1
|
Paz M, Moratorio G. Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies. mSphere 2025; 10:e0050824. [PMID: 40272173 DOI: 10.1128/msphere.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in synthetic biology and sequencing technologies have revolutionized the ability to manipulate viral genomes with unparalleled precision. This review focuses on two powerful methodologies: deep mutational scanning and CRISPR-based genome editing, that enable comprehensive mutagenesis and detailed functional characterization of viral proteins. These approaches have significantly deepened our understanding of the molecular determinants driving viral evolution and adaptation. Furthermore, we discuss how these advances provide transformative insights for future vaccine development and therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
- Center for Innovation in Epidemiological Surveillance, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Nakayama E, Tang B, Stewart R, Cox AL, Yan K, Bishop CR, Dumenil T, Nguyen W, Slonchak A, Sng J, Khromykh AA, Lutzky VP, Rawle DJ, Suhrbier A. Evolution of Zika virus in Rag1-deficient mice selects for unique envelope glycosylation motif mutants that show enhanced replication fitness. Virus Evol 2025; 11:veaf021. [PMID: 40291117 PMCID: PMC12024116 DOI: 10.1093/ve/veaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
N-linked glycosylation of flavivirus envelope proteins is widely viewed as being required for optimal folding, processing and/or transit of envelope proteins, and the assembling virons, through the endoplasmic reticulum (ER) and the Golgi. Zika virus (ZIKV) has a single N-linked envelope glycan located adjacent to the fusion loop. Herein we show that independent serial passage of ZIKVNatal in Rag1 -/- mice for 223 or 386 days generated two unique envelope glycan-deficient mutants, ZIKV-V153D and ZIKV-N154D, respectively. Surprisingly, these mutants grew to titres ∼1 to 2.6 logs higher than the glycosylated parental ZIKVNatal in Vero E6 cells and human brain organoids. RNA-Seq of infected organoids suggested that this increased replication fitness was associated with upregulation of the unfolded protein response (UPR). Cell death, cellular viral RNA, and viral protein levels were not significantly affected, arguing that these glycan mutants enjoyed faster ER/Golgi folding, processing, assembly, transit, and virion egress, assisted by an upregulated UPR. Thus, ZIKV envelope N-linked glycosylation is not essential for promoting envelope folding, assembly, and transit through the ER/Golgi, since aspartic acid (D) substitutions in the glycosylation motif can achieve this with significantly greater efficiency. Instead, the evolution of glycan mutants in Rag1 -/- mice indicates that such envelope glycosylation can have a fitness cost in an environment devoid of virus-specific antibody responses. The V153D and N154D mutations, generated by natural selection in Rag1 -/- mice, have to date not been employed in orthoflavivirus envelope glycosylation studies. Instead, genetic engineering has been used to generate mutant viruses that, for instance, contain a N154A substitution. The latter may impart confounding unfavourable properties, such as envelope protein insolubility, that have a detrimental impact on virus replication. The V153D and N154D substitutions may avoid imparting unfavourable properties by preserving the surface negative charge provided by the glycan moiety in the parental ZIKVNatal envelope protein. In Ifnar1 -/- mice ZIKV-V153D and -N154D showed faster viremia onsets, but reduced viremic periods, than the parental ZIKVNatal, consistent with an established contention that such glycans have evolved to delay neutralizing antibody activity.
Collapse
Affiliation(s)
- Eri Nakayama
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku City, Tokyo 162-0052 Japan
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Romal Stewart
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Abigail L Cox
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Wilson Nguyen
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| | - Julian Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| | - Viviana P Lutzky
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| |
Collapse
|
3
|
Thiruvaiyaru A, Mattila S, Sadeghi M, Naumenko K, Merits A, Varjosalo M, Ahola T. Proximity interactome of alphavirus replicase component nsP3 includes proviral host factors eIF4G and AHNAK. PLoS Pathog 2025; 21:e1013050. [PMID: 40193402 PMCID: PMC12005498 DOI: 10.1371/journal.ppat.1013050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/17/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
All positive-strand RNA viruses replicate their genomes in association with modified intracellular membranes, inducing either membrane invaginations termed spherules, or double-membrane vesicles. Alphaviruses encode four non-structural proteins nsP1-nsP4, all of which are essential for RNA replication and spherule formation. To understand the host factors associated with the replication complex, we fused the efficient biotin ligase miniTurbo with Semliki Forest virus (SFV) nsP3, which is located on the cytoplasmic surface of the spherules. We characterized the proximal proteome of nsP3 in three cell lines, including cells unable to form stress granules, and identified >300 host proteins constituting the microenvironment of nsP3. These included all the nsPs, as well as several previously characterized nsP3 binding proteins. However, the majority of the identified interactors had no previously identified roles in alphavirus replication, including 39 of the top 50 interacting proteins. The most prominent biological processes involving the proximal proteins were nucleic acid metabolism, translational regulation, cytoskeletal rearrangement and membrane remodeling. siRNA silencing confirmed six novel proviral factors, USP10, AHNAK, eIF4G1, SH3GL1, XAB2 and ANKRD17, which are associated with distinct cellular functions. All of these except SH3GL1 were also important for the replication of chikungunya virus. We discovered that the small molecule 4E1RCat, which inhibits the interaction between the canonical translation initiation factors eIF4G and eIF4E, exhibits antiviral activity against SFV. Since the same molecule was previously found to inhibit coronaviruses, this suggest the possibility that translation initiation factors could be considered as targets for broadly acting antivirals.
Collapse
Affiliation(s)
- Aditya Thiruvaiyaru
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Sari Mattila
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mohammadreza Sadeghi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Goh VSL, Ang CCW, Low SL, Lee PX, Setoh YX, Wong JCC. Evaluation of three alternative methods to the plaque reduction neutralizing assay for measuring neutralizing antibodies to dengue virus serotype 2. Virol J 2024; 21:208. [PMID: 39227969 PMCID: PMC11373480 DOI: 10.1186/s12985-024-02459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue is a global public health challenge which requires accurate diagnostic methods for surveillance and control. The gold standard for detecting dengue neutralizing antibodies (nAbs) is the plaque reduction neutralization test (PRNT), which is both labor-intensive and time-consuming. This study aims to evaluate three alternative approaches, namely, the MTT-based (or (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) microneutralization assay, the xCELLigence real-time cell analysis (RTCA), and the immuno-plaque assay-focus reduction neutralization test (iPA-FRNT). METHODS Twenty-two residual serum samples were tested for DENV-2 nAbs using all four assays at three neutralization endpoints of 50%, 70% and 90% inhibition in virus growth. For each neutralization endpoint, results were compared using linear regression and correlation analyses. Test performance characteristics were further obtained for iPA-FRNT using 38 additional serum samples. RESULTS Positive correlation of DENV-2 neutralization titers for the MTT-based microneutralization assay and the PRNT assay was only observed at the neutralization endpoint of 50% (r = 0.690). In contrast, at all three neutralization end points, a linear trend and positive correlation of DENV-2 neutralization titers for the xCELLigence RTCA and the PRNT assays were observed, yielding strong or very strong correlation (r = 0.829 to 0.967). This was similarly observed for the iPA-FRNT assay (r = 0.821 to 0.916), which also offered the added advantage of measuring neutralizing titers to non-plaque forming viruses. CONCLUSION The xCELLigence RTCA and iPA-FRNT assays could serve as suitable alternatives to PRNT for dengue serological testing. The decision to adopt these methods may depend on the laboratory setting, and the utility of additional applications offered by these technologies.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Christopher Chong Wei Ang
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Swee Ling Low
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Pei Xuan Lee
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
| | - Yin Xiang Setoh
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore
- Infectious Diseases Translational Research Programme (ID TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Judith Chui Ching Wong
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, Singapore.
| |
Collapse
|
5
|
Lei R, Qing E, Odle A, Yuan M, Gunawardene CD, Tan TJC, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nat Commun 2024; 15:4056. [PMID: 38744813 PMCID: PMC11094058 DOI: 10.1038/s41467-024-48104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Nguyen W, Gyawali N, Stewart R, Tang B, Cox AL, Yan K, Larcher T, Bishop CR, Wood N, Devine GJ, Suhrbier A, Rawle DJ. Characterisation of a Japanese Encephalitis virus genotype 4 isolate from the 2022 Australian outbreak. NPJ VIRUSES 2024; 2:15. [PMID: 40295675 PMCID: PMC11721158 DOI: 10.1038/s44298-024-00025-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/30/2025]
Abstract
Human infections with the Japanese encephalitis virus (JEV) are a leading cause of viral encephalitis. An unprecedented outbreak of JEV genotype 4 was recently reported in Australia, with an isolate (JEVNSW/22) obtained from a stillborn piglet brain. Herein we conduct a thorough characterization of JEVNSW/22 in three different mouse strains and in human cortical brain organoids (hBOs), and determined the ability of JEVNSW/22 to be neutralized by sera from humans vaccinated with IMOJEV. JEVNSW/22 was less virulent than JEVFU (genotype 2) and JEVNakayama (genotype 3) in C57BL/6J mice and in interferon regulatory factor 7 deficient (Irf7-/-) mice, with infection of wild-type and knockout murine embryonic fibroblasts indicating JEVNSW/22 is more sensitive to type I interferon responses. Irf7-/- mice provide a new model for JEVNSW/22, showing higher viremia levels compared to C57BL/6J mice, and allowing for lethal neuroinvasive infection. All JEV strains were universally lethal in Ifnar-/- mice by day 3, with histological signs of brain hemorrhage, but no other lesions. There were no indications of brain infection in Ifnar-/- mice, with viral protein detected in blood vessels, but not neurons. All JEV isolates showed robust cytopathic infection of human cortical brain organoids, albeit lower for JEVNSW/22. IMOJEV vaccination in humans induced antibodies capable of neutralizing JEVNSW/22, although, for all JEV strains, cross-neutralization titers declined with increasing divergence from IMOJEV in the envelope amino acid sequences. Overall, our study establishes JEVNSW/22 mouse and hBO models of infection, allowing for possible lethal neuroinvasive infection in mice that was rarer than for other JEV genotypes. JEV vaccination regimens may afford protection against this newly emerged JEV genotype 4 strain, although neutralizing antibody responses are sub-optimal.
Collapse
Affiliation(s)
- Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Narayan Gyawali
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Romal Stewart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | | | - Cameron R Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
7
|
Li T, Zheng J, Huang T, Wang X, Li J, Jin F, Wei W, Chen X, Liu C, Bao M, Zhao G, Huang L, Zhao D, Chen J, Bu Z, Weng C. Identification of several African swine fever virus replication inhibitors by screening of a library of FDA-approved drugs. Virology 2024; 593:110014. [PMID: 38401340 DOI: 10.1016/j.virol.2024.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.
Collapse
Affiliation(s)
- Tingting Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Jun Zheng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Tao Huang
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Xiao Wang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jiangnan Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Feng Jin
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Wenjuan Wei
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Xin Chen
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Miaofei Bao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Gaihong Zhao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Dongming Zhao
- National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigao Bu
- National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China.
| |
Collapse
|
8
|
Pliego Zamora A, Kim J, Vajjhala PR, Thygesen SJ, Watterson D, Modhiran N, Bielefeldt-Ohmann H, Stacey KJ. Kinetics of severe dengue virus infection and development of gut pathology in mice. J Virol 2023; 97:e0125123. [PMID: 37850747 PMCID: PMC10688336 DOI: 10.1128/jvi.01251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases. Using mouse models of dengue infection, we have shown that inflammation and damage are earlier and more severe in the gut than in other tissues. Additionally, we observed impairment of the gut mucus layer and propose that breakdown of the barrier function exacerbates inflammation and promotes severe dengue disease. This idea is supported by recent data from human patients showing elevated bacteria-derived molecules in dengue patient serum. Therapies aiming to maintain gut integrity may help to abrogate severe dengue disease.
Collapse
Affiliation(s)
- Adriana Pliego Zamora
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jaehyeon Kim
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
9
|
Lei R, Qing E, Odle A, Yuan M, Tan TJ, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569051. [PMID: 38076875 PMCID: PMC10705381 DOI: 10.1101/2023.11.28.569051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identified mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we showed that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
11
|
Slonchak A, Chaggar H, Aguado J, Wolvetang E, Khromykh AA. Noncoding RNA of Zika Virus Affects Interplay between Wnt-Signaling and Pro-Apoptotic Pathways in the Developing Brain Tissue. Viruses 2023; 15:1062. [PMID: 37243147 PMCID: PMC10222578 DOI: 10.3390/v15051062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral RNA, sfRNA) of the Zika virus induces apoptosis of neural progenitors and is required for ZIKV pathogenesis in the developing brain. Herein, we expanded on our initial findings and identified biological processes and signaling pathways affected by the production of ZIKV sfRNA in the developing brain tissue. We employed 3D brain organoids generated from induced human pluripotent stem cells (ihPSC) as an ex vivo model of viral infection in the developing brain and utilized wild type (WT) ZIKV (producing sfRNA) and mutant ZIKV (deficient in the production of sfRNA). Global transcriptome profiling by RNA-Seq revealed that the production of sfRNA affects the expression of >1000 genes. We uncovered that in addition to the activation of pro-apoptotic pathways, organoids infected with sfRNA-producing WT, but not sfRNA-deficient mutant ZIKV, which exhibited a strong down-regulation of genes involved in signaling pathways that control neuron differentiation and brain development, indicating the requirement of sfRNA for the suppression of neurodevelopment associated with the ZIKV infection. Using gene set enrichment analysis and gene network reconstruction, we demonstrated that the effect of sfRNA on pathways that control brain development occurs via crosstalk between Wnt-signaling and proapoptotic pathways.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| |
Collapse
|
12
|
Cereghino C, Roesch F, Carrau L, Hardy A, Ribeiro-Filho HV, Henrion-Lacritick A, Koh C, Marano JM, Bates TA, Rai P, Chuong C, Akter S, Vallet T, Blanc H, Elliott TJ, Brown AM, Michalak P, LeRoith T, Bloom JD, Marques RE, Saleh MC, Vignuzzi M, Weger-Lucarelli J. The E2 glycoprotein holds key residues for Mayaro virus adaptation to the urban Aedes aegypti mosquito. PLoS Pathog 2023; 19:e1010491. [PMID: 37018377 PMCID: PMC10109513 DOI: 10.1371/journal.ppat.1010491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/17/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.
Collapse
Affiliation(s)
- Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ferdinand Roesch
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
- UMR 1282 ISP, INRAE Centre Val de Loire, Nouzilly, France
| | - Lucía Carrau
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
- Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Helder V. Ribeiro-Filho
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Cassandra Koh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Jeffrey M. Marano
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, Virginia, United States of America
| | - Tyler A. Bates
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Bioinformatics and Computational Biology, School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Truitt J. Elliott
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia, United States of America
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anne M. Brown
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pawel Michalak
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, VA-MD Regional College of Veterinary Medicine, Blacksburg, Virginia, Untied States of Ameria
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| |
Collapse
|
13
|
Slonchak A, Wang X, Aguado J, Sng JDJ, Chaggar H, Freney ME, Yan K, Torres FJ, Amarilla AA, Balea R, Setoh YX, Peng N, Watterson D, Wolvetang E, Suhrbier A, Khromykh AA. Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. SCIENCE ADVANCES 2022; 8:eadd8095. [PMID: 36449607 PMCID: PMC9710884 DOI: 10.1126/sciadv.add8095] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Morgan E. Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Francisco J. Torres
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Rickyle Balea
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nias Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Solomon M, Liang C. Human coronaviruses: The emergence of SARS-CoV-2 and management of COVID-19. Virus Res 2022; 319:198882. [PMID: 35934258 PMCID: PMC9351210 DOI: 10.1016/j.virusres.2022.198882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
To date, a total of seven human coronaviruses (HCoVs) have been identified, all of which are important respiratory pathogens. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has led to a global pandemic causing millions of infections and deaths. Here, we summarize the discovery and fundamental virology of HCoVs, discuss their zoonotic transmission and highlight the weak species barrier of SARS-CoV-2. We also discuss the possible origins of SARS-CoV-2 variants of concern identified to date and discuss the experimental challenges in characterizing mutations of interest and propose methods to circumvent them. As the COVID-19 treatment and prevention landscape rapidly evolves, we summarize current therapeutics and vaccines, and their implications on SARS-CoV-2 variants. Finally, we explore how interspecies transmission of SARS-CoV-2 may drive the emergence of novel strains, how disease severity may evolve and how COVID-19 will likely continue to burden healthcare systems globally.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022; 14:v14071501. [PMID: 35891480 PMCID: PMC9317482 DOI: 10.3390/v14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107−8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.
Collapse
|
17
|
Increased Cleavage of Japanese Encephalitis Virus prM Protein Promotes Viral Replication but Attenuates Virulence. Microbiol Spectr 2022; 10:e0141722. [PMID: 35695552 PMCID: PMC9241796 DOI: 10.1128/spectrum.01417-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In flavivirus, the furin-mediated cleavage of prM is mandatory to produce infectious particles, and the immature particles containing uncleaved prM cannot undergo membrane fusion and release to the extracellular environment. However, the detailed relationship between viral replication or pathogenicity and furin in Japanese encephalitis virus (JEV) hasn't been clarified. Here, JEV with the mutations in furin cleavage sites and its nearby were constructed. Compared with WT virus, the mutant virus showed enhanced cleavage efficiency of prM protein and increased replication ability. Furthermore, we found that the mutations mainly promote genomic replication and assembly of JEV. However, the mutant formed smaller plaques than WT virus in plaque forming assay, indicating the lower cytopathogenicity of mutant virus. To assess the virulence of JEV mutant, an in vivo assay was performed using a mouse model. A higher survival rate and attenuated neuroinflammation were observed in JEV mutant-infected mice than those of WT-infected mice, suggesting the cleavage of prM by furin was closely related to viral virulence. These findings will provide new understanding on JEV pathogenesis and contribute to the development of novel JEV vaccines. IMPORTANCE Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis epidemics in Southeast Asia, affecting mostly children, with high morbidity and mortality. During the viral maturation process, prM is cleaved into M by the cellular endoprotease furin in the acidic secretory system. After cleavage of the prM protein, mature virions are exocytosed. Here, the mutant in furin cleavage sites and its nearby was constructed, and the results showed that the mutant virus with enhanced replication mainly occurred in the process of genomic replication and assembly. Meanwhile, the mutant showed an attenuated virulence than WT virus in vivo. Our study contributes to understanding the function of prM and M proteins and provides new clues for live vaccine designation for JEV.
Collapse
|
18
|
Peng NYG, Amarilla AA, Hugo LE, Modhiran N, Sng JDJ, Slonchak A, Watterson D, Setoh YX, Khromykh AA. The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Negl Trop Dis 2022; 16:e0010426. [PMID: 35536870 PMCID: PMC9122223 DOI: 10.1371/journal.pntd.0010426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/20/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
During 2015–2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/β receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential. Zika virus (ZIKV) emerged to cause outbreaks in Southeast Asia and the Americas during 2015–2016. However, the scale of outbreaks in Southeast Asia were significantly smaller compared to epidemic in the Americas. A methionine to valine amino acid mutation at residue position 114 of the NS5 protein (NS5-M114V) is hypothesized to influence the epidemic outcomes of ZIKV, which led to the large-scale epidemic that occurred in the Americas. By analyzing infection of mammalian and mosquito cells, IFNα/β receptor knockout (Ifnar-/-) mice and Aedes aegypti mosquitoes with engineered ZIKV isolates containing either methionine or valine at residue position 114 of the NS5 protein, we demonstrated that the NS5-M114V mutation did not affect virus replication efficiency and STAT2 degradation in cells, virulence in mice, or virus secretion into the mosquito saliva. The NS5-M114V mutation slightly prolonged viremia in Ifnar-/- mice and reduced mosquito infection rate. Collectively, our findings suggest that the NS5-M114V mutation is unlikely to have significantly influenced the ZIKV epidemic in the Americas.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| |
Collapse
|
19
|
Depla JA, Mulder LA, de Sá RV, Wartel M, Sridhar A, Evers MM, Wolthers KC, Pajkrt D. Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses 2022; 14:v14030634. [PMID: 35337041 PMCID: PMC8948955 DOI: 10.3390/v14030634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.
Collapse
Affiliation(s)
- Josse A. Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
- Correspondence:
| | - Lance A. Mulder
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Renata Vieira de Sá
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Morgane Wartel
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Melvin M. Evers
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Jaimipuk T, Sachdev S, Yoksan S, Thepparit C. A Small-Plaque Isolate of the Zika Virus with Envelope Domain III Mutations Affect Viral Entry and Replication in Mammalian but Not Mosquito Cells. Viruses 2022; 14:v14030480. [PMID: 35336887 PMCID: PMC8954177 DOI: 10.3390/v14030480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
An Asian Zika virus (ZIKV) isolated from a Thai patient that was serially passaged in Primary Dog Kidney (PDK) cells for attenuation displayed both big and small plaque-forming viruses by the 7th passage. Two small-plaque isolates were selected and purified for characterization as attenuated ZIKV candidates. In vitro growth kinetics showed significantly reduced titers for small-plaque isolates in Vero cells early post-infection compared to the parental ZIKV and a big-plaque isolate, but no significant difference was observed in C6/36 cells. Viral entry experiments elucidate that titer reduction likely occurred due to the diminished entry capabilities of a small-plaque isolate. Additionally, a small-plaque isolate displayed lowered neurovirulence in newborn mice compared to 100% lethality from infection with the parental ZIKV. Genomic analysis revealed the same three unique non-synonymous mutations for both small-plaque isolates: two on the envelope (E) protein at residues 310, alanine to glutamic acid (A310E), and 393, glutamic acid to lysine (E393K), and one on residue 355 of NS3, histidine to tyrosine (H355Y). Three-dimensional (3D) mapping suggests that the E protein mutations located on the receptor-binding and fusion domain III likely affect cell entry, tropism, and virulence. These ZIKV isolates and genotypic markers will be beneficial for vaccine development.
Collapse
|
21
|
Abstract
Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.
Collapse
|
22
|
Shi H, Yin J. Kinetics of Asian and African Zika virus lineages over single-cycle and multi-cycle growth in culture: Gene expression, cell killing, virus production, and mathematical modeling. Biotechnol Bioeng 2021; 118:4231-4245. [PMID: 34270089 DOI: 10.1002/bit.27892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/07/2022]
Abstract
Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 h and for multi-step infections every four to 24 h over 144 h, generating a rich data set. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a sevenfold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this study highlights how image-based measurements can contribute to the discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.
Collapse
Affiliation(s)
- Huicheng Shi
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021; 17:e1009788. [PMID: 34310650 PMCID: PMC8341709 DOI: 10.1371/journal.ppat.1009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/β receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ogawa
- Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Kawai
- Management Department of Biosafety and Laboratory Animal, Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
24
|
Amarilla AA, Sng JDJ, Parry R, Deerain JM, Potter JR, Setoh YX, Rawle DJ, Le TT, Modhiran N, Wang X, Peng NYG, Torres FJ, Pyke A, Harrison JJ, Freney ME, Liang B, McMillan CLD, Cheung STM, Guevara DJDC, Hardy JM, Bettington M, Muller DA, Coulibaly F, Moore F, Hall RA, Young PR, Mackenzie JM, Hobson-Peters J, Suhrbier A, Watterson D, Khromykh AA. A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nat Commun 2021; 12:3431. [PMID: 34103499 PMCID: PMC8187723 DOI: 10.1038/s41467-021-23779-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions. Here the authors describe a simple reverse genetics method that relies on overlapping cDNA fragments for generation of positive-strand viruses including SARS-CoV-2 and characterize them in vitro and in vivo.
Collapse
Affiliation(s)
- Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Joshua M Deerain
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - James R Potter
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.,Microbiology and Molecular Epidemiology Division, Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Nias Y G Peng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Francisco J Torres
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Alyssa Pyke
- Queensland Health Forensic & Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Joshua M Hardy
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mark Bettington
- School of Medicine, University of Queensland, Kelvin Grove, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Fasséli Coulibaly
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Frederick Moore
- Queensland Health Forensic & Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Burton TD, Eyre NS. Applications of Deep Mutational Scanning in Virology. Viruses 2021; 13:1020. [PMID: 34071591 PMCID: PMC8227372 DOI: 10.3390/v13061020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.
Collapse
Affiliation(s)
| | - Nicholas S. Eyre
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
26
|
Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci 2021; 28:30. [PMID: 33888112 PMCID: PMC8063318 DOI: 10.1186/s12929-021-00728-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
A brain organoid is a self-organizing three-dimensional tissue derived from human embryonic stem cells or pluripotent stem cells and is able to simulate the architecture and functionality of the human brain. Brain organoid generation methods are abundant and continue to improve, and now, an in vivo vascularized brain organoid has been encouragingly reported. The combination of brain organoids with immune-staining and single-cell sequencing technology facilitates our understanding of brain organoids, including the structural organization and the diversity of cell types. Recent publications have reported that brain organoids can mimic the dynamic spatiotemporal process of early brain development, model various human brain disorders, and serve as an effective preclinical platform to test and guide personalized treatment. In this review, we introduce the current state of brain organoid differentiation strategies, summarize current progress and applications in the medical domain, and discuss the challenges and prospects of this promising technology.
Collapse
Affiliation(s)
- Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
27
|
Fros JJ, Visser I, Tang B, Yan K, Nakayama E, Visser TM, Koenraadt CJM, van Oers MM, Pijlman GP, Suhrbier A, Simmonds P. The dinucleotide composition of the Zika virus genome is shaped by conflicting evolutionary pressures in mammalian hosts and mosquito vectors. PLoS Biol 2021; 19:e3001201. [PMID: 33872300 PMCID: PMC8084339 DOI: 10.1371/journal.pbio.3001201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/29/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Most vertebrate RNA viruses show pervasive suppression of CpG and UpA dinucleotides, closely resembling the dinucleotide composition of host cell transcriptomes. In contrast, CpG suppression is absent in both invertebrate mRNA and RNA viruses that exclusively infect arthropods. Arthropod-borne (arbo) viruses are transmitted between vertebrate hosts by invertebrate vectors and thus encounter potentially conflicting evolutionary pressures in the different cytoplasmic environments. Using a newly developed Zika virus (ZIKV) model, we have investigated how demands for CpG suppression in vertebrate cells can be reconciled with potentially quite different compositional requirements in invertebrates and how this affects ZIKV replication and transmission. Mutant viruses with synonymously elevated CpG or UpA dinucleotide frequencies showed attenuated replication in vertebrate cell lines, which was rescued by knockout of the zinc-finger antiviral protein (ZAP). Conversely, in mosquito cells, ZIKV mutants with elevated CpG dinucleotide frequencies showed substantially enhanced replication compared to wild type. Host-driven effects on virus replication attenuation and enhancement were even more apparent in mouse and mosquito models. Infections with CpG- or UpA-high ZIKV mutants in mice did not cause typical ZIKV-induced tissue damage and completely protected mice during subsequent challenge with wild-type virus, which demonstrates their potential as live-attenuated vaccines. In contrast, the CpG-high mutants displayed enhanced replication in Aedes aegypti mosquitoes and a larger proportion of mosquitoes carried infectious virus in their saliva. These findings show that mosquito cells are also capable of discriminating RNA based on dinucleotide composition. However, the evolutionary pressure on the CpG dinucleotides of viral genomes in arthropod vectors directly opposes the pressure present in vertebrate host cells, which provides evidence that an adaptive compromise is required for arbovirus transmission. This suggests that the genome composition of arbo flaviviruses is crucial to maintain the balance between high-level replication in the vertebrate host and persistent replication in the mosquito vector. The genome of the flavivirus Zika virus is stuck in a tug-of-war between two directly opposing evolutionary pressures that are present in the cells of mammalian host organisms and mosquito vectors; this results in an adaptive compromise, as manifested in the virus’s genome dinucleotide composition.
Collapse
Affiliation(s)
- Jelke J. Fros
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- * E-mail:
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Narayanan KK, Procko E. Deep Mutational Scanning of Viral Glycoproteins and Their Host Receptors. Front Mol Biosci 2021; 8:636660. [PMID: 33898517 PMCID: PMC8062978 DOI: 10.3389/fmolb.2021.636660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Deep mutational scanning or deep mutagenesis is a powerful tool for understanding the sequence diversity available to viruses for adaptation in a laboratory setting. It generally involves tracking an in vitro selection of protein sequence variants with deep sequencing to map mutational effects based on changes in sequence abundance. Coupled with any of a number of selection strategies, deep mutagenesis can explore the mutational diversity available to viral glycoproteins, which mediate critical roles in cell entry and are exposed to the humoral arm of the host immune response. Mutational landscapes of viral glycoproteins for host cell attachment and membrane fusion reveal extensive epistasis and potential escape mutations to neutralizing antibodies or other therapeutics, as well as aiding in the design of optimized immunogens for eliciting broadly protective immunity. While less explored, deep mutational scans of host receptors further assist in understanding virus-host protein interactions. Critical residues on the host receptors for engaging with viral spikes are readily identified and may help with structural modeling. Furthermore, mutations may be found for engineering soluble decoy receptors as neutralizing agents that specifically bind viral targets with tight affinity and limited potential for viral escape. By untangling the complexities of how sequence contributes to viral glycoprotein and host receptor interactions, deep mutational scanning is impacting ideas and strategies at multiple levels for combatting circulating and emergent virus strains.
Collapse
Affiliation(s)
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, United States
| |
Collapse
|
29
|
Torii S, Ono C, Suzuki R, Morioka Y, Anzai I, Fauzyah Y, Maeda Y, Kamitani W, Fukuhara T, Matsuura Y. Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Rep 2021; 35:109014. [PMID: 33838744 PMCID: PMC8015404 DOI: 10.1016/j.celrep.2021.109014] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.
Collapse
Affiliation(s)
- Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yuhei Morioka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
30
|
Amarilla AA, Modhiran N, Setoh YX, Peng NYG, Sng JDJ, Liang B, McMillan CLD, Freney ME, Cheung STM, Chappell KJ, Khromykh AA, Young PR, Watterson D. An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2. Front Microbiol 2021; 12:625136. [PMID: 33643253 PMCID: PMC7906992 DOI: 10.3389/fmicb.2021.625136] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 and is capable of human-to-human transmission and rapid global spread. The rapid emergence and global spread of SARS-CoV-2 has encouraged the establishment of a rapid, sensitive, and reliable viral detection and quantification methodology. Here, we present an alternative assay, termed immuno-plaque assay (iPA), which utilizes a combination of plaque assay and immunofluorescence techniques. We have extensively optimized the conditions for SARS-CoV-2 infection and demonstrated the great flexibility of iPA detection using several antibodies and dual-probing with two distinct epitope-specific antibodies. In addition, we showed that iPA could be utilized for ultra-high-throughput viral titration and neutralization assay within 24 h and is amenable to a 384-well format. These advantages will significantly accelerate SARS-CoV-2 research outcomes during this pandemic period.
Collapse
Affiliation(s)
- Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nias Y G Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
31
|
Dolan PT, Taguwa S, Rangel MA, Acevedo A, Hagai T, Andino R, Frydman J. Principles of dengue virus evolvability derived from genotype-fitness maps in human and mosquito cells. eLife 2021; 10:e61921. [PMID: 33491648 PMCID: PMC7880689 DOI: 10.7554/elife.61921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023] Open
Abstract
Dengue virus (DENV) cycles between mosquito and mammalian hosts. To examine how DENV populations adapt to these different host environments, we used serial passage in human and mosquito cell lines and estimated fitness effects for all single-nucleotide variants in these populations using ultra-deep sequencing. This allowed us to determine the contributions of beneficial and deleterious mutations to the collective fitness of the population. Our analysis revealed that the continuous influx of a large burden of deleterious mutations counterbalances the effect of rare, host-specific beneficial mutations to shape the path of adaptation. Beneficial mutations preferentially map to intrinsically disordered domains in the viral proteome and cluster to defined regions in the genome. These phenotypically redundant adaptive alleles may facilitate host-specific DENV adaptation. Importantly, the evolutionary constraints described in our simple system mirror trends observed across DENV and Zika strains, indicating it recapitulates key biophysical and biological constraints shaping long-term viral evolution.
Collapse
Affiliation(s)
- Patrick T Dolan
- Stanford University, Department of BiologyStanfordUnited States
- University of California, Microbiology and Immunology, San FranciscoSan FranciscoUnited States
| | - Shuhei Taguwa
- Stanford University, Department of BiologyStanfordUnited States
| | | | - Ashley Acevedo
- University of California, Microbiology and Immunology, San FranciscoSan FranciscoUnited States
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Raul Andino
- University of California, Microbiology and Immunology, San FranciscoSan FranciscoUnited States
| | - Judith Frydman
- Stanford University, Department of BiologyStanfordUnited States
| |
Collapse
|
32
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology 2021; 552:73-82. [PMID: 33075709 PMCID: PMC7733535 DOI: 10.1016/j.virol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that replicates in both vertebrate and insect cells, whereas insect-specific flaviviruses (ISF) replicate only in insect cells. We sought to convert ZIKV, from a dual-tropic flavivirus, into an insect-specific virus for the eventual development of a safe ZIKV vaccine. Reverse genetics was used to introduce specific mutations into the furin cleavage motif within the ZIKV pre-membrane protein (prM). Mutant clones were selected, which replicated well in C6/36 insect cells but exhibited reduced replication in non-human primate (Vero) cells. Further characterization of the furin cleavage site mutants indicated they replicated poorly in both human (HeLa, U251), and baby hamster kidney (BHK-21) cells. One clone with the induced mutation in the prM protein and at positions 291and 452 within the NS3 protein was totally and stably replication-defective in vertebrate cells (VSRD-ZIKV). Preliminary studies in ZIKV sensitive, immunodeficient mice demonstrated that VSRD-ZIKV-infected mice survived and were virus-negative. Our study indicates that a reverse genetic approach targeting the furin cleavage site in prM can be used to select an insect-specific ZIKV with the potential utility as a vaccine strain.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
33
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Abstract
The risk of emergence and spread of novel human pathogens originating from an animal reservoir has increased in the past decades. However, the unpredictable nature of disease emergence makes surveillance and preparedness challenging. Knowledge of general risk factors for emergence and spread, combined with local level data is needed to develop a risk-based methodology for early detection. This involves the implementation of the One Health approach, integrating human, animal and environmental health sectors, as well as social sciences, bioinformatics and more. Recent technical advances, such as metagenomic sequencing, will aid the rapid detection of novel pathogens on the human-animal interface.
Collapse
|
35
|
Migné CV, Moutailler S, Attoui H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens 2020; 9:pathogens9110915. [PMID: 33167317 PMCID: PMC7694381 DOI: 10.3390/pathogens9110915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Animal arboviruses replicate in their invertebrate vectors and vertebrate hosts. They use several strategies to ensure replication/transmission. Their high mutation rates and propensity to generate recombinants and/or genome segment reassortments help them adapt to new hosts/emerge in new geographical areas. Studying arbovirus genetic variability has been used to identify indicators which predict their potential to adapt to new hosts and/or emergence and in particular quasi-species. Multiple studies conducted with insect-borne viruses laid the foundations for the "trade-off" hypothesis (alternation of host transmission cycle constrains arbovirus evolution). It was extrapolated to tick-borne viruses, where too few studies have been conducted, even though humans faced emergence of numerous tick-borne virus during the last decades. There is a paucity of information regarding genetic variability of these viruses. In addition, insects and ticks do not have similar lifecycles/lifestyles. Indeed, tick-borne viruses are longer associated with their vectors due to tick lifespan. The objectives of this review are: (i) to describe the state of the art for all strategies developed to study genetic variability of insect-borne viruses both in vitro and in vivo and potential applications to tick-borne viruses; and (ii) to highlight the specificities of arboviruses and vectors as a complex and diverse system.
Collapse
Affiliation(s)
- Camille Victoire Migné
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| | - Houssam Attoui
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| |
Collapse
|
36
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
37
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
38
|
Leier HC, Weinstein JB, Kyle JE, Lee JY, Bramer LM, Stratton KG, Kempthorne D, Navratil AR, Tafesse EG, Hornemann T, Messer WB, Dennis EA, Metz TO, Barklis E, Tafesse FG. A global lipid map defines a network essential for Zika virus replication. Nat Commun 2020; 11:3652. [PMID: 32694525 PMCID: PMC7374707 DOI: 10.1038/s41467-020-17433-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jules B Weinstein
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA, 99352, USA
| | - Kelly G Stratton
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA, 99352, USA
| | - Douglas Kempthorne
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Center for Diversity and Inclusion, OHSU, Portland, OR, 97239, USA
| | - Aaron R Navratil
- Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Endale G Tafesse
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Thorsten Hornemann
- University Zurich and University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - William B Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, Oregon, 97239, USA
| | - Edward A Dennis
- Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Eric Barklis
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| |
Collapse
|
39
|
Abstract
Infectious disease research spans scales from the molecular to the global—from specific mechanisms of pathogen drug resistance, virulence, and replication to the movement of people, animals, and pathogens around the world. All of these research areas have been impacted by the recent growth of large-scale data sources and data analytics. Some of these advances rely on data or analytic methods that are common to most biomedical data science, while others leverage the unique nature of infectious disease, namely its communicability. This review outlines major research progress in the past few years and highlights some remaining opportunities, focusing on data or methodological approaches particular to infectious disease.
Collapse
Affiliation(s)
- Peter M. Kasson
- Department of Biomedical Engineering and Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
40
|
A Yellow Fever Virus 17D Infection and Disease Mouse Model Used to Evaluate a Chimeric Binjari-Yellow Fever Virus Vaccine. Vaccines (Basel) 2020; 8:vaccines8030368. [PMID: 32660106 PMCID: PMC7564786 DOI: 10.3390/vaccines8030368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of an effective, live attenuated yellow fever virus (YFV) vaccine (YFV 17D), this flavivirus still causes up to ≈60,000 deaths annually. A number of new approaches are seeking to address vaccine supply issues and improve safety for the immunocompromised vaccine recipients. Herein we describe an adult female IFNAR-/- mouse model of YFV 17D infection and disease that recapitulates many features of infection and disease in humans. We used this model to evaluate a new YFV vaccine that is based on a recently described chimeric Binjari virus (BinJV) vaccine technology. BinJV is an insect-specific flavivirus and the chimeric YFV vaccine (BinJ/YFV-prME) was generated by replacing the prME genes of BinJV with the prME genes of YFV 17D. Such BinJV chimeras retain their ability to replicate to high titers in C6/36 mosquito cells (allowing vaccine production), but are unable to replicate in vertebrate cells. Vaccination with adjuvanted BinJ/YFV-prME induced neutralizing antibodies and protected mice against infection, weight loss and liver pathology after YFV 17D challenge.
Collapse
|
41
|
Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2020; 111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Tenth Scientific Biennial Meeting of the Australasian Virology Society-AVS10 2019. Viruses 2020; 12:v12060621. [PMID: 32517260 PMCID: PMC7354434 DOI: 10.3390/v12060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2–5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on “Successfully transitioning from post-doc to lab head”, winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.
Collapse
|
43
|
Slonchak A, Hugo LE, Freney ME, Hall-Mendelin S, Amarilla AA, Torres FJ, Setoh YX, Peng NYG, Sng JDJ, Hall RA, van den Hurk AF, Devine GJ, Khromykh AA. Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes. Nat Commun 2020; 11:2205. [PMID: 32371874 PMCID: PMC7200751 DOI: 10.1038/s41467-020-16086-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/12/2020] [Indexed: 12/27/2022] Open
Abstract
Flaviviruses, including Zika virus (ZIKV), utilise host mRNA degradation machinery to produce subgenomic flaviviral RNA (sfRNA). In mammalian hosts, this noncoding RNA facilitates replication and pathogenesis of flaviviruses by inhibiting IFN-signalling, whereas the function of sfRNA in mosquitoes remains largely elusive. Herein, we conduct a series of in vitro and in vivo experiments to define the role of ZIKV sfRNA in infected Aedes aegypti employing viruses deficient in production of sfRNA. We show that sfRNA-deficient viruses have reduced ability to disseminate and reach saliva, thus implicating the role for sfRNA in productive infection and transmission. We also demonstrate that production of sfRNA alters the expression of mosquito genes related to cell death pathways, and prevents apoptosis in mosquito tissues. Inhibition of apoptosis restored replication and transmission of sfRNA-deficient mutants. Hence, we propose anti-apoptotic activity of sfRNA as the mechanism defining its role in ZIKV transmission. The function on subgenomic flaviviral RNA (sfRNA) in the mosquito vector is not well understood. Here, Slonchak et al. show that sfRNA affects virus-induced apoptosis and dissemination of ZIKV in Aedes aegypti mosquitoes, suggesting a role of sfRNA in Zika virus replication and transmission.
Collapse
Affiliation(s)
- Andrii Slonchak
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Morgan E Freney
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, QLD, 4108, Australia
| | | | | | - Yin Xiang Setoh
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nias Y G Peng
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julian D J Sng
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Roy A Hall
- The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, QLD, 4108, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | | |
Collapse
|
44
|
Schanoski AS, Le TT, Kaiserman D, Rowe C, Prow NA, Barboza DD, Santos CA, Zanotto PMA, Magalhães KG, Aurelio L, Muller D, Young P, Zhao P, Bird PI, Suhrbier A. Granzyme A in Chikungunya and Other Arboviral Infections. Front Immunol 2020; 10:3083. [PMID: 31993061 PMCID: PMC6971054 DOI: 10.3389/fimmu.2019.03083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.
Collapse
Affiliation(s)
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Caitlin Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Diego D Barboza
- Bacteriology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Cliomar A Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health, State Secretary for Health, Aracajú, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Luigi Aurelio
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Peishen Zhao
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Seddon JA, Wilkinson R, van Crevel R, Figaji A, Thwaites GE. Knowledge gaps and research priorities in tuberculous meningitis. Wellcome Open Res 2019; 4:188. [PMID: 32118120 PMCID: PMC7014926 DOI: 10.12688/wellcomeopenres.15573.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1 st and 2 nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease.
Collapse
Affiliation(s)
- James A Seddon
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, St. Mary's Campus, London, W2 1PG, UK
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, Western Cape, 8005, South Africa
| | - Robert Wilkinson
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Francis Crick Institute, London, NW1 1AT, UK
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anthony Figaji
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Deep Mutational Scanning Comprehensively Maps How Zika Envelope Protein Mutations Affect Viral Growth and Antibody Escape. J Virol 2019; 93:JVI.01291-19. [PMID: 31511387 DOI: 10.1128/jvi.01291-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Functional constraints on viral proteins are often assessed by examining sequence conservation among natural strains, but this approach is relatively ineffective for Zika virus because all known sequences are highly similar. Here, we take an alternative approach to map functional constraints on Zika virus's envelope (E) protein by using deep mutational scanning to measure how all amino acid mutations to the E protein affect viral growth in cell culture. The resulting sequence-function map is consistent with existing knowledge about E protein structure and function but also provides insight into mutation-level constraints in many regions of the protein that have not been well characterized in prior functional work. In addition, we extend our approach to completely map how mutations affect viral neutralization by two monoclonal antibodies, thereby precisely defining their functional epitopes. Overall, our study provides a valuable resource for understanding the effects of mutations to this important viral protein and also offers a roadmap for future work to map functional and antigenic selection to Zika virus at high resolution.IMPORTANCE Zika virus has recently been shown to be associated with severe birth defects. The virus's E protein mediates its ability to infect cells and is also the primary target of the antibodies that are elicited by natural infection and vaccines that are being developed against the virus. Therefore, determining the effects of mutations to this protein is important for understanding its function, its susceptibility to vaccine-mediated immunity, and its potential for future evolution. We completely mapped how amino acid mutations to the E protein affected the virus's ability to grow in cells in the laboratory and escape from several antibodies. The resulting maps relate changes in the E protein's sequence to changes in viral function and therefore provide a valuable complement to existing maps of the physical structure of the protein.
Collapse
|
47
|
Scanning for determinants of Zika virus host tropism. Nat Rev Genet 2019; 20:320-321. [DOI: 10.1038/s41576-019-0120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|