1
|
Ma R, Fu R, Wang Y, Njobvu KM, Fan Y, Yang Z, Chen M, Liu F, Jiang Z, Rao Y, Huang L, Xu C, Chen J, Liu J. Discovery of novel rigid STING PROTAC degraders as potential therapeutics for acute kidney injury. Eur J Med Chem 2025; 290:117539. [PMID: 40138992 DOI: 10.1016/j.ejmech.2025.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Acute kidney injury (AKI) is a critical condition resulting from intrinsic immune overactivation for which no ideal therapeutic agent is available. The development of therapeutic drugs with new targets and mechanism has become one of the important challenges in the pharmaceutical field. The interferon gene stimulating protein (STING) directly regulates the intrinsic immune processes and is a potential target for AKI therapy. Herein, we designed synthesized and evaluated a series of novel STING-PROTAC degraders via a rigid strategy. Among them, compound ST9 performed the highest degradation capacity with a DC50 of 0.62 μM in THP-1 cells. In a cisplatin-induced HK-2 cell model, ST9 could down-regulate the STING/NF-κB signaling axis and thus inhibit the expression of inflammatory factors. Additionally, ST9 showed a significantly improved metabolic stability profile. Furthermore, ST9 displayed favorable in vivo anti-AKI efficacy and has no toxic side effects on other organs. These results suggest that the novel rigid STING-PROTAC ST9 has clinical potential as a renoprotective agent for the treatment/prevention of acute kidney injury.
Collapse
Affiliation(s)
- Rongxiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Renquan Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yifan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kabonde Makasa Njobvu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yapeng Fan
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Mingbing Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Feifei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Zhongping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Congjun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Mu W, Xu G, Li L, Wen J, Xiu Y, Zhao J, Liu T, Wei Z, Luo W, Yang H, Wu Z, Zhan X, Xiao X, Bai Z. Carnosic Acid Directly Targets STING C-Terminal Tail to Improve STING-Mediated Inflammatory Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417686. [PMID: 39965124 PMCID: PMC11984877 DOI: 10.1002/advs.202417686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/30/2025] [Indexed: 02/20/2025]
Abstract
cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) signaling plays a vital role in innate immunity, while its deregulation may lead to a wide variety of autoinflammatory and autoimmune diseases. It is essential to identify specifically effective lead compounds to inhibit the signaling. Herein, it is shown that carnosic acid (CA), an active ingredient of medicinal plant Rosmarinus officinalis L., specifically suppressed cGAS-STING pathway activation and the subsequent inflammatory responses. Mechanistically, CA directly bound to STING C-terminal tail (CTT), impeded the recruitment of TANK-binding kinase 1 (TBK1) onto STING signalosome, thereby blocking the phosphorylation of STING and interferon regulatory factor 3 (IRF3) nuclear translocation. Importantly, CA dramatically attenuated STING-mediated inflammatory responses in vivo. Consistently, CA has a salient ameliorative effect on autoinflammatory disease model mediated by Trex1 deficiency, via inhibition of the cGAS-STING signaling. Notably, the study further indicates that phenolic hydroxyl groups are essential for CA-mediated STING inhibitory activity. Collectively, the results thus identify STING as one of the crucial targets of CA for mediating CA's anti-inflammatory activity, and further reveal that STING CTT may be a novel promising target for drug development.
Collapse
Affiliation(s)
- Wenqing Mu
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
- State Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSoochow UniversityJiangsu215123China
| | - Guang Xu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Ling Li
- Beijing Institute of BiotechnologyBeijing100071China
| | - Jincai Wen
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Ye Xiu
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Jia Zhao
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Tingting Liu
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Ziying Wei
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Wei Luo
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Huijie Yang
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Zhixin Wu
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Xiaoyan Zhan
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Xiaohe Xiao
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Zhaofang Bai
- Department of Hepatologythe Fifth Medical Center of PLA General HospitalBeijing100039China
- Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijing100039China
| |
Collapse
|
3
|
Qin GQ, Wang GY, Shen QC, Yu WH, Song JG, Huang XJ, Dong L, Wu ZL, Ye WC, Hu LJ, Wang Y. Secupyritines A-C, Three Natural Propellane Securinega Alkaloids: Structure Elucidation and Total Synthesis Based on Biogenetic Building Blocks. Angew Chem Int Ed Engl 2025; 64:e202423900. [PMID: 39754344 DOI: 10.1002/anie.202423900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/06/2025]
Abstract
Secupyritines A-C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.3]propellane core. Their structures with absolute configurations were elucidated through a comprehensive approach involving nuclear magnetic resonance (NMR) spectroscopy, single-crystal X-ray crystallography, electronic circular dichroism (ECD) calculations, and total synthesis. The total synthesis of secupyritines A-C was achieved in 14 or 16 steps, employing a synthesis strategy based on biogenetic building blocks. Key elements of the synthetic procedures include a vinylogous Mannich-type reaction to construct the sp3-sp2 attached-ring system, a Suzuki coupling reaction to build the piperidine ring, and an intramolecular aza-Michael addition reaction to establish the propellane skeleton. Formal asymmetric synthesis of secupyritines A-C was also presented.
Collapse
Affiliation(s)
- Guan-Qiu Qin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Gui-Yang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Qin-Cheng Shen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Wen-Hua Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Lu Dong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Zhen-Long Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| |
Collapse
|
4
|
Zhang X, Qi L, Ren T, Zhang Y, Yu S. Ru-Catalyzed Switchable Reactions of Acrylic Acids with Glyoxylate: Access to Functionalized γ-Butenolides. Org Lett 2024; 26:10658-10664. [PMID: 39648499 DOI: 10.1021/acs.orglett.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
We herein report a switchable coupling of acrylic acids with ethyl glyoxylate under ruthenium catalysis enabling the synthesis of diverse functionalized γ-butenolides. The carboxyl-directed vinylic C-H cleavage and dual nucleophilic addition to aldehyde are achieved to deliver hydroxymethylated butanolides under mild and oxidant-free conditions. Alternatively, a controlled and unprecedented tandem C-H cyclization/oxidative homocoupling reaction is realized by using silver salt as the oxidant to generate a range of dimeric butenolides bearing vicinal all-carbon quaternary centers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Tianci Ren
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027 Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
5
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Wittmann S, Deschamps E, Bournaud C, Guillot R, Brière JF, Vo-Thanh G, Toffano M. Auto tandem triple cascade organocatalysis: access to bis-lactone and butenolide derivatives. Chem Commun (Camb) 2024; 60:9278-9281. [PMID: 39129442 DOI: 10.1039/d4cc03029j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The synthesis of bis-lactone and butenolide derivatives was described using alkylidene Meldrum's acid as nucleophiles. The process operates in a triple cascade through an auto tandem catalysis promoted by DBU.
Collapse
Affiliation(s)
- Stéphane Wittmann
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| | - Elodie Deschamps
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| | - Chloée Bournaud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| | - Regis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| | | | - Giang Vo-Thanh
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| | - Martial Toffano
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS-UMR-8182, Université Paris-Saclay, Bât. H. Moissan. 19 avenue des sciences, 91400 Orsay, France
| |
Collapse
|
7
|
Liao K, Wang F, Xia C, Xu Z, Zhong S, Bi W, Ruan J. The cGAS-STING pathway in COPD: targeting its role and therapeutic potential. Respir Res 2024; 25:302. [PMID: 39113033 PMCID: PMC11308159 DOI: 10.1186/s12931-024-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Collapse
Affiliation(s)
- Kexin Liao
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fengshuo Wang
- College of Pharmacy, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chenhao Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ze Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Sen Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wenqi Bi
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
8
|
De Abreu M, Rogge T, Lanzi M, Saiegh TJ, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202319960. [PMID: 38375976 DOI: 10.1002/anie.202319960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.
Collapse
Affiliation(s)
- Maxime De Abreu
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Tomas J Saiegh
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
- Institute of Organic Chemistry, JMU Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
9
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Chen QC, Kress S, Molinelli R, Wuttig A. Interfacial Tuning of Electrocatalytic Ag Surfaces for Fragment-Based Electrophile Coupling. Nat Catal 2024; 7:120-131. [PMID: 38434422 PMCID: PMC10906991 DOI: 10.1038/s41929-023-01073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/02/2023] [Indexed: 03/05/2024]
Abstract
Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp3)‒C(sp3) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp3 organic halide activation. Here, an alternative paradigm deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp3 organic halides. We use in-situ spectroscopy, electrochemical analyses, and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc)2 outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centered radical (product of Ag-electrocatalyzed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Sarah Kress
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Rocco Molinelli
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
11
|
Chiminelli M, Scarica G, Serafino A, Marchiò L, Viscardi R, Maestri G. Visible-Light-Promoted Tandem Skeletal Rearrangement/Dearomatization of Heteroaryl Enallenes. Molecules 2024; 29:595. [PMID: 38338340 PMCID: PMC10856172 DOI: 10.3390/molecules29030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Access to complex three-dimensional molecular architectures via dearomatization of ubiquitous aryl rings is a powerful synthetic tool, which faces, however, an inherent challenge to overcome energetic costs due to the loss of aromatic stabilization energy. Photochemical methods that allow one to populate high-energy states can thus be an ideal strategy to accomplish otherwise prohibitive reaction pathways. We present an original dearomative rearrangement of heteroaryl acryloylallenamides that leads to complex fused tricycles. The visible-light-promoted method occurs under mild conditions and tolerates a variety of functional groups. According to DFT modeling used to rationalize the outcome of the cascade, the reaction involves a sequential [2+2] allene-alkene photocycloaddition, which is followed by a selective retro- [2+2] step that paves the way for the dearomatization of the heteroaryl partner. This scenario is original with respect to the reported photochemical reactivity of similar substrates and thus holds promise for ample future developments.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Gabriele Scarica
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Rosanna Viscardi
- ENEA, Casaccia Research Center, Santa Maria di Galeria, 00123 Roma, Italy;
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| |
Collapse
|
12
|
Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol Neurodegener 2023; 18:79. [PMID: 37941028 PMCID: PMC10634099 DOI: 10.1186/s13024-023-00672-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.
Collapse
Affiliation(s)
- Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Zhang J, Zhang L, Chen Y, Fang X, Li B, Mo C. The role of cGAS-STING signaling in pulmonary fibrosis and its therapeutic potential. Front Immunol 2023; 14:1273248. [PMID: 37965345 PMCID: PMC10642193 DOI: 10.3389/fimmu.2023.1273248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Pulmonary fibrosis is a progressive and ultimately fatal lung disease, exhibiting the excessive production of extracellular matrix and aberrant activation of fibroblast. While Pirfenidone and Nintedanib are FDA-approved drugs that can slow down the progression of pulmonary fibrosis, they are unable to reverse the disease. Therefore, there is an urgent demand to develop more efficient therapeutic approaches for pulmonary fibrosis. The intracellular DNA sensor called cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays a crucial role in detecting DNA and generating cGAMP, a second messenger. Subsequently, cGAMP triggers the activation of stimulator of interferon genes (STING), initiating a signaling cascade that leads to the stimulation of type I interferons and other signaling molecules involved in immune responses. Recent studies have highlighted the involvement of aberrant activation of cGAS-STING contributes to fibrotic lung diseases. This review aims to provide a comprehensive summary of the current knowledge regarding the role of cGAS-STING pathway in pulmonary fibrosis. Moreover, we discuss the potential therapeutic implications of targeting the cGAS-STING pathway, including the utilization of inhibitors of cGAS and STING.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobin Fang
- Fujian Provincial Key Laboratory of Critical Care Medicine, Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Wang Z, Hu X, Cui P, Kong C, Chen X, Wang W, Lu S. Progress in understanding the role of cGAS-STING pathway associated with programmed cell death in intervertebral disc degeneration. Cell Death Discov 2023; 9:377. [PMID: 37845198 PMCID: PMC10579269 DOI: 10.1038/s41420-023-01607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
Nucleus pulposus (NP) inflammatory response can induce intervertebral disc degeneration (IVDD) by causing anabolic and catabolic disequilibrium of the extracellular matrix (ECM). This process is accompanied by the production of endogenous DNAs, then detectable by the DNA sensor cyclic GMP-AMP synthase (cGAS). cGAS recognizes these DNAs and activates the downstream adaptor protein, a stimulator of interferon genes (STING), initiating a cascade of inflammation responses through various cytokines. This evidence implies a crucial role of the cGAS-STING signaling pathway in IVDD. Additionally, it is suggested that this pathway could modulate IVDD progression by regulating apoptosis, autophagy, and pyroptosis. However, a detailed understanding of the role of cGAS-STING pathway in IVDD is still lacking. This review provides a comprehensive summary of recent advances in our understanding of the role of the cGAS-STING pathway in modulating inflammatory response in IVDD. We delve into the connection between the cGAS-STING axis and apoptosis, autophagy, and pyroptosis in IVDD. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING signaling pathway in IVDD treatment. Overall, this review aims to provide a foundation for future directions in IVDD treatment strategies.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
15
|
Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Arch Pharm Res 2023:10.1007/s12272-023-01452-3. [PMID: 37354378 DOI: 10.1007/s12272-023-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a DNA sensor that elicits a robust type I interferon response by recognizing ubiquitous danger-associated molecules. The cGAS/stimulator of interferon genes (cGAS/STING) is activated by endogenous DNA, including DNA released from mitochondria and extranuclear chromatin, as well as exogenous DNA derived from pathogenic microorganisms. cGAS/STING is positioned as a key axis of autoimmunity, the inflammatory response, and cancer progression, suggesting that the cGAS/STING signaling pathway represents an efficient therapeutic target. Based on the accumulated evidence, we present insights into the prevention and treatment of cGAS/STING-related chronic immune and inflammatory diseases. This review presents the current state of clinical and nonclinical development of modulators targeting cGAS/STING, providing useful information on the design of therapeutic strategies.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Minhyuk Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
16
|
Zhang M, Yu S, Hua R, Zhang D, Qiu H, Hu W. Copper-catalyzed multicomponent assembly of γ-butenolides via the interception of carbonyl ylides with iminium ions. Org Biomol Chem 2023; 21:783-788. [PMID: 36594521 DOI: 10.1039/d2ob02075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A Cu(I)-catalyzed three-component reaction of cyclopropenes, enamines and aldehydes has been realized. This reaction proceeds via the interception of carbonyl oxonium ylide intermediates with α, β-unsaturated iminium ions that are in situ generated from enamines and aldehydes under the catalysis of Cu(MeCN)4PF6, leading to the desired γ-butenolide derivatives in good yields and with moderate diastereoselectivities. Access to these derivatives with tethered ketone and alkynal groups will expand the structural diversity of multi-substituted butenolides.
Collapse
Affiliation(s)
- Mengchu Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Ruyu Hua
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Total synthesis of (+)-asperazine A: A stereoselective domino dimerization. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Shen A, Chen M, Chen Q, Liu Z, Zhang A. Recent advances in the development of STING inhibitors: an updated patent review. Expert Opin Ther Pat 2022; 32:1131-1143. [PMID: 36332188 DOI: 10.1080/13543776.2022.2144220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION STING is at the center of the cGAS-STING signaling and acts as the hub of the innate immune system. Hyper-activation of STING has been observed in various severe autoimmune diseases, such as AGS, SLE, and many other diseases including neurological and metabolic disorders. Therefore, STING has been considered as a promising target. In recent years, several STING inhibitors have been claimed in patents. AREAS COVERED Small-molecule STING inhibitors reported in patents (disclosed before May 2022 through the public database at https://worldwide.espacenet.com) were summarized in this review and the available structure-activity relationships (SARs) and molecular mechanisms of action were presented. EXPERT OPINION Compared with STING agonists, the development of STING inhibitors is still in its infancy and no candidates have entered clinical investigation stage. Fortunately, patent applications are appearing at an increasing rate and a few of them have been validated in vivo, thus providing valuable insights for further structural optimization. More efforts are urgently needed since it is not clear yet that inhibitors targeting STING can solely exert sufficient therapeutic effects on autoimmune diseases, and the toxicity profile of such inhibitors is unknown as well. Therefore, it is extremely important to identify a selective and efficacious STING inhibitor for clinical evaluation to provide proof-of-concept for this approach.
Collapse
Affiliation(s)
- Ancheng Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjie Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxuan Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
20
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
21
|
Ohtawa M, Shenvi RA. Concise Syntheses of (−)-11-O-Debenzoyltashironin and (−)-Bilobalide. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Newton CG, Budwitz JE. Ring Forming Approaches to para-Quinones: Toward a General Diels–Alder Disconnection. Synlett 2022. [DOI: 10.1055/s-0041-1737966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
para-Quinones feature extensively as targets and/or intermediates throughout a number of chemical and biological subdisciplines, highlighting the importance of efficient preparative methods. This Synpacts article provides an overview of ring forming approaches to para-hydroquinones and para-benzoquinones, concluding with our recent contribution concerning the development of 2,5-bis(tert-butyldimethylsilyloxy)furans as vicinal bisketene equivalents in the Diels–Alder reaction.1 Introduction2 Ring Forming Approaches to para-Quinones2.1 Hauser–Kraus Annulation2.2 Moore–Liebeskind Rearrangement2.3 Wulff–Dötz Reaction2.4 Oxidative Bergman Cyclization2.5 Diels–Alder Strategies2.5.1 Ketene–Enol Equivalents2.5.2 Bisketene Equivalents3 Toward an Improved Bisketene Equivalent4 Conclusion
Collapse
|
23
|
Zhang Q, Chen C, Xia B, Xu P. Chemical regulation of the cGAS-STING pathway. Curr Opin Chem Biol 2022; 69:102170. [PMID: 35753220 DOI: 10.1016/j.cbpa.2022.102170] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Nucleic acids represent a major class of pathogen and damage signatures, recognized by a variety of host sensors to initiate signaling cascades and immune responses, such as mechanisms of RLR-MAVS, cGAS-STING, TLR-TRIF, and AIM2 inflammasome. Yet, an outstanding challenge is understanding how nucleic acid sensing initiates immune responses and its tethering in various infectious, cancerous, autoimmune, and inflammatory diseases. However, the discovery and application of a plethora of small molecule compounds have substantially facilitated this process. This review provides an overview and recent development of the innate DNA-sensing pathway of cGAS-STING and highlights the multiple agonists and inhibitors in fine-tuning the pathway that can be exploited to improve disease treatment, focusing primarily on crucial pathway components and regulators.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Liu J, Yuan L, Ruan Y, Deng B, Yang Z, Ren Y, Li L, Liu T, Zhao H, Mai R, Chen J. Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy. J Med Chem 2022; 65:6593-6611. [PMID: 35452223 DOI: 10.1021/acs.jmedchem.1c01948] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The activation of the cyclic GMP-AMP synthase-stimulator of interferon gene (STING) pathway has been associated with the pathogenesis of many autoimmune and inflammatory disorders, and small molecules targeting STING have emerged as a new therapeutic strategy for the treatment of these diseases. While several STING inhibitors have been identified with potent anti-inflammatory effects, we would like to explore STING degraders based on the proteolysis-targeting chimera (PROTAC) technology as an alternative strategy to target the STING pathway. Thus, we designed and synthesized a series of STING protein degraders based on a small-molecule STING inhibitor (C-170) and pomalidomide (a CRBN ligand). These compounds demonstrated moderate STING-degrading activities. Among them, SP23 achieved the highest degradation potency with a DC50 of 3.2 μM. Importantly, SP23 exerted high anti-inflammatory efficacy in a cisplatin-induced acute kidney injury mouse model by modulating the STING signaling pathway. Taken together, SP23 represents the first PROTAC degrader of STING deserving further investigation as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yong Ruan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Zicao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Huiting Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Shuming Chen
- Department of Chemistry and Biochemistry Oberlin College 119 Woodland Street Oberlin OH 44074 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
26
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022; 61:e202114514. [PMID: 34820990 PMCID: PMC8748398 DOI: 10.1002/anie.202114514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/19/2023]
Abstract
A strategy to control the diastereoselectivity of bond formation at a prochiral attached-ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non-covalent interactions to control re- vs. si- facial selectivity en route to fully substituted attached-rings. This divergency reflects differential engagement of one rotational isomer of the attached-ring system. The successful synthesis of an erythro subtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A.
Collapse
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm Sin B 2022; 12:50-75. [PMID: 35127372 PMCID: PMC8799861 DOI: 10.1016/j.apsb.2021.05.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
Collapse
Key Words
- AA, amino acids
- AAD, aortic aneurysm and dissection
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- Ang II, angiotensin II
- CBD, C-binding domain
- CDG, c-di-GMP
- CDNs, cyclic dinucleotides
- CTD, C-terminal domain
- CTT, C-terminal tail
- CVDs, cardiovascular diseases
- Cardiovascular diseases
- Cys, cysteine
- DAMPs, danger-associated molecular patterns
- Damage-associated molecular patterns
- DsbA-L, disulfide-bond A oxidoreductase-like protein
- ER stress
- ER, endoplasmic reticulum
- GTP, guanosine triphosphate
- HAQ, R71H-G230A-R293Q
- HFD, high-fat diet
- ICAM-1, intracellular adhesion molecule 1
- IFN, interferon
- IFN-I, type 1 interferon
- IFNAR, interferon receptors
- IFNIC, interferon-inducible cells
- IKK, IκB kinase
- IL, interleukin
- IRF3, interferon regulatory factor 3
- ISGs, IRF-3-dependent interferon-stimulated genes
- Inflammation
- LBD, ligand-binding pocket
- LPS, lipopolysaccharides
- MI, myocardial infarction
- MLKL, mixed lineage kinase domain-like protein
- MST1, mammalian Ste20-like kinases 1
- Metabolic diseases
- Mitochondria
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NLRP3, NOD-, LRR- and pyrin domain-containing protein 3
- NO2-FA, nitro-fatty acids
- NTase, nucleotidyltransferase
- PDE3B/4, phosphodiesterase-3B/4
- PKA, protein kinase A
- PPI, protein–protein interface
- Poly: I.C, polyinosinic-polycytidylic acid
- ROS, reactive oxygen species
- SAVI, STING-associated vasculopathy with onset in infancy
- SNPs, single nucleotide polymorphisms
- STIM1, stromal interaction molecule 1
- STING
- STING, stimulator of interferon genes
- Ser, serine
- TAK1, transforming growth factor β-activated kinase 1
- TBK1, TANK-binding kinase 1
- TFAM, mitochondrial transcription factor A
- TLR, Toll-like receptors
- TM, transmembrane
- TNFα, tumor necrosis factor-alpha
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TREX1, three prime repair exonuclease 1
- YAP1, Yes-associated protein 1
- cGAMP, 2′,3′-cyclic GMP–AMP
- cGAS
- cGAS, cyclic GMP–AMP synthase
- dsDNA, double-stranded DNA
- hSTING, human stimulator of interferon genes
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
Collapse
|
28
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
29
|
Gartman JA, Tambar UK. Synthetic Studies of the Rubellin Natural Products: Development of a Stereoselective Strategy and Total Synthesis of (+)-Rubellin C. J Org Chem 2021; 86:11237-11262. [PMID: 34288689 DOI: 10.1021/acs.joc.1c00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This manuscript describes our studies of the class of natural products known as the rubellins, culminating in the total synthesis of (+)-rubellin C. These anthraquinone-based natural products contain a variety of stereochemical and architectural motifs, including a 6-5-6-fused ring system, 5 stereogenic centers, and a central quaternary center. Herein, we report our development of a strategy to target the stereochemically dense core and anthraquinone nucleus, including approaches such as a bifunctional allylboron and vinyl triflate reagent, an anthraquinone benzylic metalation strategy, and a late-stage anthraquinone introduction strategy. Our studies culminate in a successful route to highly functionalized anthraquinone-based natural product scaffolds and a stereoselective total synthesis of (+)-rubellin C. These strategies and outcomes will aid in synthetic planning toward anthraquinone-based natural products of high interest.
Collapse
Affiliation(s)
- Jackson A Gartman
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
30
|
Tong G, Baker MA, Shenvi RA. Change the channel: CysLoop receptor antagonists from nature. PEST MANAGEMENT SCIENCE 2021; 77:3650-3662. [PMID: 33135373 PMCID: PMC8087819 DOI: 10.1002/ps.6166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 05/04/2023]
Abstract
Vertebrate and invertebrate ligand-gated ion channels (LGICs) exhibit significant structural homology and often share ligands. As a result, ligands with activity against one class can be brought to bear against another, including for development as insecticides. Receptor selectivity, metabolism and distribution must then be optimized using chemical synthesis. Here we review natural products (NPs) that ligate and inhibit the Cys-loop family of LGICs, which benefit from the unique physicochemical properties of natural product space but often present a high synthetic burden. Recent advances in chemical synthesis, however, have opened practical entries into these complex structures, several of which are highlighted. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Meghan A Baker
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
31
|
Tan J, Wu B, Chen T, Fan C, Zhao J, Xiong C, Feng C, Xiao R, Ding C, Tang W, Zhang A. Synthesis and Pharmacological Evaluation of Tetrahydro-γ-carboline Derivatives as Potent Anti-inflammatory Agents Targeting Cyclic GMP-AMP Synthase. J Med Chem 2021; 64:7667-7690. [PMID: 34044539 DOI: 10.1021/acs.jmedchem.1c00398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activation of cyclic GMP-AMP synthase (cGAS) by double-stranded DNA is implicated in the pathogenesis of many hyperinflammatory and autoimmune diseases, and the cGAS-targeting small molecule has emerged as a novel therapeutic strategy for treating these diseases. However, the currently reported cGAS inhibitors are far beyond maturity, barely demonstrating in vivo efficacy. Inspired by the structural novelty of compound 5 (G140), we conducted a structural optimization on both its side chain and the central tricyclic core, leading to several subseries of compounds, including those unexpectedly cyclized complex ones. Compound 25 bearing an N-glycylglycinoyl side chain was identified as the most potent one with cellular IC50 values of 1.38 and 11.4 μM for h- and m-cGAS, respectively. Mechanistic studies confirmed its direct targeting of cGAS. Further, compound 25 showed superior in vivo anti-inflammatory effects in the lipopolysaccharide-induced mouse model. The encouraging result of compound 25 provides solid evidence for further pursuit of cGAS-targeting inhibitors as a new anti-inflammatory treatment.
Collapse
Affiliation(s)
- Jing Tan
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wu
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Fan
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Zhao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chaodong Xiong
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Feng
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxuan Xiao
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyong Ding
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Tang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6:170. [PMID: 33927185 PMCID: PMC8085147 DOI: 10.1038/s41392-021-00554-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Sensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2'3'-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Abstract
Retrosynthetic analysis emerged in the 1960s as a teaching tool with profound implications. Its educational value can be appreciated by a glance at total synthesis manuscripts over 50 years later, most of which contain a retrosynthesis on page one. Its vision extended to computer language-a pioneering idea in the 20th century that continues to expand the frontiers today. The same principles that guide a student to evaluate, expand, and refine a series of bond dissections can be programmed, so that computer assistance can perform the same tasks but at faster speeds.The slow step in the synthesis of complex structures, however, is seldom route design. Compression of molecular information into close proximity (Cm/Å3) requires exploration and empiricism, a close connection between theory and experiment. Here, retrosynthetic analysis guides the choice of experiment, so that the most simplifying-but often least assured-disconnection is prioritized: a high-risk, high reward strategy. The reimagining of total synthesis in a future era of retrosynthetic software may involve, counterintuitively, target design, as discussed here.Compared to the 1960s, retrosynthetic analysis in the 21st century finds itself among computers of unimaginable power and a biology that is increasingly molecular. Put together, the logic of retrosynthesis, the insight of structural biology, and the predictions of computation have inspired us to imagine an integration of the three. The synthetic target is treated as dynamic-a constellation of related structures-in order to find the nearest congener with the closest affinity but the shortest synthetic route. Such an approach merges synthetic design with structural design toward the goal of improved access for improved function.In this Account, we detail the evolution of our program from its inception in traditional natural product (NP) total synthesis to its current expression through the lens of chemical informatics: a view of NPs as aggregates of molecular parameters that define single points in a chemical space. Early work on synthesis and biological annotation of apparent metal pool binders and nonselective covalent electrophiles (asmarine alkaloids, isocyanoterpenes, Nuphar dimers) gave way to NPs with well-defined protein targets. The plant metabolite salvinorin A (SalA) potently and selectively agonizes the κ-opioid receptor (KOR), rapidly penetrates the brain, and represents an important lead for next-generation analgesics and antipruritics. To synthesize and diversify this lead, we adopted what we now call a dynamic approach. Deletion of a central methyl group stabilized the SalA scaffold, opened quick synthetic access, and retained high potency and selectivity. The generality of this idea was then tested against another neuroactive class. As an alternative hypothesis to TrkB channels, we proposed that the so-called "neurotrophic" Illicium terpenes may bind to γ-aminobutyric acid (GABA)-gated ion channels to cause weak, chronic excitation. Syntheses of (-)-jiadifenolide, 3,6-dideoxy-10-hydroxypseudoanisatin, (-)-11-O-debenzoyltashironin, (-)-bilobalide, and (-)-picrotoxinin (PXN) allowed this hypothesis to be probed more broadly. Feedback from protein structure and synthetic reconnaissance led to a dynamic retrosynthesis of PXN and the identification of 5MePXN, a moderate GABAAR antagonist with greater aqueous stability available in eight steps from dimethylcarvone. We expect this dynamic approach to synthetic target analysis to become more feasible in the coming years and hope the next generation of scientists finds this approach helpful to address problems at the frontier of chemistry and biology.
Collapse
Affiliation(s)
- Stone Woo
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| |
Collapse
|
34
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
35
|
Hanaki Y, Araki Y, Nishikawa T, C. Yanagita R. Oscillatoxin E and Its C7 Epimer Show Distinct Growth Inhibition Profiles against Several Cancer Cell Lines. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Abstract
The rubellins are a family of stereochemically complex anthraquinoid heterodimers containing an unprecedented chemical scaffold. Although the rubellins have been known for over three decades, no total synthesis has been achieved since their discovery. Their topology is characterized by a 6-5-6 fused ring system, five neighboring stereocenters including a quaternary center all in a convoluted core, and an anthraquinone nucleus. The rubellin architecture has been shown to inhibit and reverse the aggregation of tau protein, a therapeutically relevant target for Alzheimer's disease. Herein, we describe the first stereoselective synthesis of a member of the family, (+)-rubellin C, in 16 steps. Strategic disconnections allow expedient construction of stereochemical and topological intricacy in a short sequence of borylative and transition metal-catalyzed steps.
Collapse
Affiliation(s)
- Jackson A Gartman
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
37
|
Hertzog J, Rehwinkel J. Regulation and inhibition of the DNA sensor cGAS. EMBO Rep 2020; 21:e51345. [PMID: 33155371 PMCID: PMC7726805 DOI: 10.15252/embr.202051345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous sensing of nucleic acids is essential for host defence against invading pathogens by inducing antiviral and inflammatory cytokines. cGAS has emerged in recent years as a non-redundant DNA sensor important for detection of many viruses and bacteria. Upon binding to DNA, cGAS synthesises the cyclic dinucleotide 2'3'-cGAMP that binds to the adaptor protein STING and thereby triggers IRF3- and NFκB-dependent transcription. In addition to infection, the pathophysiology of an ever-increasing number of sterile inflammatory conditions in humans involves the recognition of DNA through cGAS. Consequently, the cGAS/STING signalling axis has emerged as an attractive target for pharmacological modulation. However, the development of cGAS and STING inhibitors has just begun and a need for specific and effective compounds persists. In this review, we focus on cGAS and explore how its activation by immunostimulatory DNA is regulated by cellular mechanisms, viral immune modulators and small molecules. We further use our knowledge of cGAS modulation by cells and viruses to conceptualise potential new ways of pharmacological cGAS targeting.
Collapse
Affiliation(s)
- Jonny Hertzog
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
38
|
Liu K, Lan Y, Li X, Li M, Cui L, Luo H, Luo L. Development of small molecule inhibitors/agonists targeting STING for disease. Biomed Pharmacother 2020; 132:110945. [PMID: 33254439 DOI: 10.1016/j.biopha.2020.110945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) -stimulator of interferon genes (STING) signaling pathway is the primary immune response pathway in the cytoplasm. Pharmacological regulation of the STING pathway has good characteristics in both structure and function, which plays a significant role in the immunotherapy of autoimmune diseases, autoinflammatory diseases, and cancer. In this review, we summarized the activation of STING signaling pathway, the STING-related diseases, the development principle and the latest progress of inhibitors and agonists targeting STING. Our review demonstrates that STING signal pathway is a promising drug target, providing effective clues and correct guidance for the discovery of novel small molecule inhibitors/agonists that targeted STING for cancer, autoimmune, and inflammatory diseases.
Collapse
Affiliation(s)
- Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoling Li
- Animal Experiment Center of Guangdong Medical University, Zhanjiang, 524023, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
39
|
Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (-)-Bilobalide. J Am Chem Soc 2020; 142:18599-18618. [PMID: 32991152 PMCID: PMC7727090 DOI: 10.1021/jacs.0c08231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.
Collapse
Affiliation(s)
- Robert M. Demoret
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Meghan A. Baker
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Masaki Ohtawa
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ching Ching Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Stefano Forli
- DISCoBio, Scripps Research, La Jolla, California 92037, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Wang Y, Zhang C, Zhao YL, Zhao R, Houk KN. Understand the Specific Regio- and Enantioselectivity of Fluostatin Conjugation in the Post-Biosynthesis. Biomolecules 2020; 10:E815. [PMID: 32466453 PMCID: PMC7355926 DOI: 10.3390/biom10060815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Fluostatins, benzofluorene-containing aromatic polyketides in the atypical angucycline family, conjugate into dimeric and even trimeric compounds in the post-biosynthesis. The formation of the C-C bond involves a non-enzymatic stereospecific coupling reaction. In this work, the unusual regio- and enantioselectivities were rationalized by density functional theory calculations with the M06-2X (SMD, water)/6-311 + G(d,p)//6-31G(d) method. These DFT calculations reproduce the lowest energy C1-(R)-C10'-(S) coupling pathway observed in a nonenzymatic reaction. Bonding of the reactive carbon atoms (C1 and C10') of the two reactant molecules maximizes the HOMO-LUMO interactions and Fukui function involving the highest occupied molecular orbital (HOMO) of nucleophile p-QM and lowest unoccupied molecular orbital (LUMO) of electrophile FST2- anion. In particular, the significant π-π stacking interactions of the low-energy pre-reaction state are retained in the lowest energy pathway for C-C coupling. The distortion/interaction-activation strain analysis indicates that the transition state (TScp-I) of the lowest energy pathway involves the highest stabilizing interactions and small distortion among all possible C-C coupling reactions. One of the two chiral centers generated in this step is lost upon aromatization of the phenol ring in the final difluostatin products. Thus, the π-π stacking interactions between the fluostatin 6-5-6 aromatic ring system play a critical role in the stereoselectivity of the nonenzymatic fluostatin conjugation.
Collapse
Affiliation(s)
- Yuanqi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resource and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China;
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| | - Rosalinda Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| |
Collapse
|