1
|
Roszko DA, Chen FD, Straguzzi J, Wahn H, Xu A, McLaughlin B, Yin X, Chua H, Luo X, Lo GQ, Siegle JH, Poon JKS, Sacher WD. Foundry-fabricated dual-color nanophotonic neural probes for photostimulation and electrophysiological recording. NEUROPHOTONICS 2025; 12:025002. [PMID: 40161465 PMCID: PMC11952718 DOI: 10.1117/1.nph.12.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Significance Compact tools capable of delivering multicolor optogenetic stimulation to deep tissue targets with sufficient span, spatiotemporal resolution, and optical power remain challenging to realize. Here, we demonstrate foundry-fabricated nanophotonic neural probes for blue and red photostimulation and electrophysiological recording, which use a combination of spatial multiplexing and on-shank wavelength demultiplexing to increase the number of on-shank emitters. Aim We demonstrate silicon (Si) photonic neural probes with 26 photonic channels and 26 recording sites, which were fabricated on 200-mm diameter wafers at a commercial Si photonics foundry. Each photonic channel consists of an on-shank demultiplexer and separate grating coupler emitters for blue and red light, for a total of 52 emitters. Approach We evaluate neural probe functionality through bench measurements and in vivo experiments by photostimulating through 16 of the available 26 emitter pairs. Results We report neural probe electrode impedances, optical transmission, and beam profiles. We validated a packaged neural probe in optogenetic experiments with mice sensitive to blue or red photostimulation. Conclusions Our foundry-fabricated nanophotonic neural probe demonstrates dense dual-color emitter integration on a single shank for targeted photostimulation. Given its two emission wavelengths, high emitter density, and long site span, this probe will facilitate experiments involving bidirectional circuit manipulations across both shallow and deep structures simultaneously.
Collapse
Affiliation(s)
- David A. Roszko
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - John Straguzzi
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Hannes Wahn
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Alec Xu
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Blaine McLaughlin
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
| | - Xinxin Yin
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
| | | | | | | | - Joshua H. Siegle
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
| | - Joyce K. S. Poon
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - Wesley D. Sacher
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Lakunina A, Socha KZ, Ladd A, Bowen AJ, Chen S, Colonell J, Doshi A, Karsh B, Krumin M, Kulik P, Li A, Neutens P, O'Callaghan J, Olsen M, Putzeys J, Tilmans HA, Ye Z, Welkenhuysen M, Häusser M, Koch C, Ting JT, Neuropixels Opto Consortium, Dutta B, Harris TD, Steinmetz NA, Svoboda K, Siegle JH, Carandini M. Neuropixels Opto: Combining high-resolution electrophysiology and optogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636286. [PMID: 39975326 PMCID: PMC11838571 DOI: 10.1101/2025.02.04.636286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
High-resolution extracellular electrophysiology is the gold standard for recording spikes from distributed neural populations, and is especially powerful when combined with optogenetics for manipulation of specific cell types with high temporal resolution. We integrated these approaches into prototype Neuropixels Opto probes, which combine electronic and photonic circuits. These devices pack 960 electrical recording sites and two sets of 14 light emitters onto a 1 cm shank, allowing spatially addressable optogenetic stimulation with blue and red light. In mouse cortex, Neuropixels Opto probes delivered high-quality recordings together with spatially addressable optogenetics, differentially activating or silencing neurons at distinct cortical depths. In mouse striatum and other deep structures, Neuropixels Opto probes delivered efficient optotagging, facilitating the identification of two cell types in parallel. Neuropixels Opto probes represent an unprecedented tool for recording, identifying, and manipulating neuronal populations.
Collapse
Affiliation(s)
- Anna Lakunina
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Karolina Z Socha
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alexander Ladd
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anna J Bowen
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anjal Doshi
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Pavel Kulik
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Anna Li
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | - Meghan Olsen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | | | - Zhiwen Ye
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Jonathan T Ting
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Steinmetz
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Doshi S, Ji A, Mahdi AI, Keene ST, Selvin SP, Lalanne P, Appel EA, Melosh NA, Brongersma ML. Electrochemically mutable soft metasurfaces. NATURE MATERIALS 2025; 24:205-211. [PMID: 39537748 DOI: 10.1038/s41563-024-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.
Collapse
Affiliation(s)
- Siddharth Doshi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Anqi Ji
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Ali I Mahdi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Skyler P Selvin
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | | | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Balena A, Bianco M, Andriani MS, Montinaro C, Spagnolo B, Pisanello M, Pisano F, Sabatini BL, De Vittorio M, Pisanello F. Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo. Nat Protoc 2025:10.1038/s41596-024-01105-9. [PMID: 39843597 DOI: 10.1038/s41596-024-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/05/2024] [Indexed: 01/24/2025]
Abstract
Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes. Fibertrodes require the application of a set of planar microfabrication techniques to a nonplanar system with low and nonconstant curvature radius. Here we develop a process based on multiple conformal depositions, nonplanar two-photon lithography and chemical wet etching steps to obtain metallic patterns on the highly curved surface of the fiber taper. We detail the manufacturing, encapsulation and back end of the fibertrodes. The design of the probe can be adapted for different experimental requirements. Using the optical setup design, it is possible to perform angle selective light coupling with the fibertrodes and their implantation and use in vivo. The fabrication of fibertrodes is estimated to require 5-9 d. Nonetheless, due to the high scalability of a large part of the protocol, the manufacture of multiple fibertrodes simultaneously substantially reduces the required time for each probe. The procedure is suitable for users with expertise in microfabrication of electronics and neural recordings.
Collapse
Affiliation(s)
- Antonio Balena
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, France.
| | - Marco Bianco
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Maria Samuela Andriani
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Cinzia Montinaro
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Barbara Spagnolo
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
| | | | - Filippo Pisano
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- Dipartimento di Fisica e Astronomia 'Galileo Galilei', Università di Padova, Padova, Italy
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy.
| | - Ferruccio Pisanello
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
| |
Collapse
|
6
|
Irvine DA, Zelleke E, Schreyer AT, Houck WD, Foster MA, Foster AC. Comparative autofluorescence analysis of silicon nitride and tantalum pentoxide waveguides at 532 nm. OPTICS EXPRESS 2025; 33:543-552. [PMID: 39876244 DOI: 10.1364/oe.538777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025]
Abstract
In this paper, we quantitatively compare the autofluorescence of stoichiometric low pressure chemical vapor deposition (LPCVD) silicon nitride and sputtered tantalum pentoxide waveguides at a pump wavelength of 532 nm. Through a direct quantitative characterization of comparable waveguides formed from the two films, we find no observable autofluorescence for tantalum pentoxide waveguides. Our experimental sensitivity is limited by Raman scattering of the pump into our detection band and our measurements indicate that the autofluorescence of the tantalum pentoxide waveguides is more than 600 × smaller than that of silicon nitride waveguides. This finding holds promise for visible technologies such as biosensors and quantum devices that require strong optical pumping and minimal background noise.
Collapse
|
7
|
Govdeli A, Chen H, Azadeh SS, Straguzzi JN, Chua H, Lo GQ, Poon JKS, Sacher WD. Integrated photonic MEMS switch for visible light. OPTICS EXPRESS 2025; 33:650-664. [PMID: 39876253 DOI: 10.1364/oe.539485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 01/30/2025]
Abstract
Visible-light integrated photonics serve applications inaccessible to conventional (C- and O-band) silicon photonics, including trapped-ion and neutral atom quantum experiments, biophotonics, and displays. Despite demonstrations of increasingly advanced functionalities and levels of integration, the development of low-power, monolithically integrated, visible-light switches and phase shifters remains an outstanding challenge. Here, we demonstrate an integrated photonic, electrostatic MEMS-actuated Mach-Zehnder interferometer optical switch for the visible spectrum. The device operated with an extinction ratio of 7.2 dB and optical loss of 2.5 dB at a wavelength of 540 nm. The measured 10-90% rise (fall) times were 5 (28) µs, and a low static power dissipation of about 0.5 nW was achieved. The dynamic power dissipation at a 30 kHz switching frequency was estimated to be < 70 µW.
Collapse
|
8
|
De Koninck Y, Caer C, Yudistira D, Baryshnikova M, Sar H, Hsieh PY, Özdemir CI, Patra SK, Kuznetsova N, Colucci D, Milenin A, Yimam AA, Morthier G, Van Thourhout D, Verheyen P, Pantouvaki M, Kunert B, Van Campenhout J. GaAs nano-ridge laser diodes fully fabricated in a 300-mm CMOS pilot line. Nature 2025; 637:63-69. [PMID: 39743604 DOI: 10.1038/s41586-024-08364-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world1-6. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon7-12, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources. Here we report the electrically driven gallium arsenide (GaAs)-based laser diodes fully fabricated on 300-mm Si wafers in a CMOS pilot manufacturing line based on a new integration approach, nano-ridge engineering. GaAs nano-ridge waveguides with embedded p-i-n diodes and InGaAs quantum wells are grown at high quality on a wafer scale. Room-temperature continuous-wave lasing is demonstrated at wavelengths around 1,020 nm in more than 300 devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz and laser operation up to 55 °C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond.
Collapse
Affiliation(s)
| | - Charles Caer
- imec, Leuven, Belgium.
- Centre Suisse d'Electronique et de Microtechnique SA (CSEM), Neuchâtel, Switzerland.
| | | | | | | | | | - Cenk Ibrahim Özdemir
- imec, Leuven, Belgium
- Photonics Research Group, Ghent University-imec, Ghent, Belgium
- Infinera Corporation, Sunnyvale, CA, USA
| | - Saroj Kanta Patra
- imec, Leuven, Belgium
- AMS-OSRAM International GmbH, Regensburg, Germany
| | | | - Davide Colucci
- imec, Leuven, Belgium
- Photonics Research Group, Ghent University-imec, Ghent, Belgium
| | | | | | - Geert Morthier
- Photonics Research Group, Ghent University-imec, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Andriani MS, Bianco M, Montinaro C, Balena A, Pisanello M, Pisano F, Vittorio MD, Pisanello F. Low-NA two-photon lithography patterning of metal/dielectric tapered optical fibers for depth-selective, volumetric optical neural interfaces. OPTICS EXPRESS 2024; 32:48772-48785. [PMID: 39876173 DOI: 10.1364/oe.541017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 01/30/2025]
Abstract
Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants. This is accomplished through an unconventional application of two-photon lithography (TPL), which employs a low-numerical aperture objective to pattern extensive waveguide sections at both low and high curvature radii. The low-NA TPL is used to polymerize a mask of photoresist, while the rest of the taper undergoes wet metal etching. This implies no direct destructive interaction between the laser beam and the metal to be removed, preserving the optical properties of the dielectric waveguide and of the metal coating. The advantages provided by the presented fabrication method, combined with the intrinsic modal properties of the dielectric waveguide, enable the engineering of the light guiding mechanisms, achieving depth-selective light delivery with a high extinction ratio. The device's light emission and collection properties were investigated in quasi-transparent media and highly scattering brain slices, finding that our proposed method facilitates 360° symmetric light collection around the dielectric-confined section with depth resolution. This opens a perspective for the realization of optical neural implants that can interface the implant axis all-around, with low-NA TPL that can also be applied on other types of non-planar surfaces.
Collapse
|
10
|
Chen FD, Sharma A, Xue T, Jung Y, Govdeli A, Mak JCC, Chameh HM, Movahed M, Brunk MGK, Luo X, Chua H, Lo PGQ, Valiante TA, Sacher WD, Poon JKS. Implantable silicon neural probes with nanophotonic phased arrays for single-lobe beam steering. COMMUNICATIONS ENGINEERING 2024; 3:182. [PMID: 39695300 DOI: 10.1038/s44172-024-00328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses. Here we propose neural probes with grating-based light emitters that generate a single steerable beam. The light emitters, optimized for blue or amber light, combine end-fire optical phased arrays with slab gratings to suppress higher-order sidelobes. In vivo experiments in mice demonstrated that the optical phased array provided sufficient power for optogenetic stimulation. While beam steering performance in tissue reveals challenges, including beam broadening from scattering and the need for a wider steering range, this proof-of-concept demonstration illustrates the design principles for realizing compact optical phased arrays capable of continuous single-beam scanning, laying the groundwork for advancing optical phased arrays toward targeted optogenetic stimulation.
Collapse
Affiliation(s)
- Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| | - Tianyuan Xue
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Youngho Jung
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Alperen Govdeli
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jason C C Mak
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Mandana Movahed
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., Singapore Science Park II, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., Singapore Science Park II, Singapore
| | | | - Taufik A Valiante
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada.
| |
Collapse
|
11
|
Ahmed Taha B, Addie AJ, Saeed AQ, Haider AJ, Chaudhary V, Arsad N. Nanostructured Photonics Probes: A Transformative Approach in Neurotherapeutics and Brain Circuitry. Neuroscience 2024; 562:106-124. [PMID: 39490518 DOI: 10.1016/j.neuroscience.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. The potential of this technology lies in unraveling the mysteries of neural coding principles, mapping functional connectivity in complex brain circuits, and developing new therapeutic interventions for neurological disorders. Nevertheless, achieving the full potential of nanostructured photonic neural probes requires overcoming challenges such as ensuring long-term biocompatibility, integrating nanoscale components at high density, and developing robust data-analysis pipelines. In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Iraq
| | - Ali Q Saeed
- Computer Center / Northern Technical University, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Iraq.
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401 India
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia.
| |
Collapse
|
12
|
Assumpcao D, Renaud D, Baradari A, Zeng B, De-Eknamkul C, Xin CJ, Shams-Ansari A, Barton D, Machielse B, Loncar M. A thin film lithium niobate near-infrared platform for multiplexing quantum nodes. Nat Commun 2024; 15:10459. [PMID: 39622814 PMCID: PMC11612428 DOI: 10.1038/s41467-024-54541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range can provide solutions to these needs. In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements, including low-loss couplers (<1 dB/facet), switches (>20 dB extinction), and high-bandwidth electro-optic modulators (>50 GHz). With these devices, we demonstrate high-efficiency and CW-compatible frequency shifting (>50% efficiency at 15 GHz), as well as simultaneous laser amplitude and frequency control. Finally, we highlight an architecture for multiplexing quantum memories and outline how this platform can enable a 2-order of magnitude improvement in entanglement rates over single memory nodes. Our results demonstrate that TFLN can meet the necessary performance and scalability benchmarks to enable large-scale quantum nodes.
Collapse
Affiliation(s)
- Daniel Assumpcao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Dylan Renaud
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Aida Baradari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Beibei Zeng
- AWS Center for Quantum Networking, Boston, MA, USA
| | | | - C J Xin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - David Barton
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Marko Loncar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Xue T, Stalmashonak A, Chen FD, Ding P, Luo X, Chua H, Lo GQ, Sacher WD, Poon JKS. Implantable photonic neural probes with out-of-plane focusing grating emitters. Sci Rep 2024; 14:13812. [PMID: 38877050 PMCID: PMC11178810 DOI: 10.1038/s41598-024-64037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
We have designed, fabricated, and characterized implantable silicon neural probes with nanophotonic grating emitters that focus the emitted light at a specified distance above the surface of the probe for spatially precise optogenetic targeting of neurons. Using the holographic principle, we designed gratings for wavelengths of 488 and 594 nm, targeting the excitation spectra of the optogenetic actuators Channelrhodopsin-2 and Chrimson, respectively. The measured optical emission pattern of these emitters in non-scattering medium and tissue matched well with simulations. To our knowledge, this is the first report of focused spots with the size scale of a neuron soma in brain tissue formed from implantable neural probes.
Collapse
Affiliation(s)
- Tianyuan Xue
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, M5S 3G4, ON, Canada.
| | - Andrei Stalmashonak
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Fu-Der Chen
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, M5S 3G4, ON, Canada
| | - Peisheng Ding
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, M5S 3G4, ON, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore, 117685, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore, 117685, Singapore
| | - Guo-Qiang Lo
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore, 117685, Singapore
| | - Wesley D Sacher
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Joyce K S Poon
- Department of Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, M5S 3G4, ON, Canada.
| |
Collapse
|
14
|
Wang Y, Guo Y, Zhou Y, Xie H, Tang HX. Heterogeneous sapphire-supported low-loss photonic platform. OPTICS EXPRESS 2024; 32:20146-20152. [PMID: 38859131 DOI: 10.1364/oe.526147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024]
Abstract
Sapphire is a promising wideband substrate material for visible photonics. It is a common growth substrate for III-nitride light-emitting diodes and laser structures. Doped sapphires are important gain media foundational to the development of titanium-sapphire and ruby lasers. For lasers operating at visible and near-infrared wavelengths, a photonic platform that minimizes loss while maximizing gain material overlap is crucial. Here, we introduce a novel low-loss waveguiding strategy that establishes high-performance integrated photonics on sapphire substrates. This platform achieves a high intrinsic quality factor of 5.6 million near 780 nm and features direct compatibility with a range of solid-state laser gain media.
Collapse
|
15
|
Notaros M, Dyer T, Garcia Coleto A, Hattori A, Fealey K, Kruger S, Notaros J. Mechanically-flexible wafer-scale integrated-photonics fabrication platform. Sci Rep 2024; 14:10623. [PMID: 38724580 PMCID: PMC11082232 DOI: 10.1038/s41598-024-61055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.
Collapse
Affiliation(s)
- Milica Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Dyer
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Andres Garcia Coleto
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ashton Hattori
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin Fealey
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Seth Kruger
- New York Center for Research, Economic Advancement, Technology, Engineering, and Science, Albany, NY, 12203, USA
| | - Jelena Notaros
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Taki K, Sekine N, Watanabe K, Miyatake Y, Akazawa T, Sakumoto H, Toprasertpong K, Takagi S, Takenaka M. Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide. Nat Commun 2024; 15:3549. [PMID: 38724501 PMCID: PMC11082191 DOI: 10.1038/s41467-024-47893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
A nonvolatile optical phase shifter is a critical component for enabling the fabrication of programmable photonic integrated circuits on a Si photonics platform, facilitating communication, computing, and sensing. Although ferroelectric materials such as BaTiO3 offer nonvolatile optical phase shift capabilities, their compatibility with complementary metal-oxide-semiconductor fabs is limited. Hf0.5Zr0.5O2 is an emerging ferroelectric material, which exhibits complementary metal-oxide-semiconductor compatibility. Although extensively studied for ferroelectric transistors and memories, its application to photonics remains relatively unexplored. Here, we show the optical phase shift induced by ferroelectric Hf0.5Zr0.5O2. We observed a negative change in refractive index at a 1.55 μm wavelength in a pristine device regardless of the direction of the applied electric field. The nonvolatile phase shift was only observed once in a pristine device. This non-reversible phase shift can be attributed to the spontaneous polarization within the Hf0.5Zr0.5O2 film along the external electric field.
Collapse
Affiliation(s)
- Kazuma Taki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoki Sekine
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Watanabe
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuto Miyatake
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomohiro Akazawa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroya Sakumoto
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kasidit Toprasertpong
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinichi Takagi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mitsuru Takenaka
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
17
|
Barros BJ, Cunha JPS. Neurophotonics: a comprehensive review, current challenges and future trends. Front Neurosci 2024; 18:1382341. [PMID: 38765670 PMCID: PMC11102054 DOI: 10.3389/fnins.2024.1382341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
Collapse
Affiliation(s)
- Beatriz Jacinto Barros
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - João P. S. Cunha
- INESC TEC – Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Notaros M, Coleto AG, Raval M, Notaros J. Integrated liquid-crystal-based variable-tap devices for visible-light amplitude modulation. OPTICS LETTERS 2024; 49:1041-1044. [PMID: 38359248 DOI: 10.1364/ol.511189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In this Letter, we propose and experimentally demonstrate the first, to our knowledge, integrated liquid-crystal-based (LC-based) variable-tap devices for visible-light amplitude modulation. These devices leverage the birefringence of LC medium to actively tune the coupling coefficient between two waveguides. First, we develop the device structure, theory of operation, and design procedure. Next, we summarize the fabrication and LC packaging procedure for these devices. Finally, we experimentally demonstrate amplitude modulation with 15.4-dB tap-port extinction within ±3.1 V for a 14-µm-long device at a 637-nm operating wavelength. These small-form-factor variable-tap devices provide a compact and low-power solution to integrated visible-light amplitude modulation and will enable future high-density integrated visible-light systems.
Collapse
|
19
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
20
|
Corato-Zanarella M, Ji X, Mohanty A, Lipson M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. OPTICS EXPRESS 2024; 32:5718-5728. [PMID: 38439290 DOI: 10.1364/oe.505892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Visible-light photonic integrated circuits (PICs) promise scalability for technologies such as quantum information, biosensing, and scanning displays, yet extending large-scale silicon photonics to shorter wavelengths has been challenging due to the higher losses. Silicon nitride (SiN) has stood out as the leading platform for visible photonics, but the propagation losses strongly depend on the film's deposition and fabrication processes. Current loss measurement techniques cannot accurately distinguish between absorption and surface scattering, making it difficult to identify the dominant loss source and reach the platform's fundamental limit. Here we demonstrate an ultra-low loss, high-confinement SiN platform that approaches the limits of absorption and scattering across the visible spectrum. Leveraging the sensitivity of microresonators to loss, we probe and discriminate each loss contribution with unparalleled sensitivity, and derive their fundamental limits and scaling laws as a function of wavelength, film properties and waveguide parameters. Through the design of the waveguide cross-section, we show how to approach the absorption limit of the platform, and demonstrate the lowest propagation losses in high-confinement SiN to date across the visible spectrum. We envision that our techniques for loss characterization and minimization will contribute to the development of large-scale, dense PICs that redefine the loss limits of integrated platforms across the electromagnetic spectrum.
Collapse
|
21
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
22
|
Dong M, Boyle JM, Palm KJ, Zimmermann M, Witte A, Leenheer AJ, Dominguez D, Gilbert G, Eichenfield M, Englund D. Synchronous micromechanically resonant programmable photonic circuits. Nat Commun 2023; 14:7716. [PMID: 38001076 PMCID: PMC10673894 DOI: 10.1038/s41467-023-42866-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factor Qm while maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with high Qm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.
Collapse
Affiliation(s)
- Mark Dong
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Julia M Boyle
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | - Kevin J Palm
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | | | - Alex Witte
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | - Andrew J Leenheer
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Daniel Dominguez
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Gerald Gilbert
- The MITRE Corporation, 200 Forrestal Road, Princeton, NJ, 08540, USA
| | - Matt Eichenfield
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Brookhaven National Laboratory, 98 Rochester Street, Upton, NY, 11973, USA
| |
Collapse
|
23
|
Lee JM, Pyo YW, Kim YJ, Hong JH, Jo Y, Choi W, Lin D, Park HG. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity. Nat Commun 2023; 14:7088. [PMID: 37925553 PMCID: PMC10625630 DOI: 10.1038/s41467-023-42860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Electrophysiological recording technologies can provide valuable insights into the functioning of the central and peripheral nervous systems. Surface electrode arrays made of soft materials or implantable multi-electrode arrays with high electrode density have been widely utilized as neural probes. However, neither of these probe types can simultaneously achieve minimal invasiveness and robust neural signal detection. Here, we present an ultra-thin, minimally invasive neural probe (the "NeuroWeb") consisting of hexagonal boron nitride and graphene, which leverages the strengths of both surface electrode array and implantable multi-electrode array. The NeuroWeb open lattice structure with a total thickness of 100 nm demonstrates high flexibility and strong adhesion, establishing a conformal and tight interface with the uneven mouse brain surface. In vivo electrophysiological recordings show that NeuroWeb detects stable single-unit activity of neurons with high signal-to-noise ratios. Furthermore, we investigate neural interactions between the somatosensory cortex and the cerebellum using transparent dual NeuroWebs and optical stimulation, and measure the times of neural signal transmission between the brain regions depending on the pathway. Therefore, NeuroWeb can be expected to pave the way for understanding complex brain networks with optical and electrophysiological mapping of the brain.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Yeon Jun Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Hee Hong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Yonghyeon Jo
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - Dingchang Lin
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hong-Gyu Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Bartlett M, He M, Ranke D, Wang Y, Cohen-Karni T. A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS ADVANCES 2023; 8:1047-1060. [PMID: 38283671 PMCID: PMC10812139 DOI: 10.1557/s43580-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024]
Abstract
Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.
Collapse
Affiliation(s)
- Mabel Bartlett
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mengdi He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Ranke
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Wang R, Zhang B, Wang G, Gao Y. A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2839. [PMID: 37947685 PMCID: PMC10648026 DOI: 10.3390/nano13212839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Nanophotonics use the interaction between light and subwavelength structures to design nanophotonic devices and to show unique optical, electromagnetic, and acoustic properties that natural materials do not have. However, this usually requires considerable expertise and a lot of time-consuming electromagnetic simulations. With the continuous development of artificial intelligence, people are turning to deep learning for designing nanophotonic devices. Deep learning models can continuously fit the correlation function between the input parameters and output, using models with weights and biases that can obtain results in milliseconds to seconds. In this paper, we use finite-difference time-domain for simulations, and we obtain the reflectance spectra from 2430 different structures. Based on these reflectance spectra data, we use neural networks for training, which can quickly predict unseen structural reflectance spectra. The effectiveness of this method is verified by comparing the predicted results to the simulation results. Almost all results maintain the main trend, the MSE of 94% predictions are below 10-3, all are below 10-2, and the MAE of 97% predictions are below 2 × 10-2. This approach can speed up device design and optimization, and provides reference for scientific researchers.
Collapse
Affiliation(s)
| | | | | | - Yachen Gao
- Electronic Engineering College, Heilongjiang University, Harbin 150080, China; (R.W.); (B.Z.); (G.W.)
| |
Collapse
|
26
|
Notaros M, DeSantis DM, Raval M, Notaros J. Liquid-crystal-based visible-light integrated optical phased arrays and application to underwater communications. OPTICS LETTERS 2023; 48:5269-5272. [PMID: 37831844 DOI: 10.1364/ol.494387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023]
Abstract
In this Letter, we present the first, to the best of our knowledge, liquid-crystal-based integrated optical phased arrays (OPAs) that enable visible-light beam forming and steering. A cascaded OPA architecture is developed and experimentally shown to emit a beam in the far field at a 632.8-nm wavelength with a power full width at half maximum of 0.4°×1.6° and 7.2° beam-steering range within ±3.4 V. Furthermore, we show the first visible-light integrated-OPA-based free-space-optical-communications transmitter and use it to demonstrate the first integrated-OPA-based underwater-wireless-optical-communications link. We experimentally demonstrate a 1-Gbps on-off-keying link through water and an electronically-switchable point-to-multipoint link with channel selectivity greater than 19 dB through a water-filled tank.
Collapse
|
27
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
28
|
Mu X, Chen FD, Dang KM, Brunk MGK, Li J, Wahn H, Stalmashonak A, Ding P, Luo X, Chua H, Lo GQ, Poon JKS, Sacher WD. Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging. Front Neurosci 2023; 17:1213265. [PMID: 37521687 PMCID: PMC10373094 DOI: 10.3389/fnins.2023.1213265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.
Collapse
Affiliation(s)
- Xin Mu
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Michael G. K. Brunk
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Jianfeng Li
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Hannes Wahn
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | | | - Peisheng Ding
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Guo-Qiang Lo
- Advanced Micro Foundry Pte. Ltd., Singapore, Singapore
| | - Joyce K. S. Poon
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| | - Wesley D. Sacher
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, Canada
| |
Collapse
|
29
|
Chen Z, Wei M, Sun B, Weng Y, Jian J, Zhong C, Sun C, Si K, Gong W, Lin H, Li L. Flexible waveguide integrated thermo-optic switch based on TiO 2 platform. OPTICS LETTERS 2023; 48:3239-3242. [PMID: 37319071 DOI: 10.1364/ol.484113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
Mechanically flexible photonic devices are critical components of novel bio-integrated optoelectronic and high-end wearable systems, in which thermo-optic switches (TOSs) as optical signal control devices are crucial. In this paper, flexible titanium oxide (TiO2) TOSs based on a Mach-Zehnder interferometer (MZI) structure were demonstrated around 1310 nm for, it is believed, the first time. The insertion loss of flexible passive TiO2 2 × 2 multi-mode interferometers (MMIs) is -3.1 dB per MMI. The demonstrated flexible TOS achieves power consumption (Pπ) of 0.83 mW, compared with its rigid counterpart, for which Pπ is decreased by a factor of 18. The proposed device could withstand 100 consecutive bending operations without noticeable degradation in TOS performance, indicating excellent mechanical stability. These results provide a new perspective for designing and fabricating flexible TOSs for flexible optoelectronic systems in future emerging applications.
Collapse
|
30
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Hsieh PY, Fang SL, Lin YS, Huang WH, Shieh JM, Yu P, Chang YC. Metasurfaces on silicon photonic waveguides for simultaneous emission phase and amplitude control. OPTICS EXPRESS 2023; 31:12487-12496. [PMID: 37157407 DOI: 10.1364/oe.487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chip-scale photonic systems that manipulate free-space emission have recently attracted attention for applications such as free-space optical communications and solid-state LiDAR. Silicon photonics, as a leading platform for chip-scale integration, needs to offer more versatile control of free-space emission. Here we integrate metasurfaces on silicon photonic waveguides to generate free-space emission with controlled phase and amplitude profiles. We demonstrate experimentally structured beams, including a focused Gaussian beam and a Hermite-Gaussian TEM10 beam, as well as holographic image projections. Our approach is monolithic and CMOS-compatible. The simultaneous phase and amplitude control enable more faithful generation of structured beams and speckle-reduced projection of holographic images.
Collapse
|
32
|
Guo Y, Guo Y, Li C, Zhou X, Huang Z, Zhang L. Bidirectional wide-angle waveguide grating antennas with flat-top far-field patterns for optical phased arrays. OPTICS EXPRESS 2023; 31:9072-9080. [PMID: 36860007 DOI: 10.1364/oe.484362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
To build advanced all solid-state LiDAR, optical phased arrays (OPAs) with a large field of view are highly desirable. As a critical building block, a wide-angle waveguide grating antenna is proposed here. Instead of aiming at the elimination of downward radiation of waveguide grating antennas (WGAs) to improve efficiencies, we in turn utilize the downward radiation and double the range of beam steering. In addition to widened field of views, the steered beams in two directions come from a common set of power splitters, phase shifters and antennas, which greatly reduces chip complexity and power consumption, especially for large-scale OPAs. Beam interference and power fluctuation in the far field due to downward emission can be decreased by specially designed SiO2/Si3N4 antireflection coating. The WGA exhibits balanced emissions in both the upward and downward directions, in which the field of view in each direction is more than 90°. The normalized intensity remains almost the same with a small variation of 10% from -39° to 39° for the upward emission and from -42° to 42° for the downward emission. This WGA is featured by a flat-top radiation pattern in far field, high emission efficiency and good tolerance to device fabrication errors. It holds good potential to achieve wide-angle optical phased arrays.
Collapse
|
33
|
Pollmann EH, Yin H, Uguz I, Dubey A, Wingel KE, Choi JS, Moazeni S, Gilhotra Y, Pavlovsky VA, Banees A, Boominathan V, Robinson J, Veeraraghavan A, Pieribone VA, Pesaran B, Shepard KL. Subdural CMOS optical probe (SCOPe) for bidirectional neural interfacing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527500. [PMID: 36798295 PMCID: PMC9934536 DOI: 10.1101/2023.02.07.527500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Optical neurotechnologies use light to interface with neurons and can monitor and manipulate neural activity with high spatial-temporal precision over large cortical extents. While there has been significant progress in miniaturizing microscope for head-mounted configurations, these existing devices are still very bulky and could never be fully implanted. Any viable translation of these technologies to human use will require a much more noninvasive, fully implantable form factor. Here, we leverage advances in microelectronics and heterogeneous optoelectronic packaging to develop a transformative, ultrathin, miniaturized device for bidirectional optical stimulation and recording: the subdural CMOS Optical Probe (SCOPe). By being thin enough to lie entirely within the subdural space of the primate brain, SCOPe defines a path for the eventual human translation of a new generation of brain-machine interfaces based on light.
Collapse
|
34
|
Guo X, Ji X, Yao B, Tan T, Chu A, Westreich O, Dutt A, Wong C, Su Y. Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:167-196. [PMID: 39634860 PMCID: PMC11501867 DOI: 10.1515/nanoph-2022-0575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/02/2023] [Indexed: 12/07/2024]
Abstract
Silicon photonics has gained great success mainly due to the promise of realizing compact devices in high volume through the low-cost foundry model. It is burgeoning from laboratory research into commercial production endeavors such as datacom and telecom. However, it is unsuitable for some emerging applications which require coverage across the visible or mid infrared (mid-IR) wavelength bands. It is desirable to introduce other wideband materials through heterogeneous integration, while keeping the integration compatible with wafer-scale fabrication processes on silicon substrates. We discuss the properties of silicon-family materials including silicon, silicon nitride, and silica, and other non-group IV materials such as metal oxide, tantalum pentoxide, lithium niobate, aluminum nitride, gallium nitride, barium titanate, piezoelectric lead zirconate titanate, and 2D materials. Typical examples of devices using these materials on silicon platform are provided. We then introduce a general fabrication method and low-loss process treatment for photonic devices on the silicon platform. From an applications viewpoint, we focus on three new areas requiring integration: sensing, optical comb generation, and quantum information processing. Finally, we conclude with perspectives on how new materials and integration methods can address previously unattainable wavelength bands while maintaining the advantages of silicon, thus showing great potential for future widespread applications.
Collapse
Affiliation(s)
- Xuhan Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchen Ji
- John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Baicheng Yao
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu, China
| | - Teng Tan
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu, China
| | - Allen Chu
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
| | - Ohad Westreich
- Applied Physics Division, Soreq NRC, Yavne 81800, Israel
| | - Avik Dutt
- Mechanical Engineering, and Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Cheewei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
| | - Yikai Su
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Lee S, Park K, Kum J, An S, Yu KJ, Kim H, Shin M, Son D. Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers (Basel) 2022; 15:84. [PMID: 36616434 PMCID: PMC9824691 DOI: 10.3390/polym15010084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
An electrocorticogram (ECoG) is the electrical activity obtainable from the cerebral cortex and an informative source with considerable potential for future advanced applications in various brain-interfacing technologies. Considerable effort has been devoted to developing biocompatible, conformal, soft, and conductive interfacial materials for bridging devices and brain tissue; however, the implementation of brain-adaptive materials with optimized electrical and mechanical characteristics remains challenging. Herein, we present surface electrode arrays using the soft tough ionic conductive hydrogel (STICH). The newly proposed STICH features brain-adaptive softness with Young's modulus of ~9.46 kPa, which is sufficient to form a conformal interface with the cortex. Additionally, the STICH has high toughness of ~36.85 kJ/mm3, highlighting its robustness for maintaining the solid structure during interfacing with wet brain tissue. The stretchable metal electrodes with a wavy pattern printed on the elastomer were coated with the STICH as an interfacial layer, resulting in an improvement of the impedance from 60 kΩ to 10 kΩ at 1 kHz after coating. Acute in vivo experiments for ECoG monitoring were performed in anesthetized rodents, thereby successfully realizing conformal interfacing to the animal's cortex and the sensitive recording of electrical activity using the STICH-coated electrodes, which exhibited a higher visual-evoked potential (VEP) amplitude than that of the control device.
Collapse
Affiliation(s)
- Sungjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyuha Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeungeun Kum
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soojung An
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungmin Kim
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Hsieh PY, Fang SL, Lin YS, Huang WH, Shieh JM, Yu P, Chang YC. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4687-4695. [PMID: 39634746 PMCID: PMC11501560 DOI: 10.1515/nanoph-2022-0344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/07/2024]
Abstract
The emerging applications of silicon photonics in free space, such as LiDARs, free-space optical communications, and quantum photonics, urge versatile emission shaping beyond the capabilities of conventional grating couplers. In these applications, silicon photonic chips deliver free-space emission to detect or manipulate external objects. Light needs to emit from a silicon photonic chip to the free space with specific spatial modes, which produce focusing, collimation, orbital angular momentum, or even holographic projection. A platform that offers versatile shaping of free-space emission, while maintaining the CMOS compatibility and monolithic integration of silicon photonics is in pressing need. Here we demonstrate a platform that integrates metasurfaces monolithically on silicon photonic integrated circuits. The metasurfaces consist of amorphous silicon nanopillars evanescently coupled to silicon waveguides. We demonstrate experimentally diffraction-limited beam focusing with a Strehl ratio of 0.82. The focused spot can be switched between two positions by controlling the excitation direction. We also realize a meta-hologram experimentally that projects an image above the silicon photonic chip. This platform can add a highly versatile interface to the existing silicon photonic ecosystems for precise delivery of free-space emission.
Collapse
Affiliation(s)
- Ping-Yen Hsieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Shun-Lin Fang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Yu-Siang Lin
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Wen-Hsien Huang
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Jia-Min Shieh
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
- Taiwan Semiconductor Research Institute, Hsinchu30078, Taiwan
| | - Peichen Yu
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - You-Chia Chang
- Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| |
Collapse
|
37
|
Lin Y, Yong Z, Luo X, Azadeh SS, Mikkelsen JC, Sharma A, Chen H, Mak JCC, Lo PGQ, Sacher WD, Poon JKS. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat Commun 2022; 13:6362. [PMID: 36289213 PMCID: PMC9606291 DOI: 10.1038/s41467-022-34100-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring.
Collapse
Affiliation(s)
- Yiding Lin
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
| | - Zheng Yong
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Xianshu Luo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore, Singapore
| | - Saeed Sharif Azadeh
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Jared C Mikkelsen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Ankita Sharma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Hong Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Jason C C Mak
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Patrick Guo-Qiang Lo
- Advanced Micro Foundry Pte Ltd, 11 Science Park Road, Singapore Science Park II, 117685, Singapore, Singapore
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
| |
Collapse
|
38
|
Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022; 45:854-864. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
To understand the neural mechanisms of behavior, it is necessary to both monitor and perturb the activity of ensembles of neurons with high specificity. While neural ensemble recordings have been available for decades, progress in high-resolution manipulation techniques has lagged behind. Optogenetics has enabled the manipulation of genetically defined cell types in behaving animals, and recent developments, including multipoint nanofabricated light sources, provide spatiotemporal resolution on a par with that of physiological recordings. Here we review current advances in optogenetic methods for cellular-resolution stimulation and intervention, as well as their integration with real-time neural recordings for closed-loop experimentation. We discuss how these approaches open the door to new kinds of experiments aimed at dissecting the role of specific neural patterns and discrete cellular populations in orchestrating the activity of brain circuits that support behavior and cognition.
Collapse
Affiliation(s)
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Li C, Chen B, Ruan Z, Wu H, Zhou Y, Liu J, Chen P, Chen K, Guo C, Liu L. High modulation efficiency and large bandwidth thin-film lithium niobate modulator for visible light. OPTICS EXPRESS 2022; 30:36394-36402. [PMID: 36258568 DOI: 10.1364/oe.469065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
We experimentally demonstrate an integrated visible light modulator at 532 nm on the thin-film lithium niobate platform. The waveguides on such platform feature a propagation loss of 2.2 dB/mm while a grating for fiber interface has a coupling loss of 5 dB. Our fabricated modulator demonstrates a low voltage-length product of 1.1 V·cm and a large electro-optic bandwidth with a roll-off of -1.59 dB at 25 GHz for a length of 3.3 mm. This device offers a compact and large bandwidth solution to the challenge of integrated visible wavelength modulation in lithium niobate and paves the way for future small-form-factor integrated systems at visible wavelengths.
Collapse
|
40
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
41
|
Wu J, Ma H, Zhong C, Wei M, Sun C, Ye Y, Xu Y, Tang B, Luo Y, Sun B, Jian J, Dai H, Lin H, Li L. Waveguide-Integrated PdSe 2 Photodetector over a Broad Infrared Wavelength Range. NANO LETTERS 2022; 22:6816-6824. [PMID: 35787028 DOI: 10.1021/acs.nanolett.2c02099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrid integration of van der Waals materials on a photonic platform enables diverse exploration of novel active functions and significant improvement in device performance for next-generation integrated photonic circuits, but developing waveguide-integrated photodetectors based on conventionally investigated transition metal dichalcogenide materials at the full optical telecommunication bands and mid-infrared range is still a challenge. Here, we integrate PdSe2 with silicon waveguide for on-chip photodetection with a high responsivity from 1260 to 1565 nm, a low noise-equivalent power of 4.0 pW·Hz-0.5, a 3-dB bandwidth of 1.5 GHz, and a measured data rate of 2.5 Gbit·s-1. The achieved PdSe2 photodetectors provide new insights to explore the integration of novel van der Waals materials with integrated photonic platforms and exhibit great potential for diverse applications over a broad infrared range of wavelengths, such as on-chip sensing and spectroscopy.
Collapse
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yan Xu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academic Society, Beijing 100029, China
| | - Ye Luo
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Boshu Sun
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jialing Jian
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hao Dai
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
42
|
Yu L, Ma P, Luo G, Cui L, Zhou X, Wang P, Zhang Y, Pan J. Adoption of large aperture chirped grating antennas in optical phase array for long distance ranging. OPTICS EXPRESS 2022; 30:28112-28120. [PMID: 36236966 DOI: 10.1364/oe.464358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Optical phased array can be widely used in many fields benefiting from its superior performance. We designed and fabricated chirped grating antennas and uniform grating antennas for the optical phased array. The effective aperture of the chirped grating antennas is about twice that of the uniform grating antennas. The chirped grating optical phased array can receive the reflected signal of the object at a distance of 100 m, while the uniform grating optical phased array can only receive 50 m under the same conditions. Additionally, a ranging distance of 25 m is achieved when two chirped grating optical phased arrays are set as the transmitter and receiver.
Collapse
|
43
|
Luo Y, Sun C, Ma H, Wei M, Li J, Jian J, Zhong C, Chen Z, Tang R, Richardson KA, Lin H, Li L. Flexible passive integrated photonic devices with superior optical and mechanical performance. OPTICS EXPRESS 2022; 30:26534-26543. [PMID: 36236849 DOI: 10.1364/oe.464896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.
Collapse
|
44
|
Spagnolo B, Balena A, Peixoto RT, Pisanello M, Sileo L, Bianco M, Rizzo A, Pisano F, Qualtieri A, Lofrumento DD, De Nuccio F, Assad JA, Sabatini BL, De Vittorio M, Pisanello F. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. NATURE MATERIALS 2022; 21:826-835. [PMID: 35668147 PMCID: PMC7612923 DOI: 10.1038/s41563-022-01272-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/27/2022] [Indexed: 06/02/2023]
Abstract
Deciphering the neural patterns underlying brain functions is essential to understanding how neurons are organized into networks. This deciphering has been greatly facilitated by optogenetics and its combination with optoelectronic devices to control neural activity with millisecond temporal resolution and cell type specificity. However, targeting small brain volumes causes photoelectric artefacts, in particular when light emission and recording sites are close to each other. We take advantage of the photonic properties of tapered fibres to develop integrated 'fibertrodes' able to optically activate small brain volumes with abated photoelectric noise. Electrodes are positioned very close to light emitting points by non-planar microfabrication, with angled light emission allowing the simultaneous optogenetic manipulation and electrical read-out of one to three neurons, with no photoelectric artefacts, in vivo. The unconventional implementation of two-photon polymerization on the curved taper edge enables the fabrication of recoding sites all around the implant, making fibertrodes a promising complement to planar microimplants.
Collapse
Affiliation(s)
| | | | - Rui T Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Marco Bianco
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Alessandro Rizzo
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | | | - Dario Domenico Lofrumento
- DiSTeBA - Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Francesco De Nuccio
- DiSTeBA - Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - John A Assad
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy.
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy.
| | | |
Collapse
|
45
|
Free-Space Applications of Silicon Photonics: A Review. MICROMACHINES 2022; 13:mi13070990. [PMID: 35888807 PMCID: PMC9322159 DOI: 10.3390/mi13070990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
Silicon photonics has recently expanded its applications to delivering free-space emissions for detecting or manipulating external objects. The most notable example is the silicon optical phased array, which can steer a free-space beam to achieve a chip-scale solid-state LiDAR. Other examples include free-space optical communication, quantum photonics, imaging systems, and optogenetic probes. In contrast to the conventional optical system consisting of bulk optics, silicon photonics miniaturizes an optical system into a photonic chip with many functional waveguiding components. By leveraging the mature and monolithic CMOS process, silicon photonics enables high-volume production, scalability, reconfigurability, and parallelism. In this paper, we review the recent advances in beam steering technologies based on silicon photonics, including optical phased arrays, focal plane arrays, and dispersive grating diffraction. Various beam-shaping technologies for generating collimated, focused, Bessel, and vortex beams are also discussed. We conclude with an outlook of the promises and challenges for the free-space applications of silicon photonics.
Collapse
|
46
|
De Vita C, Toso F, Pruiti NG, Klitis C, Ferrari G, Sorel M, Melloni A, Morichetti F. Amorphous-silicon visible-light detector integrated on silicon nitride waveguides. OPTICS LETTERS 2022; 47:2598-2601. [PMID: 35561410 DOI: 10.1364/ol.455458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Visible-light integrated photonics is emerging as a promising technology for the realization of optical devices for applications in sensing, quantum information and communications, imaging, and displays. Among the existing photonic platforms, high-index-contrast silicon nitride (Si3N4) waveguides offer broadband transparency in the visible spectral range and a high scale of integration. As the complexity of photonic integrated circuits (PICs) increases, on-chip detectors are required to monitor their working point for reconfiguration and stabilization operations. In this Letter, we present a semi-transparent in-line power monitor integrated on Si3N4 waveguides that operates in the red-light wavelength range (660 nm). The proposed device exploits the photoconductivity of a hydrogenated amorphous-silicon (a-Si:H) film that is evanescently coupled to an optical waveguide. Experimental results show a responsivity of 30 mA/W, a sensitivity of -45 dBm, and a sub-µs time response. These features enable the use of the proposed photoconductor for high-sensitivity monitoring and control of visible-light Si3N4 PICs.
Collapse
|
47
|
Notaros M, Dyer T, Raval M, Baiocco C, Notaros J, Watts MR. Integrated visible-light liquid-crystal-based phase modulators. OPTICS EXPRESS 2022; 30:13790-13801. [PMID: 35472984 DOI: 10.1364/oe.454494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this work, an integrated liquid-crystal-based phase modulator operating at visible wavelengths was developed and experimentally demonstrated. A visible-light silicon-nitride-based 300-mm-wafer foundry platform and a liquid-crystal integration process were developed to leverage the birefringence of liquid crystal to actively tune the effective index of a section of silicon-nitride waveguide and induce a phase shift over its length. The device was experimentally shown to achieve a 41π phase shift within 4.8 Vpp for a 500-µm-long modulator, which means that a 2π phase shifter would need to be only 24.4 µm long. This device is a compact and low-power solution to the challenge of integrated phase modulation in silicon nitride and paves the way for future low-power small-form-factor integrated systems at visible wavelengths.
Collapse
|
48
|
Garg A, Mejia E, Nam W, Nie M, Wang W, Vikesland P, Zhou W. Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro-Nanoimprinting for Bio-Interfaced SERS Imaging and Nonlinear Nano-Optics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106887. [PMID: 35224852 DOI: 10.1002/smll.202106887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Microporous mesh plasmonic devices have the potential to combine the biocompatibility of microporous polymeric meshes with the capabilities of plasmonic nanostructures to enhance nanoscale light-matter interactions for bio-interfaced optical sensing and actuation. However, scalable integration of dense and uniformly structured plasmonic hotspot arrays with microporous polymeric meshes remains challenging due to the processing incompatibility of conventional nanofabrication methods with flexible microporous substrates. Here, scalable nanofabrication of microporous multiresonant plasmonic meshes (MMPMs) is achieved via a hierarchical micro-/nanoimprint lithography approach using dissolvable polymeric templates. It is demonstrated that MMPMs can serve as broadband nonlinear nanoplasmonic devices to generate second-harmonic generation, third-harmonic generation, and upconversion photoluminescence signals with multiresonant plasmonic enhancement under fs pulse excitation. Moreover, MMPMs are employed and explored as bio-interfaced surface-enhanced Raman spectroscopy mesh sensors to enable in situ spatiotemporal molecular profiling of bacterial biofilm activity. Microporous mesh plasmonic devices open exciting avenues for bio-interfaced optical sensing and actuation applications, such as inflammation-free epidermal sensors in conformal contact with skin, combined tissue-engineering and biosensing scaffolds for in vitro 3D cell culture models, and minimally invasive implantable probes for long-term disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Meitong Nie
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
49
|
Bansal H, Pyari G, Roy S. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study. J Neural Eng 2022; 19. [PMID: 35320791 DOI: 10.1088/1741-2552/ac6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Objective A fundamental challenge in optogenetics is to elicit long-term high-fidelity neuronal spiking with negligible heating. Fast channelrhodopsins (ChRs) require higher irradiances and cause spike failure due to photocurrent desensitization under sustained illumination, whereas, more light-sensitive step-function opsins (SFOs) exhibit prolonged depolarization with insufficient photocurrent and fast response for high-fidelity spiking. Approach We present a novel method to overcome this fundamental limitation by co-expressing fast ChRs with SFOs. A detailed theoretical analysis of ChETA co-expressed with different SFOs, namely ChR2(C128A), ChR2(C128S), SSFO and SOUL, expressing hippocampal neurons has been carried out by formulating their accurate theoretical models. Main results ChETA-SFO-expressing hippocampal neurons show a more stable photocurrent that overcomes spike failure. Spiking fidelity in these neurons can be sustained even at lower irradiances of subsequent pulses (77 % of initial pulse intensity in ChETA-ChR2(C128A)-expressing neurons) or by using red-shifted light pulses at appropriate intervals. High-fidelity spiking up to 60 Hz can be evoked in ChR2-C128S-ChETA-expressing neurons, which cannot be attained with only SFOs. Significance The present study provides important insights about photostimulation protocols for bi-stable switching of neurons. This new approach provides a means for sustained low-power, high-frequency, and high-fidelity optogenetic switching of neurons, necessary to study various neural functions and neurodegenerative disorders and enhance the utility of optogenetics for biomedical applications.
Collapse
Affiliation(s)
- Himanshu Bansal
- Department of Physics and Computer science, Dayalbagh Educational Institute Faculty of Science, AGRA, Agra, UP, 282005, INDIA
| | - Gur Pyari
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| | - Sukhdev Roy
- Department of Physics & Computer Science, Dayalbagh Educational Institute Faculty of Science, Faculty of Science, Dayalbagh, Agra-282 005, Agra, Uttar Pradesh, 282005, INDIA
| |
Collapse
|
50
|
Sacher WD, Chen FD, Moradi-Chameh H, Liu X, Felts Almog I, Lordello T, Chang M, Naderian A, Fowler TM, Segev E, Xue T, Mahallati S, Valiante TA, Moreaux LC, Poon JKS, Roukes ML. Optical phased array neural probes for beam-steering in brain tissue. OPTICS LETTERS 2022; 47:1073-1076. [PMID: 35230293 DOI: 10.1364/ol.441609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Implantable silicon neural probes with integrated nanophotonic waveguides can deliver patterned dynamic illumination into brain tissue at depth. Here, we introduce neural probes with integrated optical phased arrays and demonstrate optical beam steering in vitro. Beam formation in brain tissue is simulated and characterized. The probes are used for optogenetic stimulation and calcium imaging.
Collapse
|