1
|
Barrios Steed D, Koundakjian D, Harris AD, Rosato AE, Konstantinidis KT, Woodworth MH. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025; 17:2488046. [PMID: 40195644 PMCID: PMC11988218 DOI: 10.1080/19490976.2025.2488046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
Collapse
Affiliation(s)
- Danielle Barrios Steed
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anthony D. Harris
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Healthcare Computing, University of Maryland, Baltimore, MD, USA
| | - Adriana E Rosato
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Sherry NL, Lee JYH, Giulieri SG, Connor CH, Horan K, Lacey JA, Lane CR, Carter GP, Seemann T, Egli A, Stinear TP, Howden BP. Genomics for antimicrobial resistance-progress and future directions. Antimicrob Agents Chemother 2025; 69:e0108224. [PMID: 40227048 PMCID: PMC12057382 DOI: 10.1128/aac.01082-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Antimicrobial resistance (AMR) is a critical global public health threat, with bacterial pathogens of primary concern. Pathogen genomics has revolutionized the study of bacterial pathogens and provided deep insights into the mechanisms and dissemination of AMR, with the precision of whole-genome sequencing informing better control strategies. However, generating actionable data from genomic surveillance and diagnostic efforts requires integration at the public health and clinical interface that goes beyond academic efforts to identify resistance mechanisms, undertake post hoc analyses of outbreaks, and share data after research publications. In addition to timely genomics data, consideration also needs to be given to epidemiological sampling frames, analysis, and reporting mechanisms that meet International Organization for Standardization (ISO) standards and generation of reports that are interpretable and actionable for public health and clinical "end-users." Importantly, ensuring all countries have equitable access to data and technology is critical, through timely data sharing following the FAIR principles (findable, accessible, interoperable, and re-usable). In this review, we describe (i) advances in genomic approaches for AMR research and surveillance to understand emergence, evolution, and transmission of AMR and the key requirements to enable this work and (ii) discuss emerging and future applications of genomics at the clinical and public health interface, including barriers to implementation. Harnessing advances in genomics-enhanced AMR research and embedding robust and reproducible workflows within clinical and public health practice promises to maximize the impact of pathogen genomics for AMR globally in the coming decade.
Collapse
Affiliation(s)
- Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
| | - Jean Y. H. Lee
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Stefano G. Giulieri
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital, , Melbourne, Victoria, Australia
| | - Christopher H. Connor
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Courtney R. Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P. Carter
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Timothy P. Stinear
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Pan YZ, Chen WT, Jin HR, Liu Z, Gu YY, Wang XR, Wang J, Lin JJ, Zhou Y, Xu LM. Correlation between the interleukin-36 subfamily and gut microbiota in patients with liver cirrhosis: Implications for gut-liver axis imbalance. World J Hepatol 2025; 17:105660. [PMID: 40308824 PMCID: PMC12038412 DOI: 10.4254/wjh.v17.i4.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Liver cirrhosis (LC) affect millions of people worldwide. The pathogenesis of cirrhosis involves complex interactions between immune responses and gut microbiota. Recent studies have highlighted the role of the interleukin-36 (IL-36) subfamily in inflammation and immune regulation. However, the relationship between serum IL-36 subfamily levels and gut microbiota in cirrhosis patients remains unclear. This study aimed to explore the clinical significance of serum IL-36 subfamily levels and their association with gut microbiota in cirrhosis patients. AIM To explore the clinical significance of serum IL-36 subfamily levels and their relationship with gut microbiota among cirrhosis patients. METHODS Sixty-one cirrhosis patients were enrolled from Lihuili Hospital of Ningbo University from May 2022 to November 2023 as the LC group and 29 healthy volunteers as the healthy control (HC) group. The serum expressions of IL-36α, IL-36β, IL-36γ, IL-36Ra, and IL-38 were measured through ELISA, while 16S rRNA gene sequencing was employed to rate microbial community in human fecal samples. RESULTS The serum levels of IL-36α, IL-36γ, IL-36Ra, and IL-38 in the LC group remarkably exceeded those in the HC group (P < 0.05). IL-36α, IL-36γ, and IL-38 were related positively to the Child-Pugh score (P < 0.05) and prominently exceeded those in the Child-Pugh C group (P < 0.05). The absolute abundance of harmful bacteria (Bacteroides, Bifidobacterium, Faecalibacterium) remarkably rose, while the beneficial bacteria (Firmicutes, Bacteroides, Escherichia-Shigella) notably decreased in the LC group (P < 0.05). IL-36α, IL-36γ, and IL-38 related positively to Lactobacillus (P < 0.05), while IL-38 negatively related to Fusicatenibacter (P < 0.05). CONCLUSION IL-36γ and IL-38 show promise as potential biomarkers for LC progression, but further validation is required.
Collapse
Affiliation(s)
- Yi-Zhi Pan
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
- Department of Infectious Diseases and Liver Diseases, People's Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Wan-Ting Chen
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
- Department of Rheumatology and Immunology, Ningbo Hangzhou Bar Hospital, Ningbo 315000, Zhejiang Province, China
| | - Hao-Ran Jin
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Zhen Liu
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying-Ying Gu
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Xin-Ruo Wang
- Department of Infectious Diseases and Liver Diseases, People's Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Jue Wang
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Jing-Jing Lin
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Yan Zhou
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Lan-Man Xu
- Department of Infectious Diseases and Liver Diseases, Lihuili Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
- Department of Infectious Diseases and Liver Diseases, People's Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China.
| |
Collapse
|
4
|
Zhang Z, Zhu L, Zhang H, Yu D, Yin Z, Zhan X. Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites. Int J Mol Sci 2025; 26:3315. [PMID: 40244176 PMCID: PMC11989349 DOI: 10.3390/ijms26073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer's yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer's yeast was selected as the experimental subject, and the digestion of this yeast (Brewer's yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| |
Collapse
|
5
|
Wu L, Xue L, Ding X, Jiang H, Zhang R, Zheng A, Zu Y, Tan S, Wang X, Liu Z. Integrated microbiome and metabolomics analysis reveals the alleviating effect of Pediococcus acidilactici on colitis. Front Vet Sci 2025; 12:1520678. [PMID: 40078208 PMCID: PMC11897304 DOI: 10.3389/fvets.2025.1520678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Colitis is a complicated disease caused by multiple factors, seriously threatening the host health and the development of animal husbandry. Probiotics have been demonstrate to participate in the active regulation of multiple gastrointestinal disease, gut microbiota and metabolism, but research on the efficacy of Pediococcus acidilactici isolated from dogs in alleviating colitis remains scarce. Here, we aimed to investigate the ameliorative effects of Pediococcus acidilactici isolated from dogs on colitis induced by LPS and its underlying molecular mechanisms. For this purpose, we collected colon contents from 15 mice for amplicon sequencing and metabolic analysis. Results showed that Pediococcus acidilactici could relieve the colon damage and cytokine disorder caused by colitis. Microbiome analysis showed that colitis could cause a significant decrease in the gut microbial diversity and abundance, but Pediococcus acidilactici administration could restore the microbial index to the control level. Metabolomics analysis showed that 8 metabolic pathways and 5 (spermine, L-Arginine, 15-Deoxy-Delta12,14-PGJ2, prostaglandin J2, and 15(S)-HETE) metabolites may be involved in the alleviation of colitis by Pediococcus acidilactici. In summary, these findings demonstrated that the positive regulation effect of Pediococcus acidilactici on gut microbiota and metabolism may be one of its underlying mechanisms to alleviate colitis. Additionally, this study also conveyed a vital message that Pediococcus acidilactici isolated from dogs may serve as a promising candidate to ameliorate Pediococcus acidilactici.
Collapse
Affiliation(s)
- Lulu Wu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Lixun Xue
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Ding
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huyan Jiang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, China
| | - Ranran Zhang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Aifang Zheng
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yuan Zu
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shuaishuai Tan
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xin Wang
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Zhigang Liu
- School of Life Sciences, Anqing Normal University, Anqing, China
- Engineering Technology Research Center for Aquatic Organism Conservation and Water Ecosystem Restoration in University of Anhui Province, Anqing, China
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing, China
- Anqing Forestry Technology Innovation Research Institute, Anqing, China
| |
Collapse
|
6
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
LI T, ZHU L, WANG X, TANG J, YANG L, PANG G, LI H, WANG L, DONG Y, ZHAO S, LI Y, LI L. Gut microbial characteristics of the damp-heat constitution: a population-based multicenter cross-sectional study. J TRADIT CHIN MED 2025; 45:140-151. [PMID: 39957168 PMCID: PMC11764936 DOI: 10.19852/j.cnki.jtcm.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVE To investigate the difference in gut microbiota between population with damp-heat constitution (DHC) and balanced constitution (BC). METHODS A multi-centered cross-sectional case-control study was conducted, which included 249 participants with damp-heat constitution or balanced constitution. Baseline information of participants was collected, and stool samples were collected for gut microbiota analysis. Principal coordinate analysis, linear discriminant analysis effect size analysis, receiver operating characteristic, random forest model, and phylogenetic investigation of communities by reconstruction of unobserved states methods were used to reveal the relationship between gut microbiota and the damp-heat constitution. RESULTS Compared to those in the BC group, the richness and diversity of the microbiota, specifically those of several short-chain fatty acid producing genera such as Barnesiella, Coprobacter, and Butyricimonas, were significantly decreased in the DHC group. Regarding biological functions, flavonoid biosynthesis, propanoate metabolism, and nucleotide sugar metabolism were suppressed, while arachidonic acid metabolism and glutathione metabolism were enriched in the DHC group. Finally, a classifier based on the microbiota was constructed to discriminate between the DHC and BC populations. CONCLUSION The gut microbiota of the DHC population exhibits significantly reduced diversity and is closely related to inflammation, metabolic disorders, and liver steatosis, which is consistent with clinical observations, thus serving as a potential diagnostic tool for traditional Chinese medicine constitution discrimination.
Collapse
Affiliation(s)
- Tianxing LI
- 1 Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui ZHU
- 1 Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueke WANG
- 3 the Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun TANG
- 4 Department of Hepatobiliary Spleen and Stomach, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lingling YANG
- 5 Henna Province Hospital of Traditional Chinese Medicine, Henan 450002, China
| | - Guoming PANG
- 6 Department of Endocrinology, Kaifeng Hospital of traditional Chinese Medicine, Kaifeng 475001, China
| | - Huang LI
- 7 State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Liying WANG
- 8 College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang DONG
- 1 Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shipeng ZHAO
- 9 Graduate School of China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingshuai LI
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingru LI
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
8
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Ke Y, Jiang Y, Yuan Y, Chen Y, Huang J, Huang C. Eosinophilic gastrointestinal diseases with overall gastrointestinal tract causing liver abscess in an older patient: a case report and literature review. BMC Geriatr 2024; 24:945. [PMID: 39548381 PMCID: PMC11566447 DOI: 10.1186/s12877-024-05541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Eosinophilic gastrointestinal diseases are the rare gastrointestinal disorders. To our knowledge, there have been no reports of eosinophilic gastrointestinal diseases with overall gastrointestinal tract involvement causing liver abscess in an older patient. CASE PRESENTATION We report a 68-year-old man with eosinophilic gastrointestinal disease with overall gastrointestinal tract involvement. He was admitted with suspected acute gastroenteritis, and histological examination showed eosinophilic infiltration accompanied by liver abscess. The collected pus was tested for Metagenomics Next-Generation Sequencing and confirmed the presence of Klebsiella pneumoniae. CONCLUSIONS We conducted a literature review on the complications of eosinophilic gastrointestinal diseases and discussed how eosinophilic gastrointestinal diseases lead to liver abscess caused by Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Yifan Ke
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Jiang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuping Yuan
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yihan Chen
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianbin Huang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chunwei Huang
- Gastroenterology Department, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China.
- The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, 325000, China.
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
10
|
Yu X, Xiong T, Yu L, Liu G, Yang F, Li X, Wei Y, Wang X, Wei S, Jiang Y, Kong X, Ren S, Shi Y. Gut microbiome and metabolome profiling in coal workers' pneumoconiosis: potential links to pulmonary function. Microbiol Spectr 2024; 12:e0004924. [PMID: 39283109 PMCID: PMC11537036 DOI: 10.1128/spectrum.00049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/02/2024] [Indexed: 11/07/2024] Open
Abstract
Coal workers' pneumoconiosis (CWP) is a severe occupational disease resulting from prolonged exposure to coal dust. However, its pathogenesis remains elusive, compounded by a lack of early detection markers and effective treatments. Although the impact of gut microbiota on lung diseases is acknowledged, its specific role in CWP is unclear. This study aims to explore changes in the gut microbiome and metabolome in CWP, while also assessing the correlation between gut microbes and alterations in lung function. Fecal specimens from 43 CWP patients and 48 dust-exposed workers (DEW) were examined using 16S rRNA gene sequencing for microbiota and liquid chromatography-mass spectrometry for metabolite profiling. We observed similar gut microbial α-diversity but significant differences in flora composition (β-diversity) between patients with CWP and the DEW group. After adjusting for age using multifactorial linear regression analysis (MaAsLin2), the distinct gut microbiome profile in CWP patients revealed an increased presence of pro-inflammatory microorganisms such as Klebsiella and Haemophilus. Furthermore, in CWP patients, alterations in gut microbiota-particularly reduced α-diversity and changes in microbial composition-were significantly correlated with impaired pulmonary function, a relationship not observed in DEW. This underscores the specific impact of gut microbiota on pulmonary health in individuals with CWP. Metabolomic analysis of fecal samples from CWP patients and DEW identified 218 differential metabolites between the two groups, with a predominant increase in metabolites in CWP patients, suggesting enhanced metabolic activity in CWP. Key altered metabolites included various lipids, amino acids, and organic compounds, with silibinin emerging as a potential biomarker. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis linked these metabolites to pathways relevant to the development of pulmonary fibrosis. Additionally, studies on the interaction between microbiota and metabolites showed positive correlations between certain bacteria and increased metabolites in CWP, further elucidating the complex interplay in this disease state. Our findings suggest a potential contributory role of gut microbiota in CWP pathogenesis through metabolic regulation, with implications for diagnostic biomarkers and understanding disease mechanisms, warranting further molecular investigation. IMPORTANCE The findings have significant implications for the early diagnosis and treatment of coal workers' pneumoconiosis, highlighting the potential of gut microbiota as diagnostic biomarkers. They pave the way for new research into gut microbiota-based therapeutic strategies, potentially focusing on modifying gut microbiota to mitigate disease progression.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Xiong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lu Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaisheng Liu
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Fan Yang
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Xueqin Li
- Department of Respiratory Medicine, Jincheng General Hospital, Shanxi, China
| | - Yangyang Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojing Wang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuting Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Jiang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Tsugawa H, Tsubaki S, Tanaka R, Nashimoto S, Imai J, Matsuzaki J, Hozumi K. Macrophage-depleted young mice are beneficial in vivo models to assess the translocation of Klebsiella pneumonia from the gastrointestinal tract to the liver in the elderly. Microbes Infect 2024; 26:105371. [PMID: 38849070 DOI: 10.1016/j.micinf.2024.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Pathobionts are commensal intestinal microbiota capable of causing systemic infections under specific conditions, such as environmental changes or aging. However, it is unclear how pathobionts are recognized by the intestinal mucosal immune system under physiological conditions. This study demonstrates that the gut pathobiont Klebsiella pneumoniae causes injury to the epithelium and translocates to the liver in specific pathogen-free mice treated with clodronate-liposomes that depleted macrophages. In the clodronate-liposome-treated mice, indigenous classical K. pneumoniae (cKp) with non-K1/K2 capsular serotypes were isolated from the liver, indicating that gut commensal cKp translocated from the gastrointestinal tract to the liver due to the depletion of intestinal macrophages. Oral inoculation of isolated cKp to clodronate-liposome-treated mice significantly reduced the survival rates compared to that of non-treated mice. Our findings demonstrate that intestinal mucosal macrophages play a pivotal role in sensing commensal cKp and suppressing their translocation to the liver. This study demonstrates that clodronate-liposome-treated mouse models are effective for screening and evaluating drugs that prevent the translocation of cKp to the liver, providing new insights into the development of preventive protocols against K. pneumoniae infection.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan.
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Sho Nashimoto
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Jin Imai
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, 105-8512, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| |
Collapse
|
12
|
You X, Wang L, Wang H, Xu Y, Chen Y, Xu H, Ji X, Ma X, Xu X. Liver abscess induced by intestinal hypervirulent Klebsiella pneumoniae through down-regulation of tryptophan-IPA-IL22 axis. iScience 2024; 27:110849. [PMID: 39429788 PMCID: PMC11490733 DOI: 10.1016/j.isci.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a significant causative agent of invasive hepatic abscess syndrome in Asia, presenting substantial clinical challenges due to its intricate pathogenesis. This study revealed the crucial role of the gut microbiota in fortifying the host's defense against hvKp infection by enhancing interleukin-22 (IL-22), probably through regulating downstream antimicrobial peptides such as Reg3β. In antibiotic-treated mice, we observed that gut microbiota disruption impaired the transformation of tryptophan to indole, a key ligand for the aryl hydrocarbon receptor (AhR), consequently affecting the regulatory functions of IL-22. Our experimental findings revealed that administering rIL-22 or indole propionic acid notably diminished the translocation of hvKp from the intestine to the liver. This research not only underscores the pivotal role of the gut microbiome in modulating tryptophan metabolism and the IL-22 pathway but also highlights its critical function in preventing hvKp migration from the colon to the liver.
Collapse
Affiliation(s)
- Xiu You
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yizheng Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Sichuan Orthopedic Hospital, Chengdu, Sichuan 610000, China
| | - Yongzheng Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huizhen Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangsong Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Sugiura K, Fujita H, Komine M, Yamanaka K, Akiyama M. The role of interleukin-36 in health and disease states. J Eur Acad Dermatol Venereol 2024; 38:1910-1925. [PMID: 38779986 DOI: 10.1111/jdv.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
The interleukin (IL)-1 superfamily upregulates immune responses and maintains homeostasis between the innate and adaptive immune systems. Within the IL-1 superfamily, IL-36 plays a pivotal role in both innate and adaptive immune responses. Of the four IL-36 isoforms, three have agonist activity (IL-36α, IL-36β, IL-36γ) and the fourth has antagonist activity (IL-36 receptor antagonist [IL-36Ra]). All IL-36 isoforms bind to the IL-36 receptor (IL-36R). Binding of IL-36α/β/γ to the IL-36R recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates downstream signalling pathways mediated by nuclear transcription factor kappa B and mitogen-activated protein kinase signalling pathways. Antagonist binding of IL-36Ra to IL-36R inhibits recruitment of IL-1RAcP, blocking downstream signalling pathways. Changes in the balance within the IL-36 cytokine family can lead to uncontrolled inflammatory responses throughout the body. As such, IL-36 has been implicated in numerous inflammatory diseases, notably a type of pustular psoriasis called generalized pustular psoriasis (GPP), a chronic, rare, potentially life-threatening, multisystemic skin disease characterised by recurrent fever and extensive sterile pustules. In GPP, IL-36 is central to disease pathogenesis, and the prevention of IL-36-mediated signalling can improve clinical outcomes. In this review, we summarize the literature describing the biological functions of the IL-36 pathway. We also consider the evidence for uncontrolled activation of the IL-36 pathway in a wide range of skin (e.g., plaque psoriasis, pustular psoriasis, hidradenitis suppurativa, acne, Netherton syndrome, atopic dermatitis and pyoderma gangrenosum), lung (e.g., idiopathic pulmonary fibrosis), gut (e.g., intestinal fibrosis, inflammatory bowel disease and Hirschsprung's disease), kidney (e.g., renal tubulointerstitial lesions) and infectious diseases caused by a variety of pathogens (e.g., COVID-19; Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pneumoniae infections), as well as in cancer. We also consider how targeting the IL-36 signalling pathway could be used in treating inflammatory disease states.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Fujita
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
15
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella pneumoniae-colonized patients. mSystems 2024; 9:e0078624. [PMID: 38975759 PMCID: PMC11334466 DOI: 10.1128/msystems.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious K. pneumoniae, little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of K. pneumoniae-colonized intensive care and hematology/oncology patients. Cases were K. pneumoniae-colonized patients infected by their colonizing strain (N = 83). Controls were K. pneumoniae-colonized patients who remained asymptomatic (N = 149). First, we characterized the gut community structure of K. pneumoniae-colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. K. pneumoniae relative abundance, a known risk factor for infection, had the greatest feature importance, but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype data enhanced the ability of machine learning models to discriminate cases and controls. Interestingly, inclusion of patient clinical variables failed to improve the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with K. pneumoniae-derived biomarkers improves our ability to classify infection in K. pneumoniae-colonized patients.IMPORTANCEColonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients who develop an infection versus those who do not. Additionally, we show that integrating gut microbiota data with bacterial factors improves the ability to classify infections. Surprisingly, patient clinical factors were not useful for classifying infections alone or when added to microbiota-based models. This indicates that the bacterial genotype and the microbial community in which it exists may determine the progression to infection. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Chen Y, Xiao L, Zhou M, Zhang H. The microbiota: a crucial mediator in gut homeostasis and colonization resistance. Front Microbiol 2024; 15:1417864. [PMID: 39165572 PMCID: PMC11333231 DOI: 10.3389/fmicb.2024.1417864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiota is a complex and diverse community of microorganisms that colonizes the human gastrointestinal tract and influences various aspects of human health. These microbes are closely related to enteric infections. As a foreign entity for the host, commensal microbiota is restricted and regulated by the barrier and immune system in the gut and contributes to gut homeostasis. Commensals also effectively resist the colonization of pathogens and the overgrowth of indigenous pathobionts by utilizing a variety of mechanisms, while pathogens have developed strategies to subvert colonization resistance. Dysbiosis of the microbial community can lead to enteric infections. The microbiota acts as a pivotal mediator in establishing a harmonious mutualistic symbiosis with the host and shielding the host against pathogens. This review aims to provide a comprehensive overview of the mechanisms underlying host-microbiome and microbiome-pathogen interactions, highlighting the multi-faceted roles of the gut microbiota in preventing enteric infections. We also discuss the applications of manipulating the microbiota to treat infectious diseases in the gut.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ling Xiao
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Min Zhou
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Huang Q, Yang G, Tang C, Dou B, Hu Y, Liu H, Wu X, Zhang H, Wang H, Xu L, Yang XD, Xu Y, Zheng Y. Rujin Jiedu decoction protects against influenza virus infection by modulating gut microbiota. Heliyon 2024; 10:e34055. [PMID: 39071618 PMCID: PMC11277438 DOI: 10.1016/j.heliyon.2024.e34055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Rujin Jiedu decoction (RJJDD) is a classical prescription of Traditional Chinese Medicine that has long been applied to treat pneumonia caused by external infection, but whether and how it benefits influenza virus therapy remains largely unclear. The aim of this study was to investigate the anti-inflammatory effect of RJJDD on the mouse model of influenza and to explore its potential mechanism. Methods The mice were mock-infected with PBS or infected with PR8 virus followed by treatment with RJJDD or antiviral oseltamivir. The weight loss and morbidity of mice were monitored daily. Network pharmacology is used to explore the potential pathways that RJJDD may modulate. qRT-PCR and ELISA were performed to assess the expression of inflammatory cytokines in the lung tissue and macrophages. The intestinal feces were collected for 16S rDNA sequencing to assess the changes in gut microbiota. Results We demonstrate that RJJDD protects against IAV-induced pneumonia. Comprehensive network pharmacology analyses of the Mass Spec-identified components of RJJDD suggest that RJJDD may act through down-regulating key signaling pathways producing inflammatory cytokines, which was experimentally confirmed by cytokine expression analysis in IAV-infected mouse lung tissues and IAV single-strand RNA mimic R837-induced macrophages. Furthermore, gut microbiota analysis indicates that RJJDD prevented IAV-induced dysbiosis of host intestinal flora, thereby offering a mechanistic explanation for RJJDD's efficacy in influenza pneumonia. Conclusion This study defines a previously uncharacterized role for RJJDD in protecting against influenza likely by maintaining homeostasis of gut microbiota, and provides a new therapeutic option for severe influenza.
Collapse
Affiliation(s)
- Qilin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Biao Dou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanwu Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
18
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
19
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
20
|
Yang J, Qin K, Wang Q, Yang X. Deciphering the nutritional strategies for polysaccharides effects on intestinal barrier in broilers: Selectively promote microbial ecosystems. Int J Biol Macromol 2024; 264:130677. [PMID: 38458298 DOI: 10.1016/j.ijbiomac.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The gut microbiota, a complex and dynamic microbial ecosystem, plays a crucial role in regulating the intestinal barrier. Polysaccharide foraging is specifically dedicated to establishing and maintaining microbial communities, contributing to the shaping of the intestinal ecosystem and ultimately enhancing the integrity of the intestinal barrier. The utilization and regulation of individual polysaccharides often rely on distinct gut-colonizing bacteria. The products of their metabolism not only benefit the formation of the ecosystem but also facilitate cross-feeding partnerships. In this review, we elucidate the mechanisms by which specific bacteria degrade polysaccharides, and how polysaccharide metabolism shapes the microbial ecosystem through cross-feeding. Furthermore, we explore how selectively promoting microbial ecosystems and their metabolites contributes to improvements in the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
21
|
Dörner PJ, Anandakumar H, Röwekamp I, Fiocca Vernengo F, Millet Pascual-Leone B, Krzanowski M, Sellmaier J, Brüning U, Fritsche-Guenther R, Pfannkuch L, Kurth F, Milek M, Igbokwe V, Löber U, Gutbier B, Holstein M, Heinz GA, Mashreghi MF, Schulte LN, Klatt AB, Caesar S, Wienhold SM, Offermanns S, Mack M, Witzenrath M, Jordan S, Beule D, Kirwan JA, Forslund SK, Wilck N, Bartolomaeus H, Heimesaat MM, Opitz B. Clinically used broad-spectrum antibiotics compromise inflammatory monocyte-dependent antibacterial defense in the lung. Nat Commun 2024; 15:2788. [PMID: 38555356 PMCID: PMC10981692 DOI: 10.1038/s41467-024-47149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.
Collapse
Affiliation(s)
- Patrick J Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josua Sellmaier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Brüning
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | | | - Lennart Pfannkuch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Vanessa Igbokwe
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Holstein
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | - Leon N Schulte
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German center for lung research (DZL), Marburg, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German center for lung research (DZL), Berlin, Germany
| | - Stefan Jordan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German center for lung research (DZL), Berlin, Germany.
| |
Collapse
|
22
|
Assoni L, Couto AJM, Vieira B, Milani B, Lima AS, Converso TR, Darrieux M. Animal models of Klebsiella pneumoniae mucosal infections. Front Microbiol 2024; 15:1367422. [PMID: 38559342 PMCID: PMC10978692 DOI: 10.3389/fmicb.2024.1367422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Klebsiella pneumoniae is among the most relevant pathogens worldwide, causing high morbidity and mortality, which is worsened by the increasing rates of antibiotic resistance. It is a constituent of the host microbiota of different mucosa, that can invade and cause infections in many different sites. The development of new treatments and prophylaxis against this pathogen rely on animal models to identify potential targets and evaluate the efficacy and possible side effects of therapeutic agents or vaccines. However, the validity of data generated is highly dependable on choosing models that can adequately reproduce the hallmarks of human diseases. The present review summarizes the current knowledge on animal models used to investigate K. pneumoniae infections, with a focus on mucosal sites. The advantages and limitations of each model are discussed and compared; the applications, extrapolations to human subjects and future modifications that can improve the current techniques are also presented. While mice are the most widely used species in K. pneumoniae animal studies, they present limitations such as the natural resistance to the pathogen and difficulties in reproducing the main steps of human mucosal infections. Other models, such as Drosophila melanogaster (fruit fly), Caenorhabditis elegans, Galleria mellonella and Danio rerio (zebrafish), contribute to understanding specific aspects of the infection process, such as bacterial lethality and colonization and innate immune system response, however, they but do not present the immunological complexity of mammals. In conclusion, the choice of the animal model of K. pneumoniae infection will depend mainly on the questions being addressed by the study, while a better understanding of the interplay between bacterial virulence factors and animal host responses will provide a deeper comprehension of the disease process and aid in the development of effective preventive/therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
23
|
Silva-Bea S, Romero M, Parga A, Fernández J, Mora A, Otero A. Comparative analysis of multidrug-resistant Klebsiella pneumoniae strains of food and human origin reveals overlapping populations. Int J Food Microbiol 2024; 413:110605. [PMID: 38308879 DOI: 10.1016/j.ijfoodmicro.2024.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Given the increasing incidence of multidrug-resistant (MDR) Klebsiella pneumoniae infections, it is of great interest to investigate the risk of transmission associated with the prevalence of this pathogen. Some studies have described fresh raw poultry meat as a reservoir of MDR K. pneumoniae, including clinically relevant sequence types (ST) and extended-spectrum β-lactamase (ESBL) strains, indicating possible consumer exposure. This study compared 47 MDR strains of K. pneumoniae from poultry meat and human clinical isolates to assess similarities, including analysis of antimicrobial resistance profiles and virulence factors involved in infection. In addition, several biofilm culture methods were evaluated for reproducible assessment of biofilm formation in K. pneumoniae strains. Globally, no association between strain origin and STs, hypermucoviscosity, biofilm formation or serum resistance could be found between isolates of food and clinical origin, nor an associated AMR pattern, suggesting overlapping populations. We found that LB supplemented with glucose in microaerobiosis was the best discrimination condition for biofilm formation in the active attachment biofilm cultivation model. The biofilm formation capacity was strongly dependent on culture conditions, with a strain-specific response, but only a minor increase in biofilm levels was recorded in clinical K. pneumoniae populations. Our results suggest that a similar risk of zoonosis transmission from potentially virulent foodborne strains previously observed in E. coli is also present in this high-priority pathogen. This study further confirms that foodborne isolates of K. pneumoniae pose a risk to consumers and therefore this pathogen should be included in the surveillance of foodborne pathogens with high risk of MDR infections and therapeutic failure.
Collapse
Affiliation(s)
- Sergio Silva-Bea
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
25
|
Sun W, Zhou T, Ding P, Guo L, Zhou X, Long K. Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol 2024; 14:1347110. [PMID: 38426014 PMCID: PMC10902173 DOI: 10.3389/fcimb.2024.1347110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Background Increasing evidence suggests a close association between the intestinal microbiome and the respiratory system, drawing attention to studying the gut-lung axis. This research employs bibliometric methods to conduct a visual analysis of literature in the field of intestinal microbiota and lung diseases over the past two decades. It offers scientific foundations for research directions and critical issues in this field. Methods We retrieved all articles on intestinal microbiota and lung diseases from the SCI-Expanded of WoSCC on October 25, 2023. The analysis included original articles and reviews published in English from 2011 to 2023. We utilized Python, VOSviewer, and CiteSpace to analyze the retrieved data visually. Results A total of 794 publications were analyzed. China ranked first in the number of publications, while the United States had the highest citations and H-index. Jian Wang was the most prolific author. Zhejiang University was the institution with the highest number of publications. Frontiers in Microbiology was the journal with the most publications. Author keywords appearing more than 100 times included "intestinal microbiota/microbiome", "microbiota/microbiome", and "gut-lung axis". Conclusion The correlation and underlying mechanisms between intestinal microbiota and lung diseases, including asthma, COPD, lung cancer, and respiratory infections, remain hot topics in research. However, understanding the mechanisms involving the gut-lung axis is still in its infancy and requires further elucidation.
Collapse
Affiliation(s)
- Weiting Sun
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Ding
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuxue Guo
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, Pamer EG, Prados J, Chen L, Becattini S. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes 2024; 16:2340486. [PMID: 38659243 PMCID: PMC11057644 DOI: 10.1080/19490976.2024.2340486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.
Collapse
Affiliation(s)
- Clement David
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aleksander Czauderna
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sohn G. Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Eric G. Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julien Prados
- Bioinformatics Support Platform for data analysis, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Spragge F, Bakkeren E, Jahn MT, Araujo EBN, Pearson CF, Wang X, Pankhurst L, Cunrath O, Foster KR. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023; 382:eadj3502. [PMID: 38096285 PMCID: PMC7616675 DOI: 10.1126/science.adj3502] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity. Moreover, this community-level resistance rested critically upon certain species being present. We explained these ecological patterns through the collective ability of resistant communities to consume nutrients that overlap with those used by the pathogen. Furthermore, we applied our findings to successfully predict communities that resist a novel target strain. Our work provides a reason why microbiome diversity is beneficial and suggests a route for the rational design of pathogen-resistant communities.
Collapse
Affiliation(s)
- Frances Spragge
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Erik Bakkeren
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Martin T. Jahn
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | | | | | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Louise Pankhurst
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Olivier Cunrath
- CNRS, UMR7242, Biotechnology and cell signaling, University of Strasbourg, Illkirch, France
| | - Kevin R. Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
28
|
Griem-Krey H, Petersen C, Hamerich IK, Schulenburg H. The intricate triangular interaction between protective microbe, pathogen and host determines fitness of the metaorganism. Proc Biol Sci 2023; 290:20232193. [PMID: 38052248 PMCID: PMC10697802 DOI: 10.1098/rspb.2023.2193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The microbiota shapes host biology in numerous ways. One example is protection against pathogens, which is likely critical for host fitness in consideration of the ubiquity of pathogens. The host itself can affect abundance of microbiota or pathogens, which has usually been characterized in separate studies. To date, however, it is unclear how the host influences the interaction with both simultaneously and how this triangular interaction determines fitness of the host-microbe assemblage, the so-called metaorganism. To address this current knowledge gap, we focused on a triangular model interaction, consisting of the nematode Caenorhabditis elegans, its protective symbiont Pseudomonas lurida MYb11 and its pathogen Bacillus thuringiensis Bt679. We combined the two microbes with C. elegans mutants with altered immunity and/or microbial colonization, and found that (i) under pathogen stress, immunocompetence has a larger influence on metaorganism fitness than colonization with the protective microbe; (ii) in almost all cases, MYb11 still improves fitness; and (iii) disruption of p38 MAPK signalling, which contributes centrally to immunity against Bt679, completely reverses the protective effect of MYb11, which further reduces nematode survival and fitness upon infection with Bt679. Our study highlights the complex interplay between host, protective microbe and pathogen in shaping metaorganism biology.
Collapse
Affiliation(s)
- Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
- Antibiotic resistance group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
29
|
Xie Y, Xu D, Yan S, Hu X, Chen S, Guo K, Wang J, Chen Q, Guan W. The impact of MIF deficiency on alterations of fecal microbiota in C57BL/6 mice induced by Trichinella spiralis infection. FASEB J 2023; 37:e23202. [PMID: 37732633 DOI: 10.1096/fj.202300179rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Trichinellosis caused by Trichinella spiralis (T. spiralis) is a major food-borne parasitic zoonosis worldwide. Prevention of trichinellosis is an effective strategy to improve patient quality of life. Macrophage migration inhibitory factor (MIF) is closely related to the occurrence and development of several parasitic diseases. Studying the impact of MIF deficiency (Mif-/- ) on the alterations in host fecal microbiota due to T. spiralis infection may contribute to proposing a novel dual therapeutic approach for trichinellosis. To reveal the diversity and differences in fecal microbial composition, feces were collected from T. spiralis-uninfected and T. spiralis-infected wild-type (WT) and MIF knockout (KO) C57BL/6 mice at 0, 7, 14, and 35 days post-infection (dpi), and the samples were sent for 16S rRNA amplicon sequencing on the Illumina NovaSeq platform. Flow cytometry was used to determine the expression levels of IFN-γ and IL-4 in the CD4+ /CD8+ T-cell sets of mouse spleens. The results showed that operational taxonomic unit (OTU) clustering, relative abundance of microbial composition, alpha diversity, and beta diversity exhibited significant changes among the eight groups. The LEfSe analysis selected several potential biomarkers at the genus or species level, including Akkermansia muciniphila, Lactobacillus murinus, Coprococcus catus, Firmicutes bacterium M10_2, Parabacteroides sp. CT06, and Bacteroides between the KTs and WTs groups. The predicted bacterial functions of the fecal microbiota were mainly involved in metabolism, such as the metabolism of carbohydrates, amino acids, energy, cofactors, vitamins, nucleotides, glycans, and lipids. Flow cytometry revealed an increased CD3+ CD8- /CD3+ CD8+ T-cell ratio and increased IFN-γ and IL-4 levels in CD3+ CD8- T-cell sets from WT and MIF KO mice at 7 dpi. The results indicated that both MIF KO and infection time have a significant influence on the CD3+ CD8- IFN-γ+ and CD3+ CD8- IL-4+ response in mice after T. spiralis. In conclusion, this research showed alterations of the fecal microbiota and immune response in both WT and MIF KO mice before and after T. spiralis infection. These results revealed a potential role of MIF in regulating the pathogenesis of trichinellosis related to the intestinal microbiota. Importantly, the selected potential biomarkers combined with MIF will also offer a novel therapeutic approach to treat trichinellosis in the future.
Collapse
Affiliation(s)
- Yiting Xie
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Siyi Yan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Xinyi Hu
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Sirui Chen
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Kun Guo
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Qinghai Chen
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
30
|
Jordan CKI, Brown RL, Larkinson MLY, Sequeira RP, Edwards AM, Clarke TB. Symbiotic Firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity. Cell Host Microbe 2023; 31:1433-1449.e9. [PMID: 37582375 DOI: 10.1016/j.chom.2023.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
The intestinal microbiota regulates immunity across organ systems. Which symbionts control systemic immunity, the mechanisms they use, and how they avoid widespread inflammatory damage are unclear. We uncover host tolerance and resistance mechanisms that allow Firmicutes from the human microbiota to control systemic immunity without inducing immunopathology. Intestinal processing releases Firmicute glycoconjugates that disseminate, resulting in release of cytokine IL-34 that stimulates macrophages and enhances defenses against pneumonia, sepsis, and meningitis. Despite systemic penetration of Firmicutes, immune homeostasis is maintained through feedback control whereby IL-34-mediated mTORC1 activation in macrophages clears polymeric glycoconjugates from peripheral tissues. Smaller glycoconjugates evading this clearance mechanism are tolerated through sequestration by albumin, which acts as an inflammatory buffer constraining their immunological impact. Without these resistance and tolerance mechanisms, Firmicutes drive catastrophic organ damage and cachexia via IL-1β. This reveals how Firmicutes are safely assimilated into systemic immunity to protect against infection without threatening host viability.
Collapse
Affiliation(s)
- Christine K I Jordan
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Rebecca L Brown
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Max L Y Larkinson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Richard P Sequeira
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Thomas B Clarke
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
31
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Woodall CA, Hammond A, Cleary D, Preston A, Muir P, Pascoe B, Sheppard SK, Hay AD. Oral and gut microbial biomarkers of susceptibility to respiratory tract infection in adults: A feasibility study. Heliyon 2023; 9:e18610. [PMID: 37593638 PMCID: PMC10432180 DOI: 10.1016/j.heliyon.2023.e18610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
We conducted a feasibility cohort study which aimed to recruit and retain adults from the community to collect saliva (oral) and stool (gut) samples at three time points, at the start of the study (baseline), during a respiratory tract infection (RTI) and post-RTI. Community RTIs place a huge burden on health care services, and a non-invasive microbial diagnostic tool to predict the most vulnerable to respiratory infection would be ideal. To this aim, we analysed oral-gut baseline samples comparing those who reported RTI symptoms to those who remained healthy throughout the study for microbial biomarkers of respiratory susceptibility. Amplicon sequence variants (ASV) were identified by 16S sequence profiling to reveal oral-gut microbes. Reverse transcriptase-polymerase chain reaction (RT-PCR) was applied to target common respiratory microbes. Two general practices were recruited, and the participant recruitment rate was 1.3%. A total of 40 adult participants were retained, of which 19 acquired an RTI whereas 21 remained healthy. In healthy baseline oral and gut samples, ASVs from participants with RTI symptoms compared to those who remained healthy were similar with a high relative abundance of Streptococcus sp., and Blautia sp., respectively. Linear discriminant analysis effect size (LEfSe) revealed baseline oral microbes differed, indicating participants who suffered RTI symptoms had enhanced Streptococcus sobrinus and Megamonas sp., and depletion of Lactobacillus salivarius, Synergistetes, Verrucomicrobia and Dethiosulfovibrio. Furthermore, a random forest model ranked Streptococcus (4.13) as the highest mean decrease in accuracy (MDA) and RT-PCR showed a higher level of carriage of coagulase-negative Staphylococcus. Baseline core gut microbes were similar in both participant groups whereas LEfSe analysis revealed enhanced Veillonella, Rikenellaceae, Enhydobacteria, Eggerthella and Xanthomonsdales and depleted Desulfobulbus and Coprobacillus. Sutterella (4.73) had a high MDA value. Overall, we demonstrated the feasibility of recruiting and retaining adult participants from the community to provide multiple biological samples for microbial profiling. Our analyses identified potential oral-gut microbial biomarkers of respiratory infection susceptibility in otherwise healthy participants.
Collapse
Affiliation(s)
- Claire A. Woodall
- School of Cellular and Molecular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Hammond
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - David Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Peter Muir
- Public Health England, Southwest Regional Laboratory, National Infection Service, Southmead Hospital, Bristol, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Alastair D. Hay
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
33
|
Liang Z, Hao Y, Yang L, Yuan P, Kang W, Liang T, Gu B, Dong B. The potential of Klebsiella and Escherichia-Shigella and amino acids metabolism to monitor patients with postmenopausal osteoporosis in northwest China. BMC Microbiol 2023; 23:199. [PMID: 37495941 PMCID: PMC10373412 DOI: 10.1186/s12866-023-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Intestinal flora has been proposed to mediate the occurrence of postmenopausal osteoporosis (PMO). However, the mechanism by which microbes and their metabolites interactively promote PMO remains unknown. METHODS This study aimed to investigate changes in the intestinal flora and associated metabolites, and their role in PMO. 16S rRNA gene sequencing and metabolomics were performed to obtain postmenopausal women with osteopenia (lower bone mass, LBM), postmenopausal women with osteoporosis (OST), and healthy women as the control group. RESULTS We identified taxa-specific and metabolite differences in the intestinal flora of the participants of this study. The pathogenic bacteria Klebsiella (0.59% and 0.71%, respectively) and Escherichia-Shigella (2.72% and 4.30%, respectively) were enriched in the LBM and OST groups (p < 0.05). Some short-chain fatty acid (SCFAs) producing bacteria, Lactobacillus, Akkermansia, Prevotella, Alistipes, and Butyricicoccus, were reduced in patients with LBM and OST compared to the control. Moreover, fecal metabolomic analyses suggested that the metabolites of indole-3-acetic acid and 7-ketodeoxycholic acid were altered in the LBM and OST groups compared to the control (p < 0.05). Enrichment analysis suggested that valine, leucine, and isoleucine biosynthesis; aromatic amino acid biosynthesis; and phenylalanine metabolism were significantly associated with the identified microbiota biomarkers and OST. Moreover, metabolite marker signatures distinguished patients in the OST from those in the control group with an area under the curve (AUC) of 0.978 and 1.00 in the negative and positive ion modes, respectively. Finally, we also found that the fecal level of interleukin-10 (IL-10) in the OST group was significantly lower than that in the control group and LBM group (p < 0.05), while tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly higher in the OST group than that in the control group (p < 0.05). CONCLUSIONS This study provides robust evidence connecting the intestinal flora and fecal metabolomics with PMO. Integrated metabolite and microbiota analyses demonstrated that in addition to dysregulated bacteria, indole-3-acetic acid, 7-ketodeoxycholic acid, and other metabolites can be used for the distinguish of LBM and PMO.
Collapse
Affiliation(s)
- Zhuang Liang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Yuqi Hao
- Department of Internal Medicine, Ordos Traditional Chinese Medicine Hospital, Ordos, 017000, Inner Mongolia, China
| | - Lei Yang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Puwei Yuan
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Wulin Kang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China
| | - Tingting Liang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Bo Dong
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
34
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, Torres TP, David HE, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546471. [PMID: 37425782 PMCID: PMC10326984 DOI: 10.1101/2023.06.25.546471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.
Collapse
|
35
|
Tsugawa H, Ohki T, Tsubaki S, Tanaka R, Matsuzaki J, Suzuki H, Hozumi K. Gas6 ameliorates intestinal mucosal immunosenescence to prevent the translocation of a gut pathobiont, Klebsiella pneumoniae, to the liver. PLoS Pathog 2023; 19:e1011139. [PMID: 37289655 DOI: 10.1371/journal.ppat.1011139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023] Open
Abstract
Immunosenescence refers to the development of weakened and/or dysfunctional immune responses associated with aging. Several commensal bacteria can be pathogenic in immunosuppressed individuals. Although Klebsiella pneumoniae is a commensal bacterium that colonizes human mucosal surfaces, the gastrointestinal tract, and the oropharynx, it can cause serious infectious diseases, such as pneumonia, urinary tract infections, and liver abscesses, primarily in elderly patients. However, the reason why K. pneumoniae is a more prevalent cause of infection in the elderly population remains unclear. This study aimed to determine how the host's intestinal immune response to K. pneumoniae varies with age. To this end, the study analyzed an in vivo K. pneumoniae infection model using aged mice, as well as an in vitro K. pneumoniae infection model using a Transwell insert co-culture system comprising epithelial cells and macrophages. In this study, we demonstrate that growth arrest-specific 6 (Gas6), released by intestinal macrophages that recognize K. pneumoniae, inhibits bacterial translocation from the gastrointestinal tract by enhancing tight-junction barriers in the intestinal epithelium. However, in aging mice, Gas6 was hardly secreted under K. pneumoniae infection due to decreasing intestinal mucosal macrophages; therefore, K. pneumoniae can easily invade the intestinal epithelium and subsequently translocate to the liver. Moreover, the administration of Gas6 recombinant protein to elderly mice prevented the translocation of K. pneumoniae from the gastrointestinal tract and significantly prolonged their survival. From these findings, we conclude that the age-related decrease in Gas6 secretion in the intestinal mucosa is the reason why K. pneumoniae can be pathogenic in the elderly, thereby indicating that Gas6 could be effective in protecting the elderly against infectious diseases caused by gut pathogens.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Takuto Ohki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
36
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Luchen CC, Chibuye M, Spijker R, Simuyandi M, Chisenga C, Bosomprah S, Chilengi R, Schultsz C, Mende DR, Harris VC. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med 2023; 20:e1004235. [PMID: 37368871 PMCID: PMC10298773 DOI: 10.1371/journal.pmed.1004235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. METHODS AND FINDINGS In this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations. CONCLUSION In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.
Collapse
Affiliation(s)
- Charlie C. Luchen
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mwelwa Chibuye
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rene Spijker
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
- Republic of Zambia State House, Lusaka, Zambia
| | - Constance Schultsz
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Daniel R. Mende
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Vanessa C. Harris
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Zhang J, Luo Y, Feng S, Sun W, Li S, Kong L. Effects of liposoluble components of highland barley spent grains on physiological indexes, intestinal microorganisms, and the liver transcriptome in mice fed a high-fat diet. Food Sci Nutr 2023; 11:3096-3110. [PMID: 37324893 PMCID: PMC10261781 DOI: 10.1002/fsn3.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/17/2023] Open
Abstract
The purpose of this study was to investigate the effects of the active ingredients of barley lees on the physiological indexes, intestinal flora, and liver transcriptome of mice fed a high-fat diet. Twenty-four male C57BL/6J mice were randomly divided into 4 groups and fed the experimental diets for 5 weeks. The results showed that the fat-soluble components of distillers' grains significantly reduced body weight, abdominal fat, perirenal fat, blood glucose, low-density lipoprotein cholesterol, triglycerides, and total cholesterol in the high-fat diet-fed mice (p < .05), significantly decreased alanine aminotransferase and malondialdehyde levels, and significantly increased total superoxide dismutase, catalase, reduced glutathione and glutathione peroxidase levels (p < .05). At the phylum level, lipid-soluble components significantly increased the abundance of Bacteroidetes and decreased the Firmicutes/Bacteroidetes ratio. At the genus level, the relative abundances of Bacteroidetes and Clostridium were increased. Transcriptomic analysis showed that lipid-soluble components of spent grains reduced the mRNA expression of ANGPTL8, CD36, PLTP, and SOAT1 and increased the mRNA expression of CYP7A1 and ABCA1 in the cholesterol metabolism pathway, promoted the transport of cholesterol, and inhibited the absorption of cholesterol, which can decrease cholesterol levels by speeding up the conversion of cholesterol into bile acids.
Collapse
Affiliation(s)
- Jiali Zhang
- College of Agriculture and Animal HusbandryQinghai UniversityQinghaiChina
| | - Yihao Luo
- College of Agriculture and Animal HusbandryQinghai UniversityQinghaiChina
| | - Shengbao Feng
- Qinghai Huzhu TianYouDe Highland Barley Spirit Co., Ltd.QinghaiChina
| | - Wancheng Sun
- College of Agriculture and Animal HusbandryQinghai UniversityQinghaiChina
| | - Shanwen Li
- Qinghai Huzhu TianYouDe Highland Barley Spirit Co., Ltd.QinghaiChina
| | - Lingwu Kong
- Qinghai Huzhu TianYouDe Highland Barley Spirit Co., Ltd.QinghaiChina
| |
Collapse
|
39
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella -colonized patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288742. [PMID: 37131824 PMCID: PMC10153327 DOI: 10.1101/2023.04.18.23288742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious Klebsiella , little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of Klebsiella -colonized intensive care and hematology/oncology patients. Cases were Klebsiella -colonized patients infected by their colonizing strain (N = 83). Controls were Klebsiella -colonized patients that remained asymptomatic (N = 149). First, we characterized the gut community structure of Klebsiella -colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. Klebsiella relative abundance, a known risk factor for infection, had the greatest feature importance but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype or clinical variable data enhanced the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with patient- and Klebsiella -derived biomarkers improves our ability to predict infection in Klebsiella -colonized patients. Importance Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients that develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data with patient and bacterial factors improves the ability to predict infections. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
|
41
|
Wang Q, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Liu W, Zhang N, Wu S, Chen Y, Wang W. High dietary copper intake induces perturbations in the gut microbiota and affects host ovarian follicle development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114810. [PMID: 36948015 DOI: 10.1016/j.ecoenv.2023.114810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence has shown that gut microbes play an important role in the reproductive endocrine system and the development of polycystic ovary syndrome (PCOS). However, whether environmental factors are involved in these gut microbiota alterations has seldom been studied. In this study, we aimed to explore the crucial role of an imbalanced gut microbiota on abnormal ovarian follicle development induced by Cu. A 1:1 matched case-control study with 181 PCOS patients and 181 controls was conducted using a propensity score matching protocol. Information regarding dietary Cu intake was obtained from a face-to-face dietary intake interview. Alterations in the gut microbiota were detected by high-throughput 16 S rDNA sequencing. The results showed that dietary Cu intake was positively correlated with the risk of PCOS, and the risk threshold was approximately 1.992 mg/d. Compared with those with dietary Cu intakes lower than 1.992 mg/d, those who had a higher dietary Cu intake had a 1.813-fold increased risk of PCOS (OR=1.813, 95% CI: 1.150-2.857). PCOS patients had a lower relative abundance of Bacteroides than controls (P = 0.003), and Bacteroides played a partial mediating role between dietary Cu exposure and PCOS (Pindirect effect=0.026, 95% CI: 0.002-0.072). In addition, an animal model of Cu exposure through the diet showed that Cu can induce gut microbiota disorder; increase serum levels of LPS, MDA, and IL-6; and alter host ovarian steroidogenesis to affect ovarian follicle development. Staphylococcus played a partial mediating role between Cu exposure and CYP17A1 (Pg_Staphylococcus=0.083, 95% CI: 0.001-0.228). Overall, this study shows that long-term exposure to high dietary Cu levels can affect the composition of the gut microbiota, cause inflammation and oxidative stress, and then interfere with hormone signaling, ultimately affecting ovarian follicle development.
Collapse
Affiliation(s)
- Qi Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yan Sun
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Aili Zhao
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Aili Yu
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Xu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Weili Liu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Nan Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Siyi Wu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
42
|
Chen Q, Wang M, Han M, Xu L, Zhang H. Molecular basis of Klebsiella pneumoniae colonization in host. Microb Pathog 2023; 177:106026. [PMID: 36773942 DOI: 10.1016/j.micpath.2023.106026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a common cause of nosocomial infection, which causing disseminated infections such as cystitis, pneumonia and sepsis. K. pneumoniae is intrinsic resistant to penicillin, and members of the population usually have acquired resistance to a variety of antibiotics, which makes it a major threat to clinical and public health. Bacteria can colonize on or within the hosts, accompanied by growth and reproduction of the organisms, but no clinical symptoms are presented. As the "first step" of bacterial infection, colonization in the hosts is of great importance. Colonization of bacteria can last from days to years, with resolution influenced by immune response to the organism, competition at the site from other organisms and, sometimes, use of antimicrobials. Colonized pathogenic bacteria cause healthcare-associated infections at times of reduced host immunity, which is an important cause of clinical occurrence of postoperative complications and increased mortality in ICU patients. Though, K. pneumoniae is one of the most common conditional pathogens of hospital-acquired infections, the mechanisms of K. pneumoniae colonization in humans are not completely clear. In this review, we made a brief summary of the molecular basis of K. pneumoniae colonization in the upper respiratory tract and intestinal niche, and provided new insights for understanding the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Leyi Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
43
|
Holowka T, van Duin D, Bartelt LA. Impact of childhood malnutrition and intestinal microbiota on MDR infections. JAC Antimicrob Resist 2023; 5:dlad051. [PMID: 37102119 PMCID: PMC10125725 DOI: 10.1093/jacamr/dlad051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The global burden of infection from MDR organisms (MDROs) disproportionately affects children residing in low- and middle-income countries and those with increased healthcare exposure. These populations have high rates of malnutrition making them increasingly vulnerable to infection with intestinal-derived pathogens. Malnourished children experience increased incidence of intestinal carriage and invasive infection with intestinal-derived MDROs including ESBL- and carbapenemase-producing Enterobacterales. However, the relationship between malnutrition and MDRO infection remains to be clearly defined. Impairment in intestinal barrier function and innate and adaptive immunity in malnutrition increases the risk for infection with intestinal-derived pathogens, and there is an increasing appreciation of the role of the intestinal microbiota in this process. Current evidence from human studies and animal models suggests that diet and the intestinal microbiota influence each other to determine nutritional status, with important implications for infectious outcomes. These insights are crucial to developing microbiota-targeted strategies aimed at reversing the growing burden of MDRO infections in malnourished populations worldwide.
Collapse
Affiliation(s)
- Thomas Holowka
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - David van Duin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| | - Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, 130 Mason Farm Rd, CB #7030, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Yin G, Guo Y, Ding Q, Ma S, Chen F, Wang Q, Chen H, Wang H. Klebsiella quasipneumoniae in intestine damages bile acid metabolism in hematopoietic stem cell transplantation patients with bloodstream infection. J Transl Med 2023; 21:230. [PMID: 36991414 PMCID: PMC10061697 DOI: 10.1186/s12967-023-04068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bloodstream infection (BSI) is a serious hematopoietic stem cell transplantation (HSCT) complication. The intestinal microbiome regulates host metabolism and maintains intestinal homeostasis. Thus, the impact of microbiome on HSCT patients with BSI is essential. METHODS Stool and serum specimens of HSCT patients were prospectively collected from the pretransplant conditioning period till 4 months after transplantation. Specimens of 16 patients without BSI and 21 patients before BSI onset were screened for omics study using 16S rRNA gene sequencing and untargeted metabolomics. The predictive infection model was constructed using LASSO and the logistic regression algorithm. The correlation and influence of microbiome and metabolism were examined in mouse and Caco-2 cell monolayer models. RESULTS The microbial diversity and abundance of Lactobacillaceae were remarkably reduced, but the abundance of Enterobacteriaceae (especially Klebsiella quasipneumoniae) was significantly increased in the BSI group before onset, compared with the non-BSI group. The family score of microbiome features (Enterobacteriaceae and Butyricicoccaceae) could highly predict BSI (AUC = 0.879). The serum metabolomic analysis showed that 16 differential metabolites were mainly enriched in the primary bile acid biosynthesis pathway, and the level of chenodeoxycholic acid (CDCA) was positively correlated with the abundance of K. quasipneumoniae (R = 0.406, P = 0.006). The results of mouse experiments confirmed that three serum primary bile acids levels (cholic acid, isoCDCA and ursocholic acid), the mRNA expression levels of bile acid farnesol X receptor gene and apical sodium-dependent bile acid transporter gene in K. quasipneumoniae colonized mice were significantly higher than those in non-colonized mice. The intestinal villus height, crypt depth, and the mRNA expression level of tight junction protein claudin-1 gene in K. quasipneumoniae intestinal colonized mice were significantly lower than those in non-colonized mice. In vitro, K. quasipneumoniae increased the clearance of FITC-dextran by Caco-2 cell monolayer. CONCLUSIONS This study demonstrated that the intestinal opportunistic pathogen, K. quasipneumoniae, was increased in HSCT patients before BSI onset, causing increased serum primary bile acids. The colonization of K. quasipneumoniae in mice intestines could lead to mucosal integrity damage. The intestinal microbiome features of HSCT patients were highly predictive of BSI and could be further used as potential biomarkers.
Collapse
Affiliation(s)
- Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Ma
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Fengning Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
45
|
Berglund F, Ebmeyer S, Kristiansson E, Larsson DGJ. Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge. Commun Biol 2023; 6:321. [PMID: 36966231 PMCID: PMC10039890 DOI: 10.1038/s42003-023-04676-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
The emergence and spread of mobile antibiotic resistance genes (ARGs) in pathogens have become a serious threat to global health. Still little is known about where ARGs gain mobility in the first place. Here, we aimed to collect evidence indicating where such initial mobilization events of clinically relevant ARGs may have occurred. We found that the majority of previously identified origin species did not carry the mobilizing elements that likely enabled intracellular mobility of the ARGs, suggesting a necessary interplay between different bacteria. Analyses of a broad range of metagenomes revealed that wastewaters and wastewater-impacted environments had by far the highest abundance of both origin species and corresponding mobilizing elements. Most origin species were only occasionally detected in other environments. Co-occurrence of origin species and corresponding mobilizing elements were rare in human microbiota. Our results identify wastewaters and wastewater-impacted environments as plausible arenas for the initial mobilization of resistance genes.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Zhao H, Ren Q, Wang HY, Zong Y, Zhao W, Wang Y, Qu M, Wang J. Alterations in gut microbiota and urine metabolomics in infants with yin-deficiency constitution aged 0–2 years. Heliyon 2023; 9:e14684. [PMID: 37064462 PMCID: PMC10102239 DOI: 10.1016/j.heliyon.2023.e14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Background Based on the constitution theroy, infants are classified into balanced constitution (BC) and unbalanced constitution. Yin-deficiency constitution (YINDC) is a common type of unbalanced constitutions in Chinese infants. An infant's gut microbiota directly affects the child's health and has long-term effects on the maturation of the immune and endocrine systems throughout life. However, the gut microbiota of infants with YINDC remains unknown. Herein, we aimed to evaluate the intestinal flora profiles and urinary metabolites in infant with YINDC, find biomarkers to identify YINDC, and promote our understanding of infant constitution classification. Methods Constitutional Medicine Questionnaires were used to assess the infants' constitution types. 47 infants with 21 cases of YINDC and 26 cases of BC were included, and a cross-sectional sampling of stool and urine was conducted. Fecal microbiota was characterized using 16S rRNA sequencing, and urinary metabolomics was profiled using UPLC-Q-TOF/MS method. YINDC markers with high accuracy were identified using receiver operating characteristic (ROC) analysis. Results The diversity and composition of intestinal flora and urinary metabolites differed significantly between the YINDC and BC groups. A total of 13 obviously different genera and 55 altered metabolites were identified. Stool microbiome shifts were associated with urine metabolite changes. A combined marker comprising two genera may have a high potential to identify YINDC with an AUC of 0.845. Conclusions Infants with YINDC had a unique gut microbiota and metabolomic profile resulting in a constitutional microclassification. The altered gut microbiome in YINDC may account for the higher risk of cardiovascular diseases. Metabolomic analysis of urine showed that metabolic pathways, including histidine metabolism, proximal tubule bicarbonate reclamation, arginine biosynthesis, and steroid hormone biosynthesis, were altered in infants with YINDC. Additionally, the combined bacterial biomarker had the ability to identify YINDC. Identifying YINDC in infancy and intervening at an early stage is crucial for preventing cardiovascular diseases.
Collapse
|
47
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
48
|
Genomic Characteristics and Phylogenetic Analyses of a Multiple Drug-Resistant Klebsiella pneumoniae Harboring Plasmid-Mediated MCR-1 Isolated from Tai'an City, China. Pathogens 2023; 12:pathogens12020221. [PMID: 36839493 PMCID: PMC9963795 DOI: 10.3390/pathogens12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a clinically common opportunistic pathogen that causes pneumonia and upper respiratory tract infection in humans as well as community-and hospital-acquired infections, posing significant threats to public health. Moreover, the insertion of a plasmid carrying the mobile colistin resistance (MCR) genes brings obstacles to the clinical treatment of K. pneumoniae infection. In this study, a strain of colistin-resistant K. pneumoniae (CRKP) was isolated from sputum samples of a patient who was admitted to a tertiary hospital in Tai'an city, China, and tested for drug sensitivity. The results showed that KPTA-2108 was multidrug-resistant (MDR), being resistant to 21 of 26 selected antibiotics, such as cefazolin, amikacin, tigecycline and colistin but sensitive to carbapenems via antibiotic resistance assays. The chromosome and plasmid sequences of the isolated strain KPTA-2108 were obtained using whole-genome sequencing technology and then were analyzed deeply using bioinformatics methods. The whole-genome sequencing analysis showed that the length of KPTA-2108 was 5,306,347 bp and carried four plasmids, pMJ4-1, pMJ4-2, pMJ4-3, and pMJ4-4-MCR. The plasmid pMJ4-4-MCR contained 30,124 bp and was found to be an IncX4 type. It was the smallest plasmid in the KPTA-2108 strain and carried only one resistance gene MCR-1. Successful conjugation tests demonstrated that pMJ4-4-MCR carrying MCR-1 could be horizontally transmitted through conjugation between bacteria. In conclusion, the acquisition and genome-wide characterization of a clinical MDR strain of CRKP may provide a scientific basis for the treatment of K. pneumoniae infection and epidemiological data for the surveillance of CRKP.
Collapse
|
49
|
Le Guern R, Grandjean T, Stabler S, Bauduin M, Gosset P, Kipnis É, Dessein R. Gut colonisation with multidrug-resistant Klebsiella pneumoniae worsens Pseudomonas aeruginosa lung infection. Nat Commun 2023; 14:78. [PMID: 36604442 PMCID: PMC9816093 DOI: 10.1038/s41467-022-35767-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are spreading rapidly in hospital settings. Asymptomatic CPE gut colonisation may be associated with dysbiosis and gut-lung axis alterations, which could impact lung infection outcomes. In this study, in male C57BL/6JRj mice colonised by CPE, we characterise the resulting gut dysbiosis, and analyse the lung immune responses and outcomes of subsequent Pseudomonas aeruginosa lung infection. Asymptomatic gut colonisation by CPE leads to a specific gut dysbiosis and increases the severity of P. aeruginosa lung infection through lower numbers of alveolar macrophages and conventional dendritic cells. CPE-associated dysbiosis is characterised by a near disappearance of the Muribaculaceae family and lower levels of short-chain fatty acids. Faecal microbiota transplantation restores immune responses and outcomes of lung infection outcomes, demonstrating the involvement of CPE colonisation-induced gut dysbiosis in altering the immune gut-lung axis, possibly mediated by microbial metabolites such as short-chain fatty acids.
Collapse
Affiliation(s)
- Rémi Le Guern
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Sarah Stabler
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marvin Bauduin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Éric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Rodrigue Dessein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
50
|
Liang Z, Wang Y, Lai Y, Zhang J, Yin L, Yu X, Zhou Y, Li X, Song Y. Host defense against the infection of Klebsiella pneumoniae: New strategy to kill the bacterium in the era of antibiotics? Front Cell Infect Microbiol 2022; 12:1050396. [PMID: 36506034 PMCID: PMC9730340 DOI: 10.3389/fcimb.2022.1050396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a typical gram-negative iatrogenic bacterium that often causes bacteremia, pneumonia and urinary tract infection particularly among those with low immunity. Although antibiotics is the cornerstone of anti-infections, the clinical efficacy of β-lactamase and carbapenems drugs has been weakened due to the emergence of drug-resistant K. pneumoniae. Recent studies have demonstrated that host defense plays a critical role in killing K. pneumoniae. Here, we summarize our current understanding of host immunity mechanisms against K. pneumoniae, including mechanical barrier, innate immune cells, cellular immunity and humoral immunity, providing a theoretical basis and the new strategy for the clinical treatment of K. pneumoniae through improving host immunity.
Collapse
Affiliation(s)
- Zihan Liang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yiyao Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yixiang Lai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Jingyi Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Lanlan Yin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiang Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yongqin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xinzhi Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China,Affiliated Renhe Hospital of China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| |
Collapse
|