1
|
de la Hoz CF, Brooks PR, Coughlan J, Mazarrasa I, Ramos E, Sainz-Villegas S, Puente A, Juanes JA, Crowe TP. Unveiling growth and carbon composition of macroalgae with different strategies under global change. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107128. [PMID: 40184952 DOI: 10.1016/j.marenvres.2025.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Marine macroalgae ecosystems are increasingly recognized as potential contributors to carbon sequestration within blue carbon strategies. This study investigates how the carbon storage capacity of two macroalgal species with different living strategies, Fucus vesiculosus (k-strategy, slow-growing) and Ulva lactuca (r-strategy, fast-growing), respond to the individual or combined impacts of two drivers of global change, eutrophication and marine heatwaves. Differences in growth, biomass and carbon accumulation were assessed after 7 and 14 days in two experiments (field and laboratory) that tested different combinations of nutrient enrichment (increase nutrient/surface area of 1 g/cm2 in the field experiment and a concentration of 10 ml/l of Provasoli solution in the laboratory) and warming (5 °C increase) treatments. Results revealed that nutrient addition treatments had significant effects, reducing carbon incorporation by up to 22.5 % in F. vesiculosus compared to control. This reduction was particularly evident in the field experiment, suggesting that eutrophication negatively impacts the carbon storage potential of this slow-growing species. However, F. vesiculosus demonstrated greater resilience in maintaining biomass stability, whereas U. lactuca exhibited reduced growth and carbon accumulation under natural conditions. These findings highlight species-specific differences in carbon assimilation and biomass composition among macroalgae, which can influence their potential contribution to carbon cycling and storage in marine ecosystems, shaped by their ecological and physiological traits, and emphasize the importance of nutrient management for optimizing blue carbon storage. This research contributes to our understanding of macroalgae's role in climate mitigation and underscores the need for targeted conservation strategies to enhance their ecosystem services.
Collapse
Affiliation(s)
- Camino F de la Hoz
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain; Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Paul R Brooks
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| | - Jennifer Coughlan
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| | - Inés Mazarrasa
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Elvira Ramos
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Samuel Sainz-Villegas
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Araceli Puente
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Jose A Juanes
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Tasman P Crowe
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
2
|
Chang C, Ren M, Wang H, Ye S, Tang X, He D, Hu E, Li M, Pan B. Riverine network size determined major driving factors of the composition and diversity of aquatic invertebrate communities in a multi-tributary mountain river basin. WATER RESEARCH 2025; 276:123257. [PMID: 39954458 DOI: 10.1016/j.watres.2025.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Revealing the spatial variation of aquatic invertebrates and their response to biotic and abiotic factors, from headwaters to estuaries, is crucial for understanding their successional patterns and protecting watershed ecosystems. This study aimed to explore the biogeographic patterns and identify the primary drivers of invertebrate community structure across river networks of varying sizes using environmental DNA (eDNA) technology. To assess the contribution of biotic and abiotic factors to invertebrate communities, we collected six categories of abiotic factors: geography, climate, hydro-morphology, human footprint index, land use, and water quality. For biotic factors, four microbial groups including archaea, bacteria, fungi, and protists were identified using eDNA techniques. Water samples were collected from a total of 187 sample sites in the upper Hanjiang River basin (China) during two seasons (Spring and Autumn), covering the transition from the headwater tributaries to the lower reaches of the main channel. The results revealed that environmental factors explained approximately 6.5 times more variation in invertebrate eDNA communities than geographic factors. Water quality and biotic factors had strong explanatory power for invertebrate eDNA diversity. Ecological succession of invertebrate eDNA communities along the river continuum showed a shift from Arthropoda-dominated communities in the headwaters to a co-dominance of Arthropoda, Rotifera, and Cnidaria downstream. The cumulative dendritic distance upstream, representing the location of each sampling site within the river network, emerged as the most predictive spatial feature. Significant differences were observed in the dominant environmental factors influencing community diversity across different river network sizes. In small river networks, invertebrate eDNA diversity was primarily influenced by biotic factors, while in medium-sized networks, it was shaped by a combination of biotic factors and water quality. In large river networks, water quality emerged as the primary driver. These findings suggest that invertebrate communities throughout the Hanjiang River basin undergo ecological succession along the river continuum, primarily shaped by environmental factors related to river network size.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mi Ren
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Han Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Sisi Ye
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xiaofeng Tang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
3
|
van Rees CB, Geist J, Arthington AH. Grasping at water: a gap-oriented approach to bridging shortfalls in freshwater biodiversity conservation. Biol Rev Camb Philos Soc 2025. [PMID: 40328259 DOI: 10.1111/brv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Freshwater biodiversity is the fastest declining part of the global biota, threatened by multiple stressors including habitat loss and fragmentation, climate change, invasive species, water pollution, and abstraction by humans. A multitude of recent agenda-setting publications have pointed out key objectives and goals for addressing this freshwater biodiversity crisis, but important gaps must be overcome to reach ambitious conservation targets. In this perspective, we complement these high-level papers in freshwater conservation by highlighting important gaps in knowledge, governance, and implementation. This gap-oriented approach is designed to facilitate meaningful action by highlighting missing 'pieces' in the conservation process, and their connection to existing and emerging solutions in the literature. We derive 13 overarching gaps from a conference session and informal synthesis of recent literature in freshwater biodiversity conservation to catalyse research, advocacy, and action to meet freshwater goals for the post-2020 Kunming-Montreal Global Biodiversity Framework (GBF). Key gaps include inventory data on global freshwater biodiversity, collating and mobilizing conservation evidence in practice, improving coordination of ecological governance at scale -including within and across catchments-and navigating trade-offs between economic development, resource consumption, and priorities for freshwater biodiversity. Finally, we apply this gap-oriented approach to key language describing GBF goals for freshwater biodiversity conservation, and point out existing and emerging solutions which may help address important gaps. Major themes that address multiple gaps include the use of Nature-based Solutions and Other Effective Area-based Conservation Measures (OECMs), navigation of water management trade-offs between human and environmental needs, co-production of knowledge with Indigenous and local people and other stakeholders, integration of conservation research and action between aquatic and terrestrial ecosystems, and funding and policy mechanisms to facilitate conservation action and support meaningful monitoring of conservation evidence across hydrological scales.
Collapse
Affiliation(s)
- Charles B van Rees
- Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA, 30602, USA
- Institute of Resilient Infrastructure Systems, University of Georgia, 597 D.W. Brooks Drive, Athens, GA, 30602, USA
- River Basin Center, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, Mühlenweg 22, Freising, D-85354, Germany
| | - Angela H Arthington
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Queensland, 4111, Australia
| |
Collapse
|
4
|
González-Olalla JM, Brahney J. Diverse dust sources and warming trigger cyanobacteria abundance in freshwater ecosystems in the western United States. ENVIRONMENTAL RESEARCH 2025; 278:121663. [PMID: 40268222 DOI: 10.1016/j.envres.2025.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/13/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The rise in global temperature and the increase in atmospheric transport and deposition of dust linked to greater aridity, land abandonment, and wildfires, are placing significant stress on freshwater microbial communities. Temperature increases and the nutrients contained in the dust may independently and together alter the metabolism and structure of these communities. However, dust chemistry is widely variable, and pre-existing lake conditions will likely influence the response of the algal and microbial communities to added nutrients and temperature stress. To fill this gap of knowledge, we tested the metabolic and structural response of phytoplankton in two aquatic ecosystems in the Western United States (Half-Moon Lake and Jordanelle Reservoir), which have similar trophic status but different biogeochemical properties, in response to two types of atmospheric dust from the region. The results show that the Temperature × Dust interaction led to greater cyanobacteria growth in Half-Moon compared to Jordanelle. The effect on metabolism also differed, with Half-Moon showing a tendency toward heterotrophy, while Jordanelle trended toward autotrophy. Interestingly, our study reveals that the direction of the response was mainly regulated by each ecosystem's properties, while the magnitude of the response was controlled by the type of dust. Through this work, we demonstrate that oligotrophic freshwater ecosystems are sensitive to dust-nutrient additions leading to cyanobacterial blooms and highlight the importance of considering watershed biogeochemical properties and exposure to different types of dust in lake and reservoir management strategies.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- Institute of Water Research, University of Granada, Avenida de Madrid, 11, Granada 18071, Spain; Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, 84321, USA.
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, 84321, USA
| |
Collapse
|
5
|
Fuggle R, Matias MG, Mayer-Pinto M, Marzinelli EM. Multiple stressors affect function rather than taxonomic structure of freshwater microbial communities. NPJ Biofilms Microbiomes 2025; 11:60. [PMID: 40251215 PMCID: PMC12008304 DOI: 10.1038/s41522-025-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Microbial community responses to environmental stressors are often characterised by assessing changes in taxonomic structure, but such changes, or lack thereof, may not reflect functional changes that are critical to ecosystem processes. We investigated the individual and combined effects of nutrient enrichment ( + 10 mg/L N, + 1 mg/L P) and salinisation ( + 15 g/L NaCl)-key stressors in freshwater systems-on the taxonomic structure and metabolic function of benthic microbial communities using 1000 L open freshwater ponds established >10 years ago in the field. Combined stressors drove strong decreases in maximum and mean total carbon metabolic rates and shifted carbon metabolic profiles compared to either stressor individually and compared to ambient conditions. These metabolic functional changes did not recover through time and occurred without significant alterations in bacterial community taxonomic structure. These results imply that critical functions, including organic carbon release, are likely to be impaired under multiple stressors, even when taxonomic structure remains stable.
Collapse
Affiliation(s)
- Rose Fuggle
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia.
| | | | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| |
Collapse
|
6
|
Nunn AD, Ainsworth RF, Qu Y, Keller VDJ, Bachiller-Jareno N, Antoniou V, Eastman M, Rizzo C, Peirson G, Eley F, Johnson AC, Cowx IG. Responses of fish to nationwide improvements in the water quality of a densely populated and heavily modified country over four decades. WATER RESEARCH 2025; 274:123163. [PMID: 39854776 DOI: 10.1016/j.watres.2025.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s). The analyses revealed gradual, nationwide increases in mean fish species richness and diversity across the range of pressure gradients. In the majority of cases, increases were most pronounced in the 1980s, since when any further changes have been comparatively minor, but there were no declining trends across the full time series. There were also temporal, nationwide changes in fish assemblage structure, driven largely by variations in the densities of brown trout Salmo trutta or roach Rutilus rutilus, but no consistent increases in the abundance of sensitive, pollution-intolerant species in response to improvements in wastewater treatment and, consequently, water quality. Although the increases in fish species richness and diversity over the last four decades are encouraging, subtle and contrasting changes in the abundance of a range of species require further investigation, and causal relationships between fish assemblage structure and putative drivers should be modelled at a national scale. This study is the first to examine long-term, nationwide trends in the freshwater fish populations of England, and significantly advances our understanding of the ecological health of rivers in densely populated and heavily modified countries.
Collapse
Affiliation(s)
- Andy D Nunn
- Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK.
| | - Rachel F Ainsworth
- Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK
| | - Yueming Qu
- UK Centre for Ecology & Hydrology, Wallingford, UK
| | | | | | | | | | | | | | | | | | - Ian G Cowx
- Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK
| |
Collapse
|
7
|
Stoffels RJ, White RSA. Quantifying regulatory limits for multiple stressors in an open and transparent way. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14375. [PMID: 39225272 PMCID: PMC11959319 DOI: 10.1111/cobi.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Biodiversity is confronted globally by multiple stressors. Environmental policies must regulate these stressors to achieve targets, but how should that be done when the outcomes of limits on one stressor are contingent on other stressors, about which there is imperfect knowledge? Deriving regulatory frameworks that incorporate these contingencies is an emerging challenge at the science-policy interface. To be fit for implementation, these frameworks need to facilitate the inherently sociopolitical process of policy implementation and account transparently for uncertainty, such that practitioners and other stakeholders can more realistically anticipate the range of potential outcomes to policy. We developed an approach to quantify stressor limits that explicitly accounts for multistressor contingencies. Using an invertebrate data set collected over 30 years throughout New Zealand, we combined ecological and ecotoxicological models to predict biodiversity loss as a function of one stressor, treating multistressor contingencies as a form of uncertainty about the outcomes of limits on that stressor. We transparently accounted for that uncertainty by presenting regulatory limits as bands bounded between optimistic and pessimistic views that practitioners may have about the local context within which limits are applied. In addition to transparently accounting for uncertainties, our framework also leaves room for practitioners to build stakeholder consensus when refining limits to suit different local contexts. A criticism of this open, transparent approach is that it creates too much scope for choosing limits that are lenient on polluters, paralyzing on-the-ground management of multiple stressors, but we demonstrate that this is not necessarily the case.
Collapse
Affiliation(s)
- Rick J. Stoffels
- National Institute of Water and Atmospheric ResearchChristchurchNew Zealand
| | | |
Collapse
|
8
|
Stevens C, Frost PC, Pearce NJT, Kelley JD, Zastepa A, Xenopoulos MA. Limnological data derived from high frequency monitoring buoys are asynchronous in a large lake. PLoS One 2025; 20:e0314582. [PMID: 40048466 PMCID: PMC11884689 DOI: 10.1371/journal.pone.0314582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 03/09/2025] Open
Abstract
Autonomous data collection is rapidly becoming an integral part of water quality monitoring, particularly for agencies looking to manage and protect aquatic ecosystems. While beneficial, it is unclear how the collection of these data can be applied in spatially complex large lakes (e.g., Laurentian Great Lakes) given the spatial heterogeneity of the ecosystem. To address this potential shortcoming in large lakes, we assessed the synchrony of sensor variables between 10 pairs of static buoys in the western basin of Lake Erie (western basin surface area = 3,282 km2). Within western Lake Erie, water temperature was highly synchronous whereas dissolved oxygen, turbidity, chlorophyll and phycocyanin were asynchronous. The extent of this asynchrony was higher with increasing spatial distance between buoys. We found that between pairs of static buoys, temperature, dissolved oxygen, and turbidity all experienced decreasing correlations with increasing distance. Our results show that if researchers intend to leverage these data to answer important questions and provide real-time applications related to environmental issues like harmful algal/cyanobacterial blooms, monitoring networks need to be designed carefully with spatial complexity in mind. While autonomous data collection has many benefits, the reliance on a single or limited network of anchored monitoring buoys in large lake ecosystems has a high probability of missing important spatial features of these systems.
Collapse
Affiliation(s)
- Claire Stevens
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Paul C. Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - James D. Kelley
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada
| | | |
Collapse
|
9
|
Zhou L, Lemmen KD, Zhao S, Declerck SAJ. Asymmetrical evolution of cross inhibition in zooplankton: insights from contrasting phosphorus limitation and salinization exposure sequences. Proc Biol Sci 2025; 292:20243064. [PMID: 40041961 PMCID: PMC11881020 DOI: 10.1098/rspb.2024.3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 05/12/2025] Open
Abstract
Understanding the evolutionary responses of organisms to multiple stressors is crucial for predicting the ecological consequences of intensified anthropogenic activities. While previous studies have documented the effects of selection history on organisms' abilities to cope with new stressors, the impact of the sequence in which stressors occur on evolutionary outcomes remains less understood. In this study, we examined the evolutionary responses of a metazoan rotifer species to two prevalent freshwater stressors: nutrient limitation and increased salinization. We subjected rotifer populations with distinct selection histories (salt-adapted, low phosphorus-adapted and ancestral clones) to a reciprocal common garden experiment and monitored their population growth rates. Our results revealed an asymmetric evolutionary response to phosphorus (P) limitation and increased salinity. Specifically, adaptation to low P conditions reduced rotifer tolerance to increased salinity, whereas adaptation to saline conditions did not show such cross-inhibitory effects. Instead, the addition of moderate concentrations of salt enhanced the growth of the salt-adapted population in low P conditions, potentially as a consequence of evolved cross-tolerance. Our findings, therefore, underscore the importance of considering historical stressor regimes to improve our understanding and predictions of organismal responses to multiple stressors and also have significant implications for ecosystem management.
Collapse
Affiliation(s)
- Libin Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kimberley D. Lemmen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Shuaiying Zhao
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming, People’s Republic of China
| | - Steven A. J. Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Woo S, Kim W, Kim Y, Kim S. An integrated index for the health of aquatic ecosystem based on multi-species distribution models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178745. [PMID: 39946900 DOI: 10.1016/j.scitotenv.2025.178745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
This study developed an integrated index for aquatic ecosystem health using multi-species distribution models (SDMs) based on environmental variables and species occurrence data. While the results of SDMs revealed that land use, particularly urban and agricultural areas, is a key factor degrading freshwater habitats, the Total-Aquatic Ecosystem Health Index (T-AEHI), which integrates occurrence probabilities from three taxonomic groups, showed strong correlations with existing indices and proved its effectiveness in spatiotemporal scales. It is believed that the approach can contribute to effective conservation and restoration planning for aquatic ecosystems.
Collapse
Affiliation(s)
- Soyoung Woo
- Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology, South Korea
| | - Wonjin Kim
- Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology, South Korea.
| | - Yongwon Kim
- Graduate School of Civil, Environmental and Plant Engineering, Konkuk University, South Korea
| | - Seongjoon Kim
- Division of Civil and Environmental Engineering, College of Engineering, Konkuk University, South Korea
| |
Collapse
|
11
|
Spiller A, Comte L, Geldmann J, Iversen L. The interconnected nature of multiple threats is impacting freshwater biodiversity. Biol Lett 2025; 21:20240544. [PMID: 39904376 PMCID: PMC11793959 DOI: 10.1098/rsbl.2024.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Freshwater biodiversity is in crisis across the globe: the significant extraction, modification and pollution of freshwater resources puts these communities and systems at great risk. Here, using probabilistic network analysis and International Union for the Conservation of Nature threat data, we show that globally and across all taxonomic groups and geographical regions, threats to freshwater species are interconnected and do not occur in isolation. However, we also find that species in higher risk categories are more acutely threatened by single, dominant threats as compared with species at lower risk of global extinction. Determining when and which species are threatened by isolated threats or a suite of co-occurring threats provides crucial insights for the design of effective freshwater conservation strategies.
Collapse
Affiliation(s)
- Aelis Spiller
- Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, QuebecH3A 1B1, Canada
- Department of Earth and Planetary Sciences, MGill University, 3450 University St, Montreal, QuebecH3A 0E8, Canada
| | - Lise Comte
- Conservation Science Partners, Inc., Truckee, CA, USA
| | - Jonas Geldmann
- Center for Macroecology, Evolution and Climate, Global Institute, University of Copenhagen, Copenhagen2100, Denmark
| | - Lars Iversen
- Conservation Science Partners, Inc., Truckee, CA, USA
| |
Collapse
|
12
|
Dudgeon D, Strayer DL. Bending the curve of global freshwater biodiversity loss: what are the prospects? Biol Rev Camb Philos Soc 2025; 100:205-226. [PMID: 39221642 PMCID: PMC11718631 DOI: 10.1111/brv.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Freshwater biodiversity conservation has received substantial attention in the scientific literature and is finally being recognized in policy frameworks such as the Global Biodiversity Framework and its associated targets for 2030. This is important progress. Nonetheless, freshwater species continue to be confronted with high levels of imperilment and widespread ecosystem degradation. An Emergency Recovery Plan (ERP) proposed in 2020 comprises six measures intended to "bend the curve" of freshwater biodiversity loss, if they are widely adopted and adequately supported. We review evidence suggesting that the combined intensity of persistent and emerging threats to freshwater biodiversity has become so serious that current and projected efforts to preserve, protect and restore inland-water ecosystems may be insufficient to avert substantial biodiversity losses in the coming decades. In particular, climate change, with its complex and harmful impacts, will frustrate attempts to prevent biodiversity losses from freshwater ecosystems already affected by multiple threats. Interactions among these threats will limit recovery of populations and exacerbate declines resulting in local or even global extinctions, especially among low-viability populations in degraded or fragmented ecosystems. In addition to impediments represented by climate change, we identify several other areas where the absolute scarcity of fresh water, inadequate scientific information or predictive capacity, and a widespread failure to mitigate anthropogenic stressors, are liable to set limits on the recovery of freshwater biodiversity. Implementation of the ERP rapidly and at scale through many widely dispersed local actions focused on regions of high freshwater biodiversity and intense threat, together with an intensification of ex-situ conservation efforts, will be necessary to preserve native freshwater biodiversity during an increasingly uncertain climatic future in which poorly understood, emergent and interacting threats have become more influential. But implementation of the ERP must be accompanied by measures that will improve water, energy and food security for humans - without further compromising the condition of freshwater ecosystems. Unfortunately, the inadequate political implementation of policies to arrest widely recognized environmental challenges such as climate change do not inspire confidence about the possible success of the ERP. In many parts of the world, the Anthropocene future seems certain to include extended periods with an absolute scarcity of uncontaminated surface runoff that will inevitably be appropriated by humans. Unless there is a step-change in societal awareness of - and commitment to - the conservation of freshwater biodiversity, together with necessary actions to arrest climate change, implementation of established methods for protecting freshwater biodiversity may not bend the curve enough to prevent continued ecosystem degradation and species loss.
Collapse
Affiliation(s)
- David Dudgeon
- Division of Ecology & Biodiversity, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesP.O. Box ABMillbrookNY 12545USA
| |
Collapse
|
13
|
Velázquez-Urrieta Y, Mendoza-Portillo V, García-De León FJ. Diversity of trematodes (Platyhelminthes) in Mexico with an assessment of the availability of genetic data for their conservation. J Helminthol 2025; 98:e92. [PMID: 39757580 DOI: 10.1017/s0022149x24000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Trematodes are one of the most abundant and diverse groups of platyhelminths. They parasitize all major groups of vertebrates as definitive hosts and therefore play an important role in ecosystem composition. It is estimated that 18,000 to 25,000 species of trematodes exist worldwide, of which 685 have been reported in Mexico. Although this group is an integral part of ecosystems, there are still no studies that highlight the importance of parasites, especially in conservation approaches. Here, we recompiled information on the occurrence and available genetic data of trematodes in Mexico to estimate the specific richness of their representation across the Protected Areas (PAs) and provinces of Mexico. We consulted national and international databases (e.g., GBIF, CONABIO, CNHE-UNAM) and genetic repositories (e.g., GenBank) to generate curated datasets. We obtained 6,780 records that represent 99% of species reported in Mexico (680 species), of which only 10.2% are included in PAs. For genetic data, we found information from five nuclear regions (28S, 18S, ITS1, ITS2 and 5.8S) and two mitochondrial genes (COI and NAD1) for 118 species, of which only 3.5% were associated with PAs. With these results, we provide a spatial distribution of records (occurrence and genetic data) of trematodes present in Mexico and its PAs and identify poorly represented biogeographic provinces (e.g., Sierra Madre del Sur). We also highlight that this is the first study in Mexico to include this group in a conservation approach, and we record valuable information for future studies.
Collapse
Affiliation(s)
- Y Velázquez-Urrieta
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
| | - V Mendoza-Portillo
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
| | - F J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, Calle IPN #195, La Paz, Baja California Sur, México, C.P. 23096
| |
Collapse
|
14
|
Ju Z, Lee SS, Chen J, Deng L, Zhang X, Xu Z, Liu H. Deciphering the key stressors shaping the relative success of core mixoplankton across spatiotemporal scales. ISME COMMUNICATIONS 2025; 5:ycaf053. [PMID: 40270584 PMCID: PMC12017963 DOI: 10.1093/ismeco/ycaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Deciphering the spatiotemporal dynamics and relative competitive advantages of trophic functional traits under multiple stressors has been a long-standing challenge. Here, we integrated the core taxa identification with robust simulation modeling to reveal key environmental factors influencing the three core trophic groups (autotroph, heterotroph, and mixotroph), with a particular focus on mixoplankton. Temporally, core mixoplankton exhibited a higher relative proportion in spring and winter in contrast to core heterotrophs and a more uniform spatial distribution pattern. While seasonal patterns were observed in the environmental responses of the trophic groups, temperature, dissolved oxygen (DO), and nitrate (NO3-N) were identified as the key drivers affecting the core mixoplankton by random forest. Furthermore, through univariate regression and generalized additive mixed model (GAMM), we captured the niche preferences of core mixoplankton across three stressors gradients and characterized the coupled additive or antagonistic effects. Notably, the potential optimal threshold for core mixoplankton was a high level of NO3-N (0.64 mg/L), lower temperature (18.6°C), and DO (3.5 mg/L), which contrasted with the results obtained from single-factor regression analyses. Specifically, GAMM indicated that the preferred niche shifted upward for NO3-N and downward for DO when three drivers were included simultaneously, while temperature remained constant. Our study linked the ecological niche preference of core mixoplankton with key stressors, facilitating a more precise monitoring and comprehension of spatiotemporal dynamics of trophic functional groups under scenarios of escalating global climate change and anthropogenic disturbances.
Collapse
Affiliation(s)
- Zhicheng Ju
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Sangwook Scott Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong SAR, 510000, China
| |
Collapse
|
15
|
Kontou D, Paterson AM, Favot EJ, Grooms C, Smol JP, Tanentzap AJ. Adaptation in a keystone grazer under novel predation pressure. Proc Biol Sci 2025; 292:20241935. [PMID: 39837507 PMCID: PMC11750393 DOI: 10.1098/rspb.2024.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding how species adapt to environmental change is necessary to protect biodiversity and ecosystem services. Growing evidence suggests species can adapt rapidly to novel selection pressures like predation from invasive species, but the repeatability and predictability of selection remain poorly understood in wild populations. We tested how a keystone aquatic herbivore, Daphnia pulicaria, evolved in response to predation pressure by the introduced zooplanktivore Bythotrephes longimanus. Using high-resolution 210Pb-dated sediment cores from 12 lakes in Ontario (Canada), which primarily differed in invasion status by Bythotrephes, we compared Daphnia population genetic structure over time using whole-genome sequencing of individual resting embryos. We found strong genetic differentiation between populations approximately 70 years before versus 30 years after reported Bythotrephes invasion, with no difference over this period in uninvaded lakes. Compared with uninvaded lakes, we identified, on average, 64 times more loci were putatively under selection in the invaded lakes. Differentiated loci were mainly associated with known reproductive and stress responses, and mean body size consistently increased by 14.1% over time in invaded lakes. These results suggest Daphnia populations were repeatedly acquiring heritable genetic adaptations to escape gape-limited predation. More generally, our results suggest some aspects of environmental change predictably shape genome evolution.
Collapse
Affiliation(s)
- Danai Kontou
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
| | - Andrew M. Paterson
- Dorset Environmental Science Centre, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Dorset, OntarioP0A 1E0, Canada
| | - Elizabeth J. Favot
- Vale Living with Lakes Centre, Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, OntarioP3E 2C6, Canada
| | - Christopher Grooms
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - John P. Smol
- Paleoecological Environmental Assessment and Research Lab, Department of Biology, Queen’s University, Kingston, OntarioK7L 3N6, Canada
| | - Andrew J. Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, UK
- Ecosystems and Global Change Group, School of Environment, Trent University, Peterborough, OntarioK9L 0G2, Canada
| |
Collapse
|
16
|
Eriksen TE, Brittain JE, Sandin L, Friberg N. Unveiling cryptic macroinvertebrate sentinels to enhance biomonitoring in tropical rivers: Bridging traditional approaches with DNA barcoding in the Indo-Burma biodiversity hotspot. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178064. [PMID: 39693656 DOI: 10.1016/j.scitotenv.2024.178064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Human activities present significant threats to tropical freshwater ecosystems, notably in many global biodiversity hotspots, threats that are further increased by inadequate taxonomic knowledge and the lack of appropriate biomonitoring tools. This study integrates globally validated biomonitoring approaches with DNA-based identification methods to create a macroinvertebrate-based tool for diagnosing ecosystem health and assessing the biodiversity of tropical river ecosystems in Myanmar (Indo-Burma bioregion). To evaluate river site degradation, comprehensive data on water and habitat quality, as well as land use information, were collected. Riverine macroinvertebrates were sampled by kick sampling, and subsequent DNA barcoding analysis was used to establish molecular taxonomic units (MTUs) for key bioindicator groups, including Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, and Odonata (EPTCO) as species-level identification nomenclature was lacking. Tolerance scores for the local fauna were derived along an environmental degradation gradient to enable comparisons with widely adopted global assessment tools relying on macroinvertebrate metrics. In both study areas, the upper parts of the river networks were generally undisturbed by human activities while stressors associated with urban and agricultural land use were evident in the lower parts of the catchments. The highest precision for assessment of river health was found when establishing tolerance scores adjusted to local species composition in each study area separately. Although a family-level-based multimetric approach was significantly related to the main environmental degradation gradient, assessments utilizing cryptic species-level data (MTUs) emerged as the being most precise indicator in both areas. Our study highlights the synergistic benefits of merging traditional biomonitoring with DNA-based methods for species identification for biomonitoring in tropical river ecosystems. To halt biodiversity decline and curb the extent of the escalating nature crisis, such integrated approaches will be highly valuable in understudied and biodiversity-rich aquatic ecosystems.
Collapse
Affiliation(s)
- Tor E Eriksen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Natural History Museum, University of Oslo, P O Box 1172 Blindern, 0318 Oslo, Norway.
| | - John E Brittain
- Natural History Museum, University of Oslo, P O Box 1172 Blindern, 0318 Oslo, Norway; Norwegian Water Resources & Energy Directorate (NVE), P O Box 5091 Majorstuen, 0301 Oslo, Norway.
| | - Leonard Sandin
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, 0855 Oslo, Norway.
| | - Nikolai Friberg
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Rasmussen JJ, Bundschuh M, Jensen TM, Wiberg-Larsen P, Baattrup-Pedersen A, Friberg N, Graeber D. Multiple stressor effects act primarily on microbial leaf decomposers in stream mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178065. [PMID: 39675294 DOI: 10.1016/j.scitotenv.2024.178065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
At the global level, stream ecosystems are influenced by multiple anthropogenic stressors such as eutrophication, habitat deterioration, and water scarcity. Multiple stressor effects on stream biodiversity are well documented, but multiple stressor effects on stream ecosystem processes have received only limited attention. We conducted one mesocosm (stream channel) and one microcosm (feeding trial) experiment to study how combinations of reduced flow, increased nutrient concentrations, and increased fine sediment coverage would influence fungal and macroinvertebrate decomposer assemblages and their active contribution to leaf decomposition. In the stream channels, increased fine sediment coverage significantly reduced fungal biomass, occurrence frequencies of most aquatic hyphomycete species, and microbial leaf decomposition rates compared to untreated controls. Macroinvertebrate-induced leaf decomposition rates were mainly correlated to total fungal biomass and community composition. Neither increased nutrient concentrations, nor reduced flow conditions significantly influenced leaf decomposer communities or decomposition rates. The feeding trials revealed significantly reduced leaf consumption in the freshwater amphipod Gammarus pulex when feeding on leaf material from treatments with increased fine sediment coverage in the mesocosm experiment. When offered a food choice between sterile, unconditioned leaf material and leaf material from treatments with increased fine sediment coverage, G. pulex foraged mainly on sterile material. This study showed that increased fine sediment coverage can alter the flux of energy and material in the detrital food chain through bottom-up regulation of leaf conditioning by fungal decomposers. Our results suggest that increasing attention should be given to mitigating fine sediment transport and deposition in stream systems to preserve ecosystem functioning within the detrital food chain.
Collapse
Affiliation(s)
- Jes Jessen Rasmussen
- Aarhus University, Dept. of Ecoscience, Ny Munkegade 114-116, 8000 Aarhus C, Denmark; Norwegian Institute for Water Research, NIVA Denmark, Njalsgade 76, 2300 Copenhagen S, Denmark.
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Tinna Mia Jensen
- Aarhus University, Dept. of Ecoscience, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| | - Peter Wiberg-Larsen
- Aarhus University, Dept. of Ecoscience, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| | | | - Nikolai Friberg
- Aarhus University, Dept. of Ecoscience, Ny Munkegade 114-116, 8000 Aarhus C, Denmark; Norwegian Institute for Water Research, NIVA, Økernveien 94, 0579 Oslo, Norway
| | - Daniel Graeber
- Aarhus University, Dept. of Ecoscience, Ny Munkegade 114-116, 8000 Aarhus C, Denmark; Helmholtz Centre for Environmental Research - UFZ, Brückstraße 3a, 39114 Magdeburg, Germany
| |
Collapse
|
18
|
Shahid N, Siddique A, Liess M. Synergistic interaction between a toxicant and food stress is further exacerbated by temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125109. [PMID: 39396725 DOI: 10.1016/j.envpol.2024.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Global biodiversity is declining at an unprecedented rate in response to multiple environmental stressors. Effective biodiversity management requires deeper understanding of the relevant mechanisms behind such ecological impacts. A key challenge is understanding synergistic interactions between multiple stressors and predicting their combined effects. Here we used Daphnia magna to investigate the interaction between a pyrethroid insecticide esfenvalerate and two non-chemical environmental stressors: elevated temperature and food limitation. We hypothesized that the stressors with different modes of action can act synergistically. Our findings showed additive effects of food limitation and elevated temperature (25 °C, null model effect addition (EA)) with model deviation ratio (MDR) ranging from 0.7 to 0.9. In contrast, we observed strong synergistic interactions between esfenvalerate and food limitation at 20 °C, considerably further amplified at 25 °C. Additionally, for all stress combinations, the synergism intensified over time indicating the latent effects of the pesticide. Consequently, multiple stress substantially reduced the lethal concentration of esfenvalerate by a factor of 19 for the LC50 (0.45-0.024 μg/L) and 130 for the LC10 (0.096-0.00074 μg/L). The stress addition model (SAM) predicted increasing synergistic interactions among stressors with increasing total stress.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Germany.
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Li Z, Xie H, Peng Z, Heino J, Ma Y, Xiong F, Gao W, Xin W, Kong C, Li L, Fang L, Wang H, Feng G, Wang B, Jin X, Chen Y. Hydrology and water quality drive multiple biological indicators in a dam-modified large river. WATER RESEARCH X 2024; 25:100251. [PMID: 39297053 PMCID: PMC11409044 DOI: 10.1016/j.wroa.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Freshwater biodiversity is increasingly threatened by dams and many other anthropogenic stressors, yet our understanding of the complex responses of different biotas and their multiple facets remains limited. Here, we present a multi-faceted and integrated-indices approach to assess the differential responses of freshwater biodiversity to multiple stressors in the Yangtze River, the third longest and most dam-densely river in the world. By combining individual biodiversity indices of phytoplankton, zooplankton, periphyton, macroinvertebrates, and fish with a novel integrated aquatic biodiversity index (IABI), we disentangled the effects of hydrology, water quality, land use, and natural factors on both α and β diversity facets in taxonomic, functional, and phylogenetic dimensions. Our results revealed that phytoplankton and fish species and functional richness increased longitudinally, while fish taxonomic and phylogenetic β diversity increased but phytoplankton and macroinvertebrate β diversity remained unchanged. Hydrology and water quality emerged as the key drivers of all individual biodiversity indices, followed by land use and natural factors, with fish and phytoplankton showed the strongest responses. Importantly, we found that natural, land use, and hydrological factors indirectly affected biodiversity by altering water quality, which in turn directly influenced taxonomic and phylogenetic IABIs. Our findings highlight the complex interplay of multiple stressors in shaping freshwater biodiversity and underscore the importance of considering both individual and integrated indices for effective conservation and management. We propose that our multi-faceted and integrated-indices approach can be applied to other large, dam-modified river basins globally.
Collapse
Affiliation(s)
- Zhongyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Xie
- China National Environmental Monitoring Centre, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhiqi Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, PO Box 8000, 90014 Oulu, Finland
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fangyuan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Lei Fang
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Haihua Wang
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi Province, Nanchang, Jiangxi 330039, China
| | - Guangpeng Feng
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi Province, Nanchang, Jiangxi 330039, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, Jiangsu 223300, China
| |
Collapse
|
20
|
Zachora-Buławska A, Kędzior R, Operacz A. Spent geothermal water discharge to rivers: Risk or environmental benefit? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176527. [PMID: 39332728 DOI: 10.1016/j.scitotenv.2024.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Geothermal waters utilization is generally considered an environmentally friendly compared to non-renewable sources. However, the discharge of spent geothermal waters, legally classified as wastewater, poses potential environmental burdens. This study aimed to determine the extent to which treated spent geothermal waters impact the quality of the river into which they are discharged. Analyses were conducted on the effluent prior to its mixing with the receiver, and on the receiving waters both downstream and upstream of the effluent outflow. Additionally, aquatic macroinvertebrates were sampled at the outflow, 100 m downstream, and 150 m upstream. The results revealed no statistically significant differences in most analysed parameters (temperature, pH, chlorine, nitrites, phosphorus, and BOD) between the reference section and the section below the outflow. A total of 4519 aquatic macroinvertebrates were collected during the field survey. Multi-metric multidimensional scaling indicated significant differences in assemblages between the sections just upstream of the outflow and those above and below, which showed no variation in taxonomic composition. The lowest values of diversity and biotic indices occurred in the site where the effluent was discharged closest to the bank (1 m) and in the transect 3 m from the bank. In contrast, the transect furthest from the bank (5 m) exhibited parameters comparable to the reference section. No significant differences were observed for most parameters between the sections 100 m below and 150 m above. The findings suggest that the discharge of treated effluent into the river has a localized impact confined to the immediate vicinity of the outflow and does not extend over a broader gradient. The results highlight that with sufficient wastewater treatment and a hydromorphologically diverse receiving body, the negative impacts of geothermal discharge on river biodiversity are mitigated. This study provides a novel examination of a relatively under-applied approach.
Collapse
Affiliation(s)
- Agnieszka Zachora-Buławska
- Department of Sanitary Engineering and Water Management, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland; Chochołowskie Termy Sp. z o.o., Chochołow 400, 34-513 Chochołow, Poland.
| | - Renata Kędzior
- Department of Ecology, Climatology and Air Protection, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland
| | - Agnieszka Operacz
- Department of Sanitary Engineering and Water Management, University of Agriculture in Kraków, Mickiewicza Av. 21, 31-120 Krakow, Poland
| |
Collapse
|
21
|
Wang J, Bao S, Heino J, Liu Z, Xie P, Zhong X, Zhou Q. Interactive effects of aridity and local environmental factors on the functional trait composition and diversity of macroinvertebrate assemblages in dryland rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176671. [PMID: 39362532 DOI: 10.1016/j.scitotenv.2024.176671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Drought and local habitat alteration are major environmental stressors shaping the aquatic biota in dryland rivers. However, the combined effects of these factors on aquatic biodiversity remain poorly understood. We collected macroinvertebrate data from Central Asian dryland rivers in Xinjiang, China, from 2012 to 2022, to investigate the individual and interactive effects of drought (as indicated by increasing values of Aridity, AI) and local habitat conditions (fine sediments, velocity and pH) on aquatic macroinvertebrate functional trait composition and diversity. We found that interactions of the selected environmental stressors exhibited more frequent additive than synergistic or antagonistic effects, leading to shifts in macroinvertebrate functional trait composition and diversity accordingly. Interaction of AI and fine sediments showed more pronounced synergistic effects (positive or negative) compared to others and had positive influences on traits like small body size, ovoviviparity, etc. Functional diversity metrics responded differently to stressor interactions, with FRic and FDis being negatively affected, whereas FEve was positively correlated to stressor interaction, suggesting the complementary roles of functional diversity metrics to diagnose impacts of stressor interactions. Overall, our study provides new insights into macroinvertebrate assemblage-stressor relationships in dryland rivers and can help better assess, predict and manage aquatic biodiversity in these rivers under ongoing environmental change.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Simin Bao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Zhenyuan Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Peng Xie
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuefei Zhong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Cuthbert RN, Dalu T, Callaghan A, Dolan EJ, Johnston B. Dyeing waters: Does indiscriminate dye use threaten aquatic ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176107. [PMID: 39255935 DOI: 10.1016/j.scitotenv.2024.176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Aquatic ecosystem conservation is imperative to reaching global biodiversity and sustainability targets. However, the ecological status of waters has been continuously eroded through mismanagement in the face of existing and emerging anthropogenic stressors, such as pollutants. There has been an emerging trend towards the use of dyes to manage algae and plants as well as to alter aesthetics within various aquatic environments. This artificial colouring has potential ecological implications through reductions in light levels and disruptions to thermoclines (i.e., temperature regime changes with depth). Abiotic regime shifts could in turn drive ecological cascades by depowering primary production, hampering top-down trophic interactions, and affecting evolved animal behaviours. Despite commercial dyes being marketed as acutely non-toxic, very little is known about the chronic effects of these dyes across ecological scales and contexts. We thus call for greater research efforts to understand the ecological consequences of dye usage in aquatic environments, as well as the socio-cultural drivers for its application. This emerging research area could harness approaches such as biological assays, community module experiments, remote sensing, culturomics, and social surveys to elucidate dye effects, trends, and perspectives under a pollution framework. A greater understanding of the potential effects of dye in aquatic ecosystems under relevant contexts would help to inform management decisions and regulation options, while helping to mediate ecocentric and anthropocentric perspectives.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Amanda Callaghan
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6EX, United Kingdom
| | - Ellen J Dolan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Barry Johnston
- School of Engineering, Wrexham University, Mold Road, Plas Coch, Wrexham LL11 2AW, Wales, United Kingdom
| |
Collapse
|
23
|
Vila Duplá M, Villar-Argaiz M, Medina-Sánchez JM, González-Olalla JM, Carrillo P. Constant and fluctuating high temperatures interact with Saharan dust leading to contrasting effects on aquatic microbes over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175777. [PMID: 39182767 DOI: 10.1016/j.scitotenv.2024.175777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Mediterranean lakes are facing heightened exposure to multiple stressors, such as intensified Saharan dust deposition, temperature increases and fluctuations linked to heatwaves. However, the combined impact of dust and water temperature on the microbial community in freshwater ecosystems remains underexplored. To assess the interactive effect of dust deposition and temperature on aquatic microbes (heterotrophic bacteria and phytoplankton), a combination of field mesocosm experiments covering a dust gradient (five levels, 0-320 mg L-1), and paired laboratory microcosms with increased temperature at two levels (constant and fluctuating high temperature) were conducted in a high mountain lake in the Spanish Sierra Nevada, at three points in time throughout the ice-free period. Heterotrophic bacterial production (HBP) increased with dust load regardless of the temperature regime. However, temperature regime affected the magnitude and nature of the interactive Dust×T effect on HBP. Specifically, constant and fluctuating high temperature showed opposing interactive effects in the short term that became additive over time. The relationships between HBP and predictor variables (soluble reactive phosphorus (SRP), excreted organic carbon (EOC), and heterotrophic bacterial abundance (HBA)), coupled with an evaluation of the mechanistic variable photosynthetic carbon use efficiency by bacteria (%CUEb), revealed that bacteria depended on primary production in nearly all treatments when dust was added. The %CUEb increased with dust load in the control temperature treatment, but it was highest at intermediate dust loads under both constant and fluctuating high temperatures. Overall, our results suggest that while dust addition alone strengthens algae-bacteria coupling, high temperatures lead to decoupling in the long term at intermediate dust loads, potentially impacting ecosystem function.
Collapse
Affiliation(s)
- María Vila Duplá
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain.
| | - Manuel Villar-Argaiz
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | - Juan Manuel Medina-Sánchez
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | | | - Presentación Carrillo
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain
| |
Collapse
|
24
|
Bieroza MZ, Hallberg L, Livsey J, Wynants M. Climate change accelerates water and biogeochemical cycles in temperate agricultural catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175365. [PMID: 39117230 DOI: 10.1016/j.scitotenv.2024.175365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Climate change is expected to significantly deteriorate water quality in heavily managed agricultural landscapes, however, the exact mechanisms of these impacts are unknown. In this study we adopted a modelling approach to predict the multiple effects of climate change on hydrological and biogeochemical responses for dominant solutes and particulates in two agriculture-dominated temperate headwater catchments. We used climatic projections from three climatic models to simulate future flows, mobilisation and delivery of solutes and particulates. This allowed an examination of potential drivers by identifying changes in flow pathway distribution and key environmental variables. We found that future climate conditions will lead to a general increase in stream discharge as well as higher concentrations and loads of solutes and particulates. However, unlike previous studies, we observed a higher magnitude of change during the warmer part of the year. These changes will reduce the relative importance of winter flows on solute and particulate transport, leading to both higher and more evenly distributed concentrations and loads between seasons. We linked these changes to the higher importance of superficial flow pathways of tile and surface runoff driven by more rapid transition from extremely wet to dry conditions. Overall, the observed increase in solute and particulate mobilisation and delivery will lead to widespread water quality deterioration. Mitigation of this deterioration would require adequate management efforts to address the direct and indirect negative effects on stream biota and water scarcity.
Collapse
Affiliation(s)
- M Z Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden.
| | - L Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - J Livsey
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - M Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden; Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
25
|
Amador P, Soria J, Moratalla-López J, Rico A. Looking beyond the surface: Understanding the role of multiple stressors on the eutrophication status of the Albufera Lake (Valencia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177247. [PMID: 39481562 DOI: 10.1016/j.scitotenv.2024.177247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Aquatic ecosystems face significant impacts from human-related stressors, demanding a deep understanding of their dynamics and interactions for effective management and restoration. The Albufera Lake (Valencia, Spain) presents a complex scenario of multiple interacting stressors affecting its eutrophic status. In this study, we compiled a 50-year dataset and used Generalized Additive Models (GAMs) to analyse the dynamics of the main stressors affecting the ecological status of the Albufera Lake. Then, we assessed their individual and combined effects on eutrophication using chlorophyll-a concentration as a proxy and provided recommendations to enhance water quality. Overall, we found a decrease in annual water inflow and a clear effect of rice cultivation on the seasonal patterns of the Lake's residence time. Our analysis also shows an increase of average water temperature of 2 °C for the last 50 years, and an increase in the frequency and severity of heat waves. In contrast, we found a slightly negative long-term trend in conductivity, despite the occurrence of seasonal peaks in summer. Regarding nutrients, we identified a clear reduction of total phosphorus (from 1.08 mg/L in 1987 to 0.20 mg/L in 2022), while nitrate concentrations have been rather stable. Our results also point at an increase of toxic pressure exerted by organic and inorganic contaminants during the last years, with seasonal toxicity peaks occurring during rice field drainage periods. The main stressors affecting the chlorophyll-a levels were found to be temperature, water scarcity, and nitrate concentration as well as the interactions between temperature and conductivity, conductivity and nitrate, conductivity and water scarcity, and nitrate and total phosphorus. We found that stressor interactions are highly dynamic and result in synergistic and antagonistic effects that vary according to different stressor levels. Finally, our GAM framework points to two potential scenarios: increasing freshwater inflows or deregulating hydrology to allow seawater exchange, which are key for improving the ecological status of the Albufera Lake in the short-term.
Collapse
Affiliation(s)
- Pablo Amador
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Juan Soria
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Jesús Moratalla-López
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
26
|
Free G, Poikane S, Solheim AL, Bussettini M, Bradley C, Smith J, Caroni R, Bresciani M, Pinardi M, Giardino C, van de Bund W. Climate change and ecological assessment in Europe under the WFD - Hitting moving targets with shifting baselines? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122884. [PMID: 39405853 DOI: 10.1016/j.jenvman.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
The Water Framework Directive (WFD) sets the fundamental structure for assessing the status of water bodies in the European Union. Its implementation is currently entering its fourth six-year cycle assisted by a total of 38 guidance documents. The principal objective is to ensure good status for surface and ground waters. The functioning of the WFD is based on detecting the impact of human pressures on biological, physico-chemical, or hydromorphological parameters, and reducing these causal pressures through a program of measures to achieve good status. Climate change can exert a significant influence on ecological status by directly altering parameters monitored, pressure interactions, or influencing the effectiveness of programs of measures. Aquatic systems respond holistically to climate change with different pressures having additive, synergistic, or antagonistic interactions. The challenge is how to adapt the framework to manage aquatic systems in the context of climate change while maintaining focus on implementing measures to tackle key pressures. This paper examines potential approaches, including reassignment of waterbody type, quantifying the portion of Ecological Quality Ratio (EQR) driven by climate change, and creating an assessment module of climatic pressures and ecological responses. The overall purpose is to stimulate discussion and explore ways to incorporate climate change into the WFD structure.
Collapse
Affiliation(s)
- Gary Free
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra (VA), Italy.
| | - Sandra Poikane
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra (VA), Italy
| | | | - Martina Bussettini
- Italian National Institute for Environmental Protection and Research, Rome, Italy
| | | | - Jean Smith
- Environmental Protection Agency, Dublin, Ireland
| | - Rossana Caroni
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan 20133, Italy
| | - Mariano Bresciani
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan 20133, Italy
| | - Monica Pinardi
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan 20133, Italy
| | - Claudia Giardino
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Milan 20133, Italy
| | - Wouter van de Bund
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra (VA), Italy
| |
Collapse
|
27
|
Polazzo F, Limberger R, Pennekamp F, Ross SRP, Simpson GL, Petchey OL. Measuring the Response Diversity of Ecological Communities Experiencing Multifarious Environmental Change. GLOBAL CHANGE BIOLOGY 2024; 30:e17594. [PMID: 39569752 PMCID: PMC11580112 DOI: 10.1111/gcb.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The diversity in organismal responses to environmental changes (i.e., response diversity) plays a crucial role in shaping community and ecosystem stability. However, existing measures of response diversity only consider a single environmental variable, whereas natural communities are commonly exposed to changes in multiple environmental variables simultaneously. Thus far, no approach exists to integrate multifarious environmental change and the measurement of response diversity. Here, we show how to consider and quantify response diversity in the context of multifarious environmental change, and in doing so introduce a distinction between response diversity to a defined or anticipated environmental change, and the response capacity to any possible set of (defined or undefined) future environmental changes. First, we describe and illustrate the concepts with empirical data. We reveal the role of the trajectory of environmental change in shaping response diversity when multiple environmental variables fluctuate over time. We show that, when the trajectory of the environmental change is undefined (i.e., there is no information or a priori expectation about how an environmental condition will change in future), we can quantify the response capacity of a community to any possible environmental change scenario. That is, we can estimate the capacity of a system to respond under a range of realistic or extreme environmental changes, with utility for predicting future responses to even multifarious environmental change. Finally, we investigate determinants of response diversity within a multifarious environmental change context. We identify factors such as the diversity of species responses to each environmental variable, the relative influence of different environmental variables and temporal means of environmental variable values as important determinants of response diversity. In doing so, we take an important step towards measuring and understanding the insurance capacity of ecological communities exposed to multifarious environmental change.
Collapse
Affiliation(s)
- Francesco Polazzo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Romana Limberger
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Samuel R. P.‐J. Ross
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawaJapan
| | - Gavin L. Simpson
- Department of Animal and Veterinary ScienceAarhus UniversityAarhusDenmark
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Theoretical Sciences Visiting ProgramOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawaJapan
| |
Collapse
|
28
|
Withers PJA, Rothwell SA, Ross KJ. Managing phosphorus input pressures for improving water quality at the catchment scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122792. [PMID: 39388820 DOI: 10.1016/j.jenvman.2024.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) pollution of freshwater is an endemic threat to water quality and aquatic biodiversity. To better define the contributions of the two main food system sectors (agriculture and wastewater) responsible for freshwater P pollution, we investigated how the magnitude and distribution of sector P input pressures calculated using Substance Flow Analysis (SFA) linked to the P pollution threat across four distinct physiographic regions of the River Stour catchment (1260 km2) in Dorset, England. Agricultural P input pressures (-1 to 7 kg ha-1 yr-1) were dependent on the amount of livestock feed imports and resulting manure loadings to land, whilst food imports and population densities were the main driver of the human net P inputs of up to 13 kg ha-1 yr-1. Total P input pressures (i.e. Net Anthropogenic P Inputs (NAPI)) were positively correlated (r2 0.8-0.9) to riverine P flux of up to 6 kg ha-1 yr-1 across the catchment. Using measured river P concentration (C) and flow discharge (Q) analysis to distinguish monitoring stations capturing mainly diffuse P sources (termed diffuse stations), estimated riverine P fluxes attributable to agriculture varied up to 0.92 kg ha-1 yr-1 depending on the surplus P inputs applied to land. A combination of enhanced wastewater P removal and reduced surplus agricultural P inputs was required to improve water quality. For example, the P pressure-river P flux relationship at diffuse stations suggested that in the catchment area dominated by livestock production, removing the agricultural P surplus of 7 kg ha-1 yr-1 would reduce annual average river SRP concentrations in this area by a third to 0.23 mg L-1, but still well above the target concentration for eutrophication control (0.08 mg L-1). Our approach of linking SFA outputs to measured river P data provides a potential complimentary and internationally relevant methodology to evidence effective sector mitigation targets and policies in catchments, and its further testing in other catchments is recommended.
Collapse
Affiliation(s)
- P J A Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - S A Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - K J Ross
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
29
|
Wild R, Nagel C, Geist J. Multiple climate change stressors reduce the emergence success of gravel-spawning fish species and alter temporal emergence patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175054. [PMID: 39097014 DOI: 10.1016/j.scitotenv.2024.175054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Climate change, with its profound effects on stream sediment, hydrological, and temperature dynamics, will exacerbate impacts on habitat conditions for many species, particularly those with vulnerable early life stages relying on the hyporheic zone, such as gravel-spawning fishes. Due to the complex and interactive nature of multiple stressor effects, we employed large-scale outdoor mesocosms to systemically test how the reproductive success of three gravel-spawning fish species brown trout (Salmo trutta), nase, (Chrondrostoma nasus) and Danube salmon (Hucho hucho) was affected by individual and combined effects of warming (+3-4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction). Fine sediment had the most detrimental effect on emergence rate and fry length in all three species, reducing the emergence rate to zero in brown trout, 9 % in nase, and 4 % in Danube salmon. The emergence mortality caused by fine sediment surpassed that of hatching distinctly, suggesting that negative effects due to hypoxia were considerably exacerbated by entombment. Warming had only minor effects as a single stressor, but low flow reduced emergence rates of the spring spawning species nase and Danube salmon by 8 and 50 %, respectively. In combined treatments including fine sediment, however, the emergence success of all three species responded strongly negatively, even in the cyprinid species nase, which showed little interactive effects between stressors regarding hatching success. Warming and fine sediment also led to the earlier emergence of fry, implying a risk of asynchrony with available food resources. This study dramatically shows that climate change can have deleterious impacts on the reproductive success of gravel-spawning fish species, irrespective of taxonomic or ecological traits.
Collapse
Affiliation(s)
- Romy Wild
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Christoffer Nagel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany.
| |
Collapse
|
30
|
Kutyła S, Kolada A, Ławniczak-Malińska A. Hydromorphological pressure explains the status of macrophytes and phytoplankton less effectively than eutrophication but contributes to water quality deterioration. WATER RESEARCH 2024; 268:122669. [PMID: 39509767 DOI: 10.1016/j.watres.2024.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Hydromorphological alterations are among the human-induced pressures that must be considered when assessing the ecological status of aquatic ecosystems. We investigated the effects of hydromorphological pressures on the ecological status of lowland lakes in Poland, focusing particularly on macrophyte and phytoplankton conditions. The analysis was based on biological, hydromorphological, and physicochemical data collected from 30 lowland lakes. Almost all biological and physicochemical indices correlated significantly (Spearman's |R|>0.5) with the hydromorphological index LHMS_PL. Using the variation partitioning method, we found that hydromorphological pressures explained only a small proportion (5.5 %) of the variability in ecological status assessed using macrophytes. These pressures had no direct effects on the ecological status assessed using phytoplankton. The shared effects of physicochemistry and hydromorphology explained a large proportion of the variability in ecological status indices based on both phytoplankton and macrophytes. The results demonstrated that in the analysed lakes, hydromorphological alterations were usually accompanied by increased nutrient concentrations. This finding indicates that physical alterations may affect lake biological assemblages not only directly but also indirectly by reducing the ecosystem's natural buffering capacity, thereby promoting the eutrophication process.
Collapse
Affiliation(s)
- Sebastian Kutyła
- Department of Freshwater Protection, Institute of Environmental Protection - National Research Institute, Słowicza 32, 02‑170 Warsaw, Poland.
| | - Agnieszka Kolada
- Department of Freshwater Protection, Institute of Environmental Protection - National Research Institute, Słowicza 32, 02‑170 Warsaw, Poland
| | - Agnieszka Ławniczak-Malińska
- Department of Ecology and Environmental Protection, Poznań University of Life Sciences, Piątkowska 94C, 60-649 Poznań, Poland
| |
Collapse
|
31
|
Pharaoh E, Diamond M, Jarvie HP, Ormerod SJ, Rutt G, Vaughan IP. Potential drivers of changing ecological conditions in English and Welsh rivers since 1990. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174369. [PMID: 38955282 DOI: 10.1016/j.scitotenv.2024.174369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
River invertebrate communities across Europe have been changing in response to variations in water quality over recent decades, but the underlying drivers are difficult to identify because of the complex stressors and environmental heterogeneity involved. Here, using data from ∼4000 locations across England and Wales, collected over 29 years, we use three approaches to help resolve the drivers of spatiotemporal variation in the face of this complexity: i) mapping changes in invertebrate richness and community composition; ii) structural equation modelling (SEM) to distinguish land cover, water quality and climatic influences; and iii) geographically weighted regression (GWR) to identify how the apparent relationships between invertebrate communities and abiotic variables change across the area. Mapping confirmed widespread increases in richness and the proportion of pollution-sensitive taxa across much of England and Wales. It also revealed regions where pollution-sensitive taxa or overall richness declined, the former primarily in the uplands. SEMs confirmed strong increases in average biochemical oxygen demand and nutrient concentrations related to urban and agricultural land cover, but only a minority of land cover's effect upon invertebrate communities was explained by average water chemistry, highlighting potential factors such as episodic extremes or emerging contaminants. GWR identified strong geographical variation in estimated relationships between macroinvertebrate communities and environmental variables, with evidence that the estimated negative impacts of nutrients and water temperature were increasing through time. Overall the results are consistent with widespread biological recovery of Britain's rivers from past gross organic pollution, whilst highlighting declines in some of the most diverse and least impacted streams. Modelling points to a complex and changing set of drivers, highlighting the multifaceted impacts of catchment land cover and the evolving role of different stressors, with the relationship to gross organic pollution weakening, whilst estimated nutrient and warming effects strengthened.
Collapse
Affiliation(s)
- Emma Pharaoh
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Mark Diamond
- Environment Agency, PO Box 12, Warrington WA4 1HG, UK
| | - Helen P Jarvie
- Water Institute and Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Steve J Ormerod
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Graham Rutt
- Natural Resources Wales, Southwest Area Environmental Assessment & Advice Team, Swansea University, Singleton Campus, Swansea SA2 8PP, UK
| | - Ian P Vaughan
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
32
|
Becker E, Vonk JA, van Kouwen LAH, Verdonschot PFM, Kraak MHS. Species specific responses to stressors hamper Trichoptera recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173992. [PMID: 38901595 DOI: 10.1016/j.scitotenv.2024.173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Worldwide, aquatic biodiversity is severely threatened as a result of anthropogenic pressures such as pollution, habitat destruction and climate change. Widescale legislation resulted in reduced nutrient- and pesticide loads, and restoration measures allowed modest recovery of freshwater biodiversity. However, from 2010 onwards, recovery in the otherwise unrestored aquatic habitats stagnated. The aim of the present study was therefore to reveal long-term trends in aquatic biodiversity in an anthropogenic landscape and to explain the observed patterns. To this end, over 40 years of biomonitoring data of the indicative taxa group Trichoptera (caddisflies), with an exceptionally high spatial and temporal resolution, was employed. Periods of recovery, stagnation, and decline were delineated using linear and non-linear modelling approaches. Subsequently, species were grouped based on abundance patterns over time and this grouping was used to ascertain species-specific responses to anthropogenic stressors using a trait-based approach. Richness and abundance of all Trichoptera jointly, as well as of the five most abundant and the remaining 136 species, significantly increased from 1980 to significant breakpoints from 2010 onwards, after which these metrics, except the abundances of the 5 most abundant, declined significantly. Trend-based species groupings were not significantly explained by biological traits or ecological preferences. However, Trichoptera species increasing in abundance were less sensitive to climate change and poor water quality, or concerned sensitive species which benefited from restoration measures. Species with stable or declining abundances showed higher sensitivity to climate change. The Trichoptera declining in abundance indicated that conditions in non-protected or restored habitats did not improve due to climate change on top of the other anthropogenic pressures. These observations reinforce the need for increased efforts to improve the only moderately restored water- and habitat quality in anthropogenic landscapes to halt further aquatic ecosystem degradation and to turn biodiversity losses again into recoveries.
Collapse
Affiliation(s)
- Elmar Becker
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands.
| | - J Arie Vonk
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Leon A H van Kouwen
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands; HAS green academy, 's-Hertogenbosch 5223 DE, the Netherlands
| | - Piet F M Verdonschot
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, 6700 AA Wageningen, the Netherlands
| | - Michiel H S Kraak
- Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
33
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
34
|
David GM, Pimentel IM, Rehsen PM, Vermiert AM, Leese F, Gessner MO. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173669. [PMID: 38839005 DOI: 10.1016/j.scitotenv.2024.173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm-1 above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s-1). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.
Collapse
Affiliation(s)
- Gwendoline M David
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.
| | - Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp M Rehsen
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Anna-Maria Vermiert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| |
Collapse
|
35
|
Eterovick PC, Schmidt R, Sabino-Pinto J, Yang C, Künzel S, Ruthsatz K. The microbiome at the interface between environmental stress and animal health: an example from the most threatened vertebrate group. Proc Biol Sci 2024; 291:20240917. [PMID: 39291456 PMCID: PMC11409201 DOI: 10.1098/rspb.2024.0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate pollution and global warming are ubiquitous stressors likely to interact and affect the health and survival of wildlife, particularly aquatic ectotherms. Animal health is largely influenced by its microbiome (commensal/symbiotic microorganisms), which responds to such stressors. We used a crossed experimental design including three nitrate levels and five temperature regimes to investigate their interactive and individual effects on an aquatic ectotherm, the European common frog. We associated health biomarkers in larvae with changes in gut bacteria diversity and composition. Larvae experienced higher stress levels and lower body condition under high temperatures and nitrate exposure. Developmental rate increased with temperature but decreased with nitrate pollution. Alterations in bacteria composition but not diversity are likely to correlate with the observed outcomes in larvae health. Leucine degradation decreased at higher temperatures corroborating accelerated development, nitrate degradation increased with nitrate level corroborating reduced body condition and an increase in lysine biosynthesis may have helped larvae deal with the combined effects of both stressors. These results reinforce the importance of associating traditional health biomarkers with underlying microbiome changes. Therefore, we urge studies to investigate the effects of environmental stressors on microbiome composition and consequences for host health in a world threatened by biodiversity loss.
Collapse
Affiliation(s)
- Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Joana Sabino-Pinto
- GELIFES—Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Chen Yang
- Department of Biostatistics, Southern Medical University, 510515, Guangzhou, People’s Republic of China
| | - Sven Künzel
- Max-Planck-Institut für Evolutionsbiologie, 24306, Plön, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| |
Collapse
|
36
|
Kowalczewska-Madura K, Kozak A, Budzyńska A, Dondajewska-Pielka R, Osuch E, Podsiadłowski S, Gołdyn R. Effects of continuous nitrate treatment of hypolimnion in a small, hypereutrophic lake. CHEMOSPHERE 2024; 363:142815. [PMID: 38986786 DOI: 10.1016/j.chemosphere.2024.142815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Continuous nitrate treatment is an innovative, nature-based and cost-effective restoration method that has been implemented in a small, hypereutrophic lake by redirecting the nitrate-rich waters of the lake's natural tributaries into its hypolimnion. The aim of this treatment is to increase the redox potential at the sediment-water interface in order to provide conditions for efficient phosphorus binding. To assess the effects of this treatment, studies of the physico-chemical and biological parameters of the lake waters were carried out before its application (PreNT - years 2005-2007), during its application (FullNT - 2008-July 2019), and in the period when installation was partly clogged (LimNT- August 2019-2021). The results show effective improvement of oxygenation of the hypolimnion during the treatment followed by a decrease of phosphorus concentration - a proxy of the reduced internal loading. Water quality gradually improved during the treatment. The periods of cyanobacterial blooms shortened in some years, and ceased in other years, and it was also manifested by the increase in the range of Secchi depth and a decrease in chlorophyll-a concentration. The share of eukaryotic algae in the phytoplankton increased. The method showed high resistance to disturbances in its functioning, because during two years of operation of one pipeline, only a slight deterioration of water quality was observed. This enables effective repair of the hypolimnion's supply of nitrates, without a sudden return to the pre-restoration state. Finally, the benefits and limitations of hypolimnetic nitrate treatment (with nitrate from natural sources) were discussed to facilitate the application of this method to other lakes.
Collapse
Affiliation(s)
- Katarzyna Kowalczewska-Madura
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Anna Kozak
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Agnieszka Budzyńska
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Renata Dondajewska-Pielka
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa Osuch
- Department of Biosystem Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | - Stanisław Podsiadłowski
- Department of Biosystem Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | - Ryszard Gołdyn
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
37
|
Alvarez MF, Villar-Argaiz M, Vela Soria F, Fernández Zambrano A, Medina-Sánchez JM, Carrillo P. Thresholds and interactive effects of BPA-gradient and temperature on life history traits of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124186. [PMID: 38772512 DOI: 10.1016/j.envpol.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Bisphenol A (BPA), a synthetic organic compound widely used in the production of plastics, is recognized as an emerging contaminant because of its toxicity and the potential risks associated with bioaccumulation in organisms. Despite potential environmental hazards, there is a lack of studies examining BPA toxicity mechanisms and its potential impact on various trophic levels, with even fewer exploring whether global stressors such as temperature can affect the toxicity of BPA in organisms. Our aim was to assess the combined impact of BPA and varying temperature regimes on life-history traits in Daphnia magna. Our results revealed a significant impact of BPA on the growth, reproduction, and accumulated moulting of D. magna, with adverse effects primarily associated with the assimilation of BPA in algae rather than the BPA present in the medium, pointing to a trophic transfer mechanism. The interactive effect between BPA and temperature demonstrated a slight stimulatory effect of low BPA level on D. magna growth rate under warming constant conditions, but an inhibitory under warming fluctuating temperatures. Additionally, a BPA threshold was identified, below which growth became temperature-dependent. This study emphasizes the crucial role of considering temperature in predicting how toxins may affect Daphnia within aquatic food webs.
Collapse
Affiliation(s)
- M Fernanda Alvarez
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Instituto de Limnología "Dr. Raúl A. Ringuelet". CCT-CONICET-La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - Manuel Villar-Argaiz
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Fernando Vela Soria
- Instituto de Investigación Biosanitaria (IBS.GRANADA), E-18016, Granada, Spain; Clinical Laboratory Management Unit, Hospital Universitario Clínico San Cecilio, E-18016, Granada, Spain
| | | | - J Manuel Medina-Sánchez
- Instituto del Agua, Universidad de Granada, 18071, Granada, Spain; Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | |
Collapse
|
38
|
Markert N, Guhl B, Feld CK. Linking wastewater treatment plant effluents to water quality and hydrology: Effects of multiple stressors on fish communities. WATER RESEARCH 2024; 260:121914. [PMID: 38880012 DOI: 10.1016/j.watres.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are essential for maintaining a good water quality of surface waters. However, WWTPs are also associated with water quality deterioration and hydro-morphological alteration. Riverine communities respond to these stressors with changes in their community structure, abundance and diversity. In this study, we used a dataset of 94 monitoring sites across North Rhine-Westphalia, Germany to investigate the influence of WWTPs on the water quality and hydro-morphological quality in river sections downstream of WWTP effluents. More specifically, we analyzed the effects of the percentage of WWTP effluents (in relation to median base flow) on four stressor groups (physico-chemistry, micropollutants, hydrological and morphological alteration) using Linear Mixed Models (LMM). Furthermore, we assessed the impact of a selection of twelve ecologically relevant stressor variables reflecting water quality deterioration and hydro-morphological alteration on reference fish communities using Canonical Correspondence Analysis (CCA). The percentage of WWTP effluents was correlated with water quality, especially with toxic units of a wide range of pharmaceuticals including diclofenac, venlafaxine and sulfamethoxazole (R² up to 0.54) as well as specific pesticides (e.g., terbutryn: R² = 0.33). The correlation of percent WWTP effluents with hydro-morphological alteration was weaker and most pronounced for the frequency of high flow (R² = 0.24) and flow variability (R² = 0.19). About 40 % of the variance in the fish community structure were explained by 12 stressor variables in the CCA models. Water quality and hydrological, but not morphological stressors showed strong albeit highly variable effects on individual fish species. The results indicate that water quality degradation and hydrological alteration are important factors determining the ecological status of fish communities. In this context, WWTP effluents can impose relevant point sources of pollution that affect water quality but also cause alterations of the hydrological regime. Further management measures addressing both stressor groups are needed to improve the ecological status.
Collapse
Affiliation(s)
- Nele Markert
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany.
| | - Barbara Guhl
- North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany
| | - Christian K Feld
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| |
Collapse
|
39
|
Luo Y, Jin X, Zhao J, Xie H, Guo X, Huang D, Giesy JP, Xu J. Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: A multi-substance risk analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134519. [PMID: 38733790 DOI: 10.1016/j.jhazmat.2024.134519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.
Collapse
Affiliation(s)
- Ying Luo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Jianglu Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huiyu Xie
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinying Guo
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Daizhong Huang
- Dongting Lake Eco-Environment Monitoring Centre of Hunan Province, 414000 Yueyang, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
40
|
Berón MC, Montalto L, Aquino D, Quintana R, Mayora G, Flores M, Labas M, Mesa L. Unravelling the influence of cattle stocking rate on the macroinvertebrate community of freshwater wetlands subjected to hydrological modifications in three hydroclimatic periods. ENVIRONMENTAL RESEARCH 2024; 251:118557. [PMID: 38428564 DOI: 10.1016/j.envres.2024.118557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
The Paraná River Delta in South America, a large wetlands macromosaic, faces threats from climate change, human activities like livestock intensification, and hydrological modifications driven by the construction of water management infrastructure to prevent flooding in productive lands. Macroinvertebrates, essential for wetland health, are affected by cattle-induced changes in water quality, nutrient enrichment, and trampling, posing challenges to the ecosystem's ecological balance and long-term survival of these organisms. In this study, we analyzed the impact of two categories of cattle stocking rates (low and high) on the taxonomic and functional structure of the aquatic macroinvertebrate community in freshwater marshes. In addition, we compare the influence of cattle stocking rate on macroinvertebrates in natural and modified freshwater marshes, and, finally, the effect of cattle stocking rate in three contrasting hydrometeorological periods: a drier, a humid, and an extreme drought period. Samplings were conducted in 16 freshwater habitats of the Lower Paraná River Delta, examining variables such as temperature, pH, dissolved oxygen, coliforms, and nutrient concentrations. Macroinvertebrates were collected and functional and taxonomic metrics were estimated. Statistical analyses, including ANOVA and Kruskal-Wallis tests, were conducted to evaluate the effects of cattle stocking rates, hydrological modifications, and hydrometeorological periods on macroinvertebrate metrics and environmental variables. RDA, PERMANOVA, and SIMPER analyses explored the relationships between assemblage composition and environmental factors. High stocking rate altered the community structure, modifying its composition and decreasing the density, taxonomic and functional richness. Moreover, hydrological alterations exacerbated these negative impacts of cattle overstocking in macroinvertebrates. Under severe drought conditions, only tolerant species can survive cattle overstocking conditions. Our findings provide relevant insight into the ecological risks associated with cattle overstocking in natural and modified freshwater marshes and underscore the need to control cattle stocking rates in extreme drought to avoid loss of ecological functions.
Collapse
Affiliation(s)
- María Cecilia Berón
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | - Luciana Montalto
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Diego Aquino
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Argentina
| | - Rubén Quintana
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Argentina
| | - Gisela Mayora
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Marina Flores
- Instituto de Desarrollo Tecnológico para la Industria Química (UNL-CONICET), 3000 Santa Fe, Argentina
| | - Marisol Labas
- Instituto de Desarrollo Tecnológico para la Industria Química (UNL-CONICET), 3000 Santa Fe, Argentina; Facultad de Ingeniería y Ciencias Hídricas (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Leticia Mesa
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| |
Collapse
|
41
|
Nguyen HH, Peters K, Kiesel J, Welti EAR, Gillmann SM, Lorenz AW, Jähnig SC, Haase P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172659. [PMID: 38657809 DOI: 10.1016/j.scitotenv.2024.172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
Collapse
Affiliation(s)
- Hanh H Nguyen
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany.
| | - Kristin Peters
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Jens Kiesel
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Svenja M Gillmann
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
42
|
Welti EAR, Bowler DE, Sinclair JS, Altermatt F, Álvarez-Cabria M, Amatulli G, Angeler DG, Archambaud G, Arrate Jorrín I, Aspin T, Azpiroz I, Baker NJ, Bañares I, Barquín Ortiz J, Bodin CL, Bonacina L, Bonada N, Bottarin R, Cañedo-Argüelles M, Csabai Z, Datry T, de Eyto E, Dohet A, Domisch S, Dörflinger G, Drohan E, Eikland KA, England J, Eriksen TE, Evtimova V, Feio MJ, Ferréol M, Floury M, Forcellini M, Forio MAE, Fornaroli R, Friberg N, Fruget JF, Garcia Marquez JR, Georgieva G, Goethals P, Graça MAS, House A, Huttunen KL, Jensen TC, Johnson RK, Jones JI, Kiesel J, Larrañaga A, Leitner P, L'Hoste L, Lizée MH, Lorenz AW, Maire A, Manzanos Arnaiz JA, Mckie B, Millán A, Muotka T, Murphy JF, Ozolins D, Paavola R, Paril P, Peñas Silva FJ, Polasek M, Rasmussen J, Rubio M, Sánchez Fernández D, Sandin L, Schäfer RB, Schmidt-Kloiber A, Scotti A, Shen LQ, Skuja A, Stoll S, Straka M, Stubbington R, Timm H, Tyufekchieva VG, Tziortzis I, Uzunov Y, van der Lee GH, Vannevel R, Varadinova E, Várbíró G, Velle G, Verdonschot PFM, Verdonschot RCM, Vidinova Y, Wiberg-Larsen P, Haase P. Time series of freshwater macroinvertebrate abundances and site characteristics of European streams and rivers. Sci Data 2024; 11:601. [PMID: 38849407 PMCID: PMC11161585 DOI: 10.1038/s41597-024-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.
Collapse
Affiliation(s)
- Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany.
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, Virginia, 22630, USA.
| | - Diana E Bowler
- Department of Ecosystem Services, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07743, Germany
- Department of Ecosystem Services, Helmholtz Center for Environmental Research - UFZ, Leipzig, 04318, Germany
| | - James S Sinclair
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Mario Álvarez-Cabria
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 39011, Spain
| | - Giuseppe Amatulli
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
- Brain Capital Alliance, San Francisco, CA, USA
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gaït Archambaud
- INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, 13182, France
| | | | | | - Iker Azpiroz
- Ekolur Asesoría Ambiental SLL, Oiartzun, 20180, Spain
| | - Nathan Jay Baker
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos Str. 2, Vilnius, 08412, Lithuania
| | - Iñaki Bañares
- Departamento de Medio Ambiente y Obras Hidráulicas, Diputación Foral de Gipuzkoa, Donostia-San Sebastián, 20004, Spain
| | - José Barquín Ortiz
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 39011, Spain
| | - Christian L Bodin
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, 5838, Norway
| | - Luca Bonacina
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, 20126, Italy
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, 08028, Spain
| | - Roberta Bottarin
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, 39100, Italy
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Zoltán Csabai
- HUN-REN Balaton Limnological Research Institute, 3 Klebelsberg Kuno, H8237, Tihany, Hungary
- Department of Hydrobiology, University of Pécs, Pécs, 7624, Hungary
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, F28PF65, Ireland
| | - Alain Dohet
- Environmental Research and Innovation department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, L-4362, Luxembourg
| | - Sami Domisch
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Gerald Dörflinger
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, 1047, Cyprus
| | - Emma Drohan
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, A91 K584, Ireland
| | - Knut A Eikland
- Norwegian Institute for Nature Research (NINA), Oslo/Lillehammer, Norway
| | | | - Tor E Eriksen
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
| | - Vesela Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Maria J Feio
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, 3000-456, Portugal
| | - Martial Ferréol
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Mathieu Floury
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Maxence Forcellini
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Marie Anne Eurie Forio
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, 20126, Italy
| | - Nikolai Friberg
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
- University of Copenhagen, Freshwater Biological section, 2100, Copenhagen, Denmark
- University of Leeds, water@leeds, School of Geography, Leeds, UK
| | | | - Jaime R Garcia Marquez
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Galia Georgieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Manuel A S Graça
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, 3000-456, Portugal
| | | | - Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
- Nature Solutions Unit, Finnish Environment Institute, Oulu, 90014, Finland
| | | | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Jens Kiesel
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- Department of Hydrology and Water Resources Management, Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Kiel, 24118, Germany
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, 48940, Spain
| | - Patrick Leitner
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
| | - Lionel L'Hoste
- Environmental Research and Innovation department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, L-4362, Luxembourg
| | | | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| | - Anthony Maire
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, 78401, France
| | | | - Brendan Mckie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, 30100, Spain
| | - Timo Muotka
- Nature Solutions Unit, Finnish Environment Institute, Oulu, 90014, Finland
| | - John F Murphy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Davis Ozolins
- Institute of Biology, University of Latvia, Riga, LV-1004, Latvia
| | - Riku Paavola
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, 93900, Finland
- Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, 90014, Oulu, Finland
| | - Petr Paril
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | | | - Marek Polasek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Jes Rasmussen
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
| | - Manu Rubio
- Ekolur Asesoría Ambiental SLL, Oiartzun, 20180, Spain
| | | | - Leonard Sandin
- Norwegian Institute for Nature Research (NINA), Oslo/Lillehammer, Norway
| | - Ralf B Schäfer
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
- Research Center One Health Ruhr, University Alliance Ruhr, Universitätsstrasse 2, 45141, Essen, Germany
| | - Astrid Schmidt-Kloiber
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
| | - Alberto Scotti
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, 39100, Italy
- APEM Ltd, Riverview, A17 - The Embankment Business Park - SK4 3GN, Heaton Mersey, Stockport, UK
| | - Longzhu Q Shen
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, 15213, USA
| | - Agnija Skuja
- Institute of Biology, University of Latvia, Riga, LV-1004, Latvia
| | - Stefan Stoll
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
- Department of Environmental Planning and Technology, University of Applied Sciences Trier, Birkenfeld, 55761, Germany
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
- T.G. Masaryk Water Research Institute, p.r.i., Brno, 61200, Czech Republic
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Henn Timm
- Estonian University of Life Sciences, Chair of Hydrobiology and Fishery, Centre for Limnology, Elva vald, 61117, Estonia
| | - Violeta G Tyufekchieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Iakovos Tziortzis
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Yordan Uzunov
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, 6708, PB, Netherlands
| | - Rudy Vannevel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Flanders Environment Agency, Aalst, 9300, Belgium
| | - Emilia Varadinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
- South-West University "Neofit Rilski", Faculty of Mathematics and Natural Sciences, Department of Geography, Ecology and Environment Protection, Blagoevgrad, Bulgaria
| | - Gábor Várbíró
- Department of Tisza River Research, HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, 4026, Hungary
| | - Gaute Velle
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, 5838, Norway
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Piet F M Verdonschot
- Estonian University of Life Sciences, Chair of Hydrobiology and Fishery, Centre for Limnology, Elva vald, 61117, Estonia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1098, XH, Netherlands
| | - Ralf C M Verdonschot
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Yanka Vidinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | | | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
43
|
Orr JA, Macaulay SJ, Mordente A, Burgess B, Albini D, Hunn JG, Restrepo-Sulez K, Wilson R, Schechner A, Robertson AM, Lee B, Stuparyk BR, Singh D, O'Loughlin I, Piggott JJ, Zhu J, Dinh KV, Archer LC, Penk M, Vu MTT, Juvigny-Khenafou NPD, Zhang P, Sanders P, Schäfer RB, Vinebrooke RD, Hilt S, Reed T, Jackson MC. Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments. Ecol Lett 2024; 27:e14463. [PMID: 38924275 DOI: 10.1111/ele.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.
Collapse
Affiliation(s)
- James A Orr
- Department of Biology, University of Oxford, Oxford, UK
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Benjamin Burgess
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dania Albini
- Department of Biology, University of Oxford, Oxford, UK
| | - Julia G Hunn
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Ramesh Wilson
- Department of Biology, University of Oxford, Oxford, UK
| | - Anne Schechner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Ruumi ApS, Svendborg, Denmark
| | - Aoife M Robertson
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Bethany Lee
- Department of Biology, University of Oxford, Oxford, UK
| | - Blake R Stuparyk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Delezia Singh
- Natural Resources Institute, University of Manitoba, Winnipeg, Canada
| | | | - Jeremy J Piggott
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jiangqiu Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Khuong V Dinh
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Louise C Archer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Marcin Penk
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Minh Thi Thuy Vu
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Noël P D Juvigny-Khenafou
- Institute of Aquaculture, University of Stirling, Scotland, UK
- Institute of Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr
- Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Hilt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Thomas Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | |
Collapse
|
44
|
Woolway RI, Tong Y, Feng L, Zhao G, Dinh DA, Shi H, Zhang Y, Shi K. Multivariate extremes in lakes. Nat Commun 2024; 15:4559. [PMID: 38811653 PMCID: PMC11137041 DOI: 10.1038/s41467-024-49012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Extreme within-lake conditions have the potential to exert detrimental effects on lakes. Here we use satellite observations to investigate how the occurrence of multiple types of extremes, notably algal blooms, lake heatwaves, and low lake levels, have varied in 2724 lakes since the 1980s. Our study, which focuses on bloom-affected lakes, suggests that 75% of studied lakes have experienced a concurrent increase in at least two of the extremes considered (27% defined as having a notable increase), with 25% experiencing an increase in frequency of all three extremes (5% had a notable increase). The greatest increases in the frequency of these extremes were found in regions that have experienced increases in agricultural fertilizer use, lake warming, and a decline in water availability. As extremes in lakes become more common, understanding their impacts must be a primary focus of future studies and they must be carefully considered in future risk assessments.
Collapse
Affiliation(s)
- R Iestyn Woolway
- School of Ocean Sciences, Bangor University, Anglesey, Wales, UK.
| | - Yan Tong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Gang Zhao
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Dieu Anh Dinh
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland
| | - Haoran Shi
- School of Ocean Sciences, Bangor University, Anglesey, Wales, UK
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Graça D, Arias-Real R, Fernandes I, Cássio F, Pascoal C. Fungal identity mediates the impacts of multiple stressors on freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173466. [PMID: 38788941 DOI: 10.1016/j.scitotenv.2024.173466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Predicting how multiple anthropogenic stressors affect natural ecosystems is a major challenge in ecology. Freshwater ecosystems are threatened worldwide by multiple co-occurring stressors, which can affect aquatic biodiversity, ecosystem functioning and human wellbeing. In stream ecosystems, aquatic fungi play a crucial role in global biogeochemical cycles and food web dynamics, therefore, assessing the functional consequences of fungal biodiversity loss under multiple stressors is crucial. Here, a microcosm approach was used to investigate the effects of multiple stressors (increased temperature and nutrients, drying, and biodiversity loss) on three ecosystem processes: organic matter decomposition, fungal reproduction, and fungal biomass accrual. Net effects of stressors were antagonistic for organic matter decomposition, but additive for fungal reproduction and biomass accrual. Net effects of biodiversity were mainly positive for all processes, even under stress, demonstrating that diversity assures the maintenance of ecosystem processes. Fungal species displayed distinct contributions to each ecosystem process. Furthermore, species with negligible contributions under control conditions changed their role under stress, either enhancing or impairing the communities' performance, emphasizing the importance of fungal species identity. Our study highlights that distinct fungal species have different sensitivities to environmental variability and have different influence on the overall performance of the community. Therefore, preserving high fungal diversity is crucial to maintain fungal species with key ecosystem functions within aquatic communities in face of environmental change.
Collapse
Affiliation(s)
- Diana Graça
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Rebeca Arias-Real
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Isabel Fernandes
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Fernanda Cássio
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Cláudia Pascoal
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
46
|
Madureira KH, Ferreira V, Callisto M. Rehabilitation of tropical urban streams improves their structure and functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171935. [PMID: 38527547 DOI: 10.1016/j.scitotenv.2024.171935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.
Collapse
Affiliation(s)
- Karoline H Madureira
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Avenida Antônio Carlos, 6627, CP 486, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Marcos Callisto
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Avenida Antônio Carlos, 6627, CP 486, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Madge Pimentel I, Baikova D, Buchner D, Burfeid Castellanos A, David GM, Deep A, Doliwa A, Hadžiomerović U, Mayombo NAS, Prati S, Spyra MA, Vermiert AM, Beisser D, Dunthorn M, Piggott JJ, Sures B, Tiegs SD, Leese F, Beermann AJ. Assessing the response of an urban stream ecosystem to salinization under different flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171849. [PMID: 38537828 DOI: 10.1016/j.scitotenv.2024.171849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.
Collapse
Affiliation(s)
- Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Daria Baikova
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline M David
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Stechlin, Germany
| | - Aman Deep
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Una Hadžiomerović
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anna-Maria Vermiert
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jeremy J Piggott
- Zoology and Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Bernd Sures
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Arne J Beermann
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Wan X, Lu X, Zhu L, Feng J. Relative prevalence of top-down versus bottom-up control in planktonic ecosystem under eutrophication and climate change: A comparative study of typical bay and estuary. WATER RESEARCH 2024; 255:121487. [PMID: 38518414 DOI: 10.1016/j.watres.2024.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.
Collapse
Affiliation(s)
- Xuhao Wan
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
49
|
Zhao X, Ma Y, Xie H, Du C, Zhan A, Xu J, Giesy JP, Wu F, Jin X. Spatial distribution of benthic taxonomic and functional diversity in the Yellow River Basin: From ecological processes to associated determinant factors. ENVIRONMENT INTERNATIONAL 2024; 188:108745. [PMID: 38754244 DOI: 10.1016/j.envint.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
One of the fundamental objectives in ecology is to investigate the ecological processes and associated factors governing the abundance and spatial distribution patterns of biodiversity. However, the reaction of biological communities to environmental degradation remains relatively unknown, even for ecologically crucial communities like macroinvertebrates in aquatic ecosystems. Here, we sampled 117 locations to quantify relative contributions of geographical and environmental factors, including water quality, land use, climate, and hydrological factors, to determine the absolute and relative compositions of macroinvertebrate communities and their spatial distribution in the Yellow River Basin (YRB), the sixth-longest river system on Earth. We assessed relative roles of species sorting and dispersal in determining macroinvertebrate community structure along YRB. Our results demonstrated that alpha and beta diversity indices showed an increase from the up- to low-reaches of YRB. The middle and low-reaches exhibited elevated species diversity and both regions exhibited relatively stable community compositions. The biodiversity of macroinvertebrates was influenced by a combination of geographical factors and environmental variables, with environmental factors predominantly serving as the principal determinants. Results of multiple linear regression and variance decomposition showed that the effect of environmental factors was approximately three times greater than that of spatial factors. These findings provide support for the hypothesis that species sorting, driven by environmental gradients, plays a significant role in shaping the community structure of macroinvertebrates in running water ecosystems at the basin scales. Moreover, the factors contributing to substantial shifts in biodiversity across different segments of YRB indicate that distinct river sections have been influenced by varying stressors, with downstream areas being more susceptible to the impacts of water pollution and urbanization resulting from human activities.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Du
- China National Environmental Monitoring Centre, Beijing 100012, China; School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P Giesy
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48895, USA; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
50
|
van Kouwen LAH, Kraak MHS, van der Lee GH, Verdonschot PFM. Four decades of region- and species-specific trends in lowland stream Ephemeroptera abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171619. [PMID: 38471583 DOI: 10.1016/j.scitotenv.2024.171619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lowland stream ecosystems are under threat from climate change, industrialization, urbanization, and intensive agriculture. Since the 1980s, improvements in water quality have led to an increase in lowland stream biodiversity. Despite restoration efforts, however, further recovery is often hampered by the presence of region-specific (combinations of) stressors, and species-specific stressor responses. Identification of these stressors may not be achieved by the analysis of abundance data over large areas for entire communities or species assemblages. Therefore, our study introduces an alternative in-depth approach, selecting Ephemeroptera as a model organism group and analyzing 41 years of species abundance data across distinct geographical regions. Our findings revealed that 15 Ephemeroptera species had already disappeared before 1985, emphasizing the importance of evaluating an extended historical period when analyzing biodiversity trends. While biodiversity was generally characterized by an initial recovery that stagnated over time, the analysis of the past 41 years of Ephemeroptera abundance data revealed strong differences in species' abundance trends between periods, regions, and species. Certain species were likely to have benefitted from local restoration measures in specific geographical regions, while others may have declined due to the presence of region-specific stressors. Our approach underscores the importance of studying the development of region- and species-specific stream biodiversity trends over time to aid the selection of the appropriate restoration measures to recover lowland stream biodiversity.
Collapse
Affiliation(s)
- Leon A H van Kouwen
- HAS green academy, 's-Hertogenbosch 5223 DE, Netherlands; Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands.
| | - Michiel H S Kraak
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Piet F M Verdonschot
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands; Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| |
Collapse
|