1
|
Lee EJ, Sun R, Kim J. The self-renewal function of Oct-4 can be replaced by the EWS-Oct-4 fusion protein in embryonic stem cells. Cell Mol Life Sci 2025; 82:166. [PMID: 40251420 PMCID: PMC12008092 DOI: 10.1007/s00018-025-05701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Octamer-binding transcription factor 4 (Oct-4) is essential for maintenance and pluripotency of embryonic stem (ES) cells. Despite the structural similarities between Oct-4 and its homologs (Oct-1, Oct-2, and Oct-6), these homologs cannot serve as substitutes for Oct-4 when generating stem cell colonies. While nuclear receptor subfamily 5, group A, member 2 (Nr5a2) can temporarily serve as a substitute for Oct-4 during cellular reprogramming, it is insufficient to maintain these functions in ES cells. The EWS-Oct-4 fusion protein, which was identified in human tumors, is a viable alternative that can potentially sustain and enhance ES cell functions. This study used ZHBTc4 ES cells, which have tetracycline-regulated Oct-4 expression, to explore the capabilities of EWS-Oct-4. It employed a variety of assays, including western blotting, immunocytochemistry, RT-PCR, luciferase reporter assays, flow cytometry, and teratoma formation assays. EWS-Oct-4 preserved the self-renewal capacity of Oct-4-null ES cells, as demonstrated by their undifferentiated morphology and increased expression of pluripotency markers such as Sox2, Nanog, and SSEA-1. It also boosted cell proliferation and influenced cell cycle dynamics by downregulating p21 and upregulating Oct-4 target genes, including Rex-1 and fibroblast growth factor-4. Epithelial markers were upregulated and mesenchymal markers were downregulated, suggesting a shift toward an epithelial phenotype. Prominent teratoma formation further confirmed the functionality of EWS-Oct-4 in vivo. The integrity and specific functional domains of EWS-Oct-4 were critical for these effects. Finally, comparative transcriptomic analysis revealed that ES cells expressing EWS-Oct-4 and those expressing Oct-4 had highly similar global gene expression profiles, with distinct variations in differentially expressed genes. These findings indicate that EWS-Oct-4 can effectively replace Oct-4, which has significant implications for advancements in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Eun Joo Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ruijing Sun
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea.
- Stress-Responding Bionanomaterial Center, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
2
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Budreika A, Phoenix JT, Kostlan RJ, Deegan CD, Ferrari MG, Young KS, Fanning SW, Kregel S. The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells. Cancers (Basel) 2025; 17:306. [PMID: 39858088 PMCID: PMC11763476 DOI: 10.3390/cancers17020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR-NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. METHODS We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. RESULTS We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. CONCLUSIONS Our work provides new insight into NKX3.1's oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer.
Collapse
Affiliation(s)
- Audris Budreika
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - John T. Phoenix
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Raymond J. Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carleen D. Deegan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Kristen S. Young
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sean W. Fanning
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Steven Kregel
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| |
Collapse
|
4
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
5
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
6
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Bell D, Bell AH, Weber RS, Hanna EY. Intestinal-Type Adenocarcinoma in Head and Neck: Dissecting Oncogenic Gene Alterations Through Whole Transcriptome and Exome Analysis. Mod Pathol 2024; 37:100372. [PMID: 37914089 DOI: 10.1016/j.modpat.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Adenocarcinomas of the nasal/paranasal sinuses are uncommon, but intestinal-type adenocarcinomas (ITACs) are important. Due to the rarity of these tumors, their molecular profile is not well known. To further investigate the molecular profile and find potential oncogenic drivers, we compared the whole transcriptome and exome of ITACs at different anatomic locations in the head and neck. Twenty-one head and neck adenocarcinomas were used in this study, divided into 10 sinonasal adenocarcinomas (SNT) and 11 extrasinonasal (T) head and neck adenocarcinomas according to anatomic location and histology. Tumor samples along with normal mucosa were microdissected from formalin-fixed, paraffin-embedded samples, and RNA and DNA were subjected to whole-transcriptome and -exome shotgun sequencing. Analysis of ITACs at sinonasal locations showed 410 subtype-specific differentially expressed (DE) genes and noncoding transcripts compared with the group of other anatomic locations, with 2909 subtype-specific DE genes. The groups shared 872 genes, with 17 highly different or opposing DE genes. Whole-exome mutation analysis revealed the gene MLL3 (KMT2C) to be exhibiting the most frequent loss-of-function mutations in all adenocarcinomas investigated. The results suggest that the head and neck ITACs investigated were mainly caused by loss-of-function mutations in MLL3 that disabled chromatin methylation and remodeling of all MLL3-targeted enhancers in the tumors. This changed the activity of multiple genes/gene clusters, supporting oncogenicity mostly via pathways of signaling, dedifferentiation, proliferation, migration, and immune and inflammatory deregulation, indicating a truly epigenetic event as the root cause for the heterogenous diversity of these enteric types of cancer. The data of this study form the basis for understanding cell fate determination and cellular homeostasis in the normal respiratory mucosa at different anatomic sites and show the contribution of different mucosal components to the etiology/molecular pathology of ITAC.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Achim H Bell
- Departments of Pathology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
9
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Sasaki K, Miyoshi N, Kobayashi S, Doki Y, Eguchi H, Ishii H. Drug Discovery and Development of miRNA-Based Nucleotide Drugs for Gastrointestinal Cancer. Biomedicines 2023; 11:2235. [PMID: 37626731 PMCID: PMC10452413 DOI: 10.3390/biomedicines11082235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Short non-coding RNAs, miRNAs, play roles in the control of cell growth and differentiation in cancer. Reportedly, the introduction of miRNAs could reduce the biologically malignant behavior of cancer cells, suggesting a possible use as therapeutic reagents. Given that the forced expression of several miRNAs, including miR-302, results in the cellular reprograming of human and mouse cells, which is similar to the effects of the transcription factors Oct4, Sox2, Klf4, and c-Myc, this suggests that the selective introduction of several miRNAs will be able to achieve anti-cancer effects at the epigenetic and metabolic levels. In this review article, we bring together the recent advances made in studies of microRNA-based therapeutic approaches to therapy-resistant cancers, especially in gastrointestinal organs.
Collapse
Affiliation(s)
- Hiromichi Sato
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Tomoaki Hara
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Sikun Meng
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Yoshiko Tsuji
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Yasuko Arao
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| | - Kazuki Sasaki
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Osaka, Japan; (H.S.)
| |
Collapse
|
10
|
Sills ES, Wood SH. Epigenetics, ovarian cell plasticity, and platelet-rich plasma: Mechanistic theories. REPRODUCTION & FERTILITY 2022; 3:C44-C51. [PMID: 36255031 PMCID: PMC9782453 DOI: 10.1530/raf-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Ovarian platelet-rich plasma (PRP) is claimed to restore the fertility potential by improving reserve, an effect perhaps mediated epigenetically by platelet-discharged regulatory elements rather than gonadotropin-activated G-protein coupled receptors, as with stimulated in vitro fertilization (IVF). The finding that fresh activated platelet releasate includes factors able to promote developmental signaling networks necessary to enable cell pluripotency tends to support this theory. The mechanistic uncertainty of intraovarian PRP notwithstanding, at least two other major challenges confront this controversial intervention. The first challenge is to clarify how perimenopausal ovarian function is reset to levels consistent with ovulation. Perhaps a less obvious secondary problem is to confine this renewal such that any induced recalibration of cellular plasticity is kept within acceptable physiologic bounds. Thus, any 'drive' to ovarian rejuvenation must incorporate both accelerator and brake. Ovarian aging may be best viewed as a safeguard against pathologic overgrowth, where senescence operates as an evolved tumor-suppression response. While most ovary cells reach the close of their metabolic life span with low risk for hypertrophy, enhanced lysosomal activity and the proinflammatory 'senescence-associated secretory phenotype' usually offsets this advantage over time. But is recovery of ovarian fitness possible, even if only briefly prior to IVF? Alterations in gap junctions, bio-conductive features, and modulation of gene regulatory networks after PRP use in other tissues are discussed here alongside early data reported from reproductive medicine.
Collapse
Affiliation(s)
- E Scott Sills
- Office for Reproductive Research, Center for Advanced Genetics/FertiGen, San Clemente, California, USA,Regenerative Biology Group, Fertility Reserve Bank San Clemente, California, USA
| | | |
Collapse
|
11
|
Song JH, Choi J, Hong YJ, La H, Hong TK, Hong K, Do JT. Developmental Potency and Metabolic Traits of Extended Pluripotency Are Faithfully Transferred to Somatic Cells via Cell Fusion-Induced Reprogramming. Cells 2022; 11:cells11203266. [PMID: 36291134 PMCID: PMC9600027 DOI: 10.3390/cells11203266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs) are known for diverse differentiation potency in both extraembryonic and embryonic lineages, suggesting new possibilities as a developmental research model. Although various features of EPSCs have been defined, their ability to directly transfer extended pluripotency to differentiated somatic cells by cell fusion remains to be elucidated. Here, we derived EPSCs from eight-cell mouse embryos and confirmed their extended pluripotency at the molecular level and extraembryonic differentiation ability. Then, they were fused with OG2+/− ROSA+/− neural stem cells (NSCs) by the polyethylene-glycol (PEG)-mediated method and further analyzed. The resulting fused hybrid cells exhibited pluripotential markers with upregulated EPSC-specific gene expression. Furthermore, the hybrid cells contributed to the extraembryonic and embryonic lineages in vivo and in vitro. RNA sequencing analysis confirmed that the hybrid cells showed distinct global expression patterns resembling EPSCs without parental expression of NSC markers, indicating the complete acquisition of extended pluripotency and the erasure of the somatic memory of NSCs. Furthermore, ultrastructural observation and metabolic analysis confirmed that the hybrid cells rearranged the mitochondrial morphology and bivalent metabolic profile to those of EPSCs. In conclusion, the extended pluripotency of EPSCs could be transferred to somatic cells through fusion-induced reprogramming.
Collapse
Affiliation(s)
- Jae-Hoon Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Yean-Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Tae-Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3673
| |
Collapse
|
12
|
von Joest M, Chen C, Douché T, Chantrel J, Chiche A, Gianetto QG, Matondo M, Li H. Amphiregulin mediates non-cell-autonomous effect of senescence on reprogramming. Cell Rep 2022; 40:111074. [PMID: 35830812 DOI: 10.1016/j.celrep.2022.111074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest with a dynamic secretome, termed the senescence-associated secretory phenotype (SASP). Senescence is a cell-intrinsic barrier for reprogramming, whereas the SASP facilitates cell fate conversion in non-senescent cells. However, the mechanisms by which reprogramming-induced senescence regulates cell plasticity are not well understood. Here, we investigate how the heterogeneity of paracrine senescence impacts reprogramming. We show that senescence promotes in vitro reprogramming in a stress-dependent manner. Unbiased proteomics identifies a catalog of SASP factors involved in the cell fate conversion. Amphiregulin (AREG), frequently secreted by senescent cells, promotes in vitro reprogramming by accelerating proliferation and the mesenchymal-epithelial transition via EGFR signaling. AREG treatment diminishes the negative effect of donor age on reprogramming. Finally, AREG enhances in vivo reprogramming in skeletal muscle. Hence, various SASP factors can facilitate cellular plasticity to promote reprogramming and tissue repair.
Collapse
Affiliation(s)
- Mathieu von Joest
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Cheng Chen
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Thibaut Douché
- Proteomics Platform, Mass Spectrometry for Biology Unit (MSBio), CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Jeremy Chantrel
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Aurélie Chiche
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit (MSBio), CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, CNRS USR 3756, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit (MSBio), CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Han Li
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
13
|
Pan Y, Gu Z, Lyu Y, Yang Y, Chung M, Pan X, Cai S. Link between senescence and cell fate: Senescence-associated secretory phenotype (SASP) and its effects on stem cell fate transition. Rejuvenation Res 2022; 25:160-172. [PMID: 35658548 DOI: 10.1089/rej.2022.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Senescence is a form of durable cell cycle arrest elicited in response to a wide range of stimuli. Senescent cells remain metabolically active and secrete a variety of factors collectively termed senescence-associated secretory phenotype (SASP). SASP is highly pleiotropic and can impact numerous biological processes in which it has both beneficial and deleterious roles. The underlying mechanisms by which SASP exerts its pleiotropic influence remain largely unknown. SASP serves as an environmental factor, which regulates stem cell differentiation and alters its routine. The latter can potentially be accomplished through dedifferentiation, transdifferentiation, or reprogramming. Behavioral changes that cells undergo when exposed to SASP are involved in several senescence-associated physiological and pathological phenomena. These findings provide clues for identifying possible interventions to reduce the deleterious effects without interfering in the beneficial outcomes. Here, we discuss the multifaced effects of SASP and the changes occurring in cellular states upon exposure to SASP factors.
Collapse
Affiliation(s)
- Yu Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Zhenzhen Gu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yansi Lyu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yi Yang
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Manhon Chung
- Shanghai Jiao Tong University School of Medicine, 56694, Shanghai, China;
| | - Xiaohua Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Sa Cai
- Shenzhen University, 47890, 3688 Nanhai Avenue, Nanshan District, Shenzhen, Shenzhen, China, 518060;
| |
Collapse
|
14
|
VandenBosch LS, Luu K, Timms AE, Challam S, Wu Y, Lee AY, Cherry TJ. Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal cis-Regulatory Elements. Transl Vis Sci Technol 2022; 11:16. [PMID: 35435921 PMCID: PMC9034719 DOI: 10.1167/tvst.11.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Prior studies have demonstrated the significance of specific cis-regulatory variants in retinal disease; however, determining the functional impact of regulatory variants remains a major challenge. In this study, we utilized a machine learning approach, trained on epigenomic data from the adult human retina, to systematically quantify the predicted impact of cis-regulatory variants. Methods We used human retinal DNA accessibility data (ATAC-seq) to determine a set of 18.9k high-confidence, putative cis-regulatory elements. Eighty percent of these elements were used to train a machine learning model utilizing a gapped k-mer support vector machine-based approach. In silico saturation mutagenesis and variant scoring was applied to predict the functional impact of all potential single nucleotide variants within cis-regulatory elements. Impact scores were tested in a 20% hold-out dataset and compared to allele population frequency, phylogenetic conservation, transcription factor (TF) binding motifs, and existing massively parallel reporter assay data. Results We generated a model that distinguishes between human retinal regulatory elements and negative test sequences with 95% accuracy. Among a hold-out test set of 3.7k human retinal CREs, all possible single nucleotide variants were scored. Variants with negative impact scores correlated with higher phylogenetic conservation of the reference allele, disruption of predicted TF binding motifs, and massively parallel reporter expression. Conclusions We demonstrated the utility of human retinal epigenomic data to train a machine learning model for the purpose of predicting the impact of non-coding regulatory sequence variants. Our model accurately scored sequences and predicted putative transcription factor binding motifs. This approach has the potential to expedite the characterization of pathogenic non-coding sequence variants in the context of unexplained retinal disease. Translational Relevance This workflow and resulting dataset serve as a promising genomic tool to facilitate the clinical prioritization of functionally disruptive non-coding mutations in the retina.
Collapse
Affiliation(s)
- Leah S. VandenBosch
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew E. Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shriya Challam
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Yue Wu
- University of Washington Department of Ophthalmology, Seattle, WA, USA
| | - Aaron Y. Lee
- University of Washington Department of Ophthalmology, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Timothy J. Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, WA, USA
| |
Collapse
|
15
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
16
|
Meng X, Zhou A, Huang Y, Zhang Y, Xu Y, Shao K, Ning X. N-Cadherin Nanoantagonist Driven Mesenchymal-to-Epithelial Transition in Fibroblasts for Improving Reprogramming Efficiency. NANO LETTERS 2021; 21:5540-5546. [PMID: 34161107 DOI: 10.1021/acs.nanolett.1c00880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Collapse
Affiliation(s)
- Xia Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Yu Huang
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Kaifeng Shao
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Fu M, Chen H, Cai Z, Yang Y, Feng Z, Zeng M, Chen L, Qin Y, Cai B, Zhu P, Zhou C, Yu S, Guo J, Liu J, Cao S, Pei D. Forkhead box family transcription factors as versatile regulators for cellular reprogramming to pluripotency. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:17. [PMID: 34212295 PMCID: PMC8249537 DOI: 10.1186/s13619-021-00078-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
Forkhead box (Fox) transcription factors play important roles in mammalian development and disease. However, their function in mouse somatic cell reprogramming remains unclear. Here, we report that FoxD subfamily and FoxG1 accelerate induced pluripotent stem cells (iPSCs) generation from mouse fibroblasts as early as day4 while FoxA and FoxO subfamily impede this process obviously. More importantly, FoxD3, FoxD4 and FoxG1 can replace Oct4 respectively and generate iPSCs with germline transmission together with Sox2 and Klf4. On the contrary, FoxO6 almost totally blocks reprogramming through inhibiting cell proliferation, suppressing the expression of pluripotent genes and hindering the process of mesenchymal to epithelial transition (MET). Thus, our study uncovers unexpected roles of Fox transcription factors in reprogramming and offers new insights into cell fate transition.
Collapse
Affiliation(s)
- Meijun Fu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Huan Chen
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Zepo Cai
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Yihang Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Ziyu Feng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Mengying Zeng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Lijun Chen
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China.,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Baomei Cai
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Pinghui Zhu
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Shangtao Cao
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Duanqing Pei
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical School, Guangzhou, 511436, China. .,CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China. .,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
18
|
Biological importance of OCT transcription factors in reprogramming and development. Exp Mol Med 2021; 53:1018-1028. [PMID: 34117345 PMCID: PMC8257633 DOI: 10.1038/s12276-021-00637-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ectopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences. Cells can be reprogrammed into induced pluripotent stem cells (iPSCs), embryonic-like stem cells that can turn into any cell type and have extensive potential medical uses, without adding the transcription factor OCT4. Although other nearly identical OCT family members had been tried, only OCT4 could induce reprogramming and was previously thought to be indispensable. However, it now appears that the reprogramming can be induced by multiple pathways, as detailed in a review by Hans Schöler, Max Planck Institute for Biomolecular Medicine, Münster, and Johnny Kim, Max Planck Institute for Heart and Lung Research, Bad Nauheim, in Germany. They report that any factors that trigger cells to activate endogeous OCT4 can produce iPSCs without exogeously admistration of OCT4. The mechanisms for producing iPSCs can differ between species. These results illuminate the complex mechanisms of reprogramming.
Collapse
|
19
|
AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency. Proc Natl Acad Sci U S A 2021; 118:2104841118. [PMID: 34088849 DOI: 10.1073/pnas.2104841118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Somatic cell transcription factors are critical to maintaining cellular identity and constitute a barrier to human somatic cell reprogramming; yet a comprehensive understanding of the mechanism of action is lacking. To gain insight, we examined epigenome remodeling at the onset of human nuclear reprogramming by profiling human fibroblasts after fusion with murine embryonic stem cells (ESCs). By assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing we identified enrichment for the activator protein 1 (AP-1) transcription factor c-Jun at regions of early transient accessibility at fibroblast-specific enhancers. Expression of a dominant negative AP-1 mutant (dnAP-1) reduced accessibility and expression of fibroblast genes, overcoming the barrier to reprogramming. Remarkably, efficient reprogramming of human fibroblasts to induced pluripotent stem cells was achieved by transduction with vectors expressing SOX2, KLF4, and inducible dnAP-1, demonstrating that dnAP-1 can substitute for exogenous human OCT4. Mechanistically, we show that the AP-1 component c-Jun has two unexpected temporally distinct functions in human reprogramming: 1) to potentiate fibroblast enhancer accessibility and fibroblast-specific gene expression, and 2) to bind to and repress OCT4 as a complex with MBD3. Our findings highlight AP-1 as a previously unrecognized potent dual gatekeeper of the somatic cell state.
Collapse
|
20
|
Brown KE, Fisher AG. Reprogramming lineage identity through cell-cell fusion. Curr Opin Genet Dev 2021; 70:15-23. [PMID: 34087754 DOI: 10.1016/j.gde.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The conversion of differentiated cells to a pluripotent state through somatic cell nuclear transfer provided the first unequivocal evidence that differentiation was reversible. In more recent times, introducing a combination of key transcription factors into terminally differentiated mammalian cells was shown to drive their conversion to induced pluripotent stem cells (iPSCs). These discoveries were transformative, but the relatively slow speed (2-3 weeks) and low efficiency of reprogramming (0.1-1%) made deciphering the underlying molecular mechanisms difficult and complex. Cell fusion provides an alternative reprogramming approach that is both efficient and tractable, particularly when combined with modern multi-omics analysis of individual cells. Here we review the history and the recent advances in cell-cell fusion that are enabling a better understanding cell fate conversion, and we discuss how this knowledge could be used to shape improved strategies for regenerative medicine.
Collapse
Affiliation(s)
- Karen E Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
21
|
ERN1 knockdown modifies the effect of glucose deprivation on homeobox gene expressions in U87 glioma cells. Endocr Regul 2021; 54:196-206. [PMID: 32857719 DOI: 10.2478/enr-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of the present investigation was to study the expression of genes encoding homeobox proteins ZEB2 (zinc finger E-box binding homeobox 2), TGIF1 (TGFB induced factor homeobox 1), SPAG4 (sperm associated antigen 4), LHX1 (LIM homeobox 1), LHX2, LHX6, NKX3-1 (NK3 homeobox 1), and PRRX1 (paired related homeobox 1) in U87 glioma cells in response to glucose deprivation in control glioma cells and cells with knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), the major pathway of the endoplasmic reticulum stress signaling, for evaluation of it possible significance in the control of glioma growth through ERN1 signaling and chemoresistance. METHODS The expression level of homeobox family genes was studied in control (transfected by vector) and ERN1 knockdown U87 glioma cells under glucose deprivation condition by real-time quantitative polymerase chain reaction. RESULTS It was shown that the expression level of ZEB2, TGIF1, PRRX1, and LHX6 genes was up-regulated in control glioma cells treated by glucose deprivation. At the same time, the expression level of three other genes (NKX3-1, LHX1, and LHX2) was down-regulated. Furthermore, ERN1 knockdown of glioma cells significantly modified the effect glucose deprivation condition on the expression almost all studied genes. Thus, treatment of glioma cells without ERN1 enzymatic activity by glucose deprivation condition lead to down-regulation of the expression level of ZEB2 and SPAG4 as well as to more significant up-regulation of PRRX1 and TGIF1 genes. Moreover, the expression of LHX6 and NKX3-1 genes lost their sensitivity to glucose deprivation but LHX1 and LHX2 genes did not change it significantly. CONCLUSIONS The results of this investigation demonstrate that ERN1 knockdown significantly modifies the sensitivity of most studied homeobox gene expressions to glucose deprivation condition and that these changes are a result of complex interaction of variable endoplasmic reticulum stress related and unrelated regulatory factors and contributed to glioma cell growth and possibly to their chemoresistance.
Collapse
|
22
|
Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 2021; 39:510-519. [PMID: 33257861 PMCID: PMC7610615 DOI: 10.1038/s41587-020-0742-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.
Collapse
Affiliation(s)
- Alex H M Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Jesus Eduardo Rojo Arias
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Anka Swiersy
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Seth L Shipman
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Kiavash Kiaee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Richie E Kohman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Matthew Dysart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Leeper
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Wren Saylor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jeremy Y Huang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany.
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- GC Therapeutics, Inc, Cambridge, MA, USA.
| |
Collapse
|
23
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Abstract
Organoids are three-dimensional structures that are derived from the self-organization of stem cells as they differentiate in vitro. The plasticity of stem cells is one of the major criteria for generating organoids most similar to the tissue structures they intend to mimic. Stem cells are cells with unique properties of self-renewal and differentiation. Depending on their origin, a distinction is made between pluripotent (embryonic) stem cells (PSCs), adult (or tissue) stem cells (ASCs), and those obtained by somatic reprogramming, so-called induced pluripotent stem cells (iPSCs). While most data since the 1980s have been acquired in the mouse model, and then from the late 1990s in humans, the process of somatic reprogammation has revolutionized the field of stem cell research. For domestic animals, numerous attempts have been made to obtain PSCs and iPSCs, an approach that makes it possible to omit the use of embryos to derive the cells. Even if the plasticity of the cells obtained is not always optimal, the recent progress in obtaining reprogrammed cells is encouraging. Along with PSCs and iPSCs, many organoid derivations in animal species are currently obtained from ASCs. In this study, we present state-of-the-art stem cell research according to their origins in the various animal models developed.
Collapse
Affiliation(s)
- Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, CSC USC1361, Bron, France.
| |
Collapse
|
25
|
Antao AM, Ramakrishna S, Kim KS. The Role of Nkx3.1 in Cancers and Stemness. Int J Stem Cells 2021; 14:168-179. [PMID: 33632988 PMCID: PMC8138659 DOI: 10.15283/ijsc20121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
The well-known androgen-regulated homeobox gene, NKX3.1, is located on the short arm of chromosome 8. It is the first known prostate epithelium-specific marker, and is a transcription factor involved in development of the testes and prostate. In addition to specifying the prostate epithelium and maintaining normal prostate secretory function, Nkx3.1 is an established marker for prostate cancer. Over the years, however, this gene has been implicated in various other cancers, and technological advances have allowed determination of its role in other cellular functions. Nkx3.1 has also been recently identified as a factor capable of replacing Oct4 in cellular reprogramming. This review highlights the role of this tumor suppressor and briefly describes its functions, ranging from prostate development to maintenance of stemness and cellular reprogramming.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
Xu X, Du Y, Ma L, Zhang S, Shi L, Chen Z, Zhou Z, Hui Y, Liu Y, Fang Y, Fan B, Liu Z, Li N, Zhou S, Jiang C, Liu L, Zhang X. Mapping germ-layer specification preventing genes in hPSCs via genome-scale CRISPR screening. iScience 2021; 24:101926. [PMID: 33385119 PMCID: PMC7772566 DOI: 10.1016/j.isci.2020.101926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological processes that determine the entry of three germ layers of human pluripotent stem cells (hPSCs) is a central question in developmental and stem cell biology. Here, we genetically engineered hPSCs with the germ layer reporter and inducible CRISPR/Cas9 knockout system, and a genome-scale screening was performed to define pathways restricting germ layer specification. Genes clustered in the key biological processes, including embryonic development, mRNA processing, metabolism, and epigenetic regulation, were centered in the governance of pluripotency and lineage development. Other than typical pluripotent transcription factors and signaling molecules, loss of function of mesendodermal specifiers resulted in advanced neuroectodermal differentiation, given their inter-germ layer antagonizing effect. Regarding the epigenetic superfamily, microRNAs enriched in hPSCs showed clear germ layer-targeting specificity. The cholesterol synthesis pathway maintained hPSCs via retardation of neuroectoderm specification. Thus, in this study, we identified a full landscape of genetic wiring and biological processes that control hPSC self-renewal and trilineage specification.
Collapse
Affiliation(s)
- Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Lei Shi
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhenyu Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongliang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Cizhong Jiang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
27
|
Kim KP, Choi J, Yoon J, Bruder JM, Shin B, Kim J, Arauzo-Bravo MJ, Han D, Wu G, Han DW, Kim J, Cramer P, Schöler HR. Permissive epigenomes endow reprogramming competence to transcriptional regulators. Nat Chem Biol 2021; 17:47-56. [PMID: 32807969 DOI: 10.1038/s41589-020-0618-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Identifying molecular and cellular processes that regulate reprogramming competence of transcription factors broadens our understanding of reprogramming mechanisms. In the present study, by a chemical screen targeting major epigenetic pathways in human reprogramming, we discovered that inhibiting specific epigenetic roadblocks including disruptor of telomeric silencing 1-like (DOT1L)-mediated H3K79/K27 methylation, but also other epigenetic pathways, catalyzed by lysine-specific histone demethylase 1A, DNA methyltransferases and histone deacetylases, allows induced pluripotent stem cell generation with almost all OCT factors. We found that simultaneous inhibition of these pathways not only dramatically enhances reprogramming competence of most OCT factors, but in fact enables dismantling of species-dependent reprogramming competence of OCT6, NR5A1, NR5A2, TET1 and GATA3. Harnessing these induced permissive epigenetic states, we performed an additional screen with 98 candidate genes. Thereby, we identified 25 transcriptional regulators (OTX2, SIX3, and so on) that can functionally replace OCT4 in inducing pluripotency. Our findings provide a conceptual framework for understanding how transcription factors elicit reprogramming in dependency of the donor cell epigenome that differs across species.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jinmi Choi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Early Discovery, Ksilink, Strasbourg, France
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Borami Shin
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Dong Han
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
28
|
Wang NB, Beitz AM, Galloway KE. Engineering cell fate: Applying synthetic biology to cellular reprogramming. ACTA ACUST UNITED AC 2020; 24:18-31. [PMID: 36330198 PMCID: PMC9629175 DOI: 10.1016/j.coisb.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular reprogramming drives cells from one stable identity to a new cell fate. By generating a diversity of previously inaccessible cell types from diverse genetic backgrounds, cellular reprogramming is rapidly transforming how we study disease. However, low efficiency and limited maturity have limited the adoption of in vitro-derived cellular models. To overcome these limitations and improve mechanistic understanding of cellular reprogramming, a host of synthetic biology tools have been deployed. Recent synthetic biology approaches have advanced reprogramming by tackling three significant challenges to reprogramming: delivery of reprogramming factors, epigenetic roadblocks, and latent donor identity. In addition, emerging insight from the molecular systems biology of reprogramming reveal how systems-level drivers of reprogramming can be harnessed to further advance reprogramming technologies. Furthermore, recently developed synthetic biology tools offer new modes for engineering cell fate.
Collapse
Affiliation(s)
- Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Adam M Beitz
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA, 02139, USA
| |
Collapse
|
29
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
30
|
Kim KP, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, MacCarthy CM, Shin B, Röpke A, Arauzo-Bravo MJ, Stehling M, Han DW, Gao Y, Kim J, Gao S, Schöler HR. Reprogramming competence of OCT factors is determined by transactivation domains. SCIENCE ADVANCES 2020; 6:6/36/eaaz7364. [PMID: 32917606 PMCID: PMC7467702 DOI: 10.1126/sciadv.aaz7364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells. OCT6-based reprogramming does not alter the mesenchymal-epithelial transition but is attenuated through the delayed activation of the pluripotency network in comparison with OCT4-based reprogramming. Creating a series of reciprocal domain-swapped chimeras and mutants across all OCT factors, we clearly delineate essential elements of OCT4/OCT6-dependent reprogramming and, conversely, identify the features that prevent induction of pluripotency by other OCT factors. With this strategy, we further discover various chimeric proteins that are superior to OCT4 in reprogramming. Our findings clarify how reprogramming competences of OCT factors are conferred through their structural components.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Caitlin M MacCarthy
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Borami Shin
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, Münster 48149, Germany
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen 529020, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.
- University of Münster, Medical Faculty, Domagkstrasse 3, Münster 48149, Germany
| |
Collapse
|
31
|
Praxedes ÉA, Bressan FF, Fernandes Pereira A. A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cell Reprogram 2020; 22:227-235. [PMID: 32780598 DOI: 10.1089/cell.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming mainly involves induction of reactivation of genes responsible for nuclear plasticity, a process that can be performed in vitro through production of cloned embryos by somatic cell nuclear transfer or by induction of cells into the pluripotent state through exogenous transcription factor expression. While these techniques are already well known and utilized in mice and rats, their application in other rodent species would be greatly beneficial, especially for conservation purposes. Within the diverse Rodentia order, wild species stand out as they play an important role in balancing the ecosystem by facilitating seed diversion, soil aeration, and consequently, reforestation. Many of these species are currently approaching extinction, and application of techniques, such as nuclear reprogramming, aimed at species conservation and multiplication and to produce stem cells is of interest. Thus, in this review, we aimed to present the evolution and success of nuclear reprogramming, mainly highlighting its potential application for the conservation of wild rodents.
Collapse
Affiliation(s)
- Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
32
|
From cancer to rejuvenation: incomplete regeneration as the missing link (part II: rejuvenation circle). Future Sci OA 2020; 6:FSO610. [PMID: 32983567 PMCID: PMC7491027 DOI: 10.2144/fsoa-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth (disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mechanism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentiation and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a rejuvenation process through the continuous cycling of cell dedifferentiation-differentiation processes (permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formulate the concept of the rejuvenation circle.
Collapse
|
33
|
Human papillomavirus E7 binds Oct4 and regulates its activity in HPV-associated cervical cancers. PLoS Pathog 2020; 16:e1008468. [PMID: 32298395 PMCID: PMC7228134 DOI: 10.1371/journal.ppat.1008468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/15/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Octamer binding transcription factor-4 (Oct4), is highly expressed in stem cells and has indispensable roles in pluripotency and cellular reprogramming. In contrast to other factors used for cellular reprogramming, a role for Oct4 outside embryonic stem cells has been elusive and highly controversial. Emerging evidence implicates Oct4 in the carcinogenic process, but the mechanism through which Oct4 may be functioning in cancers is not fully appreciated. Here, we provide evidence that Oct4 is expressed in human cervical cancer and this expression correlates with the presence of the human papillomavirus (HPV) oncogenes E6 and E7. Surprisingly, the viral oncogenes can complement exogenously provided Oct4 in reprogramming assays, providing functional validation for their ability to activate Oct4 transcription in Mouse Embryonic Fibroblasts (MEFs). To interrogate potential roles of Oct4 in cervical cancers we knocked-down Oct4 in HPV(+) (HeLa & CaSki) and HPV(-) (C33A) cervical cancer cell lines and found that Oct4 knockdown attenuated clonogenesis, only in the HPV(+) cells. More unexpectedly, cell proliferation and migration, were differentially affected in HPV(+) and HPV(-) cell lines. We provide evidence that Oct4 interacts with HPV E7 specifically at the CR3 region of the E7 protein and that introduction of the HPV oncogenes in C33A cells and human immortalised keratinocytes generates Oct4-associated transcriptional and phenotypic patterns, which mimic those seen in HPV(+) cells. We propose that a physical interaction of Oct4 with E7 regulates its activity in HPV(+) cervical cancers in a manner not seen in other cancer types.
Collapse
|
34
|
Nakao S, Tsukamoto T, Ueyama T, Kawamura T. STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. Int J Mol Sci 2020; 21:ijms21061937. [PMID: 32178385 PMCID: PMC7139789 DOI: 10.3390/ijms21061937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells. In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation, cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions. Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy. In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors that trigger endogenous STAT3 signal activation.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tasuku Tsukamoto
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoe Ueyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: ; Tel.: +81-75-599-4327
| |
Collapse
|
35
|
Yang H, Liu C, Fan H, Chen B, Huang D, Zhang L, Zhang Q, An J, Zhao J, Wang Y, Hao D. Sonic Hedgehog Effectively Improves Oct4-Mediated Reprogramming of Astrocytes into Neural Stem Cells. Mol Ther 2019; 27:1467-1482. [PMID: 31153826 PMCID: PMC6698197 DOI: 10.1016/j.ymthe.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/19/2023] Open
Abstract
Irreversible neuron loss following spinal cord injury (SCI) usually results in persistent neurological dysfunction. The generation of autologous neural stem cells (NSCs) holds great potential for neural replenishment therapies and drug screening in SCI. Our recent studies demonstrated that mature astrocytes from the spinal cord can directly revert back to a pluripotent state under appropriate signals. However, in previous attempts, the reprogramming of astrocytes into induced NSCs (iNSCs) was unstable, inefficient, and frequently accompanied by generation of intermediate precursors. It remained unknown how to further increase the efficiency of astrocyte reprogramming into iNSCs. Here, we show that mature astrocytes could be directly converted into iNSCs by a single transcription factor, Oct4, and that the iNSCs displayed typical neurosphere morphology, authentic NSC gene expression, self-renewal capacity, and multipotency. Strikingly, Oct4-driven reprogramming of astrocytes into iNSCs was potentiated with continuous sonic hedgehog (Shh) stimulation, as demonstrated by a sped-up reprogramming and increased conversion efficiency. Moreover, the iNSC-derived neurons possessed functionality as neurons. Importantly, crosstalk between Sox2/Shh-targeted downstream signals and phosphatidylinositol 3-kinase/cyclin-dependent kinase 2/Smad ubiquitin regulatory factor 2 (PI3K/Cdk2/Smurf2) signaling is likely involved in the mechanisms underlying this cellular event. The highly efficient reprogramming of astrocytes to generate iNSCs will provide an alternative therapeutic approach for SCI using autologous cells.
Collapse
Affiliation(s)
- Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China.
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Hong Fan
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Jingjing Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Yi Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Dingjun Hao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China; Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China.
| |
Collapse
|
36
|
Rana HK, Akhtar MR, Islam MB, Ahmed MB, Liò P, Quinn JMW, Huq F, Moni MA. Genetic effects of welding fumes on the development of respiratory system diseases. Comput Biol Med 2019; 108:142-149. [PMID: 31005006 DOI: 10.1016/j.compbiomed.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The welding process releases potentially hazardous gases and fumes, mainly composed of metallic oxides, fluorides and silicates. Long term welding fume (WF) inhalation is a recognized health issue that carries a risk of developing chronic health problems, particularly respiratory system diseases (RSDs). Aside from general airway irritation, WF exposure may drive direct cellular responses in the respiratory system which increase risk of RSD, but these are not well understood. METHODS We developed a quantitative framework to identify gene expression effects of WF exposure that may affect RSD development. We analyzed gene expression microarray data from WF-exposed tissues and RSD-affected tissues, including chronic bronchitis (CB), asthma (AS), pulmonary edema (PE), lung cancer (LC) datasets. We built disease-gene (diseasome) association networks and identified dysregulated signaling and ontological pathways, and protein-protein interaction sub-network using neighborhood-based benchmarking and multilayer network topology. RESULTS We observed many genes with altered expression in WF-exposed tissues were also among differentially expressed genes (DEGs) in RSD tissues; for CB, AS, PE and LC there were 34, 27, 50 and 26 genes respectively. DEG analysis, using disease association networks, pathways, ontological analysis and protein-protein interaction sub-network suggest significant links between WF exposure and the development of CB, AS, PE and LC. CONCLUSIONS Our network-based analysis and investigation of the genetic links of WFs and RSDs confirm a number of genes and gene products are plausible participants in RSD development. Our results are a significant resource to identify causal influences on the development of RSDs, particularly in the context of WF exposure.
Collapse
Affiliation(s)
- Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Bangladesh
| | - Mst Rashida Akhtar
- Department of Computer Science and Engineering, Varendra University, Rajshahi, Bangladesh
| | - M Babul Islam
- Department of Applied Physics and Electronic Engineering, University of Rajshahi, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Pietro Liò
- Computer Laboratory, The University of Cambridge, 15 JJ Thomson Avenue, Cambridge, UK
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Fazlul Huq
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Mohammad Ali Moni
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
37
|
Zhu B, Zhao L, Liu Y, Jin Y, Feng J, Zhao F, Sun J, Geng R, Wei Y. Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. Int J Biochem Cell Biol 2019; 108:98-110. [DOI: 10.1016/j.biocel.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
|