing over known neurodevelopmental CNV regions was significant (beta = 0.029, SE = 0.005, P = 6.3 × 10-8). The genome-wide neurodevelopmental CNV burden identified explains 0.034% of the variation in PTSD symptoms. The 15q11.2 BP1-BP2 microdeletion region was significantly associated with PTSD (beta = 0.0206, SE = 0.0056, P = 0.0002). No individual significant genes interrupted by CNV were identified. 22 gene pathways related to the function of the nervous system and brain were significant in pathway analysis (FDR q < 0.05), but these associations were not significant once NDD regions were removed. A larger sample size, better detection methods, and annotated resources of CNV are needed to explore this relationship further.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
| | - Worrawat Engchuan
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, Ontario, Canada
| | - Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey R MacDonald
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
| | - Omar Shanta
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Martineau Jean-Louis
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Zohra Saci
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Sebastien Jacquemont
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
- Department of Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Stephen W Scherer
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- University of Toronto, McLaughlin Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Allison E Aiello
- Department of Epidemiology, Robert N Butler Columbia Aging Center, Columbia University, New York, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Esmina Avdibegović
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jonathan I Bisson
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Richard A Bryant
- Department of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Graça Cardoso
- Lisbon Institute of Global Mental Health and Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jurgen Deckert
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Douglas L Delahanty
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
- Research and Sponsored Programs, Kent State University, Kent, OH, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Faculty of Medicine, Centre for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alexandra Evans
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aarti Gautam
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Aferdita Goci
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Rasha Hammamieh
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Marti Jett
- US Medical Research & Development Comm, Fort Detrick, MD, USA
- Walter Reed Army Institute of Research, Headquarter, Silver Spring, MD, USA
| | - Ian Jones
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Anthony P King
- Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruce R Lawford
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Catrin Lewis
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bozo Lugonja
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Michael J Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | | | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Divya Mehta
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Rebecca Mellor
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Charles Phillip Morris
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Seid Muhie
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Albert Rizzo
- University of Southern California, Institute for Creative Technologies, Los Angeles, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing and Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, Limburg, the Netherlands
| | - Dick Schijven
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Julia S Seng
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Michael A Sorenson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joanne Voisey
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Heike Weber
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Miguel Xavier
- Universidade Nova de Lisboa, Nova Medical School, Lisboa, Portugal
| | - Ruoting Yang
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, Australia
| | - Lori A Zoellner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Rany M Salem
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, San Diego State University, School of Public Health, San Diego, CA, USA
- University of California, San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. School of Public Health, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
49
|
Sun H, Wu M, Wang M, Zhang X, Zhu J. The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Front Neurosci 2022; 16:1032607. [DOI: 10.3389/fnins.2022.1032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest tubular reticular organelle spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis maintenance and lipid metabolism, the ER plays a variety of essential roles in eukaryotic cells, with ER molecular chaperones participate in all these processes. In recent years, it has been reported that the abnormal expression of ER chaperones often leads to a variety of neurodevelopmental disorders (NDDs), including abnormal neuronal migration, neuronal morphogenesis, and synaptic function. Neuronal development is a complex and precisely regulated process. Currently, the mechanism by which neural development is regulated at the ER level remains under investigation. Therefore, in this work, we reviewed the recent advances in the roles of ER chaperones in neural development and developmental disorders caused by the deficiency of these molecular chaperones.
Collapse
|
50
|
Brownstein CA, Douard E, Mollon J, Smith R, Hojlo MA, Das A, Goldman M, Garvey E, Cabral K, Li J, Bowen J, Rao AS, Genetti C, Carroll D, Knowles EEM, Deaso E, Agrawal PB, Beggs AH, D'Angelo E, Almasy L, Alexander-Bloch A, Saci Z, Moreau CA, Huguet G, Deo AJ, Jacquemont S, Glahn DC, Gonzalez-Heydrich J. Similar Rates of Deleterious Copy Number Variants in Early-Onset Psychosis and Autism Spectrum Disorder. Am J Psychiatry 2022; 179:853-861. [PMID: 36000218 PMCID: PMC9633349 DOI: 10.1176/appi.ajp.21111175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Copy number variants (CNVs) are strongly associated with neurodevelopmental and psychotic disorders. Early-onset psychosis (EOP), where symptoms appear before 18 years of age, is thought to be more strongly influenced by genetic factors than adult-onset psychotic disorders. However, the prevalence and effect of CNVs in EOP is unclear. METHODS The authors documented the prevalence of recurrent CNVs and the functional impact of deletions and duplications genome-wide in 137 children and adolescents with EOP compared with 5,540 individuals with autism spectrum disorder (ASD) and 16,504 population control subjects. Specifically, the frequency of 47 recurrent CNVs previously associated with neurodevelopmental and neuropsychiatric illnesses in each cohort were compared. Next, CNV risk scores (CRSs), indices reflecting the dosage sensitivity for any gene across the genome that is encapsulated in a deletion or duplication separately, were compared between groups. RESULTS The prevalence of recurrent CNVs was significantly higher in the EOP group than in the ASD (odds ratio=2.30) and control (odds ratio=5.06) groups. However, the difference between the EOP and ASD groups was attenuated when EOP participants with co-occurring ASD were excluded. CRS was significantly higher in the EOP group compared with the control group for both deletions (odds ratio=1.30) and duplications (odds ratio=1.09). In contrast, the EOP and ASD groups did not differ significantly in terms of CRS. CONCLUSIONS Given the high frequency of recurrent CNVs in the EOP group and comparable CRSs in the EOP and ASD groups, the findings suggest that all children and adolescents with a psychotic diagnosis should undergo genetic screening, as is recommended in ASD.
Collapse
Affiliation(s)
- Catherine A Brownstein
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Elise Douard
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Josephine Mollon
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Richard Smith
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Margaret A Hojlo
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Ananth Das
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Maria Goldman
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Emily Garvey
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Kristin Cabral
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Jianqiao Li
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Joshua Bowen
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Abhijit S Rao
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Casie Genetti
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Devon Carroll
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Emma E M Knowles
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Emma Deaso
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Pankaj B Agrawal
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Alan H Beggs
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Eugene D'Angelo
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Laura Almasy
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Aaron Alexander-Bloch
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Zohra Saci
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Clara A Moreau
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Guillaume Huguet
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Anthony J Deo
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Sébastien Jacquemont
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - David C Glahn
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| | - Joseph Gonzalez-Heydrich
- Early Psychosis Investigation Center (Brownstein, Mollon, Smith, Hojlo, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Division of Genetics and Genomics (Brownstein, Smith, Cabral, Li, Bowen, Rao, Genetti, Agrawal, Beggs, Glahn), Manton Center for Orphan Disease Research (Brownstein, Smith, Cabral, Li, Bowen, Genetti, Agrawal, Beggs, Glahn), Department of Psychiatry and Behavioral Sciences (Mollon, Hojlo, Das, Goldman, Garvey, Carroll, Knowles, Deaso, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Tommy Fuss Center for Neuropsychiatric Disease Research (Deo, Glahn, Gonzalez-Heydrich), and Division of Newborn Medicine (Agrawal), Boston Children's Hospital, Boston; Department of Pediatrics (Brownstein, Smith, Genetti, Agrawal, Beggs, Deo) and Department of Psychiatry (Mollon, Carroll, Knowles, D'Angelo, Deo, Glahn, Gonzalez-Heydrich), Harvard Medical School, Boston; Department of Pediatrics (Jacquemont) and Department of Neuroscience (Douard, Moreau), Université de Montréal, Montreal; Sainte-Justine Hospital Research Center, Montreal (Douard, Saci, Moreau, Huguet, Jacquemont); Department of Biomedical and Health Informatics (Almasy) and Department of Psychiatry (Alexander-Bloch), Children's Hospital of Philadelphia, Philadelphia; Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, N.J. (Deo); Rutgers University Behavioral Health Care, Piscataway, N.J. (Deo). Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia (Almasy); Department of Genetics, University of Pennsylvania, Philadelphia (Almasy); Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago (Smith)
| |
Collapse
|