1
|
Kozoriz K, Lee JS. Chemical proteomics for a comprehensive understanding of functional activity and the interactome. Chem Soc Rev 2025. [PMID: 40384449 DOI: 10.1039/d5cs00381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Traditional mass spectrometry (MS)-based proteomics aims to detect and measure protein expression on a global scale and elucidate the link between protein function and phenotypic characteristics. Although advances in MS technology have significantly broadened the scope of detectable proteomes, these methodologies primarily provide data on protein abundance and offer limited insights into their functional activities. Phenotypic traits emerge from the interplay between protein abundance and functional activity, making the accurate measurement of activity a critical but challenging task, owing to the complexity of biological systems. Furthermore, the biological function of a protein is strongly linked to its interaction with other molecules within the cellular environment. Chemical proteomics offers a complementary approach that uses a toolkit developed in chemical biology to map the molecular interactome and provide initial insights into the activities of specific target proteins. However, the value of these techniques lies not in isolation, but as part of a broader experimental workflow that includes follow-up biological investigations to validate the findings and elucidate their functional relevance. This tutorial review highlights the design principles of chemical tools and examines their applications in two key areas: (i) functional activity profiling of biomolecules and (ii) molecular proximity profiling for interactome characterization. We also discuss the importance of the experimental context in shaping data interpretation and ensuring the practical adoption of these methods by biologists. Although chemical proteomics is not a standalone solution, it represents a promising step toward next-generation omics technologies and advances our understanding of biological functions at the molecular level.
Collapse
Affiliation(s)
- Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kumar N, Sharma T, Thakur N, Jain R, Sinha N. Abundant Transition Metal Based Photocatalysts for Red Light-Driven Photocatalysis. Chemistry 2025; 31:e202500365. [PMID: 40135511 DOI: 10.1002/chem.202500365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
Photocatalysis emerges as an efficient and versatile tool for the preparation of organic compounds via the development of new methodologies and new photosensitizers. Mostly UV and blue light irradiation are used for such reactions. Red light is low-energy light, it is less harmful and has more penetration depth. Hence red light-driven photocatalysis would be more suitable for preparing value-added products. Red-absorbing photosensitizers are mostly based on rare and expensive metals. In this review, we describe the recent developments on Earth-abundant transition metal-based photosensitizers (W(0), Mo(0), Cr(0), Fe(III), Cu(I), Zn(II)) and their applications in red light-driven photocatalysis. Photocatalysis using both electron transfer and energy transfer processes is discussed. Three different red light-induced reactions such as direct monophotonic excitation, sensitized triplet-triplet annihilation upconversion (sTTA-UC), and dual red light photocatalysis are presented. Various organic transformations such as reductive dehalogenation and detosylation, reduction of diazonium salts, C─C coupling via C─H activation, oxidation of aryl boronic acids to phenols, polymerization reactions, cross dehydrogenative couplings, α-cyanation of tertiary amines, Barton decarboxylation have been carried out using abundant photosensitizers and red light.
Collapse
Affiliation(s)
- Nitish Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Tanu Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Nirbhay Thakur
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Rahul Jain
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Narayan Sinha
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
3
|
Li H, Mazli W, Hao L. Overcoming Analytical Challenges in Proximity Labeling Proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5134. [PMID: 40195276 PMCID: PMC11976124 DOI: 10.1002/jms.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Proximity labeling (PL) proteomics has emerged as a powerful tool to capture both stable and transient protein interactions and subcellular networks. Despite the wide biological applications, PL still faces technical challenges in robustness, reproducibility, specificity, and sensitivity. Here, we discuss major analytical challenges in PL proteomics and highlight how the field is advancing to address these challenges by refining study design, tackling interferences, overcoming variation, developing novel tools, and establishing more robust platforms. We also provide our perspectives on best practices and the need for more robust, scalable, and quantitative PL technologies.
Collapse
Affiliation(s)
- Haorong Li
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Ling Hao
- Department of ChemistryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Montoto D, Deus-Lorenzo U, Tomás-Gamasa M, Mascareñas JL, Mato M. Red-shifted photoredox generation and trapping of alkyl radicals towards bioorthogonality. Org Biomol Chem 2025. [PMID: 40264276 DOI: 10.1039/d5ob00476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The photocatalytic generation and trapping of alkyl radicals is a powerful synthetic tool in organic chemistry, but it remains underexplored in biological settings. Here, we present two photoredox systems that leverage green- or red-light irradiation for the activation and subsequent Giese coupling of redox-active alkyl phthalimide esters. Besides utilizing mild low-energy light sources, these reactions operate with biocompatible BnNAH or NADH as electron donor. Notably, they display compatibility with air, water and biologically relevant conditions, including cell-culture media or even cell lysates. This work marks a significant step towards integrating synthetic alkyl-radical chemistry into biological settings.
Collapse
Affiliation(s)
- David Montoto
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Uxía Deus-Lorenzo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Bednářová E, Grotjahn R, Lin C, Xie KA, Karube Y, Owen JS, Joe CL, Lainhart BC, Sherwood TC, Rovis T. From Structure to Function: Designing Iridium Catalysts with Spin-Forbidden Excitation for Low-Energy Light-Driven Reactions. J Am Chem Soc 2025; 147:12511-12522. [PMID: 40194056 DOI: 10.1021/jacs.4c17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Herein we describe a comprehensive study of ligand effects on optoelectronic properties of a series of Ir(III) catalysts which undergo formally spin-forbidden excitation using low-energy light. We demonstrate that electronic and steric tuning of several variables can be explained by their impact on the HOMO and LUMO energies of the complex. Density functional theory calculations of the catalysts' adiabatic triplet energies agree with the experimental results to within 0.05 eV on average. As many of these subtle effects are independent of each other, the merger of them in a single complex tends to have an additive effect and we thus succeeded in developing a family of highly oxidizing iridium photocatalysts that operate by spin-forbidden excitation.
Collapse
Affiliation(s)
- Eva Bednářová
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Robin Grotjahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Chenxi Lin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuzuka Karube
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brendan C Lainhart
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Discovery and Development Sciences, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Zhou Z, Wang Z, Blenko AL, Li J, Lin W. Viologen Covalent Organic Framework Mediates Near-Infrared Light-Induced Electron Transfer for Catalytic Oxidative Coupling Reactions. J Am Chem Soc 2025; 147:10846-10852. [PMID: 40101153 DOI: 10.1021/jacs.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Near-infrared (NIR) light-driven photoreactions are advantageous over visible light-driven ones because NIR photons have lower energy and fewer side reactions, deeper penetration in reaction media, and high abundance in the solar spectrum. However, currently available covalent organic frameworks (COFs) absorb in the UV-vis region and catalyze photoreactions under blue or white light irradiation. Herein, we report a linker-to-linker charge transfer process in a viologen-linked porphyrin COF (Vio-COF), leading to a novel type of hyperporphyrin effect and extending the absorption into the NIR region with an absorption edge at 998 nm. Under NIR irradiation, photoinduced charge separation in Vio-COF generates a viologen radical that efficiently reduces oxygen to form superoxide radicals for catalytic oxidative coupling reactions. The proximity of porphyrin and viologen units within the framework significantly enhances the catalytic performance of Vio-COF, outperforming its homogeneous counterparts in aerobic oxidative amidation and amine coupling reactions. Vio-COF was readily recycled and used in six oxidative coupling reactions.
Collapse
Affiliation(s)
- Zhibei Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Berton C, Holland JP. Light-induced chemistry for protein functionalisation. Chem Commun (Camb) 2025; 61:5234-5252. [PMID: 40094221 DOI: 10.1039/d4cc06529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Derivatising biomolecules like monoclonal antibodies with drugs or imaging agents, whilst preserving their bioactivity, is a challenging task. Protein functionalisation ideally requires methods that operate under mild conditions, are rapid, efficient (high yielding), chemoselective or site-specific, and importantly, non-denaturing. A broad collection of thermally mediated reagents for direct labelling using protein-based reactivity, or bioorthogonal strategies, has been developed, but arguably the most exciting opportunities lie in the application of photochemistry to create new covalent bioconjugate bonds. With current chemical methods for auxochromic tuning of the spectral features of photoactive groups, and with cheap, high-powered light-emitting diodes with precise emission properties, it has never been easier to explore the use of light-induced chemistry for making protein-based bioactive molecules. In biomedicine, the nature of the covalent bond to the protein can have a dramatic impact on the physicochemical properties and performance of the protein-conjugate. Photochemical methods provide access to new types of covalent linkages on protein with the potential to fine-tune biological interactions, leading to improvements in target uptake, binding specificity, metabolic processing, and washout kinetics in vivo. This perspective/review highlights recent advances in the development of photoactive reagents for protein labelling. We also discuss the experimental conditions and critical requirements to implement light-induced synthesis of functionalised protein-conjugates in aqueous media effectively.
Collapse
Affiliation(s)
- Cesare Berton
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
9
|
Tong F, Zhou W, Janiszewska M, Seath CP. Multiprobe Photoproximity Labeling of the EGFR Interactome in Glioblastoma Using Red-Light. J Am Chem Soc 2025; 147:9316-9327. [PMID: 40052329 DOI: 10.1021/jacs.4c15537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photocatalytic proximity labeling has emerged as a valuable technique for studying interactions between biomolecules in a cellular context, providing precise spatiotemporal control over protein labeling. One significant advantage of these methods is their modularity, allowing the use of a single photocatalyst with different reactive probes to expand interactome coverage and capture diverse protein interactions. Despite these advances, fewer methods have been developed using red-light excitation, limiting the use of photoproximity labeling in more complex media such as tissues and animal models. Herein, we develop a platform for proximity labeling under red-light excitation, utilizing a single catalyst and two distinct probe types. We first design a carbene based labeling system that utilizes sulfonium diazo probes. This system is successfully applied on A549 cells to capture the interactome of epidermal growth factor receptor (EGFR) using a Cetuximab-Chlorin e6 conjugate. Benchmarking against established techniques indicates that this approach performs comparably to leading carbene-based proximity labeling methods. Next, we leverage the strong singlet oxygen generation (SOG) ability of Chlorin e6 to establish an alternative labeling system using aniline and hydrazide probes. EGFR directed chemoproteomics experiments reveal significant overlap with the carbene system, with the carbene approach capturing a subset of interactions identified by the SOG system. Finally, we deploy our approach for the characterization of EGFR in resected human glioblastoma (GBM) tissue samples removed from distinct locations in the same tumor, representing the tumor's infiltrating edge and its viable center, identifying several GBM specific interacting proteins that may serve as a launch point for future therapeutic campaigns.
Collapse
Affiliation(s)
- Feifei Tong
- Department of Chemistry, Wertheim UF Scripps, Jupiter, Florida 33418, United States
| | - Wuyue Zhou
- Department of Chemistry, Wertheim UF Scripps, Jupiter, Florida 33418, United States
- The Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, Florida 33458, United States
| | - Michalina Janiszewska
- Department of Molecular Medicine, Wertheim UF Scripps, Jupiter, Florida 33418, United States
| | - Ciaran P Seath
- Department of Chemistry, Wertheim UF Scripps, Jupiter, Florida 33418, United States
| |
Collapse
|
10
|
Lou Z, Zhang Y, Liang X, Cao M, Ma Y, Chen PR, Fan X. Deep-Red and Ultrafast Photocatalytic Proximity Labeling Empowered In Situ Dissection of Tumor-Immune Interactions in Primary Tissues. J Am Chem Soc 2025; 147:9716-9726. [PMID: 40036744 DOI: 10.1021/jacs.4c17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Immunotherapy efficacy in solid tumors varies greatly, influenced by the tumor microenvironment (TME) and the dynamic tumor-immune interactions within it. Decoding these interactions in situ with minimal interference with native tissue architecture and delicate immune responses is critical for understanding tumor progression and optimizing therapeutic strategies. Here, we introduce CAT-Tissue, a novel deep-red photocatalytic proximity labeling method that enables ultrafast, high-resolution profiling of tumor-immune interactions in primary tissues. By leveraging nanobody-Chlorin e6 as the photocatalyst and biotin-aniline as the probe, CAT-Tissue enabled the rapid and comprehensive detection of various tumor-immune interactions in both coculture systems and primary tumor sections. Coupled with bulk RNA-sequencing, CAT-Tissue revealed distinct gene expression patterns between tumor-neighboring and tumor-distal lymphocytes, highlighting the recognition and immune responses of tumor-neighboring CD8+ T cells, which exhibited activated, effector, and exhausted phenotypes. By leveraging a deep-red photocatalytic proximity cell labeling strategy with excellent tissue penetration and biocompatibility, CAT-Tissue offers a nongenetically encoded platform with high sensitivity and spatiotemporal controllability for rapid profiling tumor-immune interactions within complex tissue environments in situ, which may advance our understanding of tumor immunology and guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Zhang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Liang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mengrui Cao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yicong Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Zhang Z, Wang Y, Lu W, Wang X, Guo H, Pan X, Liu Z, Wu Z, Qin W. Spatiotemporally resolved mapping of extracellular proteomes via in vivo-compatible TyroID. Nat Commun 2025; 16:2553. [PMID: 40089463 PMCID: PMC11910615 DOI: 10.1038/s41467-025-57767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Extracellular proteins play pivotal roles in both intracellular signaling and intercellular communications in health and disease. While recent advancements in proximity labeling (PL) methods, such as peroxidase- and photocatalyst-based approaches, have facilitated the resolution of extracellular proteomes, their in vivo compatibility remains limited. Here, we report TyroID, an in vivo-compatible PL method for the unbiased mapping of extracellular proteins with high spatiotemporal resolution. TyroID employs plant- and bacteria-derived tyrosinases to produce reactive o-quinone intermediates, enabling the labeling of multiple residues on endogenous proteins with bioorthogonal handles, thereby allowing for their identification via chemical proteomics. We validate TyroID's specificity by mapping extracellular proteomes and HER2-neighboring proteins using affibody-directed recombinant tyrosinases. Demonstrating its superiority over other PL methods, TyroID enables in vivo mapping of extracellular proteomes, including mapping HER2-proximal proteins in tumor xenografts, quantifying the turnover of plasma proteins and labeling hippocampal-specific proteomes in live mouse brains. TyroID emerges as a potent tool for investigating protein localization and molecular interactions within living organisms.
Collapse
Affiliation(s)
- Zijuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zeyu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Stamoulis A, Mato M, Bruzzese PC, Leutzsch M, Cadranel A, Gil-Sepulcre M, Neese F, Cornella J. Red-Light-Active N,C,N-Pincer Bismuthinidene: Excited State Dynamics and Mechanism of Oxidative Addition into Aryl Iodides. J Am Chem Soc 2025; 147:6037-6048. [PMID: 39924910 PMCID: PMC11848931 DOI: 10.1021/jacs.4c16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Despite the progress made in the field of synthetic organic photocatalysis over the past decade, the use of higher wavelengths, especially those in the deep-red portion of the electromagnetic spectrum, remains comparatively rare. We have previously disclosed that a well-defined N,C,N-pincer bismuthinidene (1a) can undergo formal oxidative addition into a wide range of aryl electrophiles upon absorption of low-energy red light. In this study, we map out the photophysical dynamics of 1a and glean insights into the nature of the excited state responsible for the activation of aryl electrophiles. Transient absorption and emission techniques reveal that, upon irradiation with red light, the complex undergoes a direct S0 → S1 metal-to-ligand charge transfer (MLCT) transition, followed by rapid intersystem crossing (ISC) to a highly reducing emissive triplet state (-2.61 V vs Fc+/0 in MeCN). The low dissipative losses incurred during ISC (∼6% of the incident light energy) help rationalize the ability of the bismuthinidene to convert low-energy light into useful chemical energy. Spectroelectrochemical and computational data support a charge-separated excited-state structure with radical-anion character on the ligand and radical-cation character on bismuth. Kinetic studies and competition experiments afford insights into the mechanism of oxidative addition into aryl iodides; concerted and inner-sphere processes from the triplet excited state are ruled out, with the data strongly supporting a pathway that proceeds via outer-sphere dissociative electron transfer.
Collapse
Affiliation(s)
- Alexios Stamoulis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Mauro Mato
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Alejandro Cadranel
- Universidad
de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica
y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos
Aires, Argentina
- CONICET—Universidad
de Buenos Aires, Instituto de Química Física de Materiales,
Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad
Universitaria, C1428EHA Buenos Aires, Argentina
- Department
Chemie und Pharmazie, Physikalische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
- Interdisciplinary
Center for Molecular Materials, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Marcos Gil-Sepulcre
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| |
Collapse
|
13
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
14
|
Rahmati S, Emili A. Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers (Basel) 2025; 17:179. [PMID: 39857961 PMCID: PMC11763998 DOI: 10.3390/cancers17020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions. Proximity labeling, a cutting-edge proteomics technology, addresses these technical challenges by enabling precise mapping of protein neighborhoods around a receptor target on the cell surface of cancer cells. This technique has been successfully applied in vitro and in vivo for proteomic mapping across various model systems. This review explores the fundamental principles, technologies, advantages, limitations, and applications of proximity labeling in cancer biology, focusing on mapping receptor microenvironments. By advancing mechanistic insights into cancer cell receptor signaling mechanisms, proximity labeling is poised to transform cancer research, improve targeted therapies, and illuminate avenues to overcome drug resistance.
Collapse
Affiliation(s)
| | - Andrew Emili
- Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA;
| |
Collapse
|
15
|
Chen F, Huang H, Zhang F, Wang R, Wang L, Chang Z, Cao L, Zhang W, Li L, Chen M, Shao D, Yang C, Dong WF, Sun W. Biomimetic Chlorosomes: Oxygen-Independent Photocatalytic Nanoreactors for Efficient Combination Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413385. [PMID: 39499050 DOI: 10.1002/adma.202413385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/07/2024]
Abstract
Photocatalytic therapy for hypoxic tumors often suffers from inefficiencies due to its dependence on oxygen and the risk of uncontrolled activation. Inspired by the oxygen-independent and precisely regulated photocatalytic functions of natural light-harvesting chlorosomes, chlorosome-mimetic nanoreactors, termed Ru-Chlos, are engineered by confining the aggregation of photosensitive ruthenium-polypyridyl-silane monomers. These Ru-Chlos exhibit markedly enhanced photocatalytic performance compared to their monomeric counterparts under acidic conditions, while notably bypassing the consumption of oxygen or hydrogen peroxide. The photocatalytic activity of Ru-Chlos is finely tunable through light-responsive disassembly of the Ru-bridged matrix, with tunability governed by pre-irradiation duration. Utilization of Ru-Chlos loading prodrug [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS) for phototherapy facilitates the generation of toxic radicals (oxABTS) and the photocatalytic conversion of endogenous NADH to NAD+, inducing oxidative stress in hypoxic cancer cells. Simultaneously, the light-responsive degradation of Ru-Chlos produces Ru-based toxins that further contribute to the therapeutic effect. This dual-action mechanism elicits potent immunogenic cell death effects and significantly enhances antitumor efficacy with the aid of a PD-l blockade. These biomimetic chlorosomes highlight their potential to advance oxygen-independent photocatalytic nanoreactors with controlled activity for novel cancer photoimmunotherapy strategies.
Collapse
Affiliation(s)
- Fangman Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lei Cao
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Wensheng Zhang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
16
|
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Qiu X, Pohl E, Jung A, Cai Q, Su H, Fuhr O, Schepers U, Bräse S. Modulating the photolysis of aryl azides in a supramolecular host to develop photoactivatable fluorophores. Chem Commun (Camb) 2024; 60:12856-12859. [PMID: 39412543 DOI: 10.1039/d4cc03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photolysis of aryl azides is a convenient method to approach more functionalized systems in chemical biology. Here, we present a set of photoactivatable aryl azides that undergo controlled reaction pathways within the cucurbit[7]uril (CB7) cavity upon photolysis. The fluorescence turn-on process is utilized for bioimaging.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Eric Pohl
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - André Jung
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Qianyu Cai
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Haopu Su
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
19
|
Bon C, Goretzki B, Flamme M, Shelton C, Davis H, Lima F, Garcia F, Brittain S, Brocklehurst CE. Oxadiazolines as Photoreleasable Labels for Drug Target Identification. J Am Chem Soc 2024; 146:26759-26765. [PMID: 39288302 DOI: 10.1021/jacs.4c06936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoaffinity labeling is a widely used technique for studying ligand-protein and protein-protein interactions. Traditional photoaffinity labels utilize nonspecific C-H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through in cellulo labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302-330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and in cellulo, yielding comparable results to those of the matched diazirine compounds.
Collapse
Affiliation(s)
- Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Marie Flamme
- Chemical and Analytical Development, Novartis Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Claude Shelton
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Francisco Garcia
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Scott Brittain
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| |
Collapse
|
20
|
Breckels LM, Hutchings C, Ingole KD, Kim S, Lilley KS, Makwana MV, McCaskie KJA, Villanueva E. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol 2024; 31:1665-1687. [PMID: 39303701 DOI: 10.1016/j.chembiol.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.
Collapse
Affiliation(s)
- Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Charlotte Hutchings
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kishor D Ingole
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Suyeon Kim
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Mehul V Makwana
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kieran J A McCaskie
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
21
|
Becker AP, Biletch E, Kennelly JP, Julio AR, Villaneuva M, Nagari RT, Turner DW, Burton NR, Fukuta T, Cui L, Xiao X, Hong SG, Mack JJ, Tontonoz P, Backus KM. Lipid- and protein-directed photosensitizer proximity labeling captures the cholesterol interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608660. [PMID: 39229057 PMCID: PMC11370482 DOI: 10.1101/2024.08.20.608660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The physical properties of cellular membranes, including fluidity and function, are influenced by protein and lipid interactions. In situ labeling chemistries, most notably proximity-labeling interactomics are well suited to characterize these dynamic and often fleeting interactions. Established methods require distinct chemistries for proteins and lipids, which limits the scope of such studies. Here we establish a singlet-oxygen-based photocatalytic proximity labeling platform (POCA) that reports intracellular interactomes for both proteins and lipids with tight spatiotemporal resolution using cell-penetrant photosensitizer reagents. Using both physiologically relevant lipoprotein-complexed probe delivery and genetic manipulation of cellular cholesterol handling machinery, cholesterol-directed POCA captured established and unprecedented cholesterol binding proteins, including protein complexes sensitive to intracellular cholesterol levels and proteins uniquely captured by lipoprotein uptake. Protein-directed POCA accurately mapped known intracellular membrane complexes, defined sterol-dependent changes to the non-vesicular cholesterol transport protein interactome, and captured state-dependent changes in the interactome of the cholesterol transport protein Aster-B. More broadly, we find that POCA is a versatile interactomics platform that is straightforward to implement, using the readily available HaloTag system, and fulfills unmet needs in intracellular singlet oxygen-based proximity labeling proteomics. Thus, we expect widespread utility for POCA across a range of interactome applications, spanning imaging to proteomics.
Collapse
Affiliation(s)
- Andrew P. Becker
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Elijah Biletch
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - John Paul Kennelly
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, USA
| | - Ashley R. Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Miranda Villaneuva
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | - Rohith T. Nagari
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | - Daniel W. Turner
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Nikolas R. Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | - Tomoyuki Fukuta
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, USA
| | - Xu Xiao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, USA
| | - Soon-Gook Hong
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | - Julia J. Mack
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
- Jonsson Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Oslund RC, Holland PM, Lesley SA, Fadeyi OO. Therapeutic potential of cis-targeting bispecific antibodies. Cell Chem Biol 2024; 31:1473-1489. [PMID: 39111317 DOI: 10.1016/j.chembiol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
The growing clinical success of bispecific antibodies (bsAbs) has led to rapid interest in leveraging dual targeting in order to generate novel modes of therapeutic action beyond mono-targeting approaches. While bsAbs that bind targets on two different cells (trans-targeting) are showing promise in the clinic, the co-targeting of two proteins on the same cell surface through cis-targeting bsAbs (cis-bsAbs) is an emerging strategy to elicit new functionalities. This includes the ability to induce proximity, enhance binding to a target, increase target/cell selectivity, and/or co-modulate function on the cell surface with the goal of altering, reversing, or eradicating abnormal cellular activity that contributes to disease. In this review, we focus on the impact of cis-bsAbs in the clinic, their emerging applications, and untangle the intricacies of improving bsAb discovery and development.
Collapse
|
23
|
Lee Y, Jhun BH, Woo S, Kim S, Bae J, You Y, Cho EJ. Charge-recombinative triplet sensitization of alkenes for DeMayo-type [2 + 2] cycloaddition. Chem Sci 2024; 15:12058-12066. [PMID: 39092097 PMCID: PMC11290448 DOI: 10.1039/d4sc02601b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Synthetic photochemistry has undergone significant development, largely owing to the development of visible-light-absorbing photocatalysts (PCs). PCs have significantly improved the efficiency and precision of cycloaddition reactions, primarily through energy or electron transfer pathways. Recent research has identified photocatalysis that does not follow energy- or electron-transfer formalisms, indicating the existence of other, undiscovered photoactivation pathways. This study unveils an alternative route: a charge-neutral photocatalytic process called charge-recombinative triplet sensitization (CRTS), a mechanism with limited precedents in synthetic chemistry. Our investigations revealed CRTS occurrence in DeMayo-type [2 + 2] cycloaddition reactions catalyzed by indole-fused organoPCs. Our mechanistic investigations, including steady-state and transient spectroscopic analyses, electrochemical investigations, and quantum chemical calculations, suggest a mechanism involving substrate activation through photoinduced electron transfer, followed by charge recombination, leading to substrate triplet state formation. Our findings provide valuable insights into the underlying photocatalytic reaction mechanisms and pave the way for the systematic design and realization of innovative photochemical processes.
Collapse
Affiliation(s)
- Yunjeong Lee
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Sihyun Woo
- Division of Chemical Engineering and Materials Science, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
24
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. Science 2024; 385:eadl5763. [PMID: 39024454 DOI: 10.1126/science.adl5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Proximity labeling proteomics (PLP) strategies are powerful approaches to yield snapshots of protein neighborhoods. Here, we describe a multiscale PLP method with adjustable resolution that uses a commercially available photocatalyst, Eosin Y, which upon visible light illumination activates different photo-probes with a range of labeling radii. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor and orthogonally validated more than 20 neighbors using immunoassays and AlphaFold-Multimer prediction. We further profiled the protein neighborhoods of cell-cell synapses induced by bispecific T cell engagers and chimeric antigen receptor T cells. This integrated multiscale PLP platform maps local and distal protein networks on and between cell surfaces, which will aid in the systematic construction of the cell surface interactome, revealing horizontal signaling partners and reveal new immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea Fossati
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ajikarunia Palar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Wei L, Kushwaha R, Sadhukhan T, Wu H, Dao A, Zhang Z, Zhu H, Gong Q, Ru J, Liang C, Zhang P, Banerjee S, Huang H. Dinuclear Tridentate Ru(II) Complex with Strong Near-Infrared Light-Triggered Anticancer Activity. J Med Chem 2024; 67:11125-11137. [PMID: 38905437 DOI: 10.1021/acs.jmedchem.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The design of the dinuclear Ru(II) complex (Ru2) with strong near-infrared (NIR) absorption properties has been reported for efficient anticancer phototherapy. Under 700 nm LED light excitation, Ru2 exhibited remarkable synergistic type I/II photosensitization ability and photocatalytic activity toward intracellular biomolecules. Ru2 showed impressive 700 nm light-triggered anticancer activity under normoxia and hypoxia compared with the clinically used photosensitizer Chlorin e6. The mechanistic studies showed that Ru2 induced intracellular redox imbalance and perturbed the energy metabolism and biosynthesis in A549 cancer cells. Overall, this work provides a new strategy for developing efficient metal-based complexes for anticancer phototherapy under NIR light.
Collapse
Affiliation(s)
- Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Haorui Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Anyi Dao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Zhishang Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Haotu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
26
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
27
|
Fu R, Xu M, Wang Y, Wu X, Bao X. Organo-Photocatalytic Anti-Markovnikov Hydroamidation of Alkenes with Sulfonyl Azides: A Combined Experimental and Computational Study. Angew Chem Int Ed Engl 2024; 63:e202406069. [PMID: 38630112 DOI: 10.1002/anie.202406069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 05/22/2024]
Abstract
The construction of C(sp3)-N bonds via direct N-centered radical addition with olefins under benign conditions is a desirable but challenging strategy. Herein, we describe an organo-photocatalytic approach to achieve anti-Markovnikov alkene hydroamidation with sulfonyl azides in a highly efficient manner under transition-metal-free and mild conditions. A broad range of substrates, including both activated and unactivated alkenes, are suitable for this protocol, providing a convenient and practical method to construct sulfonylamide derivatives. A synergistic experimental and computational mechanistic study suggests that the additive, Hantzsch ester (HE), might undergo a triplet-triplet energy transfer manner to achieve photosensitization by the organo-photocatalyst under visible light irradiation. Next, the resulted triplet excited state 3HE* could lead to a homolytic cleavage of C4-H bond, which triggers a straightforward H-atom transfer (HAT) style in converting sulfonyl azide to the corresponding key amidyl radical. Subsequently, the addition of the amidyl radical to alkene followed by HAT from p-toluenethiol could proceed to afford the desired anti-Markovnikov hydroamidation product. It is worth noting that mechanistic pathway bifurcation could be possible for this reaction. A feasible radical chain propagation mechanistic pathway is also proposed to rationalize the high efficiency of this reaction.
Collapse
Affiliation(s)
- Rui Fu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Mengyu Xu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Yujing Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
28
|
Knutson SD, Buksh BF, Huth SW, Morgan DC, MacMillan DWC. Current advances in photocatalytic proximity labeling. Cell Chem Biol 2024; 31:1145-1161. [PMID: 38663396 PMCID: PMC11193652 DOI: 10.1016/j.chembiol.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 06/23/2024]
Abstract
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
Collapse
Affiliation(s)
- Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Zhang T, Rabeah J, Das S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat Commun 2024; 15:5208. [PMID: 38890327 PMCID: PMC11189478 DOI: 10.1038/s41467-024-49514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Rostock, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
30
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
31
|
Kai U, Katsurayama Y, Nishida R, Kameyama T, Torimoto T, Furuyama T. Red-Light-Driven Bifunctionalization of Styrene Derivatives. J Org Chem 2024. [PMID: 38803054 DOI: 10.1021/acs.joc.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A red-light-activated phthalocyanine ruthenium complex has been designed as a catalyst for the bifunctionalization of styrene derivatives. The combination of a trifluoromethylation agent resistant to nucleophiles and various nucleophiles facilitates the concurrent incorporation of a trifluoromethyl group and various functional groups onto the double bond of the substrate. This reaction demonstrates the utility of mild, low-energy, and highly transmissive long-wavelength light for intricate molecular transformations in a one-pot procedure.
Collapse
Affiliation(s)
- Urara Kai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshino Katsurayama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
32
|
Hu X, Yin R, Jeong J, Matyjaszewski K. Robust Miniemulsion PhotoATRP Driven by Red and Near-Infrared Light. J Am Chem Soc 2024; 146:13417-13426. [PMID: 38691625 PMCID: PMC11099965 DOI: 10.1021/jacs.4c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Photoinduced polymerization techniques have gathered significant attention due to their mild conditions, spatiotemporal control, and simple setup. In addition to homogeneous media, efforts have been made to implement photopolymerization in emulsions as a practical and greener process. However, previous photoinduced reversible deactivation radical polymerization (RDRP) in heterogeneous media has relied on short-wavelength lights, which have limited penetration depth, resulting in slow polymerization and relatively poor control. In this study, we demonstrate the first example of a highly efficient photoinduced miniemulsion ATRP in the open air driven by red or near-infrared (NIR) light. This was facilitated by the utilization of a water-soluble photocatalyst, methylene blue (MB+). Irradiation by red/NIR light allowed for efficient excitation of MB+ and subsequent photoreduction of the ATRP deactivator in the presence of water-soluble electron donors to initiate and mediate the polymerization process. The NIR light-driven miniemulsion photoATRP provided a successful synthesis of polymers with low dispersity (1.09 ≤ Đ ≤ 1.29) and quantitative conversion within an hour. This study further explored the impact of light penetration on polymerization kinetics in reactors of varying sizes and a large-scale reaction (250 mL), highlighting the advantages of longer-wavelength light, particularly NIR light, for large-scale polymerization in dispersed media owing to its superior penetration. This work opens new avenues for robust emulsion photopolymerization techniques, offering a greener and more practical approach with improved control and efficiency.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Liu Z, Guo F, Zhu Y, Qin S, Hou Y, Guo H, Lin F, Chen PR, Fan X. Bioorthogonal photocatalytic proximity labeling in primary living samples. Nat Commun 2024; 15:2712. [PMID: 38548729 PMCID: PMC10978841 DOI: 10.1038/s41467-024-46985-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
In situ profiling of subcellular proteomics in primary living systems, such as native tissues or clinic samples, is crucial for understanding life processes and diseases, yet challenging due to methodological obstacles. Here we report CAT-S, a bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of mitochondrial proteomes. Powered by our thioQM labeling warhead development and targeted bioorthogonal photocatalytic chemistry, CAT-S enables the labeling of mitochondrial proteins in living cells with high efficiency and specificity. We apply CAT-S to diverse cell cultures, dissociated mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled hidden mitochondrial proteins (PTPN1, SLC35A4 uORF, and TRABD). Furthermore, CAT-S allows quantification of proteomic perturbations on dysfunctional tissues, exampled by diabetic mouse kidneys, revealing the alterations of lipid metabolism that may drive disease progression. Given the advantages of non-genetic operation, generality, and spatiotemporal resolution, CAT-S may open exciting avenues for subcellular proteomic investigations of primary samples that are otherwise inaccessible.
Collapse
Affiliation(s)
- Ziqi Liu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fuhu Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yufan Zhu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shengnan Qin
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haotian Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Feng Lin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
34
|
Xie Z, Cao B, Zhao J, Liu M, Lao Y, Luo H, Zhong Z, Xiong X, Wei W, Zou T. Ion Pairing Enables Targeted Prodrug Activation via Red Light Photocatalysis: A Proof-of-Concept Study with Anticancer Gold Complexes. J Am Chem Soc 2024; 146:8547-8556. [PMID: 38498689 DOI: 10.1021/jacs.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photocatalysis has found increasing applications in biological systems, for example, in localized prodrug activation; however, high-energy light is usually required without giving sufficient efficiency and target selectivity. In this work, we report that ion pairing between photocatalysts and prodrugs can significantly improve the photoactivation efficiency and enable tumor-targeted activation by red light. This is exemplified by a gold-based prodrug (1d) functionalized with a morpholine moiety. Such a modification causes 1d to hydrolyze in aqueous solution, forming a cationic species that tightly interacts with anionic photosensitizers including Eosin Y (EY) and Rose Bengal (RB), along with a significant bathochromic shift of absorption tailing to the far-red region. As a result, a high photoactivation efficiency of 1d by EY or RB under low-energy light was found, leading to an effective release of active gold species in living cells, as monitored by a gold-specific biosensor (GolS-mCherry). Importantly, the morpholine moiety, with pKa ∼6.9, in 1d brings in a highly pH-sensitive and preferential ionic interaction under a slightly acidic condition over the normal physiological pH, enabling tumor-targeted prodrug activation by red light irradiation in vitro and in vivo. Since a similar absorption change was found in other morpholine/amine-containing clinic drugs, photocages, and precursors of reactive labeling intermediates, it is believed that the ion-pairing strategy could be extended for targeted activation of different prodrugs and for mapping of an acidic microenvironment by low-energy light.
Collapse
Affiliation(s)
- Zhiying Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Education Sciences, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Moyi Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuhan Lao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hejiang Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
35
|
Xu Y, Chau CV, Lee J, Sedgwick AC, Yu L, Li M, Peng X, Kim JS, Sessler JL. Lutetium texaphyrin: A photocatalyst that triggers pyroptosis via biomolecular photoredox catalysis. Proc Natl Acad Sci U S A 2024; 121:e2314620121. [PMID: 38381784 PMCID: PMC10907263 DOI: 10.1073/pnas.2314620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.
Collapse
Affiliation(s)
- Yunjie Xu
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Calvin V. Chau
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Jieun Lee
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Le Yu
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Mingle Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiaojun Peng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul02856, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| |
Collapse
|
36
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
37
|
D’Avino C, Gutiérrez S, Feldhaus MJ, Tomás-Gamasa M, Mascareñas JL. Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis. J Am Chem Soc 2024; 146:2895-2900. [PMID: 38277674 PMCID: PMC10859955 DOI: 10.1021/jacs.3c13647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Performing abiotic synthetic transformations in live cell environments represents a new, promising approach to interrogate and manipulate biology and to uncover new types of biomedical tools. We now found that photocatalytic bond-forming reactions can be added to the toolbox of bioorthogonal synthetic chemistry. Specifically, we demonstrate that exogenous styryl aryl azides can be converted into indoles inside living mammalian cells under photocatalytic conditions.
Collapse
Affiliation(s)
- Cinzia D’Avino
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sara Gutiérrez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Max J. Feldhaus
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
38
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
39
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
40
|
Zeng K, Jiao ZH, Jiang Q, He R, Zhang Y, Li WG, Xu TL, Chen Y. Genetically Encoded Photocatalysis Enables Spatially Restricted Optochemical Modulation of Neurons in Live Mice. ACS CENTRAL SCIENCE 2024; 10:163-175. [PMID: 38292609 PMCID: PMC10823520 DOI: 10.1021/acscentsci.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Light provides high temporal precision for neuronal modulations. Small molecules are advantageous for neuronal modulation due to their structural diversity, allowing them to suit versatile targets. However, current optochemical methods release uncaged small molecules with uniform concentrations in the irradiation area, which lack spatial specificity as counterpart optogenetic methods from genetic encoding for photosensitive proteins. Photocatalysis provides spatial specificity by generating reactive species in the proximity of photocatalysts. However, current photocatalytic methods use antibody-tagged heavy-metal photocatalysts for spatial specificity, which are unsuitable for neuronal applications. Here, we report a genetically encoded metal-free photocatalysis method for the optochemical modulation of neurons via deboronative hydroxylation. The genetically encoded photocatalysts generate doxorubicin, a mitochondrial uncoupler, and baclofen by uncaging stable organoboronate precursors. The mitochondria, nucleus, membrane, cytosol, and ER-targeted drug delivery are achieved by this method. The distinct signaling pathway dissection in a single projection is enabled by the dual optogenetic and optochemical control of synaptic transmission. The itching signaling pathway is investigated by photocatalytic uncaging under live-mice skin for the first time by visible light irradiation. The cell-type-specific release of baclofen reveals the GABABR activation on NaV1.8-expressing nociceptor terminals instead of pan peripheral sensory neurons for itch alleviation in live mice.
Collapse
Affiliation(s)
- Kaixing Zeng
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Zhi-Han Jiao
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qin Jiang
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ru He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Yixin Zhang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Wei-Guang Li
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Department
of Rehabilitation Medicine, Huashan Hospital, Institute for Translational
Brain Research, State Key Laboratory of Medical Neurobiology and Ministry
of Education Frontiers Centre for Brain Science, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Tian-Le Xu
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yiyun Chen
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
- School
of Chemistry and Material Sciences, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
41
|
Cabanero DC, Kariofillis SK, Johns AC, Kim J, Ni J, Park S, Parker DL, Ramil CP, Roy X, Shah NH, Rovis T. Photocatalytic Activation of Aryl(trifluoromethyl) Diazos to Carbenes for High-Resolution Protein Labeling with Red Light. J Am Chem Soc 2024; 146:1337-1345. [PMID: 38165744 DOI: 10.1021/jacs.3c09545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
State-of-the-art methods in photoproximity labeling center on the targeted generation and capture of short-lived reactive intermediates to provide a snapshot of local protein environments. Diazirines are the current gold standard for high-resolution proximity labeling, generating short-lived aryl(trifluoromethyl) carbenes. Here, we present a method to access aryl(trifluoromethyl) carbenes from a stable diazo source via tissue-penetrable, deep red to near-infrared light (600-800 nm). The operative mechanism of this activation involves Dexter energy transfer from photoexcited osmium(II) photocatalysts to the diazo, thus revealing an aryl(trifluoromethyl) carbene. The labeling preferences of the diazo probe with amino acids are studied, showing high reactivity toward heteroatom-H bonds. Upon the synthesis of a biotinylated diazo probe, labeling studies are conducted on native proteins as well as proteins conjugated to the Os photocatalyst. Finally, we demonstrate that the conjugation of a protein inhibitor to the photocatalyst also enables selective protein labeling in the presence of spectator proteins and achieves specific labeling of a membrane protein on the surface of mammalian cells via a two-antibody photocatalytic system.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Stavros K Kariofillis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Andrew C Johns
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jinwoo Kim
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jizhi Ni
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sangho Park
- Discovery Biology, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Dann L Parker
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carlo P Ramil
- Discovery Chemistry, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
42
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
43
|
Liang X, Qian S, Lou Z, Hu R, Hou Y, Chen PR, Fan X. Near Infrared Light-Triggered Photocatalytic Decaging for Remote-Controlled Spatiotemporal Activation in Living Mice. Angew Chem Int Ed Engl 2023; 62:e202310920. [PMID: 37842955 DOI: 10.1002/anie.202310920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Spatiotemporal manipulation of biological processes in living animals using noninvasive, remote-controlled stimuli is a captivating but challenging endeavor. Herein, we present the development of a biocompatible photocatalytic technology termed CAT-NIR, which uses external near infrared light (NIR, 740 nm) to trigger decaging reactions in living mice. The Os(II) terpyridine complex was identified as an efficient NIR photocatalyst for promoting deboronative hydroxylation reactions via superoxide generation in the presence of NIR light, resulting in the deprotection of phenol groups and the release of bioactive molecules under living conditions. The validation of the CAT-NIR system was demonstrated through the NIR-triggered rescue of fluorophores, prodrugs as well as biomolecules ranging from amino acids, peptides to proteins. Furthermore, by combining genetic code expansion and computer-aided screening, CAT-NIR could regulate affibody binding to the cell surface receptor HER2, providing a selective cell tagging technology through external NIR light. In particular, the tissue-penetrating ability of NIR light allowed for facile prodrug activation in living mice, enabling noninvasive, remote-controlled rescue of drug molecules. Given its broad adaptability, this CAT-NIR system may open new opportunities for manipulating the functions of bioactive molecules in living animals using external NIR light with spatiotemporal resolution.
Collapse
Grants
- 22222701, 22077004, 92253301, 21937001, 22137001 National Natural Science Foundation of China
- 22222701, 22077004, 92253301, 22321005, 21937001, 22137001 National Natural Science Foundation of China
- 2019YFA0904201, 2022YFA1304700, 2022YFE0114900 Ministry of Science and Technology
- Z200010, Z221100007422046 Beijing Municipal Science and Technology Commission
- YGLX202338 Beijing Hospitals Authority Clinical Medicine Development Funding
- Li Ge-Zhao Ning Life Science Junior Research Fellowship
Collapse
Affiliation(s)
- Xuan Liang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Renming Hu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
44
|
Yu L, Lee KW, Zhao YQ, Xu Y, Zhou Y, Li M, Kim JS. Metal Modulation: An Effortless Tactic for Refining Photoredox Catalysis in Living Cells. Inorg Chem 2023; 62:18767-18778. [PMID: 37905835 DOI: 10.1021/acs.inorgchem.3c03284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The remarkable impact of photoredox catalytic chemistries has sparked a wave of innovation, opening doors to novel biotechnologies in the realm of catalytic antitumor therapy. Yet, the quest for novel photoredox catalysts (PCs) suitable for living systems, or the enhancement of catalytic efficacy in existing biocompatible PC systems, persists as a formidable challenge. Within this context, we introduce a readily applicable metal modulation strategy that significantly augments photoredox catalysis within living cells, exemplified by a set of metalloporphyrin complexes termed M-TCPPs (M = Zn, Mn, Ni, Co, Cu). Among these complexes, Zn-TCPP emerges as an exceptional catalyst, displaying remarkable photocatalytic activity in the oxidation of nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), and specific amino acids. Notably, comprehensive investigations reveal that Zn-TCPP's superior catalytic prowess primarily arises from the establishment of an efficient oxidative cycle for PC, in contrast to previously reported PCs engaged in reductive cycles. Moreover, theoretical calculations illuminate that amplified intersystem crossing rates and geometry alterations in Zn-TCPP contribute to its heightened photocatalytic performance. In vitro studies demonstrated that Zn-TCPP exhibits therapeutic potential and is found to be effective for photocatalytic antitumor therapy in both glioblastoma G98T cells and 3D multicellular spheroids. This study underscores the transformative role of "metal modulation" in advancing high-performance PCs for catalytic antitumor therapy, marking a significant stride toward the realization of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Woo Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yu-Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02856, Republic of Korea
| |
Collapse
|
45
|
Wang Y, Mesdom P, Purkait K, Saubaméa B, Burckel P, Arnoux P, Frochot C, Cariou K, Rossel T, Gasser G. Ru(ii)/Os(ii)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours. Chem Sci 2023; 14:11749-11760. [PMID: 37920359 PMCID: PMC10619633 DOI: 10.1039/d3sc03932c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Pierre Mesdom
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Kallol Purkait
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Bruno Saubaméa
- Cellular and Molecular Imaging Facility, US25 Inserm, UAR3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité F-75006 Paris France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à; l'Anthropocène des Eléments et Contaminants Emergents 75005 Paris France
| | | | | | - Kevin Cariou
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| | - Thibaud Rossel
- Institute of Chemistry, University of Neuchâtel Avenue de Bellevaux 51 2000 Neuchâtel Switzerland
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University 75005 Paris France +33185784151 https://www.gassergroup.com
| |
Collapse
|
46
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multi-scale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564055. [PMID: 37961561 PMCID: PMC10634877 DOI: 10.1101/2023.10.28.564055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-probes with labeling radii ranging from ∼100 to 3000 Å. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this information will aid in the systematic construction of the cell surface interactome and reveal new opportunities for immunotherapeutics.
Collapse
|
47
|
Zhang X, Zhang Y, Li X, Li B, Xiao S, Tang Y, Xie P, Loh TP. Fluoroalkylation of Activated Allylic Acetates through Radical-Radical Coupling: Organophotoredox/DABCO Catalytic System. Org Lett 2023; 25:6863-6868. [PMID: 37681688 DOI: 10.1021/acs.orglett.3c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A novel organophotoredox/DABCO catalytic system for the fluoroalkylation of activated allylic acetates via radical-radical coupling is described. The method offers mild reaction conditions, high selectivity, and broad substrate compatibility and enabled diverse bioactive molecules, FDA-approved drugs, and amino acid derivatives to be incorporated into transformation. This study expands the synthetic toolbox for the construction of fluorine-containing molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohong Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bowen Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiji Xiao
- Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou 213000, Jiangsu, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
48
|
Xie KA, Bednarova E, Joe CL, Lin C, Sherwood TC, Simmons EM, Lainhart BC, Rovis T. Orange Light-Driven C(sp 2)-C(sp 3) Cross-Coupling via Spin-Forbidden Ir(III) Metallaphotoredox Catalysis. J Am Chem Soc 2023; 145:19925-19931. [PMID: 37642382 DOI: 10.1021/jacs.3c06285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report the development and characterization of a library of Ir(III) photocatalysts capable of undergoing spin-forbidden excitation (SFE) under orange light irradiation (595 nm). These catalysts were successfully applied to the construction of synthetically valuable C(sp2)-C(sp3) bonds inaccessible with existing methods of low-energy light-driven dual nickel/photoredox catalysis, demonstrating the synthetic utility of this photocatalyst family. The photocatalysts are capable of accessing both oxidatively and reductively activated coupling partners, illustrated through deaminative arylation and potassium alkyl trifluoroborate cross-coupling reactions with aryl halides. We demonstrate diverse substrate scopes of both cross-coupling paradigms under mild conditions in the first example of low-energy light-driven C(sp2)-C(sp3) metallaphotoredox coupling.
Collapse
Affiliation(s)
- Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Bednarova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Chenxi Lin
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brendan C Lainhart
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
49
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
50
|
Ogorek AN, Zhou X, Martell JD. Switchable DNA Catalysts for Proximity Labeling at Sites of Protein-Protein Interactions. J Am Chem Soc 2023; 145:16913-16923. [PMID: 37463457 DOI: 10.1021/jacs.3c05578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Proximity labeling (PL) has emerged as a powerful approach to elucidate proteomes within a defined radius around a protein of interest (POI). In PL, a catalyst is attached to the POI and tags nearby endogenous proteins, which are then isolated by affinity purification and identified by mass spectrometry. Although existing PL methods have yielded numerous biological insights, proteomes with greater spatial resolution could be obtained if PL catalysts could be activated at more specific subcellular locations, such as sites where both the POI and a chemical stimulus are present or sites of protein-protein interactions (PPIs). Here, we report DNA-based switchable PL catalysts that are attached to a POI and become activated only when a secondary molecular trigger is present. The DNA catalysts consist of a photocatalyst and a spectral quencher tethered to a DNA oligomer. They are catalytically inactive by default but undergo a conformational change in response to a specific molecular trigger, thus activating PL. We designed a system in which the DNA catalyst becomes activated on living mammalian cells specifically at sites of Her2-Her3 heterodimers and c-Met homodimers, PPIs known to increase the invasion and growth of certain cancers. While this study employs a Ru(bpy)3-type complex for tagging proteins with biotin phenol, the switchable DNA catalyst design is compatible with diverse synthetic PL photocatalysts. Furthermore, the switchable DNA PL catalysts can be constructed from conformation-switching DNA aptamers that respond to small molecules, ions, and proteins, opening future opportunities for PL in highly specific subcellular locations.
Collapse
Affiliation(s)
- Ashley N Ogorek
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xu Zhou
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| |
Collapse
|