1
|
Qi Q, Bian J, Li J, Liu K, Yan F, Hou J. Whole-genome transcriptome and DNA methylome analyses reveal molecular abnormalities during the oocyte-to-embryo transition in preimplantation embryos derived from prepubertal lamb oocytes†. Biol Reprod 2025; 112:824-839. [PMID: 40057970 DOI: 10.1093/biolre/ioaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/26/2025] [Accepted: 03/04/2025] [Indexed: 05/16/2025] Open
Abstract
The juvenile in vitro embryo transfer technology holds the potential to accelerate livestock breeding. However, its application is limited due to the weak in vitro development of oocytes and embryos from prepubertal lambs. To dissect the regulatory networks of gene expression of sheep embryos and identify the defects in gene expression in prepubertal lamb embryos during the oocyte-to-embryo transition, full-length RNA sequencing and whole-genome bisulfite sequencing based on trace cells were conducted on in vitro-derived embryos generated from adult sheep and prepubertal lamb oocytes. We found that the maternal transcript degradation occurred selectively in adult sheep embryos in multiple waves and was most completed until the morula stage. Major embryonic genome activation was found to occur at the morula stage. By comparing with the patterns of adult embryos, we observed incomplete maternal transcript degradation and abnormal embryonic genome activation in lamb embryos and analyzed their potential molecular mechanisms. Furthermore, we explored dynamic DNA methylation concerning the paternal and maternal genomes during the preimplantation development of sheep embryos, revealing the negative regulatory role of promoter DNA methylation on embryonic genome activation process. Lamb embryos generally displayed higher DNA methylation levels than adults, potentially repressing the embryonic genome activation gene expression, especially the genes associated with ribosomal and mitochondrial organization. We also found abnormalities in the methylation status of imprinted genes in lamb embryos. Our findings advance the understanding of sheep in vitro embryo development and offer insights for improving the juvenile in vitro embryo transfer technology in livestock.
Collapse
Affiliation(s)
- Qi Qi
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangyue Bian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junjin Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kexiong Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengxiang Yan
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Xiao Y, Jin W, Ju L, Fu J, Wang G, Yu M, Chen F, Qian K, Wang X, Zhang Y. Tracking single-cell evolution using clock-like chromatin accessibility loci. Nat Biotechnol 2025; 43:784-798. [PMID: 38724668 DOI: 10.1038/s41587-024-02241-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/10/2024] [Indexed: 05/18/2025]
Abstract
Single-cell chromatin accessibility sequencing (scATAC-seq) reconstructs developmental trajectory by phenotypic similarity. However, inferring the exact developmental trajectory is challenging. Previous studies showed age-associated DNA methylation (DNAm) changes in specific genomic regions, termed clock-like differential methylation loci (ClockDML). Age-associated DNAm could either result from or result in chromatin accessibility changes at ClockDML. As cells undergo mitosis, the heterogeneity of chromatin accessibility on clock-like loci is reduced, providing a measure of mitotic age. In this study, we developed a method, called EpiTrace, that counts the fraction of opened clock-like loci from scATAC-seq data to determine cell age and perform lineage tracing in various cell lineages and animal species. It shows concordance with known developmental hierarchies, correlates well with DNAm-based clocks and is complementary with mutation-based lineage tracing, RNA velocity and stemness predictions. Applying EpiTrace to scATAC-seq data reveals biological insights with clinically relevant implications, ranging from hematopoiesis, organ development, tumor biology and immunity to cortical gyrification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Fu
- Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangjin Chen
- High Performance Computing Center, Peking-Tsinghua College of Life Sciences, Peking University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
| |
Collapse
|
3
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1226-1282. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
5
|
Zhang F, Evans T. Stage-specific DNA methylation dynamics in mammalian heart development. Epigenomics 2025; 17:359-371. [PMID: 39980349 PMCID: PMC11970762 DOI: 10.1080/17501911.2025.2467024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Li M, Jiang Z, Xu X, Wu X, Liu Y, Chen K, Liao Y, Li W, Wang X, Guo Y, Zhang B, Wen L, Kee K, Tang F. Chromatin accessibility landscape of mouse early embryos revealed by single-cell NanoATAC-seq2. Science 2025; 387:eadp4319. [PMID: 40146829 DOI: 10.1126/science.adp4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
In mammals, fertilized eggs undergo genome-wide epigenetic reprogramming to generate the organism. However, our understanding of epigenetic dynamics during preimplantation development at single-cell resolution remains incomplete. Here, we developed scNanoATAC-seq2, a single-cell assay for transposase-accessible chromatin using long-read sequencing for scarce samples. We present a detailed chromatin accessibility landscape of mouse preimplantation development, revealing distinct chromatin signatures in the epiblast, primitive endoderm, and trophectoderm during lineage segregation. Differences between zygotes and two-cell embryos highlight reprogramming in chromatin accessibility during the maternal-to-zygotic transition. Single-cell long-read sequencing enables in-depth analysis of chromatin accessibility in noncanonical imprinting, imprinted X chromosome inactivation, and low-mappability genomic regions, such as repetitive elements and paralogs. Our data provide insights into chromatin dynamics during mammalian preimplantation development and lineage differentiation.
Collapse
Affiliation(s)
- Mengyao Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhenhuan Jiang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xueqiang Xu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei , China
| | - Yun Liu
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Kexuan Chen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuhan Liao
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Wen Li
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xiao Wang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Bo Zhang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Kehkooi Kee
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Complex, Severe, and Rare Diseases; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fuchou Tang
- Biomedical Pioneering Innovative Center, School of Life Sciences, Peking University, Beijing, China
- New Cornerstone Science Laboratory, Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
7
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
8
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
9
|
Zhang J, Lv J, Qin J, Zhang M, He X, Ma B, Wan Y, Gao Y, Wang M, Hong Z. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms. J Assist Reprod Genet 2024; 41:3301-3316. [PMID: 39325344 PMCID: PMC11706821 DOI: 10.1007/s10815-024-03259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Early embryonic arrest (EEA) is a critical impediment in assisted reproductive technology (ART), affecting 40% of infertile patients by halting the development of early embryos from the zygote to blastocyst stage, resulting in a lack of viable embryos for successful pregnancy. Despite its prevalence, the molecular mechanism underlying EEA remains elusive. This review synthesizes the latest research on the genetic and molecular factors contributing to EEA, with a focus on maternal, paternal, and embryonic factors. Maternal factors such as irregularities in follicular development and endometrial environment, along with mutations in genes like NLRP5, PADI6, KPNA7, IGF2, and TUBB8, have been implicated in EEA. Specifically, PATL2 mutations are hypothesized to disrupt the maternal-zygotic transition, impairing embryo development. Paternal contributions to EEA are linked to chromosomal variations, epigenetic modifications, and mutations in genes such as CFAP69, ACTL7A, and M1AP, which interfere with sperm development and lead to infertility. Aneuploidy may disrupt spindle assembly checkpoints and pathways including Wnt, MAPK, and Hippo signaling, thereby contributing to EEA. Additionally, key genes involved in embryonic genome activation-such as ZSCAN4, DUXB, DUXA, NANOGNB, DPPA4, GATA6, ARGFX, RBP7, and KLF5-alongside functional disruptions in epigenetic modifications, mitochondrial DNA, and small non-coding RNAs, play critical roles in the onset of EEA. This review provides a comprehensive understanding of the genetic and molecular underpinnings of EEA, offering a theoretical foundation for the diagnosis and potential therapeutic strategies aimed at improving pregnancy outcomes.
Collapse
Affiliation(s)
- Jinyi Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jing Lv
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Juling Qin
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuanyi He
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Binyu Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yingjing Wan
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ying Gao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
10
|
Jin J, Ma J, Wang X, Hong F, Zhang Y, Zhou F, Wan C, Zou Y, Yang J, Lu S, Tong X. Multi-omics PGT: re-evaluation of euploid blastocysts for implantation potential based on RNA sequencing. Hum Reprod 2024; 39:2861-2872. [PMID: 39413437 PMCID: PMC11629973 DOI: 10.1093/humrep/deae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/29/2024] [Indexed: 10/18/2024] Open
Abstract
STUDY QUESTION In addition to chromosomal euploidy, can the transcriptome of blastocysts be used as a novel predictor of embryo implantation potential? SUMMARY ANSWER This retrospective analysis showed that based on differentially expressed genes (DEGs) between euploid blastocysts which resulted and did not result in a clinical pregnancy, machine learning models could help improve implantation rates by blastocyst optimization. WHAT IS KNOWN ALREADY Embryo implantation is a multifaceted process, with implantation loss and pregnancy failure related not only to blastocyst euploidy but also to the intricate dialog between blastocyst and endometrium. Although in vitro studies have revealed the characteristics of trophectoderm (TE) differentiation in implanted blastocysts and the function of TE placentation at the implantation site, the precise molecular mechanisms of embryo implantation and their clinical application remain to be fully elucidated. STUDY DESIGN, SIZE, DURATION This study involved 102 patients who underwent 111 cycles for preimplantation genetic testing for aneuploidies (PGT-A) between March 2022 and July 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS The study included 412 blastocysts biopsied at Day 5 [D5] or Day 6 [D6] for patients who underwent PGT-A. The biopsy lysates were split and subjected to DNA and RNA sequencing (DNA- and RNA-seq). One part was used for PGT-A to detect DNA copy number variations, whereas the other part was assessed simultaneously by RNA-seq to determine the transcriptome characteristics. To validate the reliability and accuracy of RNA-seq obtained from this strategy, we initially analyzed the transcriptome of blastocysts with chromosomal aneuploidies. Subsequently, we compared the transcriptomic features of blastocysts with different rates of formation (D5 vs D6) and investigated the network of interactions between key blastulation genes and the receptive endometrium. Then to evaluate the implantation potential of euploid blastocysts, we identified DEGs between euploid blastocysts that resulted in clinical pregnancy (defined as the presence of a gestational sac detected by ultrasound after 5 weeks) and those that did not. These DEGs were then employed to construct a predictive model for optimizing blastocyst selection. MAIN RESULTS AND THE ROLE OF CHANCE The successful detection rate of PGT-A was remarkably high at 99.8%. The RNA data may infer aneuploidy for both trisomy and monosomy. Between the euploid blastocysts that formed on D5 and D6, 187 DEGs were predominantly involved in cell differentiation for embryonic placenta development, the PPAR signaling pathway, and the Notch signaling pathway. These D5/D6 DEGs also exhibited a functional dialog with the receptive phase endometrium-specific genes through protein-protein interaction networks, indicating that the embryo undergoes further differentiation for post-implantation development. Furthermore, a modeling strategy using 280 DEGs between blastocysts leading to successful clinical pregnancies or failing to produce clinical pregnancies was implemented to refine the euploid embryo optimization, achieving areas under the curves of 0.88, 0.71, and 0.84 for the random forest (RF), support vector machine, and linear discriminant analysis models, respectively. Finally, a retrospective analysis of 83 transferred euploid blastocysts using the RF model identified three types of euploid embryos with a decreasing trend in implantation potential. Notably, the implantation rate of the good group was significantly higher than that of the moderate group (88.6% vs 50.0% P = 0.001) and that of the moderate group was higher than that of the poor group (50.0% vs 20.8%, P = 0.035). LIMITATIONS, REASONS FOR CAUTION The sample size was insufficient; thus, a prospective study is needed to verify the clinical effectiveness of the above model. Because we did not analyze blastocysts that led only to biochemical pregnancies but failed clinical pregnancies separately, our classification system still must be modified to screen these embryos. WIDER IMPLICATIONS OF THE FINDINGS Transcriptomic analysis of blastocysts offers a novel approach for predicting embryo implantation potential, which can be utilized to optimize clinical embryo selection. The ranking system may be effective in reducing the times and costs involved in achieving a clinical pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (No. 2023C03034), the National Natural Science Foundation of China (82101709), and the National Key Research and Development Program for Young Scientists of China (No. 2022YFC2702300). The authors state no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jieliang Ma
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Xiufen Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Fang Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - YinLi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Cheng Wan
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Yangyun Zou
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Ji Yang
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Sijia Lu
- Department of Collaborative Innovation Center, Yikon Genomics Co., Ltd, Suzhou, China
- Department of Collaborative Innovation Center, Xukang Medical Science & Technology (Suzhou) Co, Ltd, Suzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
11
|
Xu Y, Zhai J, Wu H, Wang H. In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis. Nat Protoc 2024; 19:3677-3696. [PMID: 39060382 DOI: 10.1038/s41596-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Human early embryonic development is the cornerstone of a healthy baby. Abnormal early embryonic development may lead to developmental and pregnancy-related disorders. Accordingly, understanding the developmental events and mechanisms of human early embryonic development is very important. However, attempts to reveal these events and mechanisms are greatly hindered by the extreme inaccessibility of in vivo early human embryos. Fortunately, the emergence of in vitro culture (IVC) systems for mammalian embryos provides an alternative strategy. In recent years, different two-dimensional and three-dimensional IVC systems have been developed for human embryos. Ethical limitations restrict the IVC of human embryos beyond 14 days, which makes non-human primate embryos an ideal model for studying primate developmental events. Different culture systems have supported the development of monkey embryos to days postfertilization 14 and 25, respectively. The successful recapitulation of in vivo developmental events by these IVC embryos has greatly enriched our understanding of human early embryonic development, which undoubtedly helps us to develop possible strategies to predict or treat various gestation-related diseases and birth defects. In this protocol, we establish different two-dimensional and three-dimensional IVC systems for primate embryos, provide step-by-step culture procedures and notes, and summarize the advantages and limitations of different culture systems. Replicating this protocol requires a moderate level of experience in mammalian embryo IVC, and the embryo culture requires strict adherence to the procedures we have described.
Collapse
Affiliation(s)
- Yanhong Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
12
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
13
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
14
|
Conti Nibali S, Battiato G, Pappalardo XG, De Pinto V. Voltage-Dependent Anion Channels in Male Reproductive Cells: Players in Healthy Fertility? Biomolecules 2024; 14:1290. [PMID: 39456223 PMCID: PMC11506323 DOI: 10.3390/biom14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Male infertility affects nearly 50% of infertile couples, with various underlying causes, including endocrine disorders, testicular defects, and environmental factors. Spermatozoa rely on mitochondrial oxidative metabolism for motility and fertilization, with mitochondria playing a crucial role in sperm energy production, calcium regulation, and redox balance. Voltage-dependent anion channels (VDACs), located on the outer mitochondrial membrane, regulate energy and metabolite exchange, which are essential for sperm function. This review offers an updated analysis of VDACs in the male reproductive system, summarizing recent advances in understanding their expression patterns, molecular functions, and regulatory mechanisms. Although VDACs have been widely studied in other tissues, their specific roles in male reproductive physiology still remain underexplored. Special attention is given to the involvement of VDAC2/3 isoforms, which may influence mitochondrial function in sperm cells and could be implicated in male fertility disorders. This update provides a comprehensive framework for future research in reproductive biology, underscoring the significance of VDACs as a molecular link between mitochondrial function and male fertility.
Collapse
Affiliation(s)
| | | | | | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (S.C.N.); (G.B.); (X.G.P.)
| |
Collapse
|
15
|
Zhang L, Zhang Y, Sun H. Protein Modifications During Early Embryo Development. Am J Reprod Immunol 2024; 92:e70007. [PMID: 39460606 DOI: 10.1111/aji.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infertility is a global reproductive health burden. Assisted reproductive technologies (ARTs) have been widely used to help patients become pregnant. Few embryos develop to the blastocyst stage with ARTs, leading to relatively low live birth rates. Protein modifications play crucial roles in nearly every aspect of cell biology, including reproductive processes. The aim of this study was to explore the characteristics of protein modifications during embryonic development. METHODS Proteomic data from humans and mice were acquired from the integrated proteome resources (iProX) of ProteomeXchange (PXD024267) and a tandem mass tag (TMT)-mass spectrometry dataset. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied for functional annotation. Protein-protein interactions (PPIs) of the modification-related genes were revealed by the STRING database. Modified proteins during mouse embryogenesis were visualized through heatmaps of hierarchically clustering using k-means. RESULTS We identified modification-related proteins in human embryo development and characterized them through heatmaps, GO analysis, KEGG analysis, and PPI network analysis. We found that the 4-cell stage to the 8-cell stage might be the demarcation period for modification-related protein expression patterns during embryo development. Using quantitative mass spectrometry, we elucidated the methylation, acetylation, and ubiquitination events that occur during mouse embryogenesis to validate our findings in human embryonic development to some extent. CONCLUSIONS The results of our study suggest that the posttranslational modifications (PTMs) of human preimplantation embryos might exhibit the same trends as those in mice to exert synergistic and fine-tuned regulatory effects during embryonic development.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanbing Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
17
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
18
|
Liu Z, Yuan Z, Guo Y, Wang R, Guan Y, Wang Z, Chen Y, Wang T, Jiang M, Bian S. SMARTdb: An Integrated Database for Exploring Single-cell Multi-omics Data of Reproductive Medicine. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae005. [PMID: 39380204 PMCID: PMC12016030 DOI: 10.1093/gpbjnl/qzae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 10/10/2024]
Abstract
Single-cell multi-omics sequencing has greatly accelerated reproductive research in recent years, and the data are continually growing. However, utilizing these data resources is challenging for wet-lab researchers. A comprehensive platform for exploring single-cell multi-omics data related to reproduction is urgently needed. Here, we introduce the single-cell multi-omics atlas of reproduction (SMARTdb), an integrative and user-friendly platform for exploring molecular dynamics of reproductive development, aging, and disease, which covers multi-omics, multi-species, and multi-stage data. We curated and analyzed single-cell transcriptomic and epigenomic data of over 2.0 million cells from 6 species across the entire lifespan. A series of powerful functionalities are provided, such as "Query gene expression", "DIY expression plot", "DNA methylation plot", and "Epigenome browser". With SMARTdb, we found that the male germ cell-specific expression pattern of RPL39L and RPL10L is conserved between human and other model animals. Moreover, DNA hypomethylation and open chromatin may collectively regulate the specific expression pattern of RPL39L in both male and female germ cells. In summary, SMARTdb is a powerful platform for convenient data mining and gaining novel insights into reproductive development, aging, and disease. SMARTdb is publicly available at https://smart-db.cn.
Collapse
Affiliation(s)
- Zekai Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunlei Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruilin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yusheng Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhanglian Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianlu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meining Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuhui Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
19
|
Liang D, Yan R, Long X, Ji D, Song B, Wang M, Zhang F, Cheng X, Sun F, Zhu R, Hou X, Wang T, Zou W, Zhang Y, Pu Z, Zhang J, Zhang Z, Liu Y, Hu Y, He X, Cao Y, Guo F. Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression. Nat Cell Biol 2024; 26:1458-1469. [PMID: 39080410 PMCID: PMC11392820 DOI: 10.1038/s41556-024-01475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation. The 5hmCs persisted until the eight-cell stage and exhibited high enrichment at OTX2 binding sites, whereas knockdown of OTX2 in human embryos compromised the expression of early lineage genes. Specifically, the depletion of 5hmC affected the activation of embryonic genes, which was further evaluated by ectopically expressing mouse Tet3 in human early embryos. These findings revealed distinct dynamics of 5hmC and unravelled its multifaceted functions in early human embryonic development.
Collapse
Affiliation(s)
- Dan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Rui Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Long
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Mengyao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Fan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xin Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fengyuan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ran Zhu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xinling Hou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhixin Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
| | - Yuqiong Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China.
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
20
|
Kohlrausch FB, Wang F, McKerrow W, Grivainis M, Fenyo D, Keefe DL. Mapping of long interspersed element-1 (L1) insertions by TIPseq provides information about sub chromosomal genetic variation in human embryos. J Assist Reprod Genet 2024; 41:2257-2269. [PMID: 38951360 PMCID: PMC11405744 DOI: 10.1007/s10815-024-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.
Collapse
Affiliation(s)
- Fabiana B Kohlrausch
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA.
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - Mark Grivainis
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| |
Collapse
|
21
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 PMCID: PMC12102071 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Cimadomo D, Innocenti F, Taggi M, Saturno G, Campitiello MR, Guido M, Vaiarelli A, Ubaldi FM, Rienzi L. How should the best human embryo in vitro be? Current and future challenges for embryo selection. Minerva Obstet Gynecol 2024; 76:159-173. [PMID: 37326354 DOI: 10.23736/s2724-606x.23.05296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In-vitro fertilization (IVF) aims at overcoming the causes of infertility and lead to a healthy live birth. To maximize IVF efficiency, it is critical to identify and transfer the most competent embryo within a cohort produced by a couple during a cycle. Conventional static embryo morphological assessment involves sequential observations under a light microscope at specific timepoints. The introduction of time-lapse technology enhanced morphological evaluation via the continuous monitoring of embryo preimplantation in vitro development, thereby unveiling features otherwise undetectable via multiple static assessments. Although an association exists, blastocyst morphology poorly predicts chromosomal competence. In fact, the only reliable approach currently available to diagnose the embryonic karyotype is trophectoderm biopsy and comprehensive chromosome testing to assess non-mosaic aneuploidies, namely preimplantation genetic testing for aneuploidies (PGT-A). Lately, the focus is shifting towards the fine-tuning of non-invasive technologies, such as "omic" analyses of waste products of IVF (e.g., spent culture media) and/or artificial intelligence-powered morphologic/morphodynamic evaluations. This review summarizes the main tools currently available to assess (or predict) embryo developmental, chromosomal, and reproductive competence, their strengths, the limitations, and the most probable future challenges.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy -
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Gaia Saturno
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maria R Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Maurizio Guido
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Filippo M Ubaldi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, Carlo Bo University of Urbino, Urbino, Italy
| |
Collapse
|
23
|
Lim J, Park C, Kim M, Kim H, Kim J, Lee DS. Advances in single-cell omics and multiomics for high-resolution molecular profiling. Exp Mol Med 2024; 56:515-526. [PMID: 38443594 PMCID: PMC10984936 DOI: 10.1038/s12276-024-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024] Open
Abstract
Single-cell omics technologies have revolutionized molecular profiling by providing high-resolution insights into cellular heterogeneity and complexity. Traditional bulk omics approaches average signals from heterogeneous cell populations, thereby obscuring important cellular nuances. Single-cell omics studies enable the analysis of individual cells and reveal diverse cell types, dynamic cellular states, and rare cell populations. These techniques offer unprecedented resolution and sensitivity, enabling researchers to unravel the molecular landscape of individual cells. Furthermore, the integration of multimodal omics data within a single cell provides a comprehensive and holistic view of cellular processes. By combining multiple omics dimensions, multimodal omics approaches can facilitate the elucidation of complex cellular interactions, regulatory networks, and molecular mechanisms. This integrative approach enhances our understanding of cellular systems, from development to disease. This review provides an overview of the recent advances in single-cell and multimodal omics for high-resolution molecular profiling. We discuss the principles and methodologies for representatives of each omics method, highlighting the strengths and limitations of the different techniques. In addition, we present case studies demonstrating the applications of single-cell and multimodal omics in various fields, including developmental biology, neurobiology, cancer research, immunology, and precision medicine.
Collapse
Affiliation(s)
- Jongsu Lim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chanho Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Minjae Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyukhee Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
24
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
25
|
Wang T, Peng J, Fan J, Tang N, Hua R, Zhou X, Wang Z, Wang L, Bai Y, Quan X, Wang Z, Zhang L, Luo C, Zhang W, Kang X, Liu J, Li L, Li L. Single-cell multi-omics profiling of human preimplantation embryos identifies cytoskeletal defects during embryonic arrest. Nat Cell Biol 2024; 26:263-277. [PMID: 38238450 DOI: 10.1038/s41556-023-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Human in vitro fertilized embryos exhibit low developmental capabilities, and the mechanisms that underlie embryonic arrest remain unclear. Here using a single-cell multi-omics sequencing approach, we simultaneously analysed alterations in the transcriptome, chromatin accessibility and the DNA methylome in human embryonic arrest due to unexplained reasons. Arrested embryos displayed transcriptome disorders, including a distorted microtubule cytoskeleton, increased genomic instability and impaired glycolysis, which were coordinated with multiple epigenetic reprogramming defects. We identified Aurora A kinase (AURKA) repression as a cause of embryonic arrest. Mechanistically, arrested embryos induced through AURKA inhibition resembled the reprogramming abnormalities of natural embryonic arrest in terms of the transcriptome, the DNA methylome, chromatin accessibility and H3K4me3 modifications. Mitosis-independent sequential activation of the zygotic genome in arrested embryos showed that YY1 contributed to human major zygotic genome activation. Collectively, our study decodes the reprogramming abnormalities and mechanisms of human embryonic arrest and the key regulators of zygotic genome activation.
Collapse
Affiliation(s)
- Teng Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Junhua Peng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jiaqi Fan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Ni Tang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Rui Hua
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xueliang Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Zhihao Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Longfei Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yanling Bai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xiaowan Quan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zimeng Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Chen Luo
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Weiqing Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
26
|
Latham KE. Preimplantation genetic testing: A remarkable history of pioneering, technical challenges, innovations, and ethical considerations. Mol Reprod Dev 2024; 91:e23727. [PMID: 38282313 DOI: 10.1002/mrd.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Preimplantation genetic testing (PGT) has emerged as a powerful companion to assisted reproduction technologies. The origins and history of PGT are reviewed here, along with descriptions of advances in molecular assays and sampling methods, their capabilities, and their applications in preventing genetic diseases and enhancing pregnancy outcomes. Additionally, the potential for increasing accuracy and genome coverage is considered, as well as some of the emerging ethical and legislative considerations related to the expanding capabilities of PGT.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Feng Y, Zhang Z, Hong Y, Ding Y, Liu L, Gao S, Fang H, Shi J. A DNA methylation haplotype block landscape in human tissues and preimplantation embryos reveals regulatory elements defined by comethylation patterns. Genome Res 2023; 33:2041-2052. [PMID: 37940553 PMCID: PMC10760529 DOI: 10.1101/gr.278146.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
DNA methylation and associated regulatory elements play a crucial role in gene expression regulation. Previous studies have focused primarily on the distribution of mean methylation levels. Advances in whole-genome bisulfite sequencing (WGBS) have enabled the characterization of DNA methylation haplotypes (MHAPs), representing CpG sites from the same read fragment on a single chromosome, and the subsequent identification of methylation haplotype blocks (MHBs), in which adjacent CpGs on the same fragment are comethylated. Using our expert-curated WGBS data sets, we report comprehensive landscapes of MHBs in 17 representative normal somatic human tissues and during early human embryonic development. Integrative analysis reveals MHBs as a distinctive type of regulatory element characterized by comethylation patterns rather than mean methylation levels. We show the enrichment of MHBs in open chromatin regions, tissue-specific histone marks, and enhancers, including super-enhancers. Moreover, we find that MHBs tend to localize near tissue-specific genes and show an association with differential gene expression that is independent of mean methylation. Similar findings are observed in the context of human embryonic development, highlighting the dynamic nature of MHBs during early development. Collectively, our comprehensive MHB landscapes provide valuable insights into the tissue specificity and developmental dynamics of DNA methylation.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuyang Hong
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Ding
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leiqin Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Gao
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiantao Shi
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
28
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
29
|
Mai L, Wen Z, Zhang Y, Gao Y, Lin G, Lian Z, Yang X, Zhou J, Lin X, Luo C, Peng W, Chen C, Peng J, Liu D, Marjani SL, Tao Q, Cui Y, Zhang J, Wu X, Weissman SM, Pan X. Shortcut barcoding and early pooling for scalable multiplex single-cell reduced-representation CpG methylation sequencing at single nucleotide resolution. Nucleic Acids Res 2023; 51:e108. [PMID: 37870443 PMCID: PMC10681715 DOI: 10.1093/nar/gkad892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5 ± 3.9%, covering 60.0 ± 1.4% of CpG islands and 71.6 ± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R = 0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 h of hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.
Collapse
Affiliation(s)
- Liyao Mai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zhiwei Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jingjing Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xianwei Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Jiajia Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Duolian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT 06050, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
| | - Yongping Cui
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
| | - Junxiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
30
|
Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H. Dissecting mammalian reproduction with spatial transcriptomics. Hum Reprod Update 2023; 29:794-810. [PMID: 37353907 PMCID: PMC10628492 DOI: 10.1093/humupd/dmad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to producing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering the reproductive system requires understanding the functions of each cell type and cell-cell interactions. Recent single-cell omics technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female reproductive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold the potential to revolutionize our understanding of mammalian reproduction. OBJECTIVE AND RATIONALE We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST technologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction community in the years to come. SEARCH METHODS The PubMed database was used in the search for peer-reviewed research articles and reviews using combinations of the following terms: 'spatial omics', 'fertility', 'reproduction', 'gametogenesis', 'embryogenesis', 'reproductive cancer', 'spatial transcriptomics', 'spermatogenesis', 'ovary', 'uterus', 'cervix', 'testis', and other keywords related to the subject area. All relevant publications until April 2023 were critically evaluated and discussed. OUTCOMES First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided. The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mammalian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multiple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often associated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST technologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided. Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of gene perturbations. WIDER IMPLICATIONS Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both basic and clinical reproductive research.
Collapse
Affiliation(s)
- Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Zhang YR, Yin TL, Zhou LQ. CRISPR/Cas9 technology: applications in oocytes and early embryos. J Transl Med 2023; 21:746. [PMID: 37875936 PMCID: PMC10594749 DOI: 10.1186/s12967-023-04610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Huang Y, Li L, An G, Yang X, Cui M, Song X, Lin J, Zhang X, Yao Z, Wan C, Zhou C, Zhao J, Song K, Ren S, Xia X, Fu X, Lan Y, Hu X, Wang W, Wang M, Zheng Y, Miao K, Bai X, Hutchins AP, Chang G, Gao S, Zhao XY. Single-cell multi-omics sequencing of human spermatogenesis reveals a DNA demethylation event associated with male meiotic recombination. Nat Cell Biol 2023; 25:1520-1534. [PMID: 37723297 DOI: 10.1038/s41556-023-01232-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.
Collapse
Affiliation(s)
- Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Geng An
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jing Lin
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaoling Zhang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xinyu Xia
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xin Fu
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Yu Lan
- Department of Reproductive Medicine Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Xuesong Hu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, P. R. China.
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P. R. China.
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, P. R. China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, P. R. China.
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China.
- National Clinical Research Center for Kidney Disease, Guangzhou, P. R. China.
| |
Collapse
|
33
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Han X, Guo J, Wang M, Zhang N, Ren J, Yang Y, Chi X, Chen Y, Yao H, Zhao YL, Yang YG, Sun Y, Xu J. Dynamic DNA 5-hydroxylmethylcytosine and RNA 5-methycytosine Reprogramming During Early Human Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:805-822. [PMID: 35644351 PMCID: PMC10787118 DOI: 10.1016/j.gpb.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
After implantation, complex and highly specialized molecular events render functionally distinct organ formation, whereas how the epigenome shapes organ-specific development remains to be fully elucidated. Here, nano-hmC-Seal, RNA bisulfite sequencing (RNA-BisSeq), and RNA sequencing (RNA-Seq) were performed, and the first multilayer landscapes of DNA 5-hydroxymethylcytosine (5hmC) and RNA 5-methylcytosine (m5C) epigenomes were obtained in the heart, kidney, liver, and lung of the human foetuses at 13-28 weeks with 123 samples in total. We identified 70,091 and 503 organ- and stage-specific differentially hydroxymethylated regions (DhMRs) and m5C-modified mRNAs, respectively. The key transcription factors (TFs), T-box transcription factor 20 (TBX20), paired box 8 (PAX8), krueppel-like factor 1 (KLF1), transcription factor 21 (TCF21), and CCAAT enhancer binding protein beta (CEBPB), specifically contribute to the formation of distinct organs at different stages. Additionally, 5hmC-enriched Alu elements may participate in the regulation of expression of TF-targeted genes. Our integrated studies reveal a putative essential link between DNA modification and RNA methylation, and illustrate the epigenetic maps during human foetal organogenesis, which provide a foundation for for an in-depth understanding of the epigenetic mechanisms underlying early development and birth defects.
Collapse
Affiliation(s)
- Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
35
|
Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 2023; 24:494-515. [PMID: 36864178 PMCID: PMC9979144 DOI: 10.1038/s41576-023-00580-2] [Citation(s) in RCA: 460] [Impact Index Per Article: 230.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/04/2023]
Abstract
The joint analysis of the genome, epigenome, transcriptome, proteome and/or metabolome from single cells is transforming our understanding of cell biology in health and disease. In less than a decade, the field has seen tremendous technological revolutions that enable crucial new insights into the interplay between intracellular and intercellular molecular mechanisms that govern development, physiology and pathogenesis. In this Review, we highlight advances in the fast-developing field of single-cell and spatial multi-omics technologies (also known as multimodal omics approaches), and the computational strategies needed to integrate information across these molecular layers. We demonstrate their impact on fundamental cell biology and translational research, discuss current challenges and provide an outlook to the future.
Collapse
Affiliation(s)
- Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Bernard Thienpont
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium.
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Fu P, Zhang D, Yang C, Yuan X, Luo X, Zheng H, Deng Y, Liu Q, Cui K, Gao F, Shi D. Whole-genome transcriptome and DNA methylation dynamics of pre-implantation embryos reveal progression of embryonic genome activation in buffaloes. J Anim Sci Biotechnol 2023; 14:94. [PMID: 37430306 DOI: 10.1186/s40104-023-00894-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND During mammalian pre-implantation embryonic development (PED), the process of maternal-to-zygote transition (MZT) is well orchestrated by epigenetic modification and gene sequential expression, and it is related to the embryonic genome activation (EGA). During MZT, the embryos are sensitive to the environment and easy to arrest at this stage in vitro. However, the timing and regulation mechanism of EGA in buffaloes remain obscure. RESULTS Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing (WGBS) to draw landscapes of transcription and DNA-methylation. Four typical developmental steps were classified during buffalo PED. Buffalo major EGA was identified at the 16-cell stage by the comprehensive analysis of gene expression and DNA methylation dynamics. By weighted gene co-expression network analysis, stage-specific modules were identified during buffalo maternal-to-zygotic transition, and key signaling pathways and biological process events were further revealed. Programmed and continuous activation of these pathways was necessary for success of buffalo EGA. In addition, the hub gene, CDK1, was identified to play a critical role in buffalo EGA. CONCLUSIONS Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT. It will lay a foundation for improving the in vitro development of buffalo embryos.
Collapse
Affiliation(s)
- Penghui Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- College of Animal Science and Technology, Southwest University, Chongqing, 402460, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, 530001, China
| | - Xiang Yuan
- Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, 530001, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK 1870 C, Frederiksberg, Denmark.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
37
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Qiu Y, Yan C, Zhao P, Zou Q. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data. Brief Bioinform 2023; 24:7147025. [PMID: 37122068 DOI: 10.1093/bib/bbad149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) technology attracts extensive attention in the biomedical field. It can be used to measure gene expression and analyze the transcriptome at the single-cell level, enabling the identification of cell types based on unsupervised clustering. Data imputation and dimension reduction are conducted before clustering because scRNA-seq has a high 'dropout' rate, noise and linear inseparability. However, independence of dimension reduction, imputation and clustering cannot fully characterize the pattern of the scRNA-seq data, resulting in poor clustering performance. Herein, we propose a novel and accurate algorithm, SSNMDI, that utilizes a joint learning approach to simultaneously perform imputation, dimensionality reduction and cell clustering in a non-negative matrix factorization (NMF) framework. In addition, we integrate the cell annotation as prior information, then transform the joint learning into a semi-supervised NMF model. Through experiments on 14 datasets, we demonstrate that SSNMDI has a faster convergence speed, better dimensionality reduction performance and a more accurate cell clustering performance than previous methods, providing an accurate and robust strategy for analyzing scRNA-seq data. Biological analysis are also conducted to validate the biological significance of our method, including pseudotime analysis, gene ontology and survival analysis. We believe that we are among the first to introduce imputation, partial label information, dimension reduction and clustering to the single-cell field. AVAILABILITY AND IMPLEMENTATION The source code for SSNMDI is available at https://github.com/yushanqiu/SSNMDI.
Collapse
Affiliation(s)
- Yushan Qiu
- College of Mathematics and Statistics, Shenzhen University, 518000, Guangdong, China
| | - Chang Yan
- College of Mathematics and Statistics, Shenzhen University, 518000, Guangdong, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610056, China
| |
Collapse
|
39
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
40
|
Zhou C, Halstead MM, Bonnet‐Garnier A, Schultz RM, Ross PJ. Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development. EMBO Rep 2023; 24:e55726. [PMID: 36779365 PMCID: PMC9986824 DOI: 10.15252/embr.202255726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
How histone modifications regulate changes in gene expression during preimplantation development in any species remains poorly understood. Using CUT&Tag to overcome limiting amounts of biological material, we profiled two activating (H3K4me3 and H3K27ac) and two repressive (H3K9me3 and H3K27me3) marks in bovine oocytes, 2-, 4-, and 8-cell embryos, morula, blastocysts, inner cell mass, and trophectoderm. In oocytes, broad bivalent domains mark developmental genes, and prior to embryonic genome activation (EGA), H3K9me3 and H3K27me3 co-occupy gene bodies, suggesting a global mechanism for transcription repression. During EGA, chromatin accessibility is established before canonical H3K4me3 and H3K27ac signatures. Embryonic transcription is required for this remodeling, indicating that maternally provided products alone are insufficient for reprogramming. Last, H3K27me3 plays a major role in restriction of cellular potency, as blastocyst lineages are defined by differential polycomb repression and transcription factor activity. Notably, inferred regulators of EGA and blastocyst formation strongly resemble those described in humans, as opposed to mice. These similarities suggest that cattle are a better model than rodents to investigate the molecular basis of human preimplantation development.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Animal Science University of CaliforniaDavisCAUSA
| | - Michelle M Halstead
- Université Paris‐Saclay, UVSQ, INRAE, BREEDJouy‐en‐JosasFrance
- Ecole Nationale Vétérinaire d'Alfort, BREEDMaisons‐AlfortFrance
| | - Amélie Bonnet‐Garnier
- Université Paris‐Saclay, UVSQ, INRAE, BREEDJouy‐en‐JosasFrance
- Ecole Nationale Vétérinaire d'Alfort, BREEDMaisons‐AlfortFrance
| | - Richard M Schultz
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Pablo J Ross
- Department of Animal Science University of CaliforniaDavisCAUSA
| |
Collapse
|
41
|
Simultaneous Measurement of DNA Methylation and Nucleosome Occupancy in Single Cells Using scNOMe-Seq. Methods Mol Biol 2023; 2611:231-247. [PMID: 36807071 DOI: 10.1007/978-1-0716-2899-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Single-cell Nucleosome Occupancy and Methylome sequencing (scNOMe-seq) is a multimodal assay that simultaneously measures endogenous DNA methylation and nucleosome occupancy (i.e., chromatin accessibility) in single cells. scNOMe-seq combines the activity of a GpC Methyltransferase, an enzyme which methylates cytosines in GpC dinucleotides, with bisulfite conversion, whereby unmethylated cytosines are converted into thymines. Because GpC Methyltransferase acts only on cytosines present in non-nucleosomal regions of the genome, the subsequent bisulfite conversion step not only detects the endogenous DNA methylation, but also reveals the genome-wide pattern of chromatin accessibility. Implementing this technology at the single-cell level helps to capture the dynamics governing methylation and accessibility vary across individual cells and cell types. Here, we provide a scalable plate-based protocol for preparing scNOMe-seq libraries from single nucleus suspensions.
Collapse
|
42
|
Li L, Zhao Y, Li H, Zhang S. BLTSA: pseudotime prediction for single cells by branched local tangent space alignment. Bioinformatics 2023; 39:7000337. [PMID: 36692140 PMCID: PMC9923702 DOI: 10.1093/bioinformatics/btad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/11/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION The development of single-cell RNA sequencing (scRNA-seq) technology makes it possible to study the cellular dynamic processes such as cell cycle and cell differentiation. Due to the difficulties in generating genuine time-series scRNA-seq data, it is of great importance to computationally infer the pseudotime of the cells along differentiation trajectory based on their gene expression patterns. The existing pseudotime prediction methods often suffer from the high level noise of single-cell data, thus it is still necessary to study the single-cell trajectory inference methods. RESULTS In this study, we propose a branched local tangent space alignment (BLTSA) method to infer single-cell pseudotime for multi-furcation trajectories. By assuming that single cells are sampled from a low-dimensional self-intersecting manifold, BLTSA first identifies the tip and branching cells in the trajectory based on cells' local Euclidean neighborhoods. Local coordinates within the tangent spaces are then determined by each cell's local neighborhood after clustering all the cells to different branches iteratively. The global coordinates for all the single cells are finally obtained by aligning the local coordinates based on the tangent spaces. We evaluate the performance of BLTSA on four simulation datasets and five real datasets. The experimental results show that BLTSA has obvious advantages over other comparison methods. AVAILABILITY AND IMPLEMENTATION R codes are available at https://github.com/LiminLi-xjtu/BLTSA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Limin Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yameng Zhao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huiran Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuqin Zhang
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
43
|
Iqbal W, Zhou W. Computational Methods for Single-cell DNA Methylome Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:48-66. [PMID: 35718270 PMCID: PMC10372927 DOI: 10.1016/j.gpb.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
Dissecting intercellular epigenetic differences is key to understanding tissue heterogeneity. Recent advances in single-cell DNA methylome profiling have presented opportunities to resolve this heterogeneity at the maximum resolution. While these advances enable us to explore frontiers of chromatin biology and better understand cell lineage relationships, they pose new challenges in data processing and interpretation. This review surveys the current state of computational tools developed for single-cell DNA methylome data analysis. We discuss critical components of single-cell DNA methylome data analysis, including data preprocessing, quality control, imputation, dimensionality reduction, cell clustering, supervised cell annotation, cell lineage reconstruction, gene activity scoring, and integration with transcriptome data. We also highlight unique aspects of single-cell DNA methylome data analysis and discuss how techniques common to other single-cell omics data analyses can be adapted to analyze DNA methylomes. Finally, we discuss existing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Waleed Iqbal
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Kong S, Li R, Tian Y, Zhang Y, Lu Y, Ou Q, Gao P, Li K, Zhang Y. Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Front Genet 2023; 13:1100016. [PMID: 36685871 PMCID: PMC9846559 DOI: 10.3389/fgene.2022.1100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, with the development of high-throughput single-cell sequencing technology, single-cell omics has been emerged as a powerful tool to understand the molecular basis of cellular mechanisms and refine our knowledge of diverse cell states. They can reveal the heterogeneity at different genetic layers and elucidate their associations by multiple omics analysis, providing a more comprehensive genetic map of biological regulatory networks. In the post-GWAS era, the molecular biological mechanisms influencing human diseases will be further elucidated by single-cell omics. This review mainly summarizes the development and trend of single-cell omics. This involves single-cell omics technologies, single-cell multi-omics technologies, multiple omics data integration methods, applications in various human organs and diseases, classic laboratory cell lines, and animal disease models. The review will reveal some perspectives for elucidating human diseases and constructing animal models.
Collapse
Affiliation(s)
- Siyuan Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rongrong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yunhan Tian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yaqiu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuhui Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiaoer Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peiwen Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
45
|
Yu L, Wang X, Mu Q, Tam SST, Loi DSC, Chan AKY, Poon WS, Ng HK, Chan DTM, Wang J, Wu AR. scONE-seq: A single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors. SCIENCE ADVANCES 2023; 9:eabp8901. [PMID: 36598983 PMCID: PMC9812385 DOI: 10.1126/sciadv.abp8901] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Single-cell multi-omics can provide a unique perspective on tumor cellular heterogeneity. Most previous single-cell whole-genome RNA sequencing (scWGS-RNA-seq) methods demonstrate utility with intact cells from fresh samples. Among them, many are not applicable to frozen samples that cannot produce intact single-cell suspensions. We have developed scONE-seq, a versatile scWGS-RNA-seq method that amplifies single-cell DNA and RNA without separating them from each other and hence is compatible with frozen biobanked samples. We benchmarked scONE-seq against existing methods using fresh and frozen samples to demonstrate its performance in various aspects. We identified a unique transcriptionally normal-like tumor clone by analyzing a 2-year frozen astrocytoma sample, demonstrating that performing single-cell multi-omics interrogation on biobanked tissue by scONE-seq could enable previously unidentified discoveries in tumor biology.
Collapse
Affiliation(s)
- Lei Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Xinlei Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Aden K. Y. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., China
| | - Wai Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., China
| | - Danny T. M. Chan
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong S.A.R., China
| | - Jiguang Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong S.A.R., China
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Center for Aging Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
- Corresponding author.
| |
Collapse
|
46
|
Tompkins JD. Discovering DNA Methylation, the History and Future of the Writing on DNA. JOURNAL OF THE HISTORY OF BIOLOGY 2022; 55:865-887. [PMID: 36239862 PMCID: PMC9941238 DOI: 10.1007/s10739-022-09691-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is a quintessential epigenetic mechanism. Widely considered a stable regulator of gene silencing, it represents a form of "molecular braille," chemically printed on DNA to regulate its structure and the expression of genetic information. However, there was a time when methyl groups simply existed in cells, mysteriously speckled across the cytosine building blocks of DNA. Why was the code of life chemically modified, apparently by "no accident of enzyme action" (Wyatt 1951)? If all cells in a body share the same genome sequence, how do they adopt unique functions and maintain stable developmental states? Do cells remember? In this historical perspective, I review epigenetic history and principles and the tools, key scientists, and concepts that brought us the synthesis and discovery of prokaryotic and eukaryotic methylated DNA. Drawing heavily on Gerard Wyatt's observation of asymmetric levels of methylated DNA across species, as well as to a pair of visionary 1975 DNA methylation papers, 5-methylcytosine is connected to DNA methylating enzymes in bacteria, the maintenance of stable cellular states over development, and to the regulation of gene expression through protein-DNA binding. These works have not only shaped our views on heritability and gene regulation but also remind us that core epigenetic concepts emerged from the intrinsic requirement for epigenetic mechanisms to exist. Driven by observations across prokaryotic and eukaryotic worlds, epigenetic systems function to access and interpret genetic information across all forms of life. Collectively, these works offer many guiding principles for our epigenetic understanding for today, and for the next generation of epigenetic inquiry in a postgenomics world.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Arthur Riggs Diabetes Metabolism and Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
47
|
Wen L, Li G, Huang T, Geng W, Pei H, Yang J, Zhu M, Zhang P, Hou R, Tian G, Su W, Chen J, Zhang D, Zhu P, Zhang W, Zhang X, Zhang N, Zhao Y, Cao X, Peng G, Ren X, Jiang N, Tian C, Chen ZJ. Single-cell technologies: From research to application. Innovation (N Y) 2022; 3:100342. [PMID: 36353677 PMCID: PMC9637996 DOI: 10.1016/j.xinn.2022.100342] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, more and more single-cell technologies have been developed. A vast amount of single-cell omics data has been generated by large projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these single-cell big data, thousands of bioinformatics algorithms for quality control, clustering, cell-type annotation, developmental inference, cell-cell transition, cell-cell interaction, and spatial analysis are developed. With powerful experimental single-cell technology and state-of-the-art big data analysis methods based on artificial intelligence, the molecular landscape at the single-cell level can be revealed. With spatial transcriptomics and single-cell multi-omics, even the spatial dynamic multi-level regulatory mechanisms can be deciphered. Such single-cell technologies have many successful applications in oncology, assisted reproduction, embryonic development, and plant breeding. We not only review the experimental and bioinformatics methods for single-cell research, but also discuss their applications in various fields and forecast the future directions for single-cell technologies. We believe that spatial transcriptomics and single-cell multi-omics will become the next booming business for mechanism research and commercial industry.
Collapse
Affiliation(s)
- Lu Wen
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Guoqiang Li
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hao Pei
- Mozhuo Biotech (Zhejiang) Co., Ltd., Tongxiang, Jiaxing 314500, China
| | | | - Miao Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rui Hou
- Geneis (Beijing) Co., Ltd., Beijing 100102, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing 100102, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiuxin Zhang
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangdun Peng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Centre (BIOPIC), Peking University, Beijing 100871, China
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Caihuan Tian
- Center of Peony, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
48
|
Koeck RM, Busato F, Tost J, Zandstra H, Remy S, Langie S, Gielen M, van Golde R, Dumoulin JCM, Brunner H, Zamani Esteki M, van Montfoort APA. At age 9, the methylome of assisted reproductive technology children that underwent embryo culture in different media is not significantly different on a genome-wide scale. Hum Reprod 2022; 37:2709-2721. [PMID: 36206092 PMCID: PMC9627755 DOI: 10.1093/humrep/deac213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Can we detect DNA methylation differences between ART children that underwent embryo culture in different media? SUMMARY ANSWER We identified no significant differences in site-specific or regional DNA methylation between the different culture medium groups. WHAT IS KNOWN ALREADY Embryo culture in G3 or K-SICM medium leads to differences in embryonic, neonatal and childhood outcomes, including growth and weight. The methylome may mediate this association as the period of in vitro culture of ART treatments coincides with epigenetic reprogramming. STUDY DESIGN, SIZE, DURATION This study was conducted as a follow-up to a previous culture medium comparison study in which couples were pseudo-randomized to embryo culture in G3 or K-SICM medium. Of the resultant singletons, 120 (n = 65 G3, n = 55 K-SICM), were recruited at age 9. PARTICIPANTS/MATERIALS, SETTING, METHODS The ART children provided a saliva sample from which the methylome was analysed using the Infinium MethylationEPIC array. After quality and context filtering, 106 (n = 57 G3, n = 49 K-SICM) samples and 659 708 sites were retained for the analyses. Differential methylation analyses were conducted using mixed effects linear models corrected for age, sex, sample plate and cell composition. These were applied to all cytosine-guanine dinucleotide (CpG) sites, various genomic regions (genes, promoters, CpG Islands (CGIs)) and as a targeted analysis of imprinted genes and birth weight-associated CpG sites. Differential variance was assessed using the improved epigenetic variable outliers for risk prediction analysis (iEVORA) algorithm and methylation outliers were identified using a previously defined threshold (upper or lower quartile plus or minus three times the interquartile range, respectively). MAIN RESULTS AND THE ROLE OF CHANCE After correcting for multiple testing, we did not identify any significantly differentially methylated CpG sites, genes, promoters or CGIs between G3 and K-SICM children despite a lenient corrected P-value threshold of 0.1. Targeted analyses of (sites within) imprinted genes and birth weight-associated sites also did not identify any significant differences. The number of DNA methylation outliers per sample was comparable between the culture medium groups. iEVORA identified 101 differentially variable CpG sites of which 94 were more variable in the G3 group. LARGE SCALE DATA Gene Expression Omnibus (GEO) GSE196432. LIMITATIONS, REASONS FOR CAUTION To detect significant methylation differences with a magnitude of <10% between the groups many more participants would be necessary; however, the clinical relevance of such small differences is unclear. WIDER IMPLICATIONS OF THE FINDINGS The results of this study are reassuring, suggesting that if there is an effect of the culture medium on DNA methylation (and methylation-mediated diseases risk), it does not differ between the two media investigated here. The findings concur with other methylome studies of ART neonates and children that underwent embryo culture in different media, which also found no significant methylome differences. STUDY FUNDING/COMPETING INTEREST(S) Study funded by March of Dimes (6-FY13-153), EVA (Erfelijkheid Voortplanting & Aanleg) specialty programme (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. The authors do not report any conflicts of interest relevant to this study. TRIAL REGISTRATION NUMBER Dutch Trial register-NL4083.
Collapse
Affiliation(s)
- Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Florence Busato
- Laboratory for Epigenetics & Environment, CEA-Centre National de Recherche en Genomique Humaine, Evry, France
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, CEA-Centre National de Recherche en Genomique Humaine, Evry, France
| | - Heleen Zandstra
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sylvie Remy
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Sabine Langie
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, The Netherlands
| | - Marij Gielen
- Department of Epidemiology and Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ron van Golde
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John C M Dumoulin
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Han Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aafke P A van Montfoort
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
49
|
Chen Y, Zhang S. Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data. Biomolecules 2022; 12:biom12101539. [PMID: 36291748 PMCID: PMC9599378 DOI: 10.3390/biom12101539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recent advancement in single-cell RNA sequencing (scRNA-seq) technology is gaining more and more attention. Cell type annotation plays an essential role in scRNA-seq data analysis. Several computational methods have been proposed for automatic annotation. Traditional cell type annotation is to first cluster the cells using unsupervised learning methods based on the gene expression profiles, then to label the clusters using the aggregated cluster-level expression profiles and the marker genes’ information. Such procedure relies heavily on the clustering results. As the purity of clusters cannot be guaranteed, false detection of cluster features may lead to wrong annotations. In this paper, we improve this procedure and propose an Automatic Cell type Annotation Method (ACAM). ACAM delineates a clear framework to conduct automatic cell annotation through representative cluster identification, representative cluster annotation using marker genes, and the remaining cells’ classification. Experiments on seven real datasets show the better performance of ACAM compared to six well-known cell type annotation methods.
Collapse
Affiliation(s)
- Yu Chen
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Shuqin Zhang
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
- Key Laboratory of Mathematics for Nonlinear Science (Ministry of Education), Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
50
|
Childs CJ, Eiken MK, Spence JR. Approaches to benchmark and characterize in vitro human model systems. Development 2022; 149:dev200641. [PMID: 36214410 PMCID: PMC10906492 DOI: 10.1242/dev.200641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
In vitro human models, such as gastruloids and organoids, are complex three-dimensional (3D) structures often consist of cells from multiple germ layers that possess some attributes of a developing embryo or organ. To use these models to interrogate human development and organogenesis, these 3D models must accurately recapitulate aspects of their in vivo counterparts. Recent advances in single-cell technologies, including sequencing and spatial approaches, have enabled efforts to better understand and directly compare organoids with native tissues. For example, single-cell genomic efforts have created cell and organ atlases that enable benchmarking of in vitro models and can also be leveraged to gain novel biological insights that can be used to further improve in vitro models. This Spotlight discusses the state of current in vitro model systems, the efforts to create large publicly available atlases of the developing human and how these data are being used to improve organoids. Limitations and perspectives on future efforts are also discussed.
Collapse
Affiliation(s)
- Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|