1
|
Schmidt E, Milles H, Kennedy L, Donelson J. Interspecies differences in lactate dehydrogenase and citrate synthase activity among damselfish and cardinalfish. J Therm Biol 2025; 129:104089. [PMID: 40117912 DOI: 10.1016/j.jtherbio.2025.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/15/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Species with different thermal distributions, life-history traits, and behaviours have evolved physiological processes to suit energetic demands. Previous research has argued that these interspecies differences are often reflected in muscle enzyme activity that serve as proxies for aerobic and anaerobic respiration. Here, we measured the maximal enzyme activity of two enzymes, citrate synthase and lactate dehydrogenase, between two damselfish (Pomacentrus) and cardinalfish (Ostorhinchus) species. Citrate synthase was measured as a proxy for mitochondrial volume density, a marker of aerobic metabolism; lactate dehydrogenase was measured as a proxy for anaerobic energy production, a marker for anaerobic metabolism. Thermal performance curves of maximal enzyme activity were measured from 10 to 50 °C, at 10 °C intervals. Citrate synthase and lactate dehydrogenase both showed a positive correlation with temperature, that was absent of a plateau. Damselfish displayed higher levels of citate synthase maximal enzyme activity, while cardinalfish displayed a higher lactate dehydrogenase to citrate synthase ratio. Ostorhinchus doederleini, a sedentary cardinalfish, displayed higher level of lactate dehydrogenase maximal enzyme activity. Temperature coefficients (Q10) for lactate dehydrogenase showed a curved relationship, peaking at differences between 30 and 40 °C. No differences in Q10 values were observed between species, suggesting no difference in the thermal sensitivity of enzymes. Interspecies differences in maximal enzyme activity identified in this study compliments previous research, whereby more active species require higher levels of citrate synthase to fuel sustained swimming, as well as energetically demanding locomotion behaviours. Alternatively, more sedentary species possessed higher levels of lactate dehydrogenase and reliance on anaerobic metabolism, possibly due to an increased reliance on infrequent burst swimming behaviours.
Collapse
Affiliation(s)
- Elliott Schmidt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Hunter Milles
- Biology Department, Oberlin College, Oberlin, OH, United States of America.
| | - Lauren Kennedy
- College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Jennifer Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
2
|
Pinsky ML, Hillebrand H, Chase JM, Antão LH, Hirt MR, Brose U, Burrows MT, Gauzens B, Rosenbaum B, Blowes SA. Warming and cooling catalyse widespread temporal turnover in biodiversity. Nature 2025; 638:995-999. [PMID: 39880943 DOI: 10.1038/s41586-024-08456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Turnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities1-4. Turnover rates differ markedly among communities4, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling. In addition, assemblages with limited access to microclimate refugia or that faced stronger human impacts on land were especially responsive to temperature change, with up to 48% of species replaced per decade. These results reveal a widespread signal of vulnerability to continuing climate change and highlight which ecological communities are most sensitive, raising concerns about ecosystem integrity as climate change and other human impacts accelerate.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura H Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Patrón-Rivero C, Osorio-Olvera L, Rojas-Soto O, Chiappa-Carrara X, Villalobos F, Bessesen B, López-Reyes K, Yañez-Arenas C. Global analysis of the influence of environmental variables to explain ecological niches and realized thermal niche boundaries of sea snakes. PLoS One 2024; 19:e0310456. [PMID: 39636927 PMCID: PMC11620380 DOI: 10.1371/journal.pone.0310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/02/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the factors affecting species distributions is a central topic in ecology and biogeography. However, most research on this topic has focused on species inhabiting terrestrial environments. At broad scales, abiotic variables consistently serve as primary determinants of species' distributions. In this study, we investigated the explanatory power of different abiotic variables in determining the distribution patterns of sea snakes on a global scale. Additionally, as the boundaries of realized thermal niches have significant implications for the ecology of species and their geographic distributions, we evaluated the asymmetry of realized thermal limits (i.e., differences in variances between the upper and lower limits of the realized thermal niche). We obtained 10 marine environmental variables from global databases along with >5000 occurrence records for 51 sea snake species in 4 genera across the group's entire known geographic range. Using these data, we employed correlative ecological niche modeling to analyze the influence of the individual variables in explaining species' distributions. To estimate the realized thermal limits of each species, we extracted the mean, minimum, and maximum temperature values at four depths (superficial, mean benthic, minimum benthic, and maximum benthic) for each occurrence record of the species. We then evaluated the asymmetry of the realized thermal niche by measuring and comparing the variances in the upper and lower limits. Both analyses (the importance of variables and realized thermal limit asymmetry) were performed at three taxonomic levels (sea snakes as a lineage of marine-adapted elapids [true sea snakes + sea kraits], subfamily, and genus) and two spatial resolutions. Overall, we found that temperature, silicate, nitrate, salinity, and phosphate concentrations were the most influential factors in explaining the spatial distribution patterns of sea snakes, regardless of taxonomic level or spatial resolution. Similarly, we observed that the realized thermal limits were asymmetric, with a higher variance in the lower limits, and that asymmetry decreased as the taxonomic level and spatial resolution increased.
Collapse
Affiliation(s)
- Carlos Patrón-Rivero
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Octavio Rojas-Soto
- Laboratorio de Bioclimatología, Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Xavier Chiappa-Carrara
- Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de Mexico, Ucú, Yucatán, Mexico
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva Red de Biología Evolutiva, Instituto de Ecología, A.C, Xalapa, Veracruz, México
| | - Brooke Bessesen
- Department of Ecology and Evolutionary Biology, University of Reading, Reading, United Kingdom
| | - Kevin López-Reyes
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Carlos Yañez-Arenas
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| |
Collapse
|
4
|
Huang M, Chen Y, Zhou W, Wei F. Assessing the response of marine fish communities to climate change and fishing. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14291. [PMID: 38745485 DOI: 10.1111/cobi.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024]
Abstract
Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities' temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.
Collapse
Affiliation(s)
- Mingpan Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiting Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Jiangxi Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Masanja F, Jiang X, He G, Xu Y, Zang X, He Y, Zhao L. Bivalves under extreme weather events: A comparative study of five economically important species in the South China sea during marine heatwaves. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106716. [PMID: 39226783 DOI: 10.1016/j.marenvres.2024.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity, threatening marine organisms and ecosystems they support. Yet, little is known about impacts of intensifying MHWs on ecologically and economically important bivalves cultured in the South China Sea. Here, we compared survival and physiological responses of five bivalve species, Pinctada fucata, Crassostrea angulata, Perna viridis, Argopecten irradians and Paphia undulata, to two consecutive MHWs events (3 days of thermal exposure to + 4 °C or + 8 °C, following 3 days of recovery under ambient conditions). While P. fucata, P. viridis, and P. undulata are native to the South China Sea region, C. angulata and A. irradians are not. Individuals of P. fucata, C. angulata and P. viridis had higher stress tolerance to MHWs than A. irradians and P. undulata, the latter already experiencing 100% mortality under +8 °C conditions during the first event. With increasing intensity of MHWs, standard metabolic rates of all five species increased significantly, in line with significant depressions of function-related energy-metabolizing enzymes (CMA, NKA, and T-ATP). Likewise, activities of antioxidant enzymes (SOD, CAT, and MDA) and shell mineralization-related enzymes (AKP and ACP) responded significantly to MHWs, despite species-specific performances observed. These findings demonstrate that some bivalve species can likely fail to accommodate intensifying MHWs events in the South China Sea, but some may persist. If this is the case, then one would expect substantial loss of fitness in bivalve aquaculture in the South China Sea under intensifying MHWs conditions.
Collapse
Affiliation(s)
| | - Xiaoyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoning Zang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yu He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Pearl Oyster Research Institute, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Science and Technology Innovation Center of Marine Invertebrates, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
6
|
Carlon DB, Garcia SM, Faucci A. Coupling and de-coupling of the El Niño Southern Oscillation to the supply of larval fishes to benthic populations in the Hawaiian Islands. PLoS One 2024; 19:e0312593. [PMID: 39446734 PMCID: PMC11500875 DOI: 10.1371/journal.pone.0312593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Several recent high intensity ENSO events have caused strong negative impacts on the adult phases of foundational species in coral reef ecosystems, but comparatively little is known about how climatic variables related to recent ENSOs are impacting the supply of larvae to benthic populations. In marine fishes and invertebrates, reproductive adults and planktonic larvae are generally more sensitive to environmental variability than older, non-reproductive adults. Further, the transport of larvae in ocean currents may also be strongly ENSO dependent. The interactions between the dynamics of larval survivorship and larval transport could lead to population bottlenecks as stronger ENSO events become more common. We tested the predictions of this hypothesis around the Main Hawaiian Islands (MHI) by constructing a correlation matrix of physical and biological time series variables that spanned 11 years (2007-2017) and multiple ENSO events. Our correlation matrix included four types of variables: i. published ENSO indices, ii. satellite-derived sea surface temperature (SST) and chlorophyll variables, iii. abundance and diversity of larval fishes sampled during the late winter spawning season off Oahu, and iv. abundance and diversity of coral reef fish recruits sampled on the western shore of the Big Island of Hawaii. We found that the abundance and diversity of larval fishes was negatively correlated with the Multivariate El Niño Index (MEI), and that larval variables were positively correlated with measures of fall recruitment (September & November), but not correlated with spring-summer recruitment (May & July). In the MHI, SST variables were not correlated with the MEI, but two successive El Niño events of 2014-15 and 2015-2016 were characterized by SST maxima approaching 30°C. Two large pulses of benthic recruitment occurred in the 2009 and 2014 recruitment seasons, with > 8000 recruits observed by divers over the summer and fall months. Both events were characterized by either neutral or negative MEI indices measured during the preceding winter months. These patterns suggest that La Niña and the neutral phases of the ENSO cycle are generally favorable for adult reproduction and larval development in the spring and summer, while El Niño phases may limit recruitment in the late summer and fall. We hypothesize that episodic recruitment during non-El Niño phases is related to favorable survivorship and transport dynamics that are associated with the formation of pairs of anticyclonic and cyclonic eddies on the leeward sides (western shores) of the Main Hawaiian Islands.
Collapse
Affiliation(s)
- David B. Carlon
- Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - S. Maria Garcia
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Anuschka Faucci
- Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
7
|
Schmidt E, Donelson JM. Regional thermal variation in a coral reef fish. CONSERVATION PHYSIOLOGY 2024; 12:coae058. [PMID: 39139734 PMCID: PMC11320370 DOI: 10.1093/conphys/coae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
How species respond to climate change will depend on the collective response of populations. Intraspecific variation in traits, evolved through genetic adaptation and phenotypic plasticity, can cause thermal performance curves to vary over species' distributions. Intraspecific variation within marine species has received relatively little attention due to the belief that marine systems lack dispersal barriers strong enough to promote locally adapted traits. Here we show that intraspecific variation is present between low- and high-latitude populations of a coral reef damselfish (Acanthochromis polyacanthus). Co-gradient variation was observed when examining aerobic physiology across a thermal gradient that reflected mean summer temperatures of high- and low-latitude regions, as well as projected future ocean temperatures (i.e. 27, 28.5, 30, 31.5°C). Whilst thermally sensitive, no significant differences were observed between high- and low-latitude regions when measuring immunocompetence, haematocrit and anaerobic enzyme activity. The presence of co-gradient variation suggests that dispersal limitations in marine systems can promote local adaptive responses; however, intraspecific variation may not be ubiquitous amongst traits. Identifying locally adapted traits amongst populations remains necessary to accurately project species responses to climate change and identify differences in adaptive potential.
Collapse
Affiliation(s)
- Elliott Schmidt
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Jennifer M Donelson
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
8
|
Higgins E, Bouyoucos IA, Downie AT, Illing B, Martins APB, Simpfendorfer CA, Rummer JL. How hot is too hot? Thermal tolerance, performance, and preference in juvenile mangrove whiprays, Urogymnus granulatus. J Therm Biol 2024; 124:103943. [PMID: 39151217 DOI: 10.1016/j.jtherbio.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (ṀO2max and ṀO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (ṀO2max) and 1.6 (ṀO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.
Collapse
Affiliation(s)
- Emily Higgins
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.
| | - Adam T Downie
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Björn Illing
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Ana P B Martins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
9
|
Ferrari DS, Nunes LT, Jones KL, Ferreira CEL, Floeter SR. Thermal tolerance as a driver of reef fish community structure at the isolated tropical Mid-Atlantic Ridge Islands. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106611. [PMID: 38936260 DOI: 10.1016/j.marenvres.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Reef fish communities are shaped by historical and ecological factors, including abiotic and biotic mechanisms at different spatial scales, determining species composition, abundance and biomass. The oceanic islands in the Mid-Atlantic Ridge (St. Peter and St. Paul's Archipelago - SPSPA, Ascension, and St. Helena), exhibiting differences in community structure along a 14-degree latitudinal and a 10 °C thermal gradient. We investigate the influence of sea surface temperature, area, age, isolation and phosphate on reef fish community structures. Reef fish trophic structure varies significantly across the islands, with planktivores and herbivore-detritivores showing the highest abundances in SPSPA and Ascension, while less abundant in St. Helena, aligning with the thermal gradient. Variations in reef fish community structures were predominantly influenced by thermal regimes, corroborating the expansion of species' thermal niche breadth at higher latitudes and lower temperatures. This study highlights that in addition to biogeographic factors, temperature is pivotal on shaping oceanic island reef fish community structure.
Collapse
Affiliation(s)
- Débora S Ferrari
- Marine Macroecology and Biogeography Lab, Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, SC, 88010-970, Brazil.
| | - Lucas T Nunes
- Department of Biotechnology, Instituto de Estudos Do Mar Almirante Paulo Moreira, Arraial Do Cabo, RJ, 28930-000, Brazil
| | - Kirsty L Jones
- Marine and Fisheries Conservation Section, Nature Conservation Division, St Helena Government, Jamestown, St Helena, UK
| | - Carlos E L Ferreira
- Reef Systems Ecology and Conservation Lab, Department of Marine Biology, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil
| | - Sergio R Floeter
- Marine Macroecology and Biogeography Lab, Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, SC, 88010-970, Brazil
| |
Collapse
|
10
|
Wesselmann M, Hendriks IE, Johnson M, Jordà G, Mineur F, Marbà N. Increasing spread rates of tropical non-native macrophytes in the Mediterranean Sea. GLOBAL CHANGE BIOLOGY 2024; 30:e17249. [PMID: 38572713 DOI: 10.1111/gcb.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.
Collapse
Affiliation(s)
- Marlene Wesselmann
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Iris E Hendriks
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Mark Johnson
- School of Natural Sciences and Ryan Institute, University of Galway, Ireland
| | - Gabriel Jordà
- Instituto Espanol de Oceanografía, Centre Oceanografic de Balears, Palma, Spain
| | - Frederic Mineur
- School of Natural Sciences and Ryan Institute, University of Galway, Ireland
| | - Núria Marbà
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| |
Collapse
|
11
|
Camacho A, Rodrigues MT, Jayyusi R, Harun M, Geraci M, Carretero MA, Vinagre C, Tejedo M. Does heat tolerance actually predict animals' geographic thermal limits? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170165. [PMID: 38242475 DOI: 10.1016/j.scitotenv.2024.170165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The "climate extremes hypothesis" is a major assumption of geographic studies of heat tolerance and climatic vulnerability. However, this assumption remains vastly untested across taxa, and multiple factors may contribute to uncoupling heat tolerance estimates and geographic limits. Our dataset includes 1000 entries of heat tolerance data and maximum temperatures for each species' known geographic limits (hereafter, Tmax). We gathered this information across major animal taxa, including marine fish, terrestrial arthropods, amphibians, non-avian reptiles, birds, and mammals. We first tested if heat tolerance constrains the Tmax of sites where species could be observed. Secondly, we tested if the strength of such restrictions depends on how high Tmax is relative to heat tolerance. Thirdly, we correlated the different estimates of Tmax among them and across species. Restrictions are strong for amphibians, arthropods, and birds but often weak or inconsistent for reptiles and mammals. Marine fish describe a non-linear relationship that contrasts with terrestrial groups. Traditional heat tolerance measures in thermal vulnerability studies, like panting temperatures and the upper set point of preferred temperatures, do not predict Tmax or are inversely correlated to it, respectively. Heat tolerance restricts the geographic warm edges more strongly for species that reach sites with higher Tmax for their heat tolerance. These emerging patterns underline the importance of reliable species' heat tolerance indexes to identify their thermal vulnerability at their warm range edges. Besides, the tight correlations of Tmax estimates across on-land microhabitats support a view of multiple types of thermal challenges simultaneously shaping ranges' warm edges for on-land species. The heterogeneous correlation of Tmax estimates in the ocean supports the view that fish thermoregulation is generally limited, too. We propose new hypotheses to understand thermal restrictions on animal distribution.
Collapse
Affiliation(s)
- Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain; São Paulo, SP, CEP: 05508-090, Brazil.
| | - Miguel Trefaut Rodrigues
- Laboratorio de Herpetologia, Departamento de Zoologia, Instituto de Biociências, USP, Rua do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, SP CEP: 05508-090, Brazil
| | - Refat Jayyusi
- School of Life Sciences, Arizona State University, USA
| | - Mohamed Harun
- Administração Nacional das Àreas de Conservaçao, Ministério da Terra, Ambiente e desenvolvimento rural, Rua da Resistência, nr° 1746/47 8° andar, Maputo, Mozambique; Faculdade de Veterinaria UEM, Maputo, Mozambique
| | - Marco Geraci
- Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, USA; CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal; MEMOTEF Department, School of Economics, Sapienza University of Rome
| | - Miguel A Carretero
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Catarina Vinagre
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Miguel Tejedo
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
12
|
Vagenas G, Karachle PK, Oikonomou A, Stoumboudi MT, Zenetos A. Decoding the spread of non-indigenous fishes in the Mediterranean Sea. Sci Rep 2024; 14:6669. [PMID: 38509139 PMCID: PMC10954742 DOI: 10.1038/s41598-024-57109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The ocean is dynamically changing due to the influence of climate processes and human activities. The construction of the Suez Canal in the late nineteenth century opened the Pandora's box by facilitating the dispersal of Red Sea species in the Mediterranean Sea. In this study, we developed an open-source spatio-temporal numerical analysis framework to decodify the complex spread of Mediterranean non-indigenous fish species (NIS) that entered through the Suez Canal. We utilized 772 historical detection records of 130 NIS to disentangle their dynamic spread through space and time. The results indicated that species follow a north-westward trajectory with an average expansion time step of 2.5 years. Additionally, we estimated the overall time for a NIS to reach the Central Mediterranean Sea from the Suez Canal at approximately 22 years. Based on the analysis, more than half of the introduced fishes have been established in less than 10 years. Finally, we proceeded in the cross-validation of our results using actual spread patterns of invasive fishes of the Mediterranean Sea, resulting up to 90% of temporal and spatial agreement. The methodology and the findings presented herein may contribute to management initiatives in highly invaded regions around the globe.
Collapse
Affiliation(s)
- Georgios Vagenas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., 19013, Anavissos, Greece.
| | - Paraskevi K Karachle
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., 19013, Anavissos, Greece
| | - Anthi Oikonomou
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., 19013, Anavissos, Greece
| | - Maria Th Stoumboudi
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., 19013, Anavissos, Greece
| | - Argyro Zenetos
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., 19013, Anavissos, Greece
| |
Collapse
|
13
|
Veenhof RJ, Champion C, Dworjanyn SA, Schwoerbel J, Visch W, Coleman MA. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. ANNALS OF BOTANY 2024; 133:153-168. [PMID: 37665952 PMCID: PMC10921825 DOI: 10.1093/aob/mcad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS Kelp forests underpin temperate marine ecosystems but are declining due to ocean warming, causing loss of associated ecosystem services. Projections suggest significant future decline but often only consider the persistence of adult sporophytes. Kelps have a biphasic life cycle, and the haploid gametophyte can be more thermally tolerant than the sporophyte. Therefore, projections may be altered when considering the thermal tolerance of gametophytes. METHODS We undertook thermal tolerance experiments to quantify the effect of temperature on gametophyte survival, relative growth rate (RGR) and sex ratio for three genetically distinct populations of Ecklonia radiata gametophytes from comparatively high, mid- and low latitudes (43°, 33° and 30°S). We then used these data to project the likely consequences of climate-induced thermal change on gametophyte persistence and performance across its eastern Australian range, using generalized additive and linear models. KEY RESULTS All populations were adapted to local temperatures and their thermal maximum was 2-3 °C above current maximum in situ temperatures. The lowest latitude population was most thermally tolerant (~70 % survival up to 27 °C), while survival and RGR decreased beyond 25.5 and 20.5 °C for the mid- and low-latitude populations, respectively. Sex ratios were skewed towards females with increased temperature in the low- and high-latitude populations. Spatially explicit model projections under future ocean warming (2050-centred) revealed a minimal decline in survival (0-30 %) across populations, relative to present-day predictions. RGRs were also projected to decline minimally (0-2 % d-1). CONCLUSIONS Our results contrast with projections for the sporophyte stage of E. radiata, which suggest a 257-km range contraction concurrent with loss of the low-latitude population by 2100. Thermal adaptation in E. radiata gametophytes suggests this life stage is likely resilient to future ocean warming and is unlikely to be a bottleneck for the future persistence of kelp.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - J Schwoerbel
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - W Visch
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| |
Collapse
|
14
|
Benedetti-Cecchi L, Bates AE, Strona G, Bulleri F, Horta E Costa B, Edgar GJ, Hereu B, Reed DC, Stuart-Smith RD, Barrett NS, Kushner DJ, Emslie MJ, García-Charton JA, Gonçalves EJ, Aspillaga E. Marine protected areas promote stability of reef fish communities under climate warming. Nat Commun 2024; 15:1822. [PMID: 38418445 PMCID: PMC10902350 DOI: 10.1038/s41467-024-44976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/11/2024] [Indexed: 03/01/2024] Open
Abstract
Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.
Collapse
Affiliation(s)
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, Canada
| | | | - Fabio Bulleri
- Department of Biology, University of Pisa, URL CoNISMa, Via Derna 1, Pisa, Italy
| | - Barbara Horta E Costa
- CCMAR, Centre of Marine Sciences, University of Algarve, Building 7, Faro, 8005-139, Portugal
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Bernat Hereu
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Barcelona, Spain
| | - Dan C Reed
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Emanuel J Gonçalves
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| |
Collapse
|
15
|
Deutsch C, Penn JL, Lucey N. Climate, Oxygen, and the Future of Marine Biodiversity. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:217-245. [PMID: 37708422 DOI: 10.1146/annurev-marine-040323-095231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The ocean enabled the diversification of life on Earth by adding O2 to the atmosphere, yet marine species remain most subject to O2 limitation. Human industrialization is intensifying the aerobic challenges to marine ecosystems by depleting the ocean's O2 inventory through the global addition of heat and local addition of nutrients. Historical observations reveal an ∼2% decline in upper-ocean O2 and accelerating reports of coastal mass mortality events. The dynamic balance of O2 supply and demand provides a unifying framework for understanding these phenomena across scales from the global ocean to individual organisms. Using this framework, we synthesize recent advances in forecasting O2 loss and its impacts on marine biogeography, biodiversity, and biogeochemistry. We also highlight three outstanding uncertainties: how long-term global climate change intensifies ocean weather events in which simultaneous heat and hypoxia create metabolic storms, how differential species O2 sensitivities alter the structure of ecological communities, and how global O2 loss intersects with coastal eutrophication. Projecting these interacting impacts on future marine ecosystems requires integration of climate dynamics, biogeochemistry, physiology, and ecology, evaluated with an eye on Earth history. Reducing global and local impacts of warming and O2 loss will be essential if humankind is to preserve the health and biodiversity of the future ocean.
Collapse
Affiliation(s)
- Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA;
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Justin L Penn
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA;
| | - Noelle Lucey
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| |
Collapse
|
16
|
de Souza JS, Franco ACS, Tavares MR, Guimarães TDFR, Dos Santos LN. Shipping traffic, salinity and temperature shape non-native fish richness in estuaries worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168218. [PMID: 37924895 DOI: 10.1016/j.scitotenv.2023.168218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Non-native species threaten biodiversity conservation and ecosystem functioning. Management at early-invasion stages can prevent ecological and socioeconomic impacts, but rely on the identification of drivers of non-native species occurrence at distinct scales. Here, we identify environmental and anthropogenic correlates of non-native fish richness across estuaries worldwide. We performed model selection using proxies of colonization pressure, habitat availability and connectivity, anthropogenic disturbance and climate, to assess the primary mechanisms underlying non-native species occurrence. Latitudinal and guild-related trends in non-native occurrence were also investigated using species thermal and salinity affinities. Data retrieved from a literature review revealed 147 non-native fish species in 147 estuaries worldwide. Shipping traffic, salinity (minimum and range values) and temperature (minimum value) were the main predictors of non-native fish richness. Hotspots of non-native species were under heavy levels of shipping traffic, had higher salinity (both minimum and range values) and colder waters. We also found evidence of thermal limits to species' geographic area of introduction. Latitude of invaded estuaries was negatively correlated with species' minimum, mean and maximum thermal affinities, and positively correlated with thermal affinity ranges. Most non-native species recorded in estuaries were freshwater, but their minimum salinity affinities ranged from 2 to 35 pss. Moreover, species within marine guilds were mostly stenohaline and showed affinity for minimum salinities around 20-30 pss, which may be related to the positive relationship between non-native richness and estuary's increased salinity. Our results indicate that colonization pressure, disturbance (as result of multiple shipping impacts) and habitat filtering are the primary mechanisms underlying non-native fish richness in estuaries, contributing to the development of management strategies targeting early-invasion stages. Matching climate between native and non-native ranges was particularly important for predicting introductions at the global scale, whereas local fluctuations in salinity likely drove non-native richness in response to increased habitat availability.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil.
| | - Ana Clara Sampaio Franco
- Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil; Institute of Aquatic Ecology, University of Girona, 17003, Catalonia, Spain
| | - Marcela Rosa Tavares
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil
| | - Taís de Fátima Ramos Guimarães
- Graduate Course in Animal Biology, Federal University of Viçosa, Av. Ph Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Rowsey LE, Reeve C, Savoy T, Speers-Roesch B. Thermal constraints on exercise and metabolic performance do not explain the use of dormancy as an overwintering strategy in the cunner (Tautogolabrus adspersus). J Exp Biol 2024; 227:jeb246741. [PMID: 38044850 PMCID: PMC10906487 DOI: 10.1242/jeb.246741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Winter cold slows ectotherm physiology, potentially constraining activities and ecological opportunities at poleward latitudes. Yet, many fishes are winter-active, facilitated by thermal compensation that improves cold performance. Conversely, winter-dormant fishes (e.g. cunner, Tautogolabrus adspersus) become inactive and non-feeding overwinter. Why are certain fishes winter-dormant? We hypothesized that winter dormancy is an adaptive behavioural response arising in poleward species that tolerate severe, uncompensated constraints of cold on their physiological performance. We predicted that below their dormancy threshold of 7--8°C, exercise and metabolic performance of cunner are greatly decreased, even after acclimation (i.e. shows above-normal, uncompensated thermal sensitivity, Q10>1-3). We measured multiple key performance metrics (e.g. C-start maximum velocity, chase swimming speed, aerobic scope) in cunner after acute exposure to 26-2°C (3°C intervals using 14°C-acclimated fish) or acclimation (5-8 weeks) to 14-2°C (3°C intervals bracketing the dormancy threshold). Performance declined with cooling, and the acute Q10 of all six performance rate metrics was significantly greater below the dormancy threshold temperature (Q10,acute8-2°C=1.5-4.9, mean=3.3) than above (Q10,acute14-8°C=1.1-1.9, mean=1.5), inferring a cold constraint. However, 2°C acclimation (temporally more relevant to seasonal cooling) improved performance, abolishing the acute constraint (Q10,acclimated8-2°C=1.4-3.0, mean=2.0; also cf. Q10,acclimated14-8°C=1.2-2.9, mean=1.7). Thus, dormant cunner show partial cold-compensation of exercise and metabolic performance, similar to winter-active species. However, responsiveness to C-start stimuli was greatly cold-constrained even following acclimation, suggesting dormancy involves sensory limitation. Thermal constraints on metabolic and exercise physiology are not significant drivers of winter dormancy in cunner. In fact, compensatory plasticity at frigid temperatures is retained even in a dormant fish.
Collapse
Affiliation(s)
- Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Tyler Savoy
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
18
|
Byrne M, Deaker DJ, Gibbs M, Selvakumaraswamy P, Clements M. Juvenile waiting stage crown-of-thorns sea stars are resilient in heatwave conditions that bleach and kill corals. GLOBAL CHANGE BIOLOGY 2023; 29:6493-6502. [PMID: 37849435 DOI: 10.1111/gcb.16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 10/19/2023]
Abstract
The juveniles of predatory sea stars can remain in their recruitment-nursery habitat for some time before their ontogenetic shift to the adult habitat and diet. These small juveniles are vulnerable to a range of factors with their sensitivity amplified by climate change-driven ocean warming. We investigate the thermal tolerance of the waiting stage herbivorous juveniles of the keystone coral predator, the crown-of-thorns sea star (COTS, Acanthaster sp.), in context with the degree heating weeks (DHW) model that predicts coral bleaching and mass mortality. In temperature treatments ranging from +1 to 3°C in prolonged heatwave acclimation conditions, the juveniles exhibited ~100% survival in DHW scenarios that trigger coral bleaching (4 DHW), resulting in mass mortality of corals (8 DHW) and extreme conditions well beyond those that kill corals (12 DHW). This indicates that herbivorous juvenile COTS are far more resistant to heatwave conditions than the coral prey of the adults. The juveniles exhibited higher activity (righting) and metabolic rate after weeks in increased temperature. In separate acute temperature experiments, the upper thermal limit of the juveniles was 34-36°C. In a warming world, juvenile COTS residing in their coral rubble nursery habitat will benefit from an increase in the extent of this habitat due to coral mortality. The juveniles have potential for long-term persistence as herbivores as they wait for live coral to recover before becoming coral predators, thereby serving as a proximate source of COTS outbreaks on reefs already in a tenuous state due to climate change.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Dione J Deaker
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Mitchell Gibbs
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Paulina Selvakumaraswamy
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| | - Matthew Clements
- School of Life and Environmental Sciences and Marine Studies Institute, The University Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Khaliq I, Shahid MJ, Kamran H, Sheraz M, Awais M, Shabir M, Asghar M, Rehman A, Riaz M, Braschler B, Sanders NJ, Hof C. The role of thermal tolerance in determining elevational distributions of four arthropod taxa in mountain ranges of southern Asia. J Anim Ecol 2023; 92:2052-2066. [PMID: 37649274 DOI: 10.1111/1365-2656.13996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/04/2023] [Indexed: 09/01/2023]
Abstract
Understanding the role of thermal tolerances in determining species distributions is important for assessing species responses to climate change. Two hypotheses linking physiology with species distributions have been put forward-the climatic variability hypothesis and the climatic extreme hypothesis. The climatic variability hypothesis predicts the selection of individuals with broad thermal tolerance in more variable climatic conditions and the climatic extreme hypothesis predicts the selection of individuals with extreme thermal tolerance values under extreme climatic conditions. However, no study has tested the predictions of these hypotheses simultaneously for several taxonomic groups along elevational gradients. Here, we related experimentally measured critical thermal maxima, critical thermal minima and thermal tolerance breadths for 15,187 individuals belonging to 116 species of ants, beetles, grasshoppers, and spiders from mountain ranges in central and northern Pakistan to the limits and breadths of their geographic and temperature range. Across all species and taxonomic groups, we found strong relationships between thermal traits and elevational distributions both in terms of geography and temperature. The relationships were robust when repeating the analyses for ants, grasshoppers, and spiders but not for beetles. These results indicate a strong role of physiology in determining elevational distributions of arthropods in Southern Asia. Overall, we found strong support for the climatic variability hypothesis and the climatic extreme hypothesis. A close association between species' distributional limits and their thermal tolerances suggest that in case of a failure to adapt or acclimate to novel climatic conditions, species may be under pressure to track their preferred climatic conditions, potentially facing serious consequences under current and future climate change.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | | | - Haseeb Kamran
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Sheraz
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Awais
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Mehtab Shabir
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Asghar
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Abdul Rehman
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Brigitte Braschler
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute fur Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Hof
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
21
|
Chen B, Bai Y, Wang J, Ke Q, Zhou Z, Zhou T, Pan Y, Wu R, Wu X, Zheng W, Xu P. Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:141-154. [PMID: 37275538 PMCID: PMC10232709 DOI: 10.1007/s42995-023-00165-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 06/07/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00165-2.
Collapse
Affiliation(s)
- Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Jiaying Wang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350000 China
| | - Renxie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012 China
| | - Weiqiang Zheng
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
22
|
Miller MGR, Reimer JD, Sommer B, Cook KM, Pandolfi JM, Obuchi M, Beger M. Temperate functional niche availability not resident-invader competition shapes tropicalisation in reef fishes. Nat Commun 2023; 14:2181. [PMID: 37069145 PMCID: PMC10110547 DOI: 10.1038/s41467-023-37550-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Temperate reefs are at the forefront of warming-induced community alterations resulting from poleward range shifts. This tropicalisation is exemplified and amplified by tropical species' invasions of temperate herbivory functions. However, whether other temperate ecosystem functions are similarly invaded by tropical species, and by what drivers, remains unclear. We examine tropicalisation footprints in nine reef fish functional groups using trait-based analyses and biomass of 550 fish species across tropical to temperate gradients in Japan and Australia. We discover that functional niches in transitional communities are asynchronously invaded by tropical species, but with congruent invasion schedules for functional groups across the two hemispheres. These differences in functional group tropicalisation point to habitat availability as a key determinant of multi-species range shifts, as in the majority of functional groups tropical and temperate species share functional niche space in suitable habitat. Competition among species from different thermal guilds played little part in limiting tropicalisation, rather available functional space occupied by temperate species indicates that tropical species can invade. Characterising these drivers of reef tropicalisation is pivotal to understanding, predicting, and managing marine community transformation.
Collapse
Affiliation(s)
- Mark G R Miller
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - James D Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Katie M Cook
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Water and Atmosphere Research, Hamilton, New Zealand
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Masami Obuchi
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Endo Shell Museum, 1175 Manatsuru, Ashigarashimo-gun, Manazuru-machi, Kanagawa, 259-0201, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Centre for Biodiversity Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Edgar GJ, Stuart-Smith RD, Heather FJ, Barrett NS, Turak E, Sweatman H, Emslie MJ, Brock DJ, Hicks J, French B, Baker SC, Howe SA, Jordan A, Knott NA, Mooney P, Cooper AT, Oh ES, Soler GA, Mellin C, Ling SD, Dunic JC, Turnbull JW, Day PB, Larkin MF, Seroussi Y, Stuart-Smith J, Clausius E, Davis TR, Shields J, Shields D, Johnson OJ, Fuchs YH, Denis-Roy L, Jones T, Bates AE. Continent-wide declines in shallow reef life over a decade of ocean warming. Nature 2023; 615:858-865. [PMID: 36949201 DOI: 10.1038/s41586-023-05833-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2023] [Indexed: 03/24/2023]
Abstract
Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.
Collapse
Affiliation(s)
- Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia.
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Freddie J Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Hugh Sweatman
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Danny J Brock
- Marine Science Program, Department for Environment and Water, Adelaide, South Australia, Australia
| | - Jamie Hicks
- Marine Science Program, Department for Environment and Water, Adelaide, South Australia, Australia
| | - Ben French
- Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Susan C Baker
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Alan Jordan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia
| | - Nathan A Knott
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia
| | - Peter Mooney
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Antonia T Cooper
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Elizabeth S Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - German A Soler
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jillian C Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John W Turnbull
- University of Sydney, SOLES, Camperdown, New South Wales, Australia
| | - Paul B Day
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Meryl F Larkin
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Yanir Seroussi
- Underwater Research Group of Queensland, Yeerongpilly, Queensland, Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Ella Clausius
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom R Davis
- Fisheries Research, NSW Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Joe Shields
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Derek Shields
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Olivia J Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yann Herrera Fuchs
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Lara Denis-Roy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tyson Jones
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Amanda E Bates
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
24
|
Cooke SJ, Madliger CL, Lennox RJ, Olden JD, Eliason EJ, Cramp RL, Fuller A, Franklin CE, Seebacher F. Biological mechanisms matter in contemporary wildlife conservation. iScience 2023; 26:106192. [PMID: 36895647 PMCID: PMC9988666 DOI: 10.1016/j.isci.2023.106192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Given limited resources for wildlife conservation paired with an urgency to halt declines and rebuild populations, it is imperative that management actions are tactical and effective. Mechanisms are about how a system works and can inform threat identification and mitigation such that conservation actions that work can be identified. Here, we call for a more mechanistic approach to wildlife conservation and management where behavioral and physiological tools and knowledge are used to characterize drivers of decline, identify environmental thresholds, reveal strategies that would restore populations, and prioritize conservation actions. With a growing toolbox for doing mechanistic conservation research as well as a suite of decision-support tools (e.g., mechanistic models), the time is now to fully embrace the concept that mechanisms matter in conservation ensuring that management actions are tactical and focus on actions that have the potential to directly benefit and restore wildlife populations.
Collapse
Affiliation(s)
- Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Corresponding author
| | - Christine L. Madliger
- Department of Biology, Algoma University, 1520 Queen St. East, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Robert J. Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries, 5008 Bergen, Norway
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca L. Cramp
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Craig E. Franklin
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
de Souza JS, Dos Santos LN. Resident species, not immigrants, drive reorganization of estuarine fish assemblages in response to warming. Ecology 2023; 104:e3987. [PMID: 36756662 DOI: 10.1002/ecy.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023]
Abstract
Climate change is reshaping biological communities, as species track environmental temperature. Assemblage reorganization is underpinned by shifts in species abundance and distribution, but studies often focus on documenting compositional turnover. As a consequence, phenomena such as the tropicalization of temperate communities have been widely associated with increased occupancy of warm-affinity species. Abundance-weighted change in thermal affinity can be tracked with the Community Temperature Index (CTI), and decomposed into four processes: tropicalization (increasing warm-affinity), borealization (increasing cold-affinity), deborealization (decreasing cold-affinity), and detropicalization (decreasing warm-affinity). Further evaluation of these processes according to species persistence (i.e., immigrant, emigrant, and resident) may provide insights on whether novel communities emerge primarily from local shifts in species abundance or distribution. Using long-term data on fish assemblages undergoing climate change's effects across 19 temperate estuaries surveyed for at least 20 years, we hypothesized (1) deborealization is the main process reshaping communities under climate change, and (2) the contribution of resident species to processes reshaping communities surpass the ones from immigrants and emigrants. Community dissimilarity was calculated through the Temporal Beta Index (TBI), which was further decomposed into species and individual losses and gains. These values were then used as effect sizes in the meta-analyses performed to detect systematic trends in assemblage reorganization in response to climate change. We also calculated CTI and the strength of temperature-related processes for resident, immigrant and emigrant species. Species and individual gains outweighed losses in estuaries. Temperature was correlated with changes in species abundance, but not occurrence. Fish abundance decreased with warming, and initially cooler estuaries gained more fish than warmer ones. Novel communities were shaped by a variety of processes, but mainly tropicalization. Assemblage reorganization was primarily driven by shifts in abundance of resident species with distinct thermal affinities, while contributions of arriving and exiting species played a secondary role. These findings reveal that novel communities are drawn primarily from the local species pool, due to changes in climate-related drivers that favor distinct resident species.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Soler GA, Edgar GJ, Barrett NS, Stuart-Smith RD, Oh E, Cooper A, Ridgway KR, Ling SD. Warming signals in temperate reef communities following more than a decade of ecological stability. Proc Biol Sci 2022; 289:20221649. [PMID: 36515119 PMCID: PMC9748771 DOI: 10.1098/rspb.2022.1649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ecosystem structure and function are increasingly threatened by changing climate, with profound effects observed globally in recent decades. Based on standardized visual censuses of reef biodiversity, we describe 27 years of community-level change for fishes, mobile macroinvertebrates and macroalgae in the Tasmanian ocean-warming hotspot. Significant ecological change was observed across 94 reef sites (5-10 m depth range) spanning four coastal regions between three periods (1992-95, 2006-07, 2017-19), which occurred against a background of pronounced sea temperature rise (+0.80°C on average). Overall, fish biomass increased, macroinvertebrate species richness and abundance decreased and macroalgal cover decreased, particularly during the most recent decade. While reef communities were relatively stable and warming was slight between the 1990s and mid-2000s (+0.12°C mean temperature rise), increased abundances of warm affinity fishes and invertebrates accompanied warming during the most recent decade (+0.68°C rise). However, significant rises in the community temperature index (CTI) were only found for fishes, invertebrates and macroalgae in some regions. Coastal warming was associated with increased fish biomass of non-targeted species in fished zones but had little effect on reef communities within marine reserves. Higher abundances of larger fishes and lobsters inside reserves appeared to negate impacts of 'thermophilization'.
Collapse
Affiliation(s)
- G. A. Soler
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - G. J. Edgar
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - N. S. Barrett
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - R. D. Stuart-Smith
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - E. Oh
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - A. Cooper
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - K. R. Ridgway
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia,CSIRO Hobart, Castray Esplanade, Battery Point Tasmania 7004, Australia
| | - S. D. Ling
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| |
Collapse
|
27
|
Stuart-Smith RD, Edgar GJ, Clausius E, Oh ES, Barrett NS, Emslie MJ, Bates AE, Bax N, Brock D, Cooper A, Davis TR, Day PB, Dunic JC, Green A, Hasweera N, Hicks J, Holmes TH, Jones B, Jordan A, Knott N, Larkin MF, Ling SD, Mooney P, Pocklington JB, Seroussi Y, Shaw I, Shields D, Smith M, Soler GA, Stuart-Smith J, Turak E, Turnbull JW, Mellin C. Tracking widespread climate-driven change on temperate and tropical reefs. Curr Biol 2022; 32:4128-4138.e3. [PMID: 36150387 DOI: 10.1016/j.cub.2022.07.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy. Shifts in composition and abundance of the fish community often occurred within 2 years of environmental or habitat change, although the relative importance of these two mechanisms of climate impact tended to differ between tropical and temperate zones. The clearest of these changes on temperate and subtropical reefs were temperature related, with responses measured by the reef fish thermal index indicating reshuffling according to the thermal affinities of species present. On low latitude coral reefs, the community generalization index indicated shifting dominance of habitat generalist fishes through time, concurrent with changing coral cover. Our results emphasize the importance of maintaining local ecological detail when scaling up datasets to inform national policies and global biodiversity targets. Scaled-up ecological monitoring is needed to discriminate among increasingly diverse drivers of large-scale biodiversity change and better connect presently disjointed systems of biodiversity observation, indicator research, and governance.
Collapse
Affiliation(s)
- Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia; Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia.
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia; Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Ella Clausius
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia; Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Elizabeth S Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Michael J Emslie
- Australian Institute of Marine Science, Townville, Queensland 4810, Australia
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Nic Bax
- CSIRO, Oceans & Atmosphere, Hobart, Tasmania 7000, Australia
| | - Daniel Brock
- Marine Science Program, Department for Environment and Water, 81-95 Waymouth Street, Adelaide, Australia 5000
| | - Antonia Cooper
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia; Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Tom R Davis
- Fisheries Research, NSW Department of Primary Industries, Coffs Harbour, Australia 2450
| | - Paul B Day
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia; Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Jillian C Dunic
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Andrew Green
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Norfaizny Hasweera
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Jamie Hicks
- Marine Science Program, Department for Environment and Water, 81-95 Waymouth Street, Adelaide, Australia 5000
| | - Thomas H Holmes
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia; The UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Ben Jones
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Alan Jordan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Nathan Knott
- Marine Ecosystems Research, NSW Department of Primary Industries, PO Box 89, Huskisson, NSW 2540, Australia
| | - Meryl F Larkin
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia; National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, Australia
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Peter Mooney
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Jacqueline B Pocklington
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Environment and Science Division, Parks Victoria, Melbourne, Victoria 3000, Australia
| | - Yanir Seroussi
- Underwater Research Group of Queensland, 24 Pulle St, Perennially QLD 4105, Australia
| | - Ian Shaw
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Derek Shields
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - Margo Smith
- Reef Life Survey Foundation, 60 Napoleon St, Battery Point, Tasmania 7000, Australia
| | - German A Soler
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - John W Turnbull
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington Campus, Sydney 2052, Australia
| | - Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
28
|
Kaur T, Sharathi Dutta P. Critical rates of climate warming and abrupt collapse of ecosystems. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the age of climate warming, comprehension of ecosystems’ future is one of the pressing challenges to humanity. While most studies on climate warming focus on the ‘magnitude of change’ of the Earth’s temperature, the ‘rate’ at which it is increasing cannot be ruled out. Rapid warming has already caused sudden ecosystem transitions at numerous biodiversity hot spots; a mechanistic understanding of such transitions is crucial. Here, we study a slow–fast consumer–resource ecosystem interacting in rapid warming scenarios. Employing geometric singular perturbation theory, we find that while a gradual change in mean temperature may accord population persistence, a critical warming rate can drive the resource’s sudden collapse, termed a warming-induced abrupt transition. This further triggers the bottom-up effect, resulting in the extinction of the consumer. The difference between the optimum temperature of the resource’s growth rate and the habitat temperature is crucial in deciding the critical rate of warming. Consequently, species inhabiting extreme temperature regions are more susceptible to warming-induced collapse than those within intermediate temperature ranges. We find that stochastic fluctuations in the system can advance warming-induced transitions, and the efficacy of generic early warning signals to anticipate sudden transitions is challenged.
Collapse
Affiliation(s)
- Taranjot Kaur
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| | - Partha Sharathi Dutta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| |
Collapse
|
29
|
Samayoa AP, Struthers CD, Trnski T, Roberts CD, Liggins L. Molecular phylogenetics reveals the evolutionary history of marine fishes (Actinopterygii) endemic to the subtropical islands of the Southwest Pacific. Mol Phylogenet Evol 2022; 176:107584. [PMID: 35843570 DOI: 10.1016/j.ympev.2022.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Remote oceanic islands of the Pacific host elevated levels of actinopterygian (ray-finned fishes) endemism. Characterizing the evolutionary histories of these endemics has provided insight into the generation and maintenance of marine biodiversity in many regions. The subtropical islands of Lord Howe, Norfolk, and Rangitāhua (Kermadec) in the Southwest Pacific are yet to be comprehensively studied. Here, we characterize the spatio-temporal diversification of marine fishes endemic to these Southwest Pacific islands by combining molecular phylogenies and the geographic distribution of species. We built Bayesian ultrametric trees based on open-access and newly generated sequences for five mitochondrial and ten nuclear loci, and using fossil data for time calibration. We present the most comprehensive phylogenies to date for marine ray-finned fish genera, comprising 34 species endemic to the islands, including the first phylogenetic placements for 11 endemics. Overall, our topologies confirm the species status of all endemics, including three undescribed taxa. Our phylogenies highlight the predominant affinity of these endemics with the Australian fish fauna (53%), followed by the East Pacific (15%), and individual cases where the closest sister taxon of our endemic is found in the Northwest Pacific and wider Indo-Pacific. Nonetheless, for a quarter of our focal endemics, their geographic affinity remains unresolved due to sampling gaps within their genera. Our divergence time estimates reveal that the majority of endemic lineages (67.6%) diverged after the emergence of Lord Howe (6.92 Ma), the oldest subtropical island in the Southwest Pacific, suggesting that these islands have promoted diversification. However, divergence ages of some endemics pre-date the emergence of the islands, suggesting they may have originated outside of these islands, or, in some cases, ages may be overestimated due to unsampled taxa. To fully understand the role of the Southwest Pacific subtropical islands as a 'cradle' for diversification, our study advocates for further regional surveys focused on tissue collection for DNA analysis.
Collapse
Affiliation(s)
- André P Samayoa
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand.
| | - Carl D Struthers
- Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand.
| | - Thomas Trnski
- Natural Sciences, Auckland Museum Tāmaki Paenga Hira, Auckland 1010, New Zealand.
| | - Clive D Roberts
- Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand.
| | - Libby Liggins
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand; Natural Sciences, Auckland Museum Tāmaki Paenga Hira, Auckland 1010, New Zealand.
| |
Collapse
|
30
|
Massamba-N'Siala G, Reygondeau G, Simonini R, Cheung WWL, Prevedelli D, Calosi P. Integrating laboratory experiments and biogeographic modelling approaches to understand sensitivity to ocean warming in rare and common marine annelids. Oecologia 2022; 199:453-470. [PMID: 35689680 DOI: 10.1007/s00442-022-05202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Among ectotherms, rare species are expected to have a narrower thermal niche breadth and reduced acclimation capacity and thus be more vulnerable to global warming than their common relatives. To assess these hypotheses, we experimentally quantified the thermal sensitivity of seven common, uncommon, and rare species of temperate marine annelids of the genus Ophryotrocha to assess their vulnerability to ocean warming. We measured the upper and lower limits of physiological thermal tolerance, survival, and reproductive performance of each species along a temperature gradient (18, 24, and 30 °C). We then combined this information to produce curves of each species' fundamental thermal niche by including trait plasticity. Each thermal curve was then expressed as a habitat suitability index (HSI) and projected for the Mediterranean Sea and temperate Atlantic Ocean under a present day (1970-2000), mid- (2050-2059) and late- (2090-2099) 21st Century scenario for two climate change scenarios (RCP2.6 and RCP8.5). Rare and uncommon species showed a reduced upper thermal tolerance compared to common species, and the niche breadth and acclimation capacity were comparable among groups. The simulations predicted an overall increase in the HSI for all species and identified potential hotspots of HSI decline for uncommon and rare species along the warm boundaries of their potential distribution, though they failed to project the higher sensitivity of these species into a greater vulnerability to ocean warming. In the discussion, we provide some caveats on the implications of our results for conservation efforts.
Collapse
Affiliation(s)
- Gloria Massamba-N'Siala
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), UMR 5175, 1919 Route de Mende, Montpellier Cedex 5, France.
- Department of Biological Sciences, Old Dominion University, Mills Godwin Building 110, Norfolk, VA, 23529, USA.
| | - G Reygondeau
- Changing Ocean Research Unit, Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - R Simonini
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via campi 213, 41125, Modena, Italy
| | - W W L Cheung
- Changing Ocean Research Unit, Global Fisheries Cluster, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - D Prevedelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via campi 213, 41125, Modena, Italy
| | - P Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| |
Collapse
|
31
|
Nauer F, Oliveira MC, Plastino EM, Yokoya NS, Fujii MT. Coping with heatwaves: How a key species of seaweed responds to heat stress along its latitudinal gradient. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105620. [PMID: 35472571 DOI: 10.1016/j.marenvres.2022.105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Marine heatwaves (MHWs) frequency and intensity are increasing around the globe, affecting marine ecosystems' structure and functioning. Understanding how key marine species respond to these short-term extreme events is urgent for predicting damage to coastal ecosystems. Hypnea pseudomusciformis presents distribution in different floristic provinces on the Brazilian coast: tropical, transition and warm-temperate. Here, we evaluate the effects of simulated heatwaves on H. pseudomusciformis populations by measuring the changes in algal growth, pigment content, and photosynthesis. Based on data for the last four decades, we characterized the MHW patterns for each of the three collection sites. Perturbation levels were identified as average intensity heatwave (Δ +2 °C), maximum intensity heatwave (Δ +4 °C) and extreme intensity heatwave (Δ +6 °C), with an average duration of seven days. Based on growth rate data, corroborated with measurements of photosynthesis fluorescence and pigment contents. H. pseudomusciformis populations exhibit distinct tolerance and physiological responses to MHWs. The tropical and transition specimens were affected by Δ + 4 °C and Δ + 6 °C MHW scenarios, while the warm-temperate specimens was the only one to recover in all the MHW scenarios tested. These data are worrisome under a global warming scenario and an increase in MHWs, indicating that tropical and transition specimens of H. pseudomusciformis may be at risk of local extinction. This knowledge will be fundamental in driving any future management intervention or policy change for the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Fabio Nauer
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil.
| | - Mariana Cabral Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Estela Maria Plastino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Nair S Yokoya
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| | - Mutue Toyota Fujii
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| |
Collapse
|
32
|
Le Luyer J, Monaco CJ, Milhade L, Reisser C, Soyez C, Raapoto H, Belliard C, Le Moullac G, Ky C, Pernet F. Gene expression plasticity, genetic variation and fatty acid remodelling in divergent populations of a tropical bivalve species. J Anim Ecol 2022; 91:1196-1208. [DOI: 10.1111/1365-2656.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Affiliation(s)
- J. Le Luyer
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. J. Monaco
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - L. Milhade
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Reisser
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD Montpellier France
| | - C. Soyez
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - H. Raapoto
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Belliard
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - G. Le Moullac
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C.‐L. Ky
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- Ifremer, IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia Montpellier France
| | - F. Pernet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F‐29280 Plouzané France
| |
Collapse
|
33
|
Tekwa EW, Watson JR, Pinsky ML. Body size and food-web interactions mediate species range shifts under warming. Proc Biol Sci 2022; 289:20212755. [PMID: 35414233 PMCID: PMC9006017 DOI: 10.1098/rspb.2021.2755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species ranges are shifting in response to climate change, but most predictions disregard food-web interactions and, in particular, if and how such interactions change through time. Predator-prey interactions could speed up species range shifts through enemy release or create lags through biotic resistance. Here, we developed a spatially explicit model of interacting species, each with a thermal niche and embedded in a size-structured food-web across a temperature gradient that was then exposed to warming. We also created counterfactual single species models to contrast and highlight the effect of trophic interactions on range shifts. We found that dynamic trophic interactions hampered species range shifts across 450 simulated food-webs with up to 200 species each over 200 years of warming. All species experiencing dynamic trophic interactions shifted more slowly than single-species models would predict. In addition, the trailing edges of larger bodied species ranges shifted especially slowly because of ecological subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally novel species, novel interactions and productive species, thus maintaining historical community compositions for longer. Current forecasts ignoring dynamic food-web interactions and allometry may overestimate species' tendency to track climate change.
Collapse
Affiliation(s)
- E W Tekwa
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
34
|
McCosker E, Stuart‐Smith RD, Edgar GJ, Steinberg PD, Vergés A. Sea temperature and habitat effects on juvenile reef fishes along a tropicalizing coastline. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Erin McCosker
- School of Biological, Earth and Environmental Sciences Centre for Marine Science and Innovation University of New South Wales Sydney New South Wales Australia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Peter D. Steinberg
- School of Biological, Earth and Environmental Sciences Centre for Marine Science and Innovation University of New South Wales Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Adriana Vergés
- School of Biological, Earth and Environmental Sciences Centre for Marine Science and Innovation University of New South Wales Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| |
Collapse
|
35
|
Li Y, Ma S, Fu C, Li J, Tian Y, Sun P, Ju P, Liu S. Seasonal differences in the relationship between biodiversity and ecosystem functioning in an overexploited shelf sea ecosystem. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yuru Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shuyang Ma
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Caihong Fu
- Pacific Biological Station, Fisheries and Oceans Canada Nanaimo British Columbia Canada
| | - Jianchao Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Yongjun Tian
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Pilot National Laboratory for Marine Science and Technology Qingdao China
| | - Peng Sun
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Peilong Ju
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shude Liu
- Shandong Hydrobios Resources Conservation and Management Center Yantai China
| |
Collapse
|
36
|
Reeve C, Rowsey LE, Speers-Roesch B. Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes. J Exp Biol 2022; 225:275086. [PMID: 35315489 PMCID: PMC9124485 DOI: 10.1242/jeb.243407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
Winter dormancy is a seasonal survival strategy common among temperate ectotherms, characterized by inactivity, fasting, and low metabolic rates. Previous reports of metabolic rate depression (MRD) in winter-dormant ectotherms, including many fishes, may result from confounding influences of temperature-dependent variation in activity on metabolic rate measurements. We hypothesize that, as demonstrated recently in the winter-dormant cunner (Tautogolabrus adspersus), inactivity and the passive physicochemical (Arrhenius) effect of cold on standard metabolic rate (SMR) are the common primary mechanisms underlying the low metabolic rates among winter-dormant fishes. Using automated video tracking, we investigated threshold temperatures for winter dormancy onset (major reductions in activity, increased sheltering, and fasting) in four phylogenetically-diverse teleost species reported to be winter dormant: cunner, pumpkinseed sunfish (Lepomis gibbosus), American eel (Anguilla rostrata), and mummichog (Fundulus heteroclitus). All species showed large activity and feeding reductions, but the magnitude of change and dormancy threshold temperature was species-specific. We propose that a continuum of overwintering responses exists among fishes from dormant to lethargic to active. The relationship between activity and metabolic rate was then measured using video-recorded automated respirometry during acute cooling and following cold acclimation in pumpkinseed, mummichog, and eel. In all species, activity and metabolic rate were strongly correlated at all temperatures, and cooling caused reduced activity and metabolic rate. When variation in activity was controlled for across temperatures spanning the dormancy thresholds, the thermal sensitivity of metabolic rate including SMR indicated the predominance of passive physicochemical influences (mean Q10<3.5), rather than active MRD. Activity reductions and physicochemical slowing of metabolism due to cold appear to be the primary energy saving mechanisms in overwintering fishes.
Collapse
Affiliation(s)
- Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| |
Collapse
|
37
|
Kuo C, Ko C, Lai Y. Assessing warming impacts on marine fishes by integrating physiology‐guided distribution projections, life‐history changes, and food web dynamics. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chi‐Yun Kuo
- Department of Biomedical Sciences and Environmental Biology Kaohsiung Medical University Kaohsiung, 80708 Taiwan
| | - Chia‐Ying Ko
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| | - Yin‐Zheng Lai
- Institute of Fisheries Science National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
38
|
Zooplankton Abundance Reflects Oxygen Concentration and Dissolved Organic Matter in a Seasonally Hypoxic Estuary. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ocean deoxygenation, warming, and acidification resulting from global change and increasing nutrient inputs are major threats to marine ecosystems. Despite this, spatial and temporal patterns of oxygen availability and their impacts on marine life are understudied compared to warming and acidification, particularly in coastal tropical ecosystems. We measured the abundance of major groups of zooplankton in the context of five covarying environmental parameters [temperature, salinity, dissolved oxygen (DO), dissolved organic matter (DOM), and chlorophyll concentration] in a tropical estuary for one year. Partial least squares demonstrated that environmental conditions explained 20% of the variation in the community and found that temperature, salinity, DO, and DOM were most important (Variable Importance in Projection [VIP] > 0.8). A generalized linear model identified depth, DO, salinity, and chlorophyll as significant main effects, and temperature and DOM were also significant via two-way interactions (p < 0.05). When examined separately, the abundance of each zooplankton group was explained by a slightly different combination of environmental factors, but in all cases DO had large, significant effects, and in most cases DOM or its interactions were also significant. These results demonstrate that the seasonal cycle of hypoxia in this system significantly impacts the abundance of major zooplankton groups and likely also recruitment of benthic fauna through impacts on meroplankton and benthic-pelagic food webs.
Collapse
|
39
|
Chen B. Thermal diversity affects community responses to warming. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Mulders Y, Filbee‐Dexter K, Bell S, Bosch NE, Pessarrodona A, Sahin D, Vranken S, Zarco‐Perello S, Wernberg T. Intergrading reef communities across discrete seaweed habitats in a temperate-tropical transition zone: Lessons for species reshuffling in a warming ocean. Ecol Evol 2022; 12:e8538. [PMID: 35127041 PMCID: PMC8796930 DOI: 10.1002/ece3.8538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022] Open
Abstract
Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool-water kelps are decreasing, while seaweeds with warm-water affinities are increasing. These habitat-forming species provide different ecological functions, and shifts to warm-affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool-affinity (kelp) and warm-affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool-affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats.
Collapse
Affiliation(s)
- Yannick Mulders
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Karen Filbee‐Dexter
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
| | - Sahira Bell
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Nestor E. Bosch
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Defne Sahin
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Sofie Vranken
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Thomas Wernberg
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
41
|
Titelboim D, Thangarjan S, Raposo D, Morard R, Kucera M, Ashckenazi‐Polivoda S, Almogi‐Labin A, Herut B, Manda S, Abramovich S, Gold DA, Abdu U. The transcriptomic signature of cold and heat stress in benthic foraminifera—Implications for range expansions of marine calcifiers. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Débora Raposo
- MARUM – Center for Marine Environmental Sciences University of Bremen Bremen Germany
| | - Raphaël Morard
- MARUM – Center for Marine Environmental Sciences University of Bremen Bremen Germany
| | - Michal Kucera
- MARUM – Center for Marine Environmental Sciences University of Bremen Bremen Germany
| | - Sarit Ashckenazi‐Polivoda
- Dead Sea and Arava Science Center Masada National Park Mount Masada Israel
- Ben‐Gurion University of the Negev Eilat Campus Eilat Israel
| | | | - Barak Herut
- Israel Oceanographic and Limnological Research Haifa Israel
| | - Sneha Manda
- Ben‐Gurion University of the Negev Beer Sheva Israel
| | | | - David A. Gold
- Department of Earth & Planetary Sciences University of California Davis California USA
| | - Uri Abdu
- Ben‐Gurion University of the Negev Beer Sheva Israel
| |
Collapse
|
42
|
In Vitro Fish Models for the Analysis of Ecotoxins and Temperature Increase in the Context of Global Warming. TOXICS 2021; 9:toxics9110286. [PMID: 34822677 PMCID: PMC8618082 DOI: 10.3390/toxics9110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Rising temperatures can affect fish survival, especially from shallower waters, as temperatures increase faster and more intensively in these areas; thus, species-specific temperature tolerance can be exceeded. Additionally, the amounts of anthropogenic pollutants are higher in coastal waters. Although increasing metabolic activity at higher temperatures could lead to stronger effects of toxins, there are hardly any studies on this topic. Subsequently, the aim was to investigate the response of fish cells upon exposure to industrial solvents (ethanol, isopropanol, dimethyl sulfoxide (DMSO)) in relation to a temperature increase (20 °C and 25 °C). Concerning the 3Rs (the replacement, reduction and refinement of animal experiments), in vitro tests were used for two threatened, vulnerable fish species: maraena whitefish (Coregonus maraena) and Atlantic sturgeon (Acipenser oxyrinchus). Both cell lines exhibited higher proliferation at 25 °C. However, ecotoxicological results indicated significant differences regarding the cell line, toxin, temperature and exposure time. The evolutionarily older fish lineage, Atlantic sturgeon, demonstrated lower mortality rates in the presence of isopropanol and recovered better during long-term ethanol exposure than the maraena whitefish. Atlantic sturgeon cells have higher adaptation potential for these alcohols. In summary, fish species respond very specifically to toxins and changes in temperature, and new ecotoxicological questions arise with increasing water temperatures.
Collapse
|
43
|
Lavender E, Fox CJ, Burrows MT. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS One 2021; 16:e0258184. [PMID: 34606498 PMCID: PMC8489719 DOI: 10.1371/journal.pone.0258184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding and predicting the response of marine communities to climate change at large spatial scales, and distilling this information for policymakers, are prerequisites for ecosystem-based management. Changes in thermal habitat suitability across species’ distributions are especially concerning because of their implications for abundance, affecting species’ conservation, trophic interactions and fisheries. However, most predictive studies of the effects of climate change have tended to be sub-global in scale and focused on shifts in species’ range edges or commercially exploited species. Here, we develop a widely applicable methodology based on climate response curves to predict global-scale changes in thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050–2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western Africa emerge as the areas of most concern, where high species richness and the strongest declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow thermal ranges, with most species in these regions already exposed to temperatures above inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where most species live below thermal optima and thermal ranges are wider, positive changes in thermal habitat suitability suggest that these areas are likely to emerge as the greatest beneficiaries of climate change, despite strong predicted temperature increases.
Collapse
Affiliation(s)
- Edward Lavender
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
- * E-mail:
| | - Clive J. Fox
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| | - Michael T. Burrows
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| |
Collapse
|
44
|
Predicting responses to marine heatwaves using functional traits. Trends Ecol Evol 2021; 37:20-29. [PMID: 34593256 DOI: 10.1016/j.tree.2021.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023]
Abstract
Marine heatwaves (MHWs), discrete but prolonged periods of anomalously warm seawater, can fundamentally restructure marine communities and ecosystems. Although our understanding of these events has improved in recent years, key knowledge gaps hinder our ability to predict how MHWs will affect patterns of biodiversity. Here, we outline a functional trait approach that enables a better understanding of which species and communities will be most vulnerable to MHWs, and how the distribution of species and composition of communities are likely to shift through time. Our perspective allows progress toward unifying extreme events and longer term environmental trends as co-drivers of ecological change, with the incorporation of species traits into our predictions allowing for a greater capacity to make management decisions.
Collapse
|
45
|
Li C, Zhao W, Qin C, Yu G, Ma Z, Guo Y, Pan W, Fu Z, Huang X, Chen J. Comparative transcriptome analysis reveals changes in gene expression in sea cucumber (Holothuria leucospilota) in response to acute temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100883. [PMID: 34303260 DOI: 10.1016/j.cbd.2021.100883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Ambient temperature is an important abiotic factor that influences growth performance and physiological functions in sea cucumbers. To understand the molecular responses of the sea cucumber Holothuria leucospilota to acute temperature stress, we performed a de novo transcriptome analysis of body wall tissue from H. leucospilota exposed to 2 hoursh of acute heat (35 ± 1 °C) and cold stress (15 ± 1 °C). A total of 99,015 unigenes were obtained after assembly of the sequenced reads. Compared with a control group maintained at 25.0 ± 1 °C, 1169 differentially expressed unigenes (DEGs) were identified after heat stress, 781 were up-regulated and 388 were down-regulated. After cold stress, 1464 DEGs were identified; 900 were up-regulated and 564 were down-regulated. The annotation of DEGs revealed that heat shock proteins play important roles in protecting H. leucospilota from high temperature stress. Furthermore, KEGG pathway enrichment analysis showed that the categories: "Ribosome" and "Protein processing in endoplasmic reticulum" were strongly affected by heat stress. These two pathways are associated with biosynthesis and processing of proteins, and refolding of misfolded proteins. The lipid metabolism pathways "Sphingolipid metabolism" and "Ether lipid metabolism", were affected by cold stress. The RNA-Seq results for eight selected DEGs were verified the expression by quantitative real-time PCR analysis. Our results will improve the understanding of the molecular response mechanisms of H. leucospilota to ambient temperature stress.
Collapse
Affiliation(s)
- Changlin Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Wang Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China.
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China.
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Wanni Pan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Zhengyi Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xingmei Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jisheng Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| |
Collapse
|
46
|
Collin R, Rebolledo AP, Smith E, Chan KYK. Thermal tolerance of early development predicts the realized thermal niche in marine ectotherms. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rachel Collin
- Smithsonian Tropical Research InstituteApartado Postal Balboa Ancon Panama
| | - Adriana P. Rebolledo
- Smithsonian Tropical Research InstituteApartado Postal Balboa Ancon Panama
- School of Biological Sciences Monash University Melbourne Vic Australia
| | - Emily Smith
- Smithsonian Tropical Research InstituteApartado Postal Balboa Ancon Panama
| | - Kit Yu Karen Chan
- Biology Department Swarthmore College Swarthmore PA USA
- Division of Life Science The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| |
Collapse
|
47
|
van der Walt KA, Porri F, Potts WM, Duncan MI, James NC. Thermal tolerance, safety margins and vulnerability of coastal species: Projected impact of climate change induced cold water variability in a temperate African region. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105346. [PMID: 33971581 DOI: 10.1016/j.marenvres.2021.105346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic induced climate change is predicted to increase the thermal variability in coastal waters, which can have strong physiological effects on individuals and populations of marine ectotherms. The magnitude and direction of these thermal effects varies depending on species, life stage, biogeography, habitat and season. This study aimed to compare the thermal tolerance of a range of juvenile fish and adult macro-invertebrates from intertidal and estuarine habitats in a warm-temperate, thermally variable region on the south-east coast of South Africa. Seasonal variability in thermal tolerance was compared between species, taxonomic groups, biogeographical distribution and habitat affinity and related to existing and projected water temperature data to gauge the local vulnerability of each species. Critical thermal maximum (CTmax), critical thermal minimum (CTmin), thermal breadths and scopes, and the thermal safety margins of each species were quantified. The greatest differences in thermal tolerance patterns were based on taxonomy, with macro-invertebrates having broader thermal tolerance compared to fish, with the exception of the Cape sea urchin, in both summer and winter. Relatively narrow lower breadths in tolerance and safety margin values for transient juvenile sub-tropical and temperate fish species from the intertidal rocky low-shore habitat were observed in both summer and winter. This indicates that these fish species and the Cape sea urchin may be more vulnerable to projected increases in cold temperature (upwelling in summer) than warm temperature variability in this warm-temperate region if they are unable to seek thermal habitat refuge.
Collapse
Affiliation(s)
- Kerry-Ann van der Walt
- South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa; Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, 6140, South Africa.
| | - Francesca Porri
- South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa; Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, 6140, South Africa
| | - Murray I Duncan
- South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa; Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, 6140, South Africa; Department of Geological Sciences, Stanford University, Stanford, CA, 94305, United States; Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950, United States
| | - Nicola C James
- South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa; Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
48
|
Fredston A, Pinsky M, Selden RL, Szuwalski C, Thorson JT, Gaines SD, Halpern BS. Range edges of North American marine species are tracking temperature over decades. GLOBAL CHANGE BIOLOGY 2021; 27:3145-3156. [PMID: 33759274 DOI: 10.1111/gcb.15614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Understanding the dynamics of species range edges in the modern era is key to addressing fundamental biogeographic questions about abiotic and biotic drivers of species distributions. Range edges are where colonization and extirpation processes unfold, and so these dynamics are also important to understand for effective natural resource management and conservation. However, few studies to date have analyzed time series of range edge positions in the context of climate change, in part because range edges are difficult to detect. We first quantified positions for 165 range edges of marine fishes and invertebrates from three U.S. continental shelf regions using up to five decades of survey data and a spatiotemporal model to account for sampling and measurement variability. We then analyzed whether those range edges maintained their edge thermal niche-the temperatures found at the range edge position-over time. A large majority of range edges (88%) maintained either summer or winter temperature extremes at the range edge over the study period, and most maintained both (76%), although not all of those range edges shifted in space. However, we also found numerous range edges-particularly poleward edges and edges in the region that experienced the most warming-that did not shift at all, shifted further than predicted by temperature alone, or shifted opposite the direction expected, underscoring the multiplicity of factors that drive changes in range edge positions. This study suggests that range edges of temperate marine species have largely maintained the same edge thermal niche during periods of rapid change and provides a blueprint for testing whether and to what degree species range edges track temperature in general.
Collapse
Affiliation(s)
- Alexa Fredston
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Malin Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Rebecca L Selden
- Department of Biological Sciences, Wellesley College, Science Center, Wellesley, MA, USA
| | - Cody Szuwalski
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James T Thorson
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
49
|
Habitat loss and range shifts contribute to ecological generalization among reef fishes. Nat Ecol Evol 2021; 5:656-662. [PMID: 33686182 DOI: 10.1038/s41559-020-01342-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 01/31/2023]
Abstract
Human activities are altering the structure of ecological communities, often favouring generalists over specialists. For reef fishes, increasingly degraded habitats and climate-driven range shifts may independently augment generalization, particularly if fishes with least-specific habitat requirements are more likely to shift geographic ranges to track their thermal niche. Using a unique global dataset on temperate and tropical reef fishes and habitat composition, we calculated a species generalization index that empirically estimates the habitat niche breadth of each fish species. We then applied the species generalization index to evaluate potential impacts of habitat loss and range shifts across large scales, on coral and rocky reefs. Our analyses revealed consistent habitat-induced shifts in community structure that favoured generalist fishes following regional coral mortality events and between adjacent sea urchin barrens and kelp habitats. Analysis of the distribution of tropical fishes also identified the species generalization index as the most important trait in predicting their poleward range extent, more so than body or range size. Generalist tropical reef fishes penetrate further into subtropical and temperate zones than specialists. Dynamic responses of reef fishes to habitat degradation imply loss of specialists at local scales, while generalists will be broadly favoured under intensifying anthropogenic pressures. An increased focus on individual requirements of specialists could provide useful guidance for species threat assessments and conservation actions, while ecosystem and multi-species fisheries models should recognize increasing prevalence of generalists.
Collapse
|
50
|
Brown CJ, Mellin C, Edgar GJ, Campbell MD, Stuart-Smith RD. Direct and indirect effects of heatwaves on a coral reef fishery. GLOBAL CHANGE BIOLOGY 2021; 27:1214-1225. [PMID: 33340216 DOI: 10.1111/gcb.15472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) data from the commercial fishery to evaluate changes in the fishery resulting from the 2016 heatwave. The heatwave caused widespread, yet locally patchy, declines in coral cover, but we observed little effect of local coral loss on coral trout biomass. Instead, a pattern of decreasing biomass at northern sites and stable or increasing biomass at southern sites suggested a direct response of populations to the heatwave. Analysis of the fishery-independent data and CPUE found that in-water coral trout biomass estimates were positively related to CPUE, and that coral trout catch rates increased with warmer temperatures. Temperature effects on catch rates were consistent with the thermal affinities of the multiple species contributing to this fishery. Scaling-up the effect of temperature on coral trout catch rates across the region suggests that GBR-wide catches were 18% higher for a given level of effort during the heatwave year relative to catch rates under the mean temperatures in the preceding 6 years. These results highlight a potentially large effect of heatwaves on catch rates of reef fishes, independent of changes in reef habitats, that can add substantial uncertainty to estimates of stock trends inferred from fishery-dependent (CPUE) data. Overestimation of CPUE could initiate declines in reef fisheries that are currently fully exploited, and threaten sustainable management of reef stocks.
Collapse
Affiliation(s)
- Christopher J Brown
- Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Camille Mellin
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Max D Campbell
- Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|