1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Klingenberg C, Justine M, Moyo SJ, Löhr IH, Gideon J, Mdoe P, Mduma E, Manyahi J, Bargheet A, Pettersen VK, Paschal J, Syre H, Bernhoff E, Bukhay R, Blomberg B, Langeland N. Home administration of a multistrain probiotic once per day for 4 weeks to newborn infants in Tanzania (ProRIDE): a double-blind, placebo-controlled randomised trial. Lancet Glob Health 2025; 13:e1082-e1090. [PMID: 40412397 DOI: 10.1016/s2214-109x(25)00064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Probiotics are commonly given to preterm and term infants to reduce gut colonisation and prevent disease. Evidence for the beneficial effect of probiotic therapy is sparse, particularly in term infants from low-income and middle-income countries with high infant morbidity and mortality. This study aimed to assess whether a 4-week course of probiotic therapy might reduce death and hospitalisation up to age 6 months in healthy infants in Tanzania. METHODS In this investigator-initiated, single-site, double-blind, placebo-controlled randomised trial conducted at Haydom Lutheran Hospital and in the surrounding area in northeast Tanzania, we randomly assigned healthy infants born in the hospital, in other local health facilities, or at home who weighed 2 kg or more (1:1) to receive a multistrain probiotic mixture (including Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum subsps infantis) or placebo once per day for 4 weeks. Caregivers of study participants, investigators, study staff, hospital clinicians, and individuals involved in data management or analysis were masked to treatment allocation during all the data collection and management phases of the trial. Caregivers were shown how to give five drops (0·2 mL) of allocated treatment solution orally to their infant and then requested to administer this treatment once per day for 4 weeks or until the bottle was empty. During scheduled study visits at ages 1 week, 6 weeks, and 6 months, trained field workers visited each participant's home and used a standardised questionnaire to obtain a history of recent illness, medication use, breastfeeding practice, and the current condition of the child. At the 6-week and 6-month follow-up visits, the participants' weights and lengths were measured, and stool samples were collected. Stool samples were used for analysis of extended-spectrum β-lactamase-producing Enterobacterales (to evaluate gut colonisation rates) and metagenomic sequencing. The primary outcome was a composite of death or hospitalisation during the first 6 months of life, assessed in three populations: a modified intention-to-treat population (mITT), which included all participants with a known primary outcome at 6 months of follow-up; the intention-to-treat population, which included all participants who were enrolled and randomly assigned to a treatment group; and the per-protocol population, which included only infants in the mITT whose caregivers reported having given them the study solution once per day during the 4-week intervention period. This trial is registered with ClinicalTrials.gov, NCT04172012, and is complete. FINDINGS Between Feb 1, 2022, and Jan 4, 2023, 2000 participants were enrolled and randomly assigned to the probiotic (n=1000) or placebo (n=1000) groups, with administration of the probiotic or placebo treatment beginning on median day 1 (IQR 1-2) of life. 6 months after inclusion, data for the primary outcome were available for 1945 (97·3%) of the 2000 participants. By mITT, there was no statistically significant difference in the primary outcome between the two study groups. Hospitalisation or death occurred in 34 (3%) of 970 participants in the probiotic group and 31 (3%) of 975 participants in the placebo group (crude relative risk 1·10, 95% CI 0·68-1·78). There were also no differences in the overall incidence of adverse events between the groups, but fewer caregiver-reported gastrointestinal events were reported in the probiotic group. INTERPRETATION Daily administration of a multistrain probiotic mixture in the first 4 weeks of life did not reduce the rate of death or hospitalisation up to age 6 months among infants in Tanzania and did not cause any short-term safety concerns. FUNDING Western and Northern Norway Regional Health Authorities, Trond Mohn Foundation, and Joint Programming Initiative on Antimicrobial Resistance.
Collapse
Affiliation(s)
- Claus Klingenberg
- Department of Paediatrics and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway; Research Group for Child and Adolescent Health, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Museveni Justine
- Department of Paediatrics, Haydom Lutheran Hospital, Mbulu, Tanzania; Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Sabrina John Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Iren Høyland Löhr
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Joshua Gideon
- Department of Paediatrics, Haydom Lutheran Hospital, Mbulu, Tanzania; Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Paschal Mdoe
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Estomih Mduma
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ahmed Bargheet
- Research Group for Child and Adolescent Health, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Host-Microbe Interaction Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Veronika Kuchařová Pettersen
- Research Group for Child and Adolescent Health, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Host-Microbe Interaction Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - John Paschal
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Heidi Syre
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Rehema Bukhay
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, Haydom, Tanzania
| | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway; Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
3
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
4
|
Damico ME, Beasley B, Greenstein D, Raymann K. Testing the Effectiveness of a Commercially Sold Probiotic on Restoring the Gut Microbiota of Honey Bees: a Field Study. Probiotics Antimicrob Proteins 2025; 17:991-1000. [PMID: 38112994 PMCID: PMC12055933 DOI: 10.1007/s12602-023-10203-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Antibiotic use in apiculture is often necessary to ensure the survival of honey bee colonies. However, beekeepers are faced with the dilemma of needing to combat bacterial brood infections while also knowing that antibiotics kill beneficial bacteria important for bee health. In recent years, bee probiotics have become increasingly purchased by beekeepers because of product claims like being able to "replenish the microbes lost due to agricultural modifications of honey bees' environment" or "promote optimal gut health." Unfortunately, these products have little scientific evidence to support their efficacy, and previous lab experiments have refuted some of their claims. Here, we performed hive-level field experiments to test the effectiveness of SuperDFM-HoneyBee™ - the most commonly purchased honey bee probiotic in the United States - on restoring the honey bee gut microbiota after antibiotic treatment. We found slight but significant changes in the microbiota composition of bees following oxytetracycline (TerraPro) treatment and no difference between the microbiota of antibiotic treated bees with or without subsequent probiotic supplementation. Moreover, the microorganisms in the probiotic supplement were never found in the guts of the worker bee samples. These results highlight that more research is needed to test the efficacy and outcomes of currently available commercial honey bee probiotic supplements.
Collapse
Affiliation(s)
- Megan E Damico
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Burton Beasley
- North Carolina State Beekeepers Association, Hurdle Mills, NC, 27541, USA
| | - Drew Greenstein
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Kasie Raymann
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Häsler R, Mikš MH, Bajic D, Soyyilmaz B, Bendik I, van Buul VJ, Steinert RE, Rehman A. Human Milk Oligosaccharides Modulating Inflammation in Infants, Adults, and Older Individuals-From Concepts to Applications. Adv Nutr 2025; 16:100433. [PMID: 40287068 DOI: 10.1016/j.advnut.2025.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing global prevalence of inflammatory diseases, such as ulcerative colitis and irritable bowel syndrome, represents a challenging task for healthcare systems. Several approaches to disease management target the intestinal microbiome, which plays a key role in health and disease. One promising approach is modulating the microbiome using human milk oligosaccharides (HMOs). Originating from human milk, HMOs are indigestible carbohydrates that act in a host-optimized prebiotic fashion by providing an energy source for health-promoting intestinal bacteria and exhibiting systemic effects. Commercial products supporting infant health and development have been the primary fields of HMO application. Advancements in the large-scale production of HMOs through bioengineering and precision fermentation have led to evaluation of their potential for managing inflammatory diseases. Several in vitro studies and observations on model systems have been clinically validated in infants, resulting in a large body of evidence supporting the safety and efficacy of HMOs in inflammatory disorders. Although novel approaches seek to explore interventions in adults, the primary goal for the future is to provide cost-efficient, safe, and reliable healthcare compounds across all age groups.
Collapse
Affiliation(s)
- Robert Häsler
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany.
| | - Marta Hanna Mikš
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland; dsm-firmenich, Glycom A/S, Hørsholm, Denmark
| | - Danica Bajic
- dsm-firmenich, Health, Nutrition & Care, Kaiseraugst, Switzerland
| | | | - Igor Bendik
- dsm-firmenich, Health, Nutrition & Care, Kaiseraugst, Switzerland
| | | | | | - Ateequr Rehman
- dsm-firmenich, Health, Nutrition & Care, Kaiseraugst, Switzerland
| |
Collapse
|
6
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Xing H, Liu X, Wang J, Zhou T, Jin X, Qiu R, Lu Y, Liu C, Song Y. Magnetically targeted delivery of probiotics for controlled residence and accumulation in the intestine. NANOSCALE 2025; 17:8588-8598. [PMID: 40072455 DOI: 10.1039/d4nr04753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The effectiveness of orally delivered probiotics in treating gastrointestinal diseases is restricted by inadequate gut retention. In this study, we present a magnetically controlled strategy for probiotic delivery, which enables controlled accumulation and residence of probiotics in the intestine. The magnetically controlled probiotic is established by attaching amino-modified iron oxide (Fe3O4-NH3+ NPs) to polydopamine-coated Lacticaseibacillus rhamnosus GG (LGG@P) through electrostatic self-assembly and named as LGG@P@Fe3O4. In a simulated gastrointestinal environment, LGG@P@Fe3O4 maintains both structural stability and probiotic viability. Furthermore, the LGG@P@Fe3O4 clusters can be easily manipulated by an external magnetic field, inducing directional movement and aggregation. In vitro simulations demonstrated significant accumulation and retention of LGG@P@Fe3O4 under a magnetic field, with the optical density (OD) value of the suspension decreasing from ∼1.17 to ∼0.29. In contrast, the OD value of the suspension without a magnetic field remained at its original level (∼1.15). In a mouse model with intragastrically administered LGG@P@Fe3O4, the group exposed to a magnet exhibited stronger gut fluorescence after 24 h. The magnetically controlled probiotic delivery strategy offers an easy manufacturing and feasible method to enhance the effectiveness of probiotics in treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanye Xing
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Xingyu Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ju Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Tao Zhou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Xiangxiang Jin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Rui Qiu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changhong Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yonghong Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Bargheet A, Noordzij HT, Ponsero AJ, Jian C, Korpela K, Valles-Colomer M, Debelius J, Kurilshikov A, Pettersen VK. Dynamics of gut resistome and mobilome in early life: a meta-analysis. EBioMedicine 2025; 114:105630. [PMID: 40048849 PMCID: PMC11929092 DOI: 10.1016/j.ebiom.2025.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The gut microbiota of infants harbours a higher proportion of antibiotic resistance genes (ARGs) compared to adults, even in infants never exposed to antibiotics. Our study aims to elucidate this phenomenon by analysing how different perinatal factors influence the presence of ARGs, mobile genetic elements (MGEs), and their bacterial hosts in the infant gut. METHODS We searched MEDLINE and Embase up to April 3rd, 2023, for studies reporting infant cohorts with shotgun metagenomic sequencing of stool samples. The systematic search identified 14 longitudinal infant cohorts from 10 countries across three continents, featuring publicly available sequencing data with corresponding metadata. For subsequent integrative bioinformatic analyses, we used 3981 high-quality metagenomic samples from 1270 infants and 415 mothers. FINDINGS We identified distinct trajectories of the resistome and mobilome associated with birth mode, gestational age, antibiotic use, and geographical location. Geographical variation was exemplified by differences between cohorts from Europe, Southern Africa, and Northern America, which showed variation in both diversity and abundance of ARGs. On the other hand, we did not detect a significant impact of breastfeeding on the infants' gut resistome. More than half of detected ARGs co-localised with plasmids in key bacterial hosts, such as Escherichia coli and Enterococcus faecalis. These ARG-associated plasmids were gradually lost during infancy. We also demonstrate that E. coli role as a primary modulator of the infant gut resistome and mobilome is facilitated by its increased abundance and strain diversity compared to adults. INTERPRETATION Birth mode, gestational age, antibiotic exposure, and geographical location significantly influence the development of the infant gut resistome and mobilome. A reduction in E. coli relative abundance over time appears as a key factor driving the decrease in both resistome and plasmid relative abundance as infants grow. FUNDING Centre for Advanced Study in Oslo, Norway. Centre for New Antibacterial Strategies through the Tromsø Research Foundation, Norway.
Collapse
Affiliation(s)
- Ahmed Bargheet
- Host-Microbe Interaction Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Center for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hanna Theodora Noordzij
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Mireia Valles-Colomer
- Department of Medical and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department CIBIO, University of Trento, Italy
| | - Justine Debelius
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Veronika Kuchařová Pettersen
- Host-Microbe Interaction Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Center for New Antibacterial Strategies, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
9
|
Xie Q, Liu J, Yu P, Qiu T, Jiang S, Yu R. Unlocking the power of probiotics, postbiotics: targeting apoptosis for the treatment and prevention of digestive diseases. Front Nutr 2025; 12:1570268. [PMID: 40230717 PMCID: PMC11994438 DOI: 10.3389/fnut.2025.1570268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Digestive diseases are becoming an increasingly serious health burden, creating an urgent need to develop more effective treatment strategies. Probiotics and postbiotics have been extensively studied for their potential to prevent and treat digestive diseases. Growing evidence suggests that programmed cell death, especially apoptosis, is a critical mechanism influencing the molecular and biological aspects of digestive diseases, contributing to disease progression. Understanding the mechanisms and signaling pathways by which probiotics and postbiotics regulate apoptosis could reveal new therapeutic targets for treating digestive diseases. This review focuses on the beneficial effects of probiotics and postbiotics in regulating apoptosis across a range of liver diseases, including non-alcoholic fatty liver disease, liver injury, cirrhosis, and liver cancer. It also explores their effects on gastrointestinal diseases, such as colorectal cancer, colitis, gastrointestinal injury, and infectious diarrhea. Furthermore, some probiotics help balance the gut microbiota, enhance intestinal barrier function, and regulate the immune system, all of which are closely associated with apoptosis. Moreover, emerging technologies, such as encapsulation methods, have been developed to stabilize probiotics, primarily based on experimental findings from rodent and human studies.
Collapse
Affiliation(s)
- Qiuyan Xie
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ji Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Yu
- Reproductive Medicine Centre, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Ting Qiu
- Department of Child Health Care, Affiliated Women’s Hospital of Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
10
|
Jia L, Ke Y, Zhao S, Liu J, Luo X, Cao J, Liu Y, Guo Q, Chen WH, Chen F, Wang J, Wu H, Ding J, Zhao XM. Metagenomic analysis characterizes stage-specific gut microbiota in Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-025-02973-7. [PMID: 40164697 DOI: 10.1038/s41380-025-02973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a decade-long preclinical pathological period that can be divided into several stages. Emerging evidence has revealed that the microbiota-gut-brain axis plays an important role in AD pathology. However, the role of gut microbiota in different AD stages has not been well characterized. In this study, we performed fecal shotgun metagenomic analysis on a Chinese cohort with 476 participants across five stages of AD pathology to characterize stage-specific alterations in gut microbiota and evaluate their diagnostic potential. We discovered extensive gut dysbiosis that is associated with neuroinflammation and neurotransmitter dysregulation, with over 10% of microbial species and gene families showing significant alterations during AD progression. Furthermore, we demonstrated that microbial gene families exhibited strong diagnostic capabilities, evidenced by an average AUC of 0.80 in cross-validation and 0.75 in independent external validation. In the optimal model, the most discriminant gene families are primarily involved in the metabolism of carbohydrates, amino acids, energy, glycan and vitamins. We found that stage-specific microbial gene families in AD pathology could be validated by an in vitro gut simulator and were associated with specific genera. We also observed that the gut microbiota could affect the progression of cognitive decline in 5xFAD mice through fecal microbiota transplantation, which could be used for early intervention of AD. Our multi-stage large cohort metagenomic analysis demonstrates that alterations in gut microbiota occur from the very early stages of AD pathology, offering important etiological and diagnostic insights.
Collapse
Affiliation(s)
- Longhao Jia
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yize Ke
- Fudan Microbiome Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, and Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuo Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jinxin Liu
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xiaohui Luo
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Jixin Cao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yujia Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hao Wu
- Fudan Microbiome Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, and Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Lingang Laboratory, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- MOE Key Laboratory of Computational Neuroscience and Brain‑Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
11
|
Ni M, Fan Y, Liu Y, Li Y, Qiao W, Davey LE, Zhang XS, Ksiezarek M, Mead EA, Tourancheau A, Jiang W, Blaser MJ, Valdivia RH, Fang G. Epigenetic phase variation in the gut microbiome enhances bacterial adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632565. [PMID: 39829898 PMCID: PMC11741434 DOI: 10.1101/2025.01.11.632565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A strategy for bacterial genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePVs have been characterized in human pathogens' antigenic variation and virulence factor production. However, the role of ePV in facilitating adaptation within the human microbiome remains poorly understood. Here, we comprehensively cataloged genome-wide and site-specific ePV in human infant and adult gut microbiomes. First, using long-read metagenomic sequencing, we detected genome-wide ePV mediated by complex structural variations of DNA methyltransferases, highlighting those associated with antibiotics or fecal microbiota transplantation. Second, we analyzed a collection of public short-read metagenomic sequencing datasets, uncovering a great prevalence of genome-wide ePV in the human gut microbiome. Third, we quantitatively detected site-specific ePVs using single-molecule methylation analysis to identify dynamic variation associated with antibiotic treatment or probiotic engraftment. Finally, we performed an in-depth assessment of an Akkermansia muciniphila isolate from an infant, highlighting that ePVs can regulate gene expression and enhance the bacterial adaptive capacity by employing a bet-hedging strategy to increase tolerance to differing antibiotics. Our findings indicate that epigenetic modifications are a common strategy used by gut bacteria to adapt to the fluctuating environment.
Collapse
Affiliation(s)
- Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujie Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangmei Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wanjin Qiao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Davey
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A. Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenyan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Zhang Z, Li J, Wan Z, Fang S, Zhao Y, Li Q, Zhang M. Bifidobacterium animalis subsp. lactis BLa80 alleviates constipation in mice through modulating the stem cell factor (SCF)/c-Kit pathway and the gut microbiota. Food Funct 2025; 16:2347-2362. [PMID: 39992179 DOI: 10.1039/d4fo06350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Probiotics, as health ingredients, have attracted widespread attention. However, due to the wide variety of probiotic species, their laxative effects and the underlying mechanisms remain elusive. In this study, we investigated the laxative effect of Bifidobacterium animalis subsp. lactis BLa80 (at concentrations of 1.0 × 108, 2.0 × 108, and 4.0 × 108 CFU per mL, with a dosage of 0.2 mL each) in mice, utilizing a functional constipation mouse model induced with loperamide hydrochloride (0.2 mL, 10 mg per kg BW) for 7 consecutive days. Meanwhile, a blank group (treated with 0.2 mL of 0.9% saline) and a positive control group (treated with mosapride at a dose of 5 mg per kg BW) were also set up. The body weight, fecal water content, intestinal propulsion rate, colon tissue histology, fecal microbial composition, serum indices, and colon mRNA levels of the mice were measured, employing histological and biochemical assays, GC-MS, RT-qPCR and 16S rRNA gene sequencing etc. Results showed BLa80 could accelerate intestinal peristalsis, maintain fecal moisture, prevent intestinal barrier disruption, increase short-chain fatty acid production, prevent gut microbe dysbiosis and constipation in mice. It also helped to keep the levels of 5-hydroxytryptamine (5-HT), motilin (MTL), and substance P (SP) normal, up-regulated the mRNAs of intestinal mucin 2 (MUC2), stem cell factor (SCF), and the tyrosine kinase receptor c-Kit, and down-regulated the mRNA of aquaporins (AQPs), especially at a high-dose. This study indicated that BLa80 held the potential to emerge as a novel ingredient in functional foods designed for constipation relief and as a treatment alternative.
Collapse
Affiliation(s)
- Zhaochun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jie Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ziyi Wan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuguang Fang
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Yunjiao Zhao
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu Province 215200, China
| | - Qian Li
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
13
|
Devarajalu P, Kumar J, Dutta S, Attri SV, Kabeerdoss J. Gut Microbiota Alteration in Healthy Preterm Infants: An Observational Study from Tertiary Care Center in India. Microorganisms 2025; 13:577. [PMID: 40142471 PMCID: PMC11944540 DOI: 10.3390/microorganisms13030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Various prenatal and postnatal factors such as gestational age, mode of delivery, sex, antibiotic exposure, feeding type, duration of feed and other exposures associated with the hospital environment can drive the formation of gut microbiota. In the current study, we examined the role of all these factors in the gut microbiota of healthy Indian preterm infants admitted to NICU in the first four weeks of life. Preterm neonates admitted to the NICU from April 2023 and October 2023 were recruited and fecal samples were collected weekly once beginning from the seventh day till the 30th day of life. 16s rRNA gene sequencing was performed on the NovaSeq 6000 platform. The PICRUSt2 tool was used to predict the functional profiles of the gut microbiome. A total of 61 samples were collected from 16 preterm infants. Alpha and beta diversity showed the administration of probiotics, postnatal age, mode of delivery, and sex of infants as major contributors to altered microbial diversity in preterm infants. The MaAsLin2 analysis showed that the supplementation of probiotics increased Bifidobacterium levels. PICRUSt2 analysis revealed that probiotic supplementation increased the bacterial genes responsible for bile acid metabolism and glycosphingolipid synthesis. Probiotics and postnatal age are responsible for alterations of the gut microbial composition in healthy preterm infants.
Collapse
Affiliation(s)
- Prabavathi Devarajalu
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India; (P.D.); (S.V.A.)
| | - Jogender Kumar
- Newborn Unit, Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India; (J.K.); (S.D.)
| | - Sourabh Dutta
- Newborn Unit, Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India; (J.K.); (S.D.)
| | - Savita Verma Attri
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India; (P.D.); (S.V.A.)
| | - Jayakanthan Kabeerdoss
- Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India; (P.D.); (S.V.A.)
- Pediatric Biochemistry Unit, Department of Pediatric Medicine, Advance Pediatric Center (APC), Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh 160012, India
| |
Collapse
|
14
|
Shen S, Tang Y, Liu D, Chen L, Zhang Y, Ye K, Sun F, Wei X, Du H, Zhao H, Li J, Qu C, Yin N. Untargeted Metabolomics Analysis Reveals Differential Accumulation of Flavonoids Between Yellow-Seeded and Black-Seeded Rapeseed Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:753. [PMID: 40094714 PMCID: PMC11902209 DOI: 10.3390/plants14050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Rapeseed (Brassica napus) is an important oilseed crop and yellow-seeded and black-seeded varieties have different metabolite profiles, which determines the quality and edibility of their oil. In this study, we performed a non-targeted metabolomics analysis of seeds from four rapeseed varieties at eight developmental stages. This analysis identified 4540 features, of which 366 were annotated as known metabolites. The content of these metabolites was closely related to seed developmental stage, with the critical period for seed metabolite accumulation being between 10 and 20 days after pollination. Through a comparative analysis, we identified 18 differentially abundant flavonoid features between yellow-seeded and black-seeded rapeseed varieties. By combining the flavonoid data with transcriptome data, we constructed a gene regulatory network that may reflect the accumulation of differentially abundant flavonoid features. Finally, we predicted 38 unknown features as being flavonoid features through molecular networking. These results provide valuable metabolomics information for the breeding of yellow-seeded rapeseed varieties.
Collapse
Affiliation(s)
- Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Daiqin Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lulu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kaijie Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xingzhi Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Neu J, Stewart CJ. Neonatal microbiome in the multiomics era: development and its impact on long-term health. Pediatr Res 2025:10.1038/s41390-025-03953-x. [PMID: 40021924 DOI: 10.1038/s41390-025-03953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
The neonatal microbiome has been the focus of considerable research over the past two decades and studies have added fascinating information in terms of early microbial patterns and how these relate to various disease processes. One difficulty with the interpretation of these relationships is that such data is associative and provides little in terms of proof of causality or the underpinning mechanisms. Integrating microbiome data with other omics such as the proteome, inflammatory mediators, and the metabolome is an emerging approach to address this gap. Here we discuss these omics, their integration, and how they can be applied to improve our understanding, treatment, and prevention of disease. IMPACT: This review introduces the concept of multiomics in neonatology and how emerging technologies can be integrated improve understanding, treatment, and prevention of disease. We highlight considerations for performing multiomic research in neonates and the need for validation in separate cohorts and/or relevant model systems. We summarise how the use of multiomics is expanding and lay out steps to bring this to the clinic to enable precision medicine.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, FL, USA
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Beck LC, Berrington JE, Stewart CJ. Impact of probiotics on gut microbiome of extremely preterm or extremely low birthweight infants. Pediatr Res 2025; 97:493-496. [PMID: 39183307 PMCID: PMC12015168 DOI: 10.1038/s41390-024-03520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
IMPACT Meta-analysis of probiotic administration to very preterm or very low birthweight (VP/VLBW) infants shows reduced risk of necrotising enterocolitis (NEC). Separately reported outcomes for extremely preterm infants (<28 weeks) or extremely low birth weight infants (<1000 g) (EP/ELBW) are lacking meaning some clinicians do not administer probiotics to EP/ELBW infants despite their high risk of NEC. We present data showing the gut microbiome is impacted in EP/ELBW infants in a similar manner to VP/VLBW infants, suggesting that risk reduction for necrotising enterocolitis that is microbiome driven will also be seen in EP/ELBW infants, making probiotic administration beneficial.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Newcastle Neonatal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Zhao J, Guo Y, Jiang Q, Lan H, Hung WL, Lynch B. Bifidobacterium longum subsp. infantis YLGB-1496-Toxicological evaluation. J Appl Toxicol 2025; 45:230-244. [PMID: 39252460 DOI: 10.1002/jat.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024]
Abstract
Bifidobacterium infantis YLGB-1496, originally isolated from breast milk from a Taiwanese mother, is under study for use as a probiotic. As part of safety assessment, an Ames, in vivo mouse micronucleus, and in vivo mouse spermatocyte chromosome aberration assay were conducted along with a 13-week oral rat toxicity study. B. infantis YLGB-1496 had no activity in any of the genotoxicity assays. Administration of the bacteria to Sprague-Dawley rats at doses ranging from 0 to 1.5 g/kg bw/day had no treatment-related effects on any of the endpoints measured. There appear to be no concerns for translocation or pathogenicity of B. infantis YLGB-1496 based on extensive experience with the species in general. The results of the current investigations support potential use of B. infantis YLGB-1496 as a probiotic in infant formula.
Collapse
Affiliation(s)
- Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yueyi Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qiuyue Jiang
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Wei-Lian Hung
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Barry Lynch
- Intertek Health Sciences Inc., Mississauga, ON, Canada
| |
Collapse
|
18
|
Preidis GA, Berrington JE. Probiotics for preterms: sharing complex decision-making. Nat Rev Gastroenterol Hepatol 2025; 22:5-6. [PMID: 39496887 DOI: 10.1038/s41575-024-01009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Geoffrey A Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Janet E Berrington
- Newcastle Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
20
|
Chapman JA, Wroot E, Brown T, Beck LC, Embleton ND, Berrington JE, Stewart CJ. Characterising the metabolic functionality of the preterm neonatal gut microbiome prior to the onset of necrotising enterocolitis: a pilot study. BMC Microbiol 2024; 24:533. [PMID: 39716092 DOI: 10.1186/s12866-024-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Necrotising enterocolitis (NEC) is a devastating bowel disease that primarily occurs in infants born prematurely and is associated with abnormal gut microbiome development. While gut microbiome compositions associated with NEC have been well studied, there is a lack of experimental work investigating microbiota functions and their associations with disease onset. The aim of this pilot study was to characterise the metabolic functionality of the preterm gut microbiome prior to the onset of NEC compared with healthy controls. RESULTS Eight NEC infants were selected of median gestation 26.5 weeks and median day of life (DOL) of NEC onset 20, with one sample used per infant, collected within one to eight days (median four) before NEC onset. Each NEC case was matched to a control infant based on gestation and sample DOL, the main driver of microbiome composition in this population, giving a total cohort of 16 infants for this study. Dietary exposures were well matched. The microbiota of NEC and control infants showed similar wide-ranging metabolic functionalities. All 94 carbon sources were utilised to varying extents but NEC and control samples clustered separately by supervised ordination based on carbon source utilisation profiles. For a subset of eight samples (four NEC, four control) for which pre-existing metagenome data was available, microbiome composition was found to correlate significantly with metabolic activity measured on Biolog plates (p = 0.035). Comparisons across all 16 samples showed the NEC microbiota to have greater utilisation of carbon sources that are the products of proteolytic fermentation, specifically amino acids. In pairwise comparisons, L-methionine was highly utilised in NEC samples, but poorly utilised in controls (p = 0.043). Carbon sources identified as discriminatory for NEC also showed a greater enrichment for established markers of inflammatory disease, such as inflammatory bowel disease, irritable bowel syndrome and diverticular disease. CONCLUSIONS Before NEC onset, the preterm gut microbiota showed greater metabolic utilisation of amino acids, potentially indicating a shift from predominantly saccharolytic to proteolytic fermentation. Products of amino acid breakdown could therefore act as biomarkers for NEC development. A larger study is warranted, ideally with infants from multiple sites.
Collapse
Affiliation(s)
- Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK.
| | - Emily Wroot
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
| | - Toby Brown
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, 3Rd Floor Leech Building, Newcastle Upon TyneNewcastle, NE2 4HH, UK.
| |
Collapse
|
21
|
Vievermanns K, Dierikx TH, Oldenburger NJ, Jamaludin FS, Niemarkt HJ, de Meij TGJ. Effect of probiotic supplementation on the gut microbiota in very preterm infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2024; 110:57-67. [PMID: 38925919 DOI: 10.1136/archdischild-2023-326691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE There is increasing evidence that probiotic supplementation in very preterm infants decreases the risk of necrotising enterocolitis (NEC), sepsis and mortality. The underlying mechanisms, including effects on the gut microbiota, are largely unknown. We aimed to systematically review the available literature on the effects of probiotic supplementation in very preterm infants on gut microbiota development. DESIGN A systematic review in Medline, Embase, Cochrane Library, CINAHL and Web of Science. SETTING Neonatal intensive care unit. PATIENTS Premature infants. INTERVENTION Probiotic supplementation. MAIN OUTCOME MEASURES Gut microbiota. RESULTS A total of 1046 articles were screened, of which 29 were included. There was a large heterogeneity in study design, dose and type of probiotic strains, timepoints of sample collection and analysing techniques. Bifidobacteria and lactobacilli were the most used probiotic strains. The effects of probiotics on alpha diversity were conflicting; however, beta diversity was significantly different between probiotic-supplemented infants and controls in the vast majority of studies. In most studies, probiotic supplementation led to increased relative abundance of the supplemented strains and decreased abundance of genera such as Clostridium, Streptococcus, Klebsiella and Escherichia. CONCLUSIONS Probiotic supplementation to preterm infants seems to increase the relative abundance of the supplemented strains with a concurrent decrease of potentially pathogenic species. These probiotic-induced microbial alterations may contribute to the decreased risk of health complications such as NEC. Future trials, including omics technologies to analyse both microbiota composition and function linked to health outcomes, are warranted to identify the optimal mixture and dosing of probiotic strains. PROSPERO REGISTRATION NUMBER CRD42023385204.
Collapse
Affiliation(s)
- Kayleigh Vievermanns
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Thomas H Dierikx
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Microbiology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hendrik J Niemarkt
- Neonatology, Maxima Medisch Centrum locatie Veldhoven, Veldhoven, The Netherlands
- Electrical Engineering, TU Eindhoven, Eindhoven, The Netherlands
| | - Tim G J de Meij
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatric Gastroenterology, Emma children's hospital amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Vaher K, Cabez MB, Parga PL, Binkowska J, van Beveren GJ, Odendaal ML, Sullivan G, Stoye DQ, Corrigan A, Quigley AJ, Thrippleton MJ, Bastin ME, Bogaert D, Boardman JP. The neonatal gut microbiota: A role in the encephalopathy of prematurity. Cell Rep Med 2024; 5:101845. [PMID: 39637857 PMCID: PMC11722115 DOI: 10.1016/j.xcrm.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Preterm birth correlates with brain dysmaturation and neurocognitive impairment. The gut microbiome associates with behavioral outcomes in typical development, but its relationship with neurodevelopment in preterm infants is unknown. We characterize fecal microbiome in a cohort of 147 neonates enriched for very preterm birth using 16S-based and shotgun metagenomic sequencing. Delivery mode strongly correlates with the preterm microbiome shortly after birth. Low birth gestational age, infant sex assigned at birth, and antibiotics associate with microbiome composition at neonatal intensive care unit discharge. We integrate these data with term-equivalent structural and diffusion brain MRI. Bacterial community composition associates with MRI features of encephalopathy of prematurity. Particularly, abundances of Escherichia coli and Klebsiella spp. correlate with microstructural parameters in deep and cortical gray matter. Metagenome functional capacity analyses suggest that these bacteria may interact with brain microstructure via tryptophan and propionate metabolism. This study indicates that the gut microbiome associates with brain development following preterm birth.
Collapse
Affiliation(s)
- Kadi Vaher
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Justyna Binkowska
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gina J van Beveren
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven 3721 MA, the Netherlands
| | - Gemma Sullivan
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Amy Corrigan
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alan J Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | | | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Debby Bogaert
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - James P Boardman
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
23
|
Zhai Y, Kim M, Fan P, Rajeev S, Kim SA, Driver JD, Galvão KN, Boucher C, Jeong KC. Machine learning-enhanced assessment of potential probiotics from healthy calves for the treatment of neonatal calf diarrhea. Front Microbiol 2024; 15:1507537. [PMID: 39717273 PMCID: PMC11663915 DOI: 10.3389/fmicb.2024.1507537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Neonatal calf diarrhea (NCD) remains a significant contributor to calf mortality within the first 3 weeks of life, prompting widespread antibiotic use with associated concerns about antimicrobial resistance and disruption of the calf gut microbiota. Recent research exploring NCD treatments targeting gut microbiota dysbiosis has highlighted probiotic supplementation as a promising and safe strategy for gut homeostasis. However, varying treatment outcomes across studies suggest the need for efficient treatment options. In this study, we evaluated the potential of probiotics Limosilactobacillus reuteri, formally known as Lactobacillus reuteri, isolated from healthy neonatal calves to treat NCD. Through in silico whole genome analysis and in vitro assays, we identified nine L. reuteri strains, which were then administered to calves with NCD. Calves treated with L. reuteri strains shed healthy feces and demonstrated restored gut microbiota and normal animal behavior. Leveraging a machine learning model, we evaluated microbiota profiles and identified bacterial taxa associated with calf gut health that were elevated by L. reuteri administration. These findings represent a crucial advancement towards sustainable antibiotic alternatives for managing NCD, contributing significantly to global efforts in mitigating antimicrobial resistance and promoting overall animal health and welfare.
Collapse
Affiliation(s)
- Yuting Zhai
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Miju Kim
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Food Science and Biotechnology, Kyung Hee University, Seoul, Republic of Korea
| | - Peixin Fan
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Sharath Rajeev
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| | - J. Danny Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Klibs N. Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Kwangcheol C. Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Seo S, Jeong DW, Sul S, Lee JH. Specificity of Amino Acid Profiles Produced in Soybean Fermentations by Three Bacillus spp. J Microbiol Biotechnol 2024; 35:e2411038. [PMID: 39848677 PMCID: PMC11813359 DOI: 10.4014/jmb.2411.11038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/25/2025]
Abstract
We compared the salt tolerance and proteolytic activity of 120 strains of each of Bacillus subtilis, Bacillus velezensis, and Bacillus licheniformis. Most B. subtilis strains exhibited growth in 12% (w/v) NaCl and showed proteolytic activity in 10% or 11% NaCl. The majority of B. velezensis strains grew in 14% NaCl and showed proteolytic activity in 12% or 13% NaCl. Most B. licheniformis strains grew in 14% NaCl and exhibited proteolytic activity in 5%-7% NaCl. We selected nine representative strains of each species based on their proteolytic activities and analyzed the free amino acid (FAA) profiles produced by culture of the bacteria on soybean. Statistical analyses of the 22 FAAs quantified in the cultures revealed clustering of FAA production profiles at the species level. The FAA production profiles of B. subtilis and B. velezensis were similar, and both differed from that of B. licheniformis. These trends persisted in cultures containing 7% NaCl. These results suggest that FAA production profiles are characteristic of each Bacillus species. Specifically, in soybean cultures compared with uninoculated soybeans, B. subtilis increased the amounts of leucine and phenylalanine; B. velezensis increased the amounts of leucine, phenylalanine, and tyrosine; and B. licheniformis increased the amounts of alanine, glutamic acid, tyrosine, and ornithine, and dramatically decreased the amount of arginine. The proteolytic activity of B. velezensis strains correlated with the quantity of FAAs in their soybean cultures. Considering its salt tolerance and proteolytic activity, B. velezensis showed high potential for contributing to the ripening of high-salt fermented soybean foods. Our results regarding the specific production of amino acids at the species level and correlations between proteolytic activities and produced amino acid quantities will facilitate the determination and selection of target strains for functional Bacillus-fermented foods.
Collapse
Affiliation(s)
- Sumin Seo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sooyoung Sul
- Division of Sports Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
25
|
Stinson LF, Ma J, Lai CT, Rea A, Perrella SL, Geddes DT. Milk microbiome transplantation: recolonizing donor milk with mother's own milk microbiota. Appl Microbiol Biotechnol 2024; 108:74. [PMID: 38194146 PMCID: PMC10776751 DOI: 10.1007/s00253-023-12965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Donor human milk (DHM) provides myriad nutritional and immunological benefits for preterm and low birthweight infants. However, pasteurization leaves DHM devoid of potentially beneficial milk microbiota. In the present study, we performed milk microbiome transplantation from freshly collected mother's own milk (MOM) into pasteurized DHM. Small volumes of MOM (5%, 10%, or 30% v/v) were inoculated into pasteurized DHM and incubated at 37 °C for up to 8 h. Further, we compared microbiome recolonization in UV-C-treated and Holder-pasteurized DHM, as UV-C treatment has been shown to conserve important biochemical components of DHM that are lost during Holder pasteurization. Bacterial culture and viability-coupled metataxonomic sequencing were employed to assess the effectiveness of milk microbiome transplantation. Growth of transplanted MOM bacteria occurred rapidly in recolonized DHM samples; however, a greater level of growth was observed in Holder-pasteurized DHM compared to UV-C-treated DHM, potentially due to the conserved antimicrobial properties in UV-C-treated DHM. Viability-coupled metataxonomic analysis demonstrated similarity between recolonized DHM samples and fresh MOM samples, suggesting that the milk microbiome can be successfully transplanted into pasteurized DHM. These results highlight the potential of MOM microbiota transplantation to restore the microbial composition of UV-C-treated and Holder-pasteurized DHM and enhance the nutritional and immunological benefits of DHM for preterm and vulnerable infants. KEY POINTS: • Mother's own milk microbiome can be successfully transplanted into donor human milk. • Recolonization is equally successful in UV-C-treated and Holder-pasteurized milk. • Recolonization time should be restricted due to rapid bacterial growth.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.
| | - Jie Ma
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Alethea Rea
- Mathematics and Statistics, Murdoch University, Perth, Australia
| | - Sharon L Perrella
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
26
|
Amar Y, Grube J, Köberle M, Schaubeck M, Biedermann T, Volz T. Bifidobacterium breve DSM 32583 and Limosilactobacillus fermentum CECT5716 postbiotics attenuate S. aureus and IL-33-induced Th2 responses. Microbiol Res 2024; 289:127913. [PMID: 39316930 DOI: 10.1016/j.micres.2024.127913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Over the past decades, the prevalence of allergic diseases noticeably increased in industrialized countries. The Th2 immune response plays a central role in these pathologies and its modulation using pro-/postbiotics constitutes a promising approach to prevent or alleviate disease symptoms. The aim of this in vitro study, was to investigate the ability of human milk-derived Bifidobacterium breve DSM 32583 (Bb) and Limosilactobacillus fermentum CECT5716 (Lf), to modulate the Th2 induced responses. To this end, Th2 cells were generated by co-culturing of human naïve Th cells with monocyte-derived dendritic cells (moDCs) either stimulated with Staphylococcus aureus or IL-33. The immunomodulatory effects of pro-/postbiotic preparations of Bb and Lf on moDCs and Th2 cells were evaluated in terms of maturation markers expression and cytokines production. Remarkably, the tested strains induced the anti-inflammatory cytokine IL-10 in moDCs, in a strain-, dose- and viability-dependent manner with no significant upregulation of IL-12p70 nor CD83, CD86 or HLA-DR. Interestingly, Bb and Lf postbiotics were able to dampen the Th2/Th1 response induced upon S. aureus- or IL-33 stimulation. They were also able to synergistically induce IL-10 in moDCs and T cells, upon co-stimulation with LPS. Finally, we observed that live probiotics triggered a mild Th1 response that was attenuated in the presence of galacto-oligosaccharides. Altogether, Bb and Lf pro-/postbiotics exhibited remarkable immune regulatory effects on both moDCs and Th2 cells. Therefore, further in vivo studies should be considered to validate these findings and assess their ability to prevent allergy or alleviate its symptoms in affected patients.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich 80802, Germany.
| | - Jana Grube
- HiPP GmbH & Co. Vertrieb KG, Pfaffenhofen (Ilm) 85276, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich 80802, Germany
| | | | - Tilo Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich 80802, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich 80802, Germany
| |
Collapse
|
27
|
Kim M, Parrish RC, Tisza MJ, Shah VS, Tran T, Ross M, Cormier J, Baig A, Huang CY, Brenner L, Neuringer I, Whiteson K, Harris JK, Willis AD, Lai PS. Host DNA depletion on frozen human respiratory samples enables successful metagenomic sequencing for microbiome studies. Commun Biol 2024; 7:1590. [PMID: 39609616 PMCID: PMC11604929 DOI: 10.1038/s42003-024-07290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Most respiratory microbiome studies use amplicon sequencing due to high host DNA. Metagenomics sequencing offers finer taxonomic resolution, phage assessment, and functional characterization. We evaluated five host DNA depletion methods on frozen nasal swabs from healthy adults, sputum from people with cystic fibrosis (pwCF), and bronchoalveolar lavage (BAL) from critically ill patients. Median sequencing depth was 76.4 million reads per sample. Untreated nasal, sputum, and BAL had 94.1%, 99.2%, and 99.7% host reads, respectively. Host depletion effects varied by sample type, generally increasing microbial reads, species and functional richness; this was mediated by higher effective sequencing depth. Rarefaction curves showed species richness saturation at 0.5-2 million microbial reads. Most methods did not change Morisita-Horn dissimilarity for BAL and nasal samples although the proportion of gram-negative bacteria decreased for sputum from pwCF. Freezing did not affect the viability of Staphylococcus aureus but reduced the viability of Pseudomonas aeruginosa and Enterobacter spp.; this was mitigated by adding a cryoprotectant. QIAamp-based host depletion minimally impacted gram-negative viability even in non-cryoprotected frozen isolates. While some host depletion methods may shift microbial composition, metagenomics sequencing without host depletion severely underestimates microbial diversity of respiratory samples due to shallow effective sequencing depth and is not recommended.
Collapse
Affiliation(s)
- Minsik Kim
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Raymond C Parrish
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Tisza
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Viral S Shah
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thi Tran
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Ross
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Juwan Cormier
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Aribah Baig
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Brenner
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Isabel Neuringer
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Peggy S Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
29
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
30
|
Thänert R, Schwartz DJ, Keen EC, Hall-Moore C, Wang B, Shaikh N, Ning J, Rouggly-Nickless LC, Thänert A, Ferreiro A, Fishbein SRS, Sullivan JE, Radmacher P, Escobedo M, Warner BB, Tarr PI, Dantas G. Clinical sequelae of gut microbiome development and disruption in hospitalized preterm infants. Cell Host Microbe 2024; 32:1822-1837.e5. [PMID: 39197454 PMCID: PMC11466706 DOI: 10.1016/j.chom.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Aberrant preterm infant gut microbiota assembly predisposes to early-life disorders and persistent health problems. Here, we characterize gut microbiome dynamics over the first 3 months of life in 236 preterm infants hospitalized in three neonatal intensive care units using shotgun metagenomics of 2,512 stools and metatranscriptomics of 1,381 stools. Strain tracking, taxonomic and functional profiling, and comprehensive clinical metadata identify Enterobacteriaceae, enterococci, and staphylococci as primarily exploiting available niches to populate the gut microbiome. Clostridioides difficile lineages persist between individuals in single centers, and Staphylococcus epidermidis lineages persist within and, unexpectedly, between centers. Collectively, antibiotic and non-antibiotic medications influence gut microbiome composition to greater extents than maternal or baseline variables. Finally, we identify a persistent low-diversity gut microbiome in neonates who develop necrotizing enterocolitis after day of life 40. Overall, we comprehensively describe gut microbiome dynamics in response to medical interventions in preterm, hospitalized neonates.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew J Schwartz
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janice E Sullivan
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Paula Radmacher
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Marilyn Escobedo
- Department of Pediatrics, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Gordon JI, Barratt MJ, Hibberd MC, Rahman M, Ahmed T. Establishing human microbial observatory programs in low- and middle-income countries. Ann N Y Acad Sci 2024; 1540:13-20. [PMID: 39298326 DOI: 10.1111/nyas.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Studies of the human microbiome are progressing rapidly but have largely focused on populations living in high-income countries. With increasing evidence that the microbiome contributes to the pathogenesis of diseases that affect infants, children, and adults in low- and middle-income countries (LMICs), and with profound and rapid ongoing changes occurring in our lifestyles and biosphere, understanding the origins of and developing microbiome-directed therapeutics for treating a number of global health challenges requires the development of programs for studying human microbial ecology in LMICs. Here, we discuss how the establishment of long-term human microbial observatory programs in selected LMICs could provide one timely approach.
Collapse
Affiliation(s)
- Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew C Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
32
|
Van Rossum T, Haiß A, Knoll RL, Marißen J, Podlesny D, Pagel J, Bleskina M, Vens M, Fortmann I, Siller B, Ricklefs I, Klopp J, Hilbert K, Meyer C, Thielemann R, Goedicke-Fritz S, Kuntz M, Wieg C, Teig N, Körner T, Kribs A, Hudalla H, Knuf M, Stein A, Gille C, Bagci S, Dohle F, Proquitté H, Olbertz DM, Schmidt E, Koch L, Pirr S, Rupp J, Spiegler J, Kopp MV, Göpel W, Herting E, Forslund SK, Viemann D, Zemlin M, Bork P, Gehring S, König IR, Henneke P, Härtel C. Bifidobacterium and Lactobacillus Probiotics and Gut Dysbiosis in Preterm Infants: The PRIMAL Randomized Clinical Trial. JAMA Pediatr 2024; 178:985-995. [PMID: 39102225 DOI: 10.1001/jamapediatrics.2024.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Importance The effects of probiotic interventions on colonization with resistant bacteria and early microbiome development in preterm infants remain to be clarified. Objective To examine the efficacy of Bifidobacterium longum subsp infantis, Bifidobacterium animalis subsp lactis (BB-12), and Lactobacillus acidophilus (La-5) probiotics to prevent colonization with multidrug-resistant organisms or highly epidemic bacteria (MDRO+) and to shape the microbiome of preterm infants toward the eubiotic state of healthy full-term infants. Design, Setting, and Participants The multicenter, double-blinded, placebo-controlled, group sequential, phase 3 Priming Immunity at the Beginning of Life (PRIMAL) randomized clinical trial, conducted from April 2018 to June 2020, included infants with gestational age of 28 to 32 weeks at 18 German neonatal units. Data analyses were conducted from March 2020 to August 2023. Intervention A total of 28 days of multistrain probiotics diluted in human milk/formula starting within the first 72 hours of life. Main Outcomes and Measures Colonization with MDRO+ at day 30 of life (primary end point), late-onset sepsis and severe gastrointestinal complication (safety end points), and gut dysbiosis, ie, deviations from the microbiome of healthy, term infants (eubiosis score) based on 16-subunit ribosomal RNA and metagenomic sequencing. Results Among the 643 infants randomized until the stop of recruitment based on interim results, 618 (median [IQR] gestational age, 31.0 [29.7-32.1] weeks; 333 male [53.9%]; mean [SD] birth weight, 1502 [369] g) had follow-up at day 30. The interim analysis with all available data from 219 infants revealed MDRO+ colonization in 43 of 115 infants (37.4%) in the probiotics group and in 39 of 104 infants (37.5%) in the control group (adjusted risk ratio, 0.99; 95% CI, 0.54-1.81; P = .97). Safety outcomes were similar in both groups, ie, late-onset sepsis (probiotics group: 8 of 316 infants [2.5%]; control group: 12 of 322 infants [3.7%]) and severe gastrointestinal complications (probiotics group: 6 of 316 infants [1.9%]; control group: 7 of 322 infants [2.2%]). The probiotics group had higher eubiosis scores than the control group at the genus level (254 vs 258 infants; median scores, 0.47 vs 0.41; odds ratio [OR], 1.07; 95% CI, 1.02-1.13) and species level (96 vs 83 infants; median scores, 0.87 vs 0.59; OR, 1.28; 95% CI, 1.19-1.38). Environmental uptake of the B infantis probiotic strain in the control group was common (41 of 84 [49%]), which was highly variable across sites and particularly occurred in infants with a sibling who was treated with probiotics. Conclusions and Relevance Multistrain probiotics did not reduce the incidence of MDRO+ colonization at day 30 of life in preterm infants but modulated their microbiome toward eubiosis. Trial Registration German Clinical Trials Register: DRKS00013197.
Collapse
Affiliation(s)
| | - Annette Haiß
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Rebecca L Knoll
- Department of Pediatrics, University Hospital Mainz, Mainz, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janina Marißen
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Julia Pagel
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | - Marina Bleskina
- Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Maren Vens
- Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Ingmar Fortmann
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Bastian Siller
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Isabell Ricklefs
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jonas Klopp
- Department of Pediatrics, University Hospital Mainz, Mainz, Germany
| | - Katja Hilbert
- Department of Pediatrics, University Hospital Mainz, Mainz, Germany
| | - Claudius Meyer
- Department of Pediatrics, University Hospital Mainz, Mainz, Germany
| | | | | | - Martin Kuntz
- Department of Pediatrics, University of Freiburg, Freiburg, Germany
| | - Christian Wieg
- Children's Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Norbert Teig
- Department of Pediatrics, University of Bochum, Bochum, Germany
| | | | - Angela Kribs
- Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Hannes Hudalla
- Department of Neonatology, University of Heidelberg, Heidelberg, Germany
| | - Markus Knuf
- Children's Hospital Horst-Schmidt-Kliniken Wiesbaden, Wiesbaden, Germany
- Children's Hospital Worms, Worms, Germany
| | - Anja Stein
- Department of Pediatrics I, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Christian Gille
- Department of Neonatology, University of Heidelberg, Heidelberg, Germany
- Department of Neonatology, University of Tübingen, Tübingen, Germany
| | - Soyhan Bagci
- Department of Neonatology, University of Bonn, Bonn, Germany
| | - Frank Dohle
- Children's Hospital Paderborn, Paderborn, Germany
| | - Hans Proquitté
- Department of Neonatology, University of Jena, Jena, Germany
| | - Dirk M Olbertz
- Department of Neonatology, Hospital Rostock Südstadt, University of Rostock, Rostock, Germany
| | | | - Lutz Koch
- Children's Hospital Hamburg Wilhelmstift and Marien-Hospital Hamburg, Medical School Hamburg, Hamburg, Germany
| | - Sabine Pirr
- Department of Neonatology, Allergology and Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center of Infectious Diseases Research, Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Juliane Spiegler
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Matthias V Kopp
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Pediatrics, University Hospital of Berne, Berne, Switzerland
| | - Wolfgang Göpel
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Heidelberg, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Department of Neonatology, Allergology and Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Homburg, Germany
- Center for Genderspecific Biology and Medicine, Saarland University Homburg, Homburg, Germany
- Center vor Digital Neurotechnologies Saar, Saarland University Homburg, Homburg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephan Gehring
- Department of Pediatrics, University Hospital Mainz, Mainz, Germany
| | - Inke R König
- Institute for Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Philipp Henneke
- Department of Pediatrics, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Centre for Chronic Immunodeficiency, University Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Infection Prevention and Control, University Medical Centre and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Center of Infectious Diseases Research, Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
33
|
Shama S, Asbury MR, Kiss A, Bando N, Butcher J, Comelli EM, Copeland JK, Greco A, Kothari A, Sherman PM, Stintzi A, Taibi A, Tomlinson C, Unger S, Wang PW, O'Connor DL. Mother's milk microbiota is associated with the developing gut microbial consortia in very-low-birth-weight infants. Cell Rep Med 2024; 5:101729. [PMID: 39243753 PMCID: PMC11525026 DOI: 10.1016/j.xcrm.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Mother's milk contains diverse bacterial communities, although their impact on microbial colonization in very-low-birth-weight (VLBW, <1,500 g) infants remains unknown. Here, we examine relationships between the microbiota in preterm mother's milk and the VLBW infant gut across initial hospitalization (n = 94 mother-infant dyads, 422 milk-stool pairs). Shared zero-radius operational taxonomic units (zOTUs) between milk-stool pairs account for ∼30%-40% of zOTUs in the VLBW infant's gut. We show dose-response relationships between intakes of several genera from milk and their concentrations in the infant's gut. These relationships and those related to microbial sharing change temporally and are modified by in-hospital feeding practices (especially direct breastfeeding) and maternal-infant antibiotic use. Correlations also exist between milk and stool microbial consortia, suggesting that multiple milk microbes may influence overall gut communities together. These results highlight that the mother's milk microbiota may shape the gut colonization of VLBW infants by delivering specific bacteria and through intricate microbial interactions.
Collapse
Affiliation(s)
- Sara Shama
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle R Asbury
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Departments of Physiology & Pharmacology, and Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Alex Kiss
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Evaluative and Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nicole Bando
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Adrianna Greco
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Akash Kothari
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Philip M Sherman
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Amel Taibi
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher Tomlinson
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neonatology, Izaak Walton Killam Hospital, Halifax, NS, Canada; Department of Pediatrics, Sinai Health, Toronto, ON, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Sinai Health, Toronto, ON, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON, Canada.
| |
Collapse
|
34
|
Masi AC, Beck LC, Perry JD, Granger CL, Hiorns A, Young GR, Bode L, Embleton ND, Berrington JE, Stewart CJ. Human milk microbiota, oligosaccharide profiles, and infant gut microbiome in preterm infants diagnosed with necrotizing enterocolitis. Cell Rep Med 2024; 5:101708. [PMID: 39216480 PMCID: PMC11524953 DOI: 10.1016/j.xcrm.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of very preterm infants with mother's own milk (MOM) providing protection, but the contribution of the MOM microbiota to NEC risk has not been explored. Here, we analyze MOM of 110 preterm infants (48 NEC, 62 control) in a cross-sectional study. Breast milk contains viable bacteria, but there is no significant difference in MOM microbiota between NEC and controls. Integrative analysis between MOM microbiota, human milk oligosaccharides (HMOs), and the infant gut microbiota shows positive correlations only between Acinetobacter in the infant gut and Acinetobacter and Staphylococcus in MOM. This study suggests that NEC protection from MOM is not modulated through the MOM microbiota. Thus, "'restoring" the MOM microbiota in donor human milk is unlikely to reduce NEC, and emphasis should instead focus on increasing fresh maternal human milk intake and researching different therapies for NEC prevention.
Collapse
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John D Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Claire L Granger
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Alice Hiorns
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregory R Young
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; The Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
35
|
Qazi KR, Govindaraj D, Martí M, de Jong Y, Jensen GB, Abrahamsson T, Jenmalm MC, Sverremark-Ekström E. Impact of Extreme Prematurity, Chorioamnionitis, and Sepsis on Neonatal Monocyte Characteristics and Functions. J Innate Immun 2024; 16:470-488. [PMID: 39278208 PMCID: PMC11521501 DOI: 10.1159/000541468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION The innate branch of the immune system is important in early life, in particular for infants born preterm. METHODS We performed a longitudinal analysis of the peripheral monocyte compartment in extremely preterm children from a randomized, placebo-controlled study of probiotic supplementation. PBMCs and fecal samples were collected at several timepoints during the first months of life. Monocyte characteristics were analyzed by flow cytometry, and LPS-stimulated PBMC culture supernatants were analyzed by Luminex or ELISA. Plasma cytokines and gut microbiota composition were analyzed by ELISA and 16S rRNA-sequencing, respectively. RESULTS The extremely preterm infants had persistent alterations in their monocyte characteristics that were further aggravated in chorioamnionitis cases. They showed a markedly reduced TLR4 expression and hampered LPS-stimulated cytokine responses 14 days after birth. Notably, at later timepoints, TLR4 expression and LPS responses no longer correlated. Sepsis during the first weeks of life strongly associated with increased pro-inflammatory, and reduced IL-10, responses also at postmenstrual week 36. Further, we report a correlation between gut microbiota features and monocyte phenotype and responses, but also that probiotic supplementation associated with distinct monocyte phenotypic characteristics, without significantly influencing their responsiveness. CONCLUSION Extremely preterm infants have monocyte characteristics and functional features that deviate from infants born full-term. Some of these differences persist until they reach an age corresponding to full-term, potentially making them more vulnerable to microbial exposures during the first months of life.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dhanapal Govindaraj
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magalí Martí
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ymke de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Georg Bach Jensen
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| | - Thomas Abrahamsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
36
|
Lai MY, Chang YH, Lee CC. The impact of gut microbiota on morbidities in preterm infants. Kaohsiung J Med Sci 2024; 40:780-788. [PMID: 39073226 DOI: 10.1002/kjm2.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The gut microbiota undergoes substantial development from birth, and its development in the initial years of life has a potentially lifelong effect on the health of the individual. However, various factors can disrupt the development of the gut microbiota, leading to a condition known as dysbiosis, particularly in preterm infants. Current studies involving adults have suggested that the gut microbiota not only influences the gut but also has multidimensional effects on remote organs; these pathways are often referred to as the gut-organ axis. Imbalance of the gut microbiota may lead to the development of multiple diseases. Recent studies have revealed that gut dysbiosis in preterm infants may cause several acute morbidities-such as necrotizing enterocolitis, late-onset sepsis, bronchopulmonary dysplasia, and retinopathy of prematurity-and it may also influence long-term outcomes including neurodevelopment and somatic growth. This review mainly presents the existing evidence regarding the relationships between the gut microbiota and these morbidities in preterm infants and explores the role of the gut-organ axis in these morbidities. This paper thus offers insights into the future perspectives on microbiota interventions for promoting the health of preterm infants.
Collapse
Affiliation(s)
- Mei-Yin Lai
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
37
|
Niu B, Feng Y, Cheng X, Xiao Y, Zhao J, Lu W, Tian F, Chen W. The alleviative effects of viable and inactive Lactobacillus paracasei CCFM1120 against alcoholic liver disease via modulation of gut microbiota and the Nrf2/HO-1 and TLR4/MyD88/NF-κB pathways. Food Funct 2024; 15:8797-8809. [PMID: 39114922 DOI: 10.1039/d4fo02592j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Probiotics can alleviate alcoholic liver disease. However, whether inactive counterparts can produce similar outcomes requires further investigation. We investigated the effects of viable (V) and dead (D) Lactobacillus paracasei CCFM1120 on alcohol-induced ALD mice. The results showed that CCFM1120V and D ameliorated the disease symptoms and intestinal injury. Specifically, these interventions strengthened the intestinal barrier, as evidenced by the increased expression of ZO-1 (zonula occludens 1), occludin, and claudin-1 in the colon and the restored ileal microstructure, including the villi and crypts. In addition, they enhanced the antioxidant capacity of the liver by reducing the production of malondialdehyde and increasing the levels of glutathione and superoxide dismutase. The activation of Nrf2 and HO-1 may be responsible for recovering the antioxidant capacity. Interventions can decrease mouse TNF-α, IL-6 and IL-1β content in serum, probably through the TLR4/MyD88/NF-κB pathway. Furthermore, they possess the ability to restore the quantities of bacteria responsible for producing butyric acid, such as Lactobacillus, Blautia, Bifidobacterium, Ruminococcaceae, Faecalibaculum and Lachnospiraceae. Taken together, CCFM1120V and D apparently can modify the composition of the gut microbiota, foster the gastrointestinal equilibrium, fortify the intestinal barrier, augment the antioxidant capacity of the liver, and effectively shield it from ethanol-induced injury.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xu Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Waller ME, Eichhorn CJ, Gutierrez A, Baatz JE, Wagner CL, Chetta KE, Engevik MA. Analyzing the Responses of Enteric Bacteria to Neonatal Intensive Care Supplements. Int J Microbiol 2024; 2024:3840327. [PMID: 39220439 PMCID: PMC11364479 DOI: 10.1155/2024/3840327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the neonatal intensive care unit, adequate nutrition requires various enteral products, including human milk and formula. Human milk is typically fortified to meet increased calorie goals, and infants commonly receive vitamin mixes, iron supplements, and less frequently, thickening agents. We examined the growth of 16 commensal microbes and 10 pathobionts found in the premature infant gut and found that formula, freshly pasteurized milk, and donated banked milk generally increased bacterial growth. Fortification of human milk significantly elevated the growth of all microbes. Supplementation with thickeners or NaCl in general did not stimulate additional growth. Vitamin mix promoted the growth of several commensals, while iron promoted growth of pathobionts. These data indicate that pathobionts in the preterm gut have significant growth advantage with preterm formula, fortified donor milk, and supplemented iron and suggest that the choice of milk and supplements may impact the infant gut microbiota.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Caroline J. Eichhorn
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Alyssa Gutierrez
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - John E. Baatz
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Carol L. Wagner
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Katherine E. Chetta
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
- Department of Microbiology and ImmunologyMedical University of South Carolina, Charleston, USA
| |
Collapse
|
39
|
Cleminson JS, Thomas J, Stewart CJ, Campbell D, Gennery A, Embleton ND, Köglmeier J, Wong T, Spruce M, Berrington JE. Gut microbiota and intestinal rehabilitation: a prospective childhood cohort longitudinal study of short bowel syndrome (the MIRACLS study): study protocol. BMJ Open Gastroenterol 2024; 11:e001450. [PMID: 39153763 PMCID: PMC11331872 DOI: 10.1136/bmjgast-2024-001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION Short bowel syndrome (SBS) is the predominant cause of paediatric intestinal failure. Although life-saving, parenteral nutrition (PN) is linked to complications and may impact quality of life (QoL). Most children will experience intestinal rehabilitation (IR), but the mechanisms underpinning this remain to be understood. SBS is characterised by abnormal microbiome patterns, which might serve as predictive indicators for IR. We aim to characterise the microbiome profiles of children with SBS during IR, concurrently exploring how parental perspectives of QoL relate to IR. METHODS AND ANALYSIS This study will enrol a minimum of 20 paediatric patients with SBS (0-18 years). Clinical data and biological samples will be collected over a 2-year study period. We will apply 16S rRNA gene sequencing to analyse the microbiome from faecal and gut tissue samples, with additional shotgun metagenomic sequencing specifically on samples obtained around the time of IR. Gas chromatography with flame ionisation detection will profile faecal short-chain fatty acids. Plasma citrulline and urinary intestinal fatty acid binding proteins will be measured annually. We will explore microbiome-clinical covariate interactions. Furthermore, we plan to assess parental perspectives on QoL during PN and post-IR by inviting parents to complete the Paediatric Quality of Life questionnaire at recruitment and after the completion of IR. ETHICS AND DISSEMINATION Ethical approval was obtained from the East Midlands-Nottingham 2 Research Ethics Committee (22/EM/0233; 28 November 2022). Recruitment began in February 2023. Outcomes of the study will be published in peer-reviewed scientific journals and presented at scientific meetings. A lay summary of the results will be made available to participants and the public. TRIAL REGISTRATION NUMBER ISRCTN90620576.
Collapse
Affiliation(s)
- Jemma S Cleminson
- Newcastle University, Newcastle upon Tyne, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | | | - David Campbell
- Newcastle University, Newcastle upon Tyne, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Andrew Gennery
- Newcastle University, Newcastle upon Tyne, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Nicholas D Embleton
- Newcastle University, Newcastle upon Tyne, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - Theodoric Wong
- Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Marie Spruce
- NEC UK Registered Charity number: 1181026, Nottingham, UK
| | - Janet E Berrington
- Newcastle University, Newcastle upon Tyne, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Guo L, Ze X, Jiao Y, Song C, Zhao X, Song Z, Mu S, Liu Y, Ge Y, Jing Y, Yao S. Development and validation of a PMA-qPCR method for accurate quantification of viable Lacticaseibacillus paracasei in probiotics. Front Microbiol 2024; 15:1456274. [PMID: 39171269 PMCID: PMC11335531 DOI: 10.3389/fmicb.2024.1456274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The effectiveness of probiotic products hinges on the viability and precise quantification of probiotic strains. This study addresses this crucial requirement by developing and validating a precise propidium monoazide combination with quantitative polymerase chain reaction (PMA-qPCR) method for quantifying viable Lacticaseibacillus paracasei in probiotic formulations. Initially, species-specific primers were meticulously designed based on core genes from the whole-genome sequence (WGS) of L. paracasei, and they underwent rigorous validation against 462 WGSs, 25 target strains, and 37 non-target strains across various taxonomic levels, ensuring extensive inclusivity and exclusivity. Subsequently, optimal PMA treatment conditions were established using 25 different L. paracasei strains to effectively inhibit dead cell DNA amplification while preserving viable cells. The developed method exhibited a robust linear relationship (R 2 = 0.994) between cycle threshold (Cq) values and viable cell numbers ranging from 103 to 108 CFU/mL, with an impressive amplification efficiency of 104.48% and a quantification limit of 7.30 × 103 CFU/mL. Accuracy assessments revealed biases within ±0.5 Log10 units, while Bland-Altman analysis demonstrated a mean bias of 0.058 Log10, with 95% confidence limits of -0.366 to 0.482 Log10. Furthermore, statistical analysis (p = 0.76) indicated no significant differences between theoretical and measured values. This validated PMA-qPCR method serves as a robust and accurate tool for quantifying viable L. paracasei in various sample matrices, including pure cultures, probiotics as food ingredients, and composite probiotic products, thereby enhancing probiotic product quality assurance and contributing to consumer safety and regulatory compliance.
Collapse
Affiliation(s)
- Lizheng Guo
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yingxin Jiao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Chengyu Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xi Zhao
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zhiquan Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Shuaicheng Mu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yiru Liu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yuanyuan Ge
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yu Jing
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Su Yao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| |
Collapse
|
41
|
Arzamasov AA, Rodionov DA, Hibberd MC, Guruge JL, Kazanov MD, Leyn SA, Kent JE, Sejane K, Bode L, Barratt MJ, Gordon JI, Osterman AL. Integrative genomic reconstruction of carbohydrate utilization networks in bifidobacteria: global trends, local variability, and dietary adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602360. [PMID: 39005317 PMCID: PMC11245093 DOI: 10.1101/2024.07.06.602360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janaki L Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 34956
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - James E Kent
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Greenwood M, Murciano-Martínez P, Berrington J, Flitsch SL, Austin S, Stewart C. Characterising glycosaminoglycans in human breastmilk and their potential role in infant health. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:221-234. [PMID: 38975022 PMCID: PMC11224681 DOI: 10.15698/mic2024.07.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Human breastmilk is composed of many well researched bioactive components crucial for infant nutrition and priming of the neonatal microbiome and immune system. Understanding these components gives us crucial insight to the health and wellbeing of infants. Research surrounding glycosaminoglycans (GAGs) previously focused on those produced endogenously; however, recent efforts have shifted to understanding GAGs in human breastmilk. The structural complexity of GAGs makes detection and analysis complicated therefore, research is time consuming and limited to highly specialised teams experienced in carbohydrate analysis. In breastmilk, GAGs are present in varying quantities in four forms; chondroitin sulphate, heparin/heparan sulphate, dermatan sulphate and hyaluronic acid, and are hypothesised to behave similar to other bioactive components with suspected roles in pathogen defense and proliferation of beneficial gut bacteria. Chondroitin sulphate and heparin, being the most abundant, are expected to have the most impact on infant health. Their decreasing concentration over lactation further indicates their role and potential importance during early life.
Collapse
Affiliation(s)
- Melissa Greenwood
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle Upon Tyne, NE2 4HHUnited Kingdom
- Analytical Sciences Department, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Patricia Murciano-Martínez
- Department of Nutrient Technology, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Janet Berrington
- Newcastle Neonatal Service, Royal Victoria Infirmary, Newcastle Upon TyneNE1 4LPUnited Kingdom
| | - Sabine L Flitsch
- School of Chemistry, Faculty of Medical Sciences, The University of Manchester, Manchester Institute of BiotechnologyM1 7DNUnited Kingdom
| | - Sean Austin
- Analytical Sciences Department, Société des Produits Nestlé, Nestlé Research, Vers-Chez-Les-BlancLausanneSwitzerland
| | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle Upon Tyne, NE2 4HHUnited Kingdom
| |
Collapse
|
43
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
44
|
Hwang CH, Kim SH, Lee CH. Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota. J Microbiol Biotechnol 2024; 34:1314-1321. [PMID: 38938006 PMCID: PMC11239411 DOI: 10.4014/jmb.2404.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024]
Abstract
Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.
Collapse
Affiliation(s)
- Chan Hyuk Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| |
Collapse
|
45
|
Chen W, Guo K, Huang X, Zhang X, Li X, Chen Z, Wang Y, Wang Z, Liu R, Qiu H, Wang M, Zeng S. The Association of Neonatal Gut Microbiota Community State Types with Birth Weight. CHILDREN (BASEL, SWITZERLAND) 2024; 11:770. [PMID: 39062221 PMCID: PMC11276374 DOI: 10.3390/children11070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the early identification of different types of low-birth-weight (LBW) preterm infants. METHODS a total of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing, and microbiome analysis was conducted. The community state type (CST) of the microbiota was predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine learning approach. RESULTS we briefly analyzed the structure of the gut microbiota of preterm infants with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth weight and clinical indicators related to prematurity were associated with the CST. We found the composition of the gut microbiota was specific to the different types of low-birth-weight premature infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut microbiota's composition and its correlation with low weight, we constructed random forest model classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine learning evaluation, suggesting that gut microbiota composition may be a potential biomarker for ELBW preterm infants. CONCLUSIONS the gut bacteria of preterm infants showed a CST with Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants.
Collapse
Affiliation(s)
- Wanling Chen
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518116, China
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
| | - Kaiping Guo
- Division of Pediatrics, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xunbin Huang
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xueli Zhang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Xiaoxia Li
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Zimiao Chen
- Department of Burn Plastic Surgery, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Yanli Wang
- Department of Pediatrics, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Rongtian Liu
- Department of Pediatrics, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Huixian Qiu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
- Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| |
Collapse
|
46
|
He P, Yu L, Tian F, Chen W, Zhang H, Zhai Q. Effects of Probiotics on Preterm Infant Gut Microbiota Across Populations: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100233. [PMID: 38908894 PMCID: PMC11251410 DOI: 10.1016/j.advnut.2024.100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 06/24/2024] Open
Abstract
Microbiota in early life is closely associated with the health of infants, especially premature ones. Probiotics are important drivers of gut microbiota development in preterm infants; however, there is no consensus regarding the characteristics of specific microbiota in preterm infants receiving probiotics. In this study, we performed a meta-analysis of 5 microbiome data sets (1816 stool samples from 706 preterm infants) to compare the gut microbiota of preterm infants exposed to probiotics with that of preterm infants not exposed to probiotics across populations. Despite study-specific variations, we found consistent differences in gut microbial composition and predicted functional pathways between the control and probiotic groups across different cohorts of preterm infants. The enrichment of Acinetobacter, Bifidobacterium, and Lactobacillus spp and the depletion of the potentially pathogenic bacteria Finegoldia, Veillonella, and Klebsiella spp. were the most consistent changes in the gut microbiota of preterm infants supplemented with probiotics. Probiotics drove microbiome transition into multiple preterm gut community types, and notably, preterm gut community type 3 had the highest α-diversity, with enrichment of Bifidobacterium and Bacteroides spp. At the functional level, the major predicted microbial pathways involved in peptidoglycan biosynthesis consistently increased in preterm infants supplemented with probiotics; in contrast, the crucial pathways associated with heme biosynthesis consistently decreased. Interestingly, Bifidobacterium sp. rather than Lactobacillus sp. gradually became dominant in gut microbiota of preterm infants using mixed probiotics, although both probiotic strains were administered at the same dosage. Taken together, our meta-analysis suggests that probiotics contribute to reshaping the microbial ecosystem of preterm infants at both the taxonomic and functional levels of the bacterial community. More standardized and relevant studies may contribute to better understanding the crosstalk among probiotics, the gut microbiota, and subsequent disease risk, which could help to give timely nutritional feeding guidance to preterm infants. This systematic review and meta-analysis was registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) as CRD42023447901.
Collapse
Affiliation(s)
- Pandi He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
47
|
Lee CC, Chiu CH. Link between gut microbiota and neonatal sepsis. J Formos Med Assoc 2024; 123:638-646. [PMID: 37821302 DOI: 10.1016/j.jfma.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
In neonates, the gastrointestinal tract is rapidly colonized by bacteria after birth. Gut microbiota development is critical during the first few years of life. However, disruption of gut microbiota development in neonates can lead to gut dysbiosis, characterized by overcolonization by pathogenic bacteria and delayed or failed maturation toward increasing microbial diversity and Fermicutes dominance. Gut dysbiosis can predispose infants to sepsis. Pathogenic bacteria can colonize the gut prior to sepsis and cause sepsis through translocation. This review explores gut microbiota development in neonates, the evidence linking gut dysbiosis to neonatal sepsis, and the potential role of probiotics in gut microbiota modulation and sepsis prevention.
Collapse
Affiliation(s)
- Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Wala SJ, Ragan MV, Pryor E, Canvasser J, Diefenbach KA, Besner GE. Contemporary use of prophylactic probiotics in NICUs in the United States: a survey update. J Perinatol 2024; 44:739-744. [PMID: 38553600 DOI: 10.1038/s41372-024-01952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVE In 2015, 14.0% of US NICUs administered probiotics to very low birth weight infants. Current probiotic use prior to and after the Fall of 2023 (when FDA warnings were issued) remains unknown. STUDY DESIGN A survey was distributed to the American Academy of Pediatrics Section on Neonatal and Perinatal Medicine (August-November/2022) and Neonatology Solutions' Level III/IV NICUs (January-April/2023). Probiotic administration practices were investigated. RESULTS In total, 289 unique NICUs and 406 providers responded to the survey. Of those, 29.1% of NICUs administered prophylactic probiotics to premature neonates, however, this decreased considerably after FDA warnings were issued. Additionally, 71.4% of providers stated willingness to administer probiotics to premature infants if there was an FDA-approved formulation. CONCLUSIONS Probiotic use in US NICUs increased between 2015 and the Fall of 2023 and then dropped dramatically following warning letters from the FDA. The introduction of an FDA-approved probiotic may further expand administration.
Collapse
Affiliation(s)
- Samantha J Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mecklin V Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Karen A Diefenbach
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
49
|
Collado MC, Stewart CJ. Editorial overview: A critical crossroad in microbiome research: Where do we go? Curr Opin Microbiol 2024; 78:102438. [PMID: 38377654 DOI: 10.1016/j.mib.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | | |
Collapse
|
50
|
Gao Y, Zhang G, Jiang S, Liu Y. Wekemo Bioincloud: A user-friendly platform for meta-omics data analyses. IMETA 2024; 3:e175. [PMID: 38868508 PMCID: PMC10989175 DOI: 10.1002/imt2.175] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 06/14/2024]
Abstract
The increasing application of meta-omics approaches to investigate the structure, function, and intercellular interactions of microbial communities has led to a surge in available data. However, this abundance of human and environmental microbiome data has exposed new scalability challenges for existing bioinformatics tools. In response, we introduce Wekemo Bioincloud-a specialized platform for -omics studies. This platform offers a comprehensive analysis solution, specifically designed to alleviate the challenges of tool selection for users in the face of expanding data sets. As of now, Wekemo Bioincloud has been regularly equipped with 22 workflows and 65 visualization tools, establishing itself as a user-friendly and widely embraced platform for studying diverse data sets. Additionally, the platform enables the online modification of vector outputs, and the registration-independent personalized dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely available at https://www.bioincloud.tech/.
Collapse
Affiliation(s)
- Yunyun Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Guoxing Zhang
- Shenzhen Wekemo Technology Group Co., Ltd.ShenzhenChina
| | - Shunyao Jiang
- Shenzhen Wekemo Technology Group Co., Ltd.ShenzhenChina
| | - Yong‐Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|