1
|
Harris TJC. Dynamic Plasma Membrane Topography Linked With Arp2/3 Actin Network Induction During Cell Shape Change. Bioessays 2025; 47:e70004. [PMID: 40159841 PMCID: PMC12101052 DOI: 10.1002/bies.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent studies show the importance of mesoscale changes to plasma membrane (PM) topography during cell shape change. Local folding and flattening of the cell surface is mechanosensitive, changing in response to both microenvironment structural elements and intracellular cytoskeletal activities. These topography changes elicit local mechanical signaling events that act in conjunction with molecular signal transduction pathways to remodel the cell cortex. Experimental manipulations of local PM curvature show its sufficiency for recruiting Arp2/3 actin network induction pathways. Additionally, studies of diverse cell shape changes-ranging from neutrophil migration to early Drosophila embryo cleavage to neural stem cell asymmetric division-show that local generation of PM folding is linked with local Arp2/3 actin network induction, which then remodels the PM topography during dynamic control of cell structure. These examples are reviewed in detail, together with known and potential causes of PM topography changes, downstream effects, and higher-order feedback.
Collapse
Affiliation(s)
- Tony J. C. Harris
- Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
2
|
Nishimura R, Kanchanawong P. Nanoscale mechano-adaption of integrin-based cell adhesions: New tools and techniques lead the way. Curr Opin Cell Biol 2025; 94:102509. [PMID: 40188780 DOI: 10.1016/j.ceb.2025.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 05/28/2025]
Abstract
Force generation and transmission in biological systems are driven by protein-based machinery organized at the nanoscale. Thus, technological advances that allow for the measurement or manipulation of molecular-scale features are key to new mechanobiological insights. Integrins, a superfamily of adhesion receptors, function by forming supramolecular complexes that mediate mechanobiological processes such as migration and matrix remodeling. This review highlights recent findings that harness advanced techniques in microscopy, nanotechnology, and biosensors to uncover nanoscale transformations that accompany integrin responses to mechanobiological stimuli. Recent discoveries are sharpening our understanding of the diverse functions and structural organization of different integrin heterodimers and their molecular partners, highlighting their critical roles in cellular processes.
Collapse
Affiliation(s)
- Ryosuke Nishimura
- Mechanobiology Institute, National University of Singapore, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Mitra A, Cutiongco MFA, Burla R, Zeng Y, Na Q, Kong M, Vinod B, Nai MH, Hübner B, Ludwig A, Lim CT, Shivashankar GV, Saggio I, Zhao W. Acute chromatin decompaction stiffens the nucleus as revealed by nanopillar-induced nuclear deformation in cells. Proc Natl Acad Sci U S A 2025; 122:e2416659122. [PMID: 40343993 DOI: 10.1073/pnas.2416659122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
Chromatin architecture is critical in determining nuclear mechanics. Most studies focus on the mechanical rigidity conferred by chromatin condensation from densely packed heterochromatin, but less is known on how transient chromatin decompaction impinge on nucleus stiffness. Here, we used an array of vertically aligned nanopillars to study nuclear deformability in situ after chromatin decompaction in cells. The nucleus significantly stiffened within 4 h of chromatin decompaction but softened at longer timescales. This acute stiffening of the nucleus was underpinned predominantly by an increase in nucleus volume and nuclear import, and partially by enhanced lamin protein recruitment to the periphery. The coupling between nucleus stiffening and acute chromatin decompaction was observed in low malignancy cancer cell lines (e.g. MCF7, PEO1, A549) but weakened in highly malignant counterparts (e.g. MDA-MB-231, HEYA8, HT1080) due to the capacity to efficiently compact heterochromatin into foci that sustains nucleus deformability required for confined migration. Our work signals how rapid chromatin remodeling is a physiologically relevant pathway to modulate nucleus mechanics and cell migration behavior.
Collapse
Affiliation(s)
- Aninda Mitra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Marie F A Cutiongco
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Sapienza-Università di Roma, Roma 00185, Italy
| | - Yongpeng Zeng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Qin Na
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Mengya Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Benjamin Vinod
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Barbara Hübner
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - G V Shivashankar
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau 5232, Switzerland
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza-Università di Roma, Roma 00185, Italy
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
4
|
Abbaspour A, Martinez Cavazos AL, Patel R, Yang N, McGregor SM, Brooks EG, Masters KS, Kreeger PK. Collagen fiber density observed in metastatic ovarian cancer promotes tumor cell adhesion. Acta Biomater 2025:S1742-7061(25)00360-5. [PMID: 40374134 DOI: 10.1016/j.actbio.2025.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Collagen type I, a key structural component of the extracellular matrix (ECM), is frequently altered in cancer, with altered fiber organization at the primary tumor site linked to metastasis and poor patient outcomes. Here, we demonstrate that collagen fibers are also altered in metastatic sites such as the omentum of patients with high-grade serous ovarian cancer (HGSOC). Specifically, we observed a significant increase in fiber density, alignment, and width. To determine if the increase in fiber density supports metastasis, we used a semi-interpenetrating methacrylated gelatin (gelMA) network in combination with increasing fibrillar collagen. Cancer cells had significantly increased adhesion as collagen fiber density increased. To determine the responsible mechanisms, we used orthogonal systems to examine 1) the different adhesion peptides exposed in collagen (GFOGER) and gelatin (RGD), and 2) the physical structure of fibers. Cells had minimal response to GFOGER, either alone or in combination with RGD, suggesting that increased adhesion did not result from this collagen-specific interaction. Cell adhesion was significantly higher on electrospun PCL-gelatin fibers compared to flat PCL-gelatin substrates, suggesting that increased cell adhesion resulted from fiber structure. We next investigated the cellular mechanisms involved in increased adhesion on gelMA/coll and found that actin polymerization, but not myosin II contractility, was needed. We further demonstrated that cells on fibrous gels had more robust actin polymerization, and that this resulted in greater adhesion strength. Combined, these results suggest that the increase in collagen fibers with tumor metastasis will support the development of additional metastases. STATEMENT OF SIGNIFICANCE: This work advances the evaluation of the matrisome of the omentum, the most common metastatic site in advanced ovarian cancer by characterizing how collagen fibers change with disease progression. To examine the effect of collagen fibers on metastasis, we utilized a suite of in vitro biomaterials to identify a novel role for collagen fibers in supporting cell adhesion through increased actin dynamics during nascent adhesion formation, which results in increased adhesion strength at later times.
Collapse
Affiliation(s)
- Ali Abbaspour
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana L Martinez Cavazos
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Roshan Patel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Erin G Brooks
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Kristyn S Masters
- Department of Bioengineering, University of Colorado-Denver, 13001 E 17th Pl Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Pamela K Kreeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Miao X, Law MCY, Kumar J, Chng CP, Zeng Y, Tan YB, Wu J, Guo X, Huang L, Zhuang Y, Gao W, Huang C, Luo D, Zhao W. Saddle curvature association of nsP1 facilitates the replication complex assembly of Chikungunya virus in cells. Nat Commun 2025; 16:4282. [PMID: 40341088 PMCID: PMC12062417 DOI: 10.1038/s41467-025-59402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Positive-sense RNA viruses, including SARS-CoV-1 and -2, DENV, and CHIKV, replicate in curved membrane compartments within host cells. Non-structural proteins (nsPs) critically regulate these nanoscale membrane structures, yet their curvature-dependent assembly remains elusive due to the challenges of imaging nanoscale interaction on curved surfaces. Using vertically aligned nanostructures to generate pre-defined membrane curvatures, we here investigate the impact of curvature on nsPs assembly. Taking CHIKV as a model, we reveal that nsP1 preferentially binds and stabilizes on positively curved membranes, with stronger accumulation at radii ≤150 nm. This is driven by hydrophobic residues in the membrane association (MA) loops of individual nsP1. Molecular dynamics simulations further confirm the improved binding stability of nsP1 on curved membranes, particularly when it forms a dodecamer ring. Together, nsP1 supports a strong saddle curvature association, with flexible MA loops sensing a range of positive curvatures in the x-z plane while the rigid dodecamer stabilizing fixed negative curvature in the x-y plane - crucial for constraining the membrane spherule neck during replication progression. Moreover, CHIKV replication enriches on patterned nanoring structures, underscoring the curvature-guided assembly of the viral replication complex. Our findings highlight membrane curvature as a key regulator of viral nsPs organization, opening new avenues for studying membrane remodeling in viral replication.
Collapse
Affiliation(s)
- Xinwen Miao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jatin Kumar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yongpeng Zeng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jiawei Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Lizhen Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yinyin Zhuang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Weibo Gao
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
- National Centre for Infectious Diseases, Singapore, Singapore.
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Lu CH, Lee CE, Nakamoto ML, Cui B. Cellular Signaling at the Nano-Bio Interface: Spotlighting Membrane Curvature. Annu Rev Phys Chem 2025; 76:251-277. [PMID: 40258240 PMCID: PMC12043246 DOI: 10.1146/annurev-physchem-090722-021151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
No longer viewed as a passive consequence of cellular activities, membrane curvature-the physical shape of the cell membrane-is now recognized as an active constituent of biological processes. Nanoscale topographies on extracellular matrices or substrate surfaces impart well-defined membrane curvatures on the plasma membrane. This review examines biological events occurring at the nano-bio interface, the physical interface between the cell membrane and surface nanotopography, which activates intracellular signaling by recruiting curvature-sensing proteins. We encompass a wide range of biological processes at the nano-bio interface, including cell adhesion, endocytosis, glycocalyx redistribution, regulation of mechanosensitive ion channels, cell migration, and differentiation. Despite the diversity of processes, we call attention to the critical role of membrane curvature in each process. We particularly highlight studies that elucidate molecular mechanisms involving curvature-sensing proteins with the hope of providing comprehensive insights into this rapidly advancing area of research.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Christina E Lee
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
8
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2025; 35:129-140. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
9
|
Kundu S, Pal K, Pyne A, Wang X. Force-bearing phagocytic adhesion rings mediate the phagocytosis of surface-bound particles. Nat Commun 2025; 16:984. [PMID: 39856073 PMCID: PMC11759950 DOI: 10.1038/s41467-025-56404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β2 integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles. These circular adhesion structures that we named phagocytic adhesion rings (PARs) serve as strongholds to support local ring-shaped actin structures constricting into the particle-substrate cleavages, thereby pinching off the particles from the substrate. During this process, integrins in PARs sustain tensions due to the reaction force of actin polymerization against the particles. Such tensions are critical for phagocytic efficiency of surface-bound particles. PARs were formed in all tested macrophages (mouse, human and fish) and micron-sized particles (microbeads and E. coli), demonstrating their conserved role in the phagocytosis. This study reveals a mechanism of PAR-mediated phagocytosis, specialized for the detachment and internalization of surface-bound particles.
Collapse
Affiliation(s)
- Subhankar Kundu
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kaushik Pal
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, India
| | - Arghajit Pyne
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Xuefeng Wang
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Li Z, Tang J, Zhou L, Mao J, Wang W, Huang Z, Zhang L, Wu J, Jiang X, Ding Z, Xi K, Cai F, Gu Y, Chen L. MicroSphere 3D Structures Delay Tissue Senescence through Mechanotransduction. ACS NANO 2025; 19:2695-2714. [PMID: 39787443 DOI: 10.1021/acsnano.4c14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs. NP cells exhibited aligned growth along the surface of the MicroRod, enhanced proliferation, and reduced apoptosis. This suggests an adaptive cellular response involving adhesion and mechanosensing, which causes cytoskeletal extension via environmental cues. NP cells maintain nuclear membrane integrity through the YAP/TAZ pathway, which activates the cGAS-STING pathway to rectify the aging mechanisms. In vivo, MicroRod carries NP cells and reduces inflammatory factor and protease secretion in degenerated intervertebral discs, inhibiting degeneration and promoting NP tissue regeneration. Our findings highlight the role of mechanical stress in maintaining cellular activity and antiaging effects in harsh environments, providing a foundation for further research and development of antidegenerative biomaterials.
Collapse
Affiliation(s)
- Ziang Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jincheng Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Ziyan Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Lichen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Zhouye Ding
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China
| |
Collapse
|
11
|
Lukas F, Duchmann M, Maritzen T. Focal adhesions, reticular adhesions, flat clathrin lattices: what divides them, what unites them? Am J Physiol Cell Physiol 2025; 328:C288-C302. [PMID: 39652817 DOI: 10.1152/ajpcell.00821.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The majority of cells within multicellular organisms requires anchorage to their surroundings in the form of cell-cell or cell-matrix adhesions. In regards to cell-matrix adhesions, the transmembrane receptors of the integrin family have long been recognized as the central scaffold around which these adhesion complexes are built. Via their extracellular domains integrins bind extracellular matrix ligands while their intracellular tails interact with a plethora of proteins that link integrin-based adhesions to the cytoskeleton and turn them also into important signaling platforms. Depending on the specific intracellular interactome of the integrins, different types of integrin adhesion complexes have been classified. The best-studied ones are the focal adhesions, in which integrins become firmly linked to contractile actomyosin fibers, allowing force transduction. But integrins also form an integral part of adhesion structures that lack the strong actomyosin link and are enriched in endocytic proteins. These have been named reticular adhesions, flat clathrin lattices, or clathrin plaques. Initially, the different types of integrin adhesion complexes have been viewed as discrete entities with their own separate life cycles. However, in the past years it has become more and more apparent how closely intertwined they are. In fact, it was shown that they can trigger each other's biogenesis or can even directly convert into each other. Here, we describe similarities as well as differences between integrin adhesion complexes, focusing on the versatile αvβ5 integrins, and discuss the recently discovered close links and interconversion modes between the different αvβ5 integrin adhesion types.
Collapse
Affiliation(s)
- Fabian Lukas
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Marlen Duchmann
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
12
|
Li Z, Sarikhani E, Prayotamornkul S, Meganathan DP, Jahed Z, Shi L. Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:825-834. [PMID: 39735831 PMCID: PMC11672213 DOI: 10.1021/cbmi.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.
Collapse
Affiliation(s)
- Zhi Li
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Einollah Sarikhani
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sirasit Prayotamornkul
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Dhivya Pushpa Meganathan
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zeinab Jahed
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lingyan Shi
- Shu
Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Electrical
and Computer Engineering, University of
California San Diego, La Jolla, California 92093, United States
- Institute
of Engineering in Medicine, University of
California San Diego, La Jolla, California 92093, United States
- Synthetic
Biology Institute, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Shukla S, Schwartz JL, Walsh C, Wong WM, Patel V, Hsieh YP, Onwuasoanya C, Chen S, Offenhäusser A, Cauwenberghs G, Santoro F, Muotri AR, Yeo GW, Chalasani SH, Jahed Z. Supra- and sub-threshold intracellular-like recording of 2D and 3D neuronal networks using nanopillar electrode arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:184. [PMID: 39632788 PMCID: PMC11618331 DOI: 10.1038/s41378-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
The brain integrates activity across networks of interconnected neurons to generate behavioral outputs. Several physiological and imaging-based approaches have been previously used to monitor responses of individual neurons. While these techniques can identify cellular responses greater than the neuron's action potential threshold, less is known about the events that are smaller than this threshold or are localized to subcellular compartments. Here we use NEAs to obtain temporary intracellular access to neurons allowing us to record information-rich data that indicates action potentials, and sub-threshold electrical activity. We demonstrate these recordings from primary hippocampal neurons, induced pluripotent stem cell-derived (iPSC) neurons, and iPSC-derived brain organoids. Moreover, our results show that our arrays can record activity from subcellular compartments of the neuron. We suggest that these data might enable us to correlate activity changes in individual neurons with network behavior, a key goal of systems neuroscience.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Callum Walsh
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wen Mai Wong
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Vrund Patel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu-Peng Hsieh
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chichi Onwuasoanya
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaoming Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andreas Offenhäusser
- Institute of Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Gert Cauwenberghs
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesca Santoro
- Institute of Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Jülich, Jülich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, Aachen, 52074, Germany
| | - Alysson R Muotri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Center for Academic Research and Training in Anthropogeny (CARTA) and Archealization (ArchC), University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Education and Integrated Space Stem Cell Orbital Research (ISSCOR) Center University of California San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum. Nat Cell Biol 2024; 26:1878-1891. [PMID: 39289582 PMCID: PMC11567891 DOI: 10.1038/s41556-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins-Eps15 homology domain-containing proteins-that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Luis A Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Departments of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical and Nano Engineering, University of California, San Diego, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples, Italy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
- Institute of Biological Information Processing-Bioelectronics (IBI-3), Forschungszentrum, Jülich, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Chen T, Fernández-Espartero CH, Illand A, Tsai CT, Yang Y, Klapholz B, Jouchet P, Fabre M, Rossier O, Cui B, Lévêque-Fort S, Brown NH, Giannone G. Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue. Nat Commun 2024; 15:8691. [PMID: 39375335 PMCID: PMC11458790 DOI: 10.1038/s41467-024-52899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| | - Cecilia H Fernández-Espartero
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | - Abigail Illand
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Ching-Ting Tsai
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pierre Jouchet
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Mélanie Fabre
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Bianxiao Cui
- Department of Chemistry and Stanford Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Sandrine Lévêque-Fort
- Institut des sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS, UMR8214, Orsay, France
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France.
| |
Collapse
|
16
|
Sarikhani E, Meganathan DP, Larsen AKK, Rahmani K, Tsai CT, Lu CH, Marquez-Serrano A, Sadr L, Li X, Dong M, Santoro F, Cui B, Klausen LH, Jahed Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS NANO 2024; 18:19064-19076. [PMID: 38978500 PMCID: PMC11271182 DOI: 10.1021/acsnano.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.
Collapse
Affiliation(s)
- Einollah Sarikhani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Dhivya Pushpa Meganathan
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | | | - Keivan Rahmani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Ching-Ting Tsai
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Chih-Hao Lu
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Abel Marquez-Serrano
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Leah Sadr
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Xiao Li
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Tissue Electronics, Instituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty
of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute
for Biological Information Processing-Bioelectronics, Forschungszentrum
Juelich, Julich 52428, Germany
| | - Bianxiao Cui
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | | | - Zeinab Jahed
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla ,California 92093, United States
| |
Collapse
|
17
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Membrane Curvature Promotes ER-PM Contact Formation via Junctophilin-EHD Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601287. [PMID: 38979311 PMCID: PMC11230412 DOI: 10.1101/2024.06.29.601287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, while the ubiquitously expressed extended synaptotagmin 2 does not show a preference for PM curvature. At the mechanistic level, we find that the low complexity region (LCR) and the MORN motifs of junctophilins can independently bind to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins, Eps15-homology domain containing proteins (EHDs), that interact with the MORN_LCR motifs and facilitate junctophilins' preferential tethering to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a novel mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Luis A. Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Melissa L. Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Present address: Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute of Biological Information Processing—Bioelectronics, IBI-3, Forschungszentrum, Juelich 52428, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| |
Collapse
|
18
|
Zhuang Y, Guo X, Razorenova OV, Miles CE, Zhao W, Shi X. Coaching ribosome biogenesis from the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.597078. [PMID: 38948754 PMCID: PMC11212990 DOI: 10.1101/2024.06.21.597078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Severe invagination of the nuclear envelope is a hallmark of cancers, aging, neurodegeneration, and infections. However, the outcomes of nuclear invagination remain unclear. This work identified a new function of nuclear invagination: regulating ribosome biogenesis. With expansion microscopy, we observed frequent physical contact between nuclear invaginations and nucleoli. Surprisingly, the higher the invagination curvature, the more ribosomal RNA and pre-ribosomes are made in the contacted nucleolus. By growing cells on nanopillars that generate nuclear invaginations with desired curvatures, we can increase and decrease ribosome biogenesis. Based on this causation, we repressed the ribosome levels in breast cancer and progeria cells by growing cells on low-curvature nanopillars, indicating that overactivated ribosome biogenesis can be rescued by reshaping nuclei. Mechanistically, high-curvature nuclear invaginations reduce heterochromatin and enrich nuclear pore complexes, which promote ribosome biogenesis. We anticipate that our findings will serve as a foundation for further studies on nuclear deformation.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Olga V. Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine; Irvine, CA 92697, United States
| | - Christopher E. Miles
- Department of Mathematics, University of California, Irvine; Irvine, CA 92697, United States
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University; Singapore 637459, Singapore
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA 92697, United States
- Department of Chemistry, University of California, Irvine; Irvine, CA 92697, United States
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697, United States
- Lead contact
| |
Collapse
|
19
|
Dibus M, Joshi O, Ivaska J. Novel tools to study cell-ECM interactions, cell adhesion dynamics and migration. Curr Opin Cell Biol 2024; 88:102355. [PMID: 38631101 DOI: 10.1016/j.ceb.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Integrin-mediated cell adhesion is essential for cell migration, mechanotransduction and tissue integrity. In vivo, these processes are regulated by complex physicochemical signals from the extracellular matrix (ECM). These nuanced cues, including molecular composition, rigidity and topology, call for sophisticated systems to faithfully explore cell behaviour. Here, we discuss recent methodological advances in cell-ECM adhesion research and compile a toolbox of techniques that we expect to shape this field in future. We outline methodological breakthroughs facilitating the transition from rigid 2D substrates to more complex and dynamic 3D systems, as well as advances in super-resolution imaging for an in-depth understanding of adhesion nanostructure. Selected methods are exemplified with relevant biological findings to underscore their applicability in cell adhesion research. We expect this new "toolbox" of methods will allow for a closer approximation of in vitro experimental setups to in vivo conditions, providing deeper insights into physiological and pathophysiological processes associated with cell-ECM adhesion.
Collapse
Affiliation(s)
- Michal Dibus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omkar Joshi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, FI-20520 Turku, Finland; Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland.
| |
Collapse
|
20
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
21
|
Johnson DH, Kou OH, Bouzos N, Zeno WF. Protein-membrane interactions: sensing and generating curvature. Trends Biochem Sci 2024; 49:401-416. [PMID: 38508884 PMCID: PMC11069444 DOI: 10.1016/j.tibs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Biological membranes are integral cellular structures that can be curved into various geometries. These curved structures are abundant in cells as they are essential for various physiological processes. However, curved membranes are inherently unstable, especially on nanometer length scales. To stabilize curved membranes, cells can utilize proteins that sense and generate membrane curvature. In this review, we summarize recent research that has advanced our understanding of interactions between proteins and curved membrane surfaces, as well as work that has expanded our ability to study curvature sensing and generation. Additionally, we look at specific examples of cellular processes that require membrane curvature, such as neurotransmission, clathrin-mediated endocytosis (CME), and organelle biogenesis.
Collapse
Affiliation(s)
- David H Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Orianna H Kou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicoletta Bouzos
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Lin SZ, Prost J, Rupprecht JF. Curvature-induced clustering of cell adhesion proteins. Phys Rev E 2024; 109:054406. [PMID: 38907394 DOI: 10.1103/physreve.109.054406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 06/24/2024]
Abstract
Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several works have suggested that cell membrane protein clusters can emerge from a local feedback between the membrane curvature and the density of proteins. Here, we investigate the effect of such a curvature-sensing mechanism in the context of cell adhesion proteins. We show how clustering emerges in an intermediate range of adhesion and curvature-sensing strengths. We identify key differences with the tilt-induced gradient sensing mechanism we previously proposed (Lin et al., arXiv:2307.03670).
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - Jacques Prost
- Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| |
Collapse
|
23
|
Sun AR, Hengst RM, Young JL. All the small things: Nanoscale matrix alterations in aging tissues. Curr Opin Cell Biol 2024; 87:102322. [PMID: 38277866 DOI: 10.1016/j.ceb.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Cellular aging stems from multifaceted intra- and extracellular molecular changes that lead to the gradual deterioration of biological function. Altered extracellular matrix (ECM) properties that include biochemical, structural, and mechanical perturbations direct cellular- and tissue-level dysfunction. With recent advancements in high-resolution imaging modalities and nanomaterial strategies, the importance of nanoscale ECM features has come into focus. Here, we provide an updated window into micro- to nano-scale ECM properties that are altered with age and in age-related disease, and the impact these altered small-scale ECM properties have on cellular function. We anticipate future impactful research will incorporate nanoscale ECM features in the design of new biomaterials and call on the tissue biology field to work collaboratively with the nanomaterials community.
Collapse
Affiliation(s)
- Avery Rui Sun
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Ranmadusha M Hengst
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| |
Collapse
|
24
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|