1
|
Fernandes C, Persaud AT, Chaphekhar D, Burnie J, Belanger C, Tang VA, Guzzo C. Flow virometry: recent advancements, best practices, and future frontiers. J Virol 2025; 99:e0171724. [PMID: 39868829 PMCID: PMC11853038 DOI: 10.1128/jvi.01717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics. With examples illustrated using primary data from our recent studies, we demonstrate that FV is a powerful yet underutilized methodology that, when employed with best practices and experimental rigor, can be highly valuable for studying individual virion heterogeneity, virus phenotypes, and virus-antibody interactions. In this review, we also address the current challenges when performing FV studies, propose strategies to overcome these obstacles, and outline best practices for both new and experienced researchers. Finally, we discuss the promising future prospects of FV within the broader context of virology research.
Collapse
Affiliation(s)
- Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekhar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn Belanger
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Roy B, Kojima R, Shah O, Shieh M, Das E, Ezzatpour S, Sato E, Hirata Y, Lindahl S, Matsuzawa A, Aguilar HC, Xian M. Generation of thiyl radicals in a spatiotemporal controlled manner by light: Applied for the cis to trans isomerization of unsaturated fatty acids/phospholipids. Redox Biol 2025; 79:103475. [PMID: 39721494 PMCID: PMC11732231 DOI: 10.1016/j.redox.2024.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors. Tertiary naphthacyl thioether was identified to be a suitable template that could be used to produce both aryl and alkyl thiyl radicals under ultraviolet (UV) light or sunlight. The effective cis-to trans-isomerization of unsaturated fatty acid models (methyl oleate, methyl linoleate) and a natural phospholipid (cardiolipin) using these photo-triggered substrates was demonstrated. This reaction was also proved to proceed effectively in cells to produce thiyl radicals and subsequent fatty acid isomerization. Additionally, the most promising thiyl radical precursor showed antiviral activity in a pseudotyped virus model, likely due to disrupting viral lipid membranes upon UV activation. These findings highlight the potential of thiyl radicals for both biochemical and antiviral applications.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ryota Kojima
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Obaed Shah
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Eshani Das
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Stephen Lindahl
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Adeleke RA, Sahler J, Choi A, Roth K, Upadhye V, Ezzatpour S, Imbiakha B, Khomandiak S, Diaz A, Whittaker GR, Jager MC, August A, Buchholz DW, Aguilar HC. Replication-incompetent VSV-based vaccine elicits protective responses against SARS-CoV-2 and influenza virus. SCIENCE ADVANCES 2025; 11:eadq4545. [PMID: 39879304 PMCID: PMC11777205 DOI: 10.1126/sciadv.adq4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus. Furthermore, the vaccine provided heterologous protection upon challenge with a different influenza virus strain, supporting the advantage of using NA to increase the breadth of vaccine protection. Now, no bivalent vaccine is approved for use against both SARS-CoV-2 and influenza virus. Our study supports using this platform to develop safe and efficient vaccines against multiple viruses.
Collapse
Affiliation(s)
- Richard A. Adeleke
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Kyle Roth
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annika Diaz
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Rasool HMH, Chen Q, Gong X, Zhou J. CRISPR/Cas system and its application in the diagnosis of animal infectious diseases. FASEB J 2024; 38:e70252. [PMID: 39726403 PMCID: PMC11671863 DOI: 10.1096/fj.202401569r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Infectious diseases are a serious threat to the existence of animals and humans' life. In the 21st century, the emergence and re-emergence of several zoonotic and non-zoonotic global pandemic diseases of socio-economic importance has affected billions of humans and animals. The need for expensive equipment and laboratories, non-availability of on-site testing abilities, with time-consuming and low sensitivity and specificity issues of currently available diagnostic techniques to identify these pathogenic micro-organisms on a large scale highlighted the need for developing cheap, portable environment friendly diagnostic methods. In recent years, these issues have been addressed by clustered regularly interspaced palindromic repeats (CRISPR)-based diagnostic platforms that have transformed the molecular diagnostic field due to their outstanding ultra-sensitive nucleic acid detecting capabilities. In this study, we highlight the types, potential of different Cas proteins, and amplification systems. We also illuminate the application of currently available CRISPR integrated setups on the diagnosis of infectious diseases, majorly in food-producing animals (pigs, ruminants, poultry, and aquaculture), domestic pets (dogs and cats), and diseases of zoonotic importance. We conclude the challenges and future perspectives of using these systems to rapidly diagnose and treat other infectious diseases and also develop control strategies to prevent the spread of pathogenic organisms.
Collapse
Affiliation(s)
- Hafiz Muhammad Hamza Rasool
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary MedicineLanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture SciencesLanzhouChina
| |
Collapse
|
5
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
6
|
Carlson CJ, Garnier R, Tiu A, Luby SP, Bansal S. Strategic vaccine stockpiles for regional epidemics of emerging viruses: A geospatial modeling framework. Vaccine 2024; 42:126051. [PMID: 38902187 DOI: 10.1016/j.vaccine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah ∼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health
| | | | - Andrew Tiu
- Department of Biology, Georgetown University
| | | | | |
Collapse
|
7
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
8
|
Pastor Y, Reynard O, Iampietro M, Surenaud M, Picard F, El Jahrani N, Lefebvre C, Hammoudi A, Dupaty L, Brisebard É, Reynard S, Moureaux É, Moroso M, Durand S, Gonzalez C, Amurri L, Gallouët AS, Marlin R, Baize S, Chevillard E, Raoul H, Hocini H, Centlivre M, Thiébaut R, Horvat B, Godot V, Lévy Y, Cardinaud S. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Rep Med 2024; 5:101467. [PMID: 38471503 PMCID: PMC10983108 DOI: 10.1016/j.xcrm.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.
Collapse
Affiliation(s)
- Yadira Pastor
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Surenaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Florence Picard
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Nora El Jahrani
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Cécile Lefebvre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Adele Hammoudi
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Léa Dupaty
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | | | - Stéphanie Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Marie Moroso
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Stéphanie Durand
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Claudia Gonzalez
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Sylvain Baize
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Hervé Raoul
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Hakim Hocini
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Mireille Centlivre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute (VRI), Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, Bordeaux, France; CHU Bordeaux, Department of Medical Information, Bordeaux, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Véronique Godot
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yves Lévy
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Sylvain Cardinaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
9
|
Belser JA, Kieran TJ, Mitchell ZA, Sun X, Mayfield K, Tumpey TM, Spengler JR, Maines TR. Key considerations to improve the normalization, interpretation and reproducibility of morbidity data in mammalian models of viral disease. Dis Model Mech 2024; 17:dmm050511. [PMID: 38440823 PMCID: PMC10941659 DOI: 10.1242/dmm.050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Viral pathogenesis and therapeutic screening studies that utilize small mammalian models rely on the accurate quantification and interpretation of morbidity measurements, such as weight and body temperature, which can vary depending on the model, agent and/or experimental design used. As a result, morbidity-related data are frequently normalized within and across screening studies to aid with their interpretation. However, such data normalization can be performed in a variety of ways, leading to differences in conclusions drawn and making comparisons between studies challenging. Here, we discuss variability in the normalization, interpretation, and presentation of morbidity measurements for four model species frequently used to study a diverse range of human viral pathogens - mice, hamsters, guinea pigs and ferrets. We also analyze findings aggregated from influenza A virus-infected ferrets to contextualize this discussion. We focus on serially collected weight and temperature data to illustrate how the conclusions drawn from this information can vary depending on how raw data are collected, normalized and measured. Taken together, this work supports continued efforts in understanding how normalization affects the interpretation of morbidity data and highlights best practices to improve the interpretation and utility of these findings for extrapolation to public health contexts.
Collapse
Affiliation(s)
- Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Zoë A. Mitchell
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristin Mayfield
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
10
|
Kaza B, Aguilar HC. Pathogenicity and virulence of henipaviruses. Virulence 2023; 14:2273684. [PMID: 37948320 PMCID: PMC10653661 DOI: 10.1080/21505594.2023.2273684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.
Collapse
Affiliation(s)
- Benjamin Kaza
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| |
Collapse
|
11
|
Findlay-Wilson S, Flett L, Salguero FJ, Ruedas-Torres I, Fotheringham S, Easterbrook L, Graham V, Dowall S. Establishment of a Nipah Virus Disease Model in Hamsters, including a Comparison of Intranasal and Intraperitoneal Routes of Challenge. Pathogens 2023; 12:976. [PMID: 37623936 PMCID: PMC10458503 DOI: 10.3390/pathogens12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that can cause severe respiratory illness and encephalitis in humans. The main reservoir is fruit bats, distributed across a large geographical area that includes Australia, Southeast Asia, and Africa. Incursion into humans is widely reported through exposure of infected pigs, ingestion of contaminated food, or through contact with an infected person. With no approved treatments or vaccines, NiV poses a threat to human public health and has epidemic potential. To aid with the assessment of emerging interventions being developed, an expansion of preclinical testing capability is required. Given variations in the model parameters observed in different sites during establishment, optimisation of challenge routes and doses is required. Upon evaluating the hamster model, an intranasal route of challenge was compared with intraperitoneal delivery, demonstrating a more rapid dissemination to wider tissues in the latter. A dose effect was observed between those causing respiratory illness and those resulting in neurological disease. The data demonstrate the successful establishment of the hamster model of NiV disease for subsequent use in the evaluation of vaccines and antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (S.F.-W.); (L.F.); (F.J.S.); (I.R.-T.); (S.F.); (L.E.); (V.G.)
| |
Collapse
|
12
|
Hu Q, Zhang Y, Jiang J, Zheng A. Two Point Mutations in the Glycoprotein of SFTSV Enhance the Propagation Recombinant Vesicular Stomatitis Virus Vectors at Assembly Step. Viruses 2023; 15:800. [PMID: 36992507 PMCID: PMC10052781 DOI: 10.3390/v15030800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen for which approved therapeutic drugs or vaccines are not available. We previously developed a recombinant vesicular stomatitis virus-based vaccine candidate (rVSV-SFTSV) by replacing the original glycoprotein with Gn/Gc from SFTSV, which conferred complete protection in a mouse model. Here, we found that two spontaneous mutations, M749T/C617R, emerged in the Gc glycoprotein during passaging that could significantly increase the titer of rVSV-SFTSV. M749T/C617R enhanced the genetic stability of rVSV-SFTSV, and no further mutations appeared after 10 passages. Using immunofluorescence analysis, we found that M749T/C617R could increase glycoprotein traffic to the plasma membrane, thus facilitating virus assembly. Remarkably, the broad-spectrum immunogenicity of rVSV-SFTSV was not affected by the M749T/C617R mutations. Overall, M749T/C617R could enhance the further development of rVSV-SFTSV into an effective vaccine in the future.
Collapse
Affiliation(s)
- Qiang Hu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|