1
|
Sun C, Xiong H, Guo T. β-Nicotinamide Mononucleotide Alleviates Sepsis-associated Acute Kidney Injury by Activating NAD+/SIRT3 Signaling. Cell Biochem Biophys 2025; 83:2089-2099. [PMID: 39580586 DOI: 10.1007/s12013-024-01619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Acute kidney injury (AKI) following sepsis is a life-threatening condition that portends higher mortality. β-Nicotinamide mononucleotide (β-NMN), a crucial nicotinamide adenine dinucleotide (NAD+) precursor, exhibits the potential to against sepsis. We aimed to elucidate the effect of β-NMN on septic AKI. A cecal ligation and perforation (CLP)-induced sepsis-associated AKI mice model and a lipopolysaccharide (LPS)-triggered HK-2 cell model were established. Renal histopathology in mice with septic AKI without or with β-NMN treatment was detected using H&E staining. The contents of serum creatinine (Scr), blood urea nitrogen (BUN) and renal NAD+ were assessed with kits. Inflammation was evaluated by detecting the concentrations of TNF-α, IL-1β and IL-6 using ELISA kits. Besides, TUNEL assay was used to examine apoptosis and apoptosis-associated proteins was measured using immunoblotting. Additionally, expression of genes in sirtuins (SIRTs) family in renal tissues was tested using RT-qPCR. HK-2 cell viability was detected using CCK-8 assy. Finally, SIRT3 was silenced to carry out the rescue experiments. As a result, NAD+ level was decreased in kidney tissues of mice with sepsis-associated AKI and HK-2 cells treated with LPS. β-NMN treatment increased NAD+ level and alleviated the inflammation and apoptosis in renal tissues. It could be observed that SIRT3 expression was notably downregulated in vivo and in vitro, which was upregulated by β-NMN supplementation. Further, interfering with SIRT3 expression mitigated the protective effects of β-NMN on the inflammation and apoptosis of HK-2 cells under LPS conditions. In summary, β-NMN alleviates sepsis-associated AKI by activating NAD+/SIRT3 signaling. Our findings provide evidence of β-NMN supplementation on improvement of sepsis-associated AKI.
Collapse
Affiliation(s)
- Chengcheng Sun
- Emergency Department, Peking University First Hospital, 100034, Beijing, China
| | - Hui Xiong
- Emergency Department, Peking University First Hospital, 100034, Beijing, China
| | - Tao Guo
- Emergency Department, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
2
|
Lin CY, Chang YT, Chung YK, Alalaiwe A, Yu HP, Fang JY. Dual-membrane bioinspired nanocarriers for targeted therapy of MRSA-induced acute lung injury and bacteremia. J Mater Chem B 2025; 13:5686-5704. [PMID: 40261186 DOI: 10.1039/d4tb02742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Bioinspired nanoparticles enhance the targeting of specific organs by facilitating interactions and communication at the nano-bio interface. Combining human neutrophil and lung epithelial cell membranes for nanoparticle cloaking offers distinct advantages in binding to bacteria and pulmonary epithelium, thus targeting infection-induced inflammatory areas. This study aimed to develop rifampicin-loaded biomimetic nanocarriers by wrapping a polymeric core with dual membranes derived from neutrophils and A549 cells, inheriting the membrane characteristics of the native cells. To evaluate the therapeutic efficacy of these nanocarriers, methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) and bacteremia models were established in mice. The hybrid membrane-coated nanoparticles exhibited an average diameter of 191 nm and a nearly neutral surface charge of -2.7 mV. Zeta potential measurements, gel electrophoresis, and scanning electron microscopy (SEM) confirmed the successful decoration of the membranes on the nanoparticles. The dual membrane-coated nanoparticles were readily and rapidly ingested by lung epithelial cells within five minutes, demonstrating superior cellular uptake compared to those coated with a single membrane. SEM analysis showed significant adherence of the hybrid membrane-coated nanoparticles to the MRSA surface. The rifampicin-loaded nanocarriers effectively eradicated MRSA in its planktonic, biofilm, and intracellular forms. In vivo biodistribution studies in ALI mice revealed that the hybrid membrane-coated nanoparticles effectively targeted inflamed lungs, showing a two-fold increase in lung accumulation compared to the unfunctionalized nanoparticles. This targeted delivery significantly reduced the severity of lung damage caused by ALI and bacteremia, including MRSA burden, cytokine/chemokine expression, alveolar edema, and immune cell infiltration. The bioinspired nanocarriers improved the pulmonary targeting of inflamed sites and neutralized the proinflammatory mediators and toxins in the injured lung. No significant toxicity was observed in the healthy mice receiving the nanocarriers. Thus, targeted biomimetic nanocarriers, utilizing antibacterial and anti-inflammatory strategies, show promising benefits for treating pulmonary injury.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
- Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
3
|
Lin Y, Wu H, Wang J, He W, Hou J, Martin VT, Zhu C, Chen Y, Zhong J, Yu B, Lu A, Guan D, Qin G, Chen W. Nicotinamide Adenine Dinucleotide-Loaded Lubricated Hydrogel Microspheres with a Three-Pronged Approach Alleviate Age-Related Osteoarthritis. ACS NANO 2025; 19:17606-17626. [PMID: 40315404 PMCID: PMC12080321 DOI: 10.1021/acsnano.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
Chondrocyte senescence, synovitis, and decreased level of lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (AROA). However, there are currently no effective therapeutic interventions capable of altering the progression of OA until it reaches advanced stages, necessitating joint replacement. In this study, lubricious and drug-loaded hydrogel microspheres were designed and fabricated by utilizing microfluidic technology for radical polymerization of chondroitin sulfate methacrylate and incorporating nicotinamide adenine dinucleotide (NAD)-loaded liposomes modified with lactoferrin that are positively charged. Mechanical, tribological, and drug release analyses demonstrated enhanced lubrication properties and an extended drug dissemination time for the NAD@NPs@HM microspheres. In vitro assays unveiled the ability of NAD@NPs@HM to counteract chondrocyte senescence. RNA sequencing analysis, untargeted metabolomics analysis, and in vitro experiments on macrophages revealed that NAD@NPs@HM can regulate the metabolic reprogramming of synovial macrophages, promoting their repolarization from the M1 to M2 phenotype, thereby alleviating synovitis. Intra-articular injection of NAD@NPs@HM in aged mice reduced the mechanisms associated with AROA. These results suggest that NAD@NPs@HM may provide extended drug release, improved joint lubrication leading to better gait, and attenuation of AROA pathogenic processes, indicating its potential as a therapeutic approach for AROA.
Collapse
Affiliation(s)
- Yanpeng Lin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hangtian Wu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jun Wang
- School
of Animal Science and Technology, Foshan
University, Foshan, Guangdong 528231, People’s Republic of China
| | - Wanling He
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jiahui Hou
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Vidmi Taolam Martin
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chencheng Zhu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yupeng Chen
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Junyuan Zhong
- Department
of Medical Imaging, Ganzhou People’s
Hospital, Ganzhou, Jiangxi 341000, P. R. China
| | - Bin Yu
- Division
of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang
Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Aiping Lu
- Institute
of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong 999077, P. R. China
- Guangdong-Hong
Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510515, P. R. China
| | - Daogang Guan
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Guangdong
Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, P. R. China
| | - Genggeng Qin
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Weiguo Chen
- Department
of Radiology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
4
|
Cheng D, Pan T, Wang X, Tian R, Fan H, Wei L, He S, Dong R, Yan X, Wu MX, Tan R, Qu H, Lu M. An advanced inhalable dry powder, mucus-penetrating aerosol platform: Bridging Andrographolide delivery with clinical translation. Biomaterials 2025; 322:123401. [PMID: 40347852 DOI: 10.1016/j.biomaterials.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Effective aerosol drug delivery remains a challenge for treating pulmonary diseases due to physiological barriers such as mucus accumulation, biofilm formation, and rapid macrophage clearance. Here, we developed an inhalable honeycomb-like microsphere (HCLplga-Ab) aerosol platform using FDA-approved poly(lactic-co-glycolic acid) (PLGA) and a pore-forming agent. The platform encapsulates Andrographolide, a bioactive compound derived from traditional Chinese medicine, together with a chitosan-ambroxol coating to achieve mucus penetration, sequential drug release, and prolonged retention in the lungs. The large geometric diameter (∼10-15 μm) combined with an optimal aerodynamic size (∼2.57 μm) ensures deep lung deposition while evading alveolar macrophage clearance. In murine models of acute lung injury (ALI), bacterial pneumonia (Klebsiella pneumoniae), and fungal pneumonia (Candida albicans), HCLplga-Ab demonstrated enhanced mucus penetration and biofilm destruction, uniform and prolonged drug retention in the lungs, and significant reduction in inflammation and pathogen burden. This versatile platform bridges traditional medicine with modern aerosol technology, offering a promising solution for respiratory disorders and clinical translation.
Collapse
Affiliation(s)
- Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huizhen Fan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruonan Dong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiangqun Yan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Mei X Wu
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Curran CS, Cui X, Li Y, Gamble T, Sun J, Minkove S, Livinski AA, Eichacker PQ, Torabi-Parizi P. Meta-analysis of niacin and NAD metabolite treatment in infectious disease animal studies suggests benefit but requires confirmation in clinically relevant models. Sci Rep 2025; 15:12621. [PMID: 40221506 PMCID: PMC11993703 DOI: 10.1038/s41598-025-95735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Disruption of nicotinamide adenine dinucleotide (NAD) biosynthesis and function during infection may impair host defenses and aggravate inflammatory and oxidative organ injury. Increasingly, studies are investigating whether niacin or NAD metabolite treatment is beneficial in infection and sepsis animal models. We examined whether this preclinical experience supports clinical trials. A systematic review of three data bases was conducted through 2/29/2024 and a meta-analysis was performed comparing niacin or NAD metabolite treatment to control in adult animal models employing microbial challenges. Fifty-six studies met inclusion criteria, with 24 published after 2019. Most studies employed mouse (n = 40 studies) or rat (n = 12) models and administered either a bacterial toxin (n = 28) or bacterial (n = 19) challenge. Four and three studies employed viral or fungal challenges respectively. Studies investigated an NAD metabolite alone (n = 44), niacin alone (n = 9), or both (n = 3), usually administered before or within 24h after challenge (n = 50). Only three and four studies included standard antimicrobial support or started treatment > 24h after challenge respectively. In similar patterns with differing animal types (p ≥ 0.06), compared to control across those studies investigating the parameter, niacin or NAD treatment decreased the odds ratio of mortality [95% confidence interval (CI)] [0.28 (0.17, 0.49)] and in blood or tissue increased antioxidant levels [standardized mean differences (95%CI)] (SMD) [3.61 (2.20,5.02)] and decreased levels of microbes [- 2.44 (- 3.34, - 1.55)], histologic and permeability organ injury scoring [- 1.62 (- 2.27, - 0.98) and - 1.31(- 1.77, - 0.86) respectively], levels of TNFα, IL-6 and IL-1β [- 2.47 (- 3.30, - 1.64), - 3.17 (- 4.74, - 1.60) and - 8.44 (- 12.4, - 4.5) respectively] and myeloperoxidase (MPO) [- 1.60 (- 2.06, - 1.14)], although with significant, primarily quantitative heterogeneity for each (I2 ≥ 53%, p < 0.01) except MPO. Treatment increased blood or tissue NAD+ levels and decreased chemical organ injury measures and oxidation markers but differently comparing species (p ≤ 0.05). Only 2 and 9 survival studies described power analyses or animal randomization respectively and no study described treatment or non-histologic outcome measure blinding. Among survival studies, Egger's analysis (p = 0.002) suggested publication bias. While suggestive, published animal studies do not yet support clinical trials testing niacin and NAD metabolite treatment for infection and sepsis. Animal studies simulating clinical conditions and with randomized, blinded designs are needed to investigate this potentially promising therapeutic approach.
Collapse
Affiliation(s)
- Colleen S Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Gamble
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Alicia A Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Peter Q Eichacker
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg 10, Room 2C138, Bethesda, USA.
| |
Collapse
|
6
|
Meng Z, Huang H, Guo J, Wang D, Tao X, Dai Q, Bai Y, Ma C, Huang L, Fu Y, Lu C, Wang H, Wang Q, Li X, Ren H. Promote Sepsis Recovery through the Inhibition of Immunothrombosis via a Combination of Probenecid Nanocrystals and Cefotaxime Sodium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21013-21032. [PMID: 40152149 DOI: 10.1021/acsami.5c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host immune response to pathogenic infection. Due to its high mortality rate, it has been a major global public health problem. Recent studies have shown that the formation of immunothrombosis plays as a "double-edged sword" in the pathogenesis of sepsis, and how to properly regulate immunothrombosis to avoid organ damage and end the high-inflammation state as early as possible are the key steps for sepsis therapy. Considering the complexity of sepsis therapy, the development of an effective combined therapeutic strategy is the goal of this study. First, the insoluble Panexin1 (Panx1) channel inhibitor probenecid (Prob) was prepared as nanocrystals and administered via intramuscular injection. At the same time, septic mice were intravenously injected with cefotaxime sodium through the tail vein for combination therapy. After treatment, the number of infection foci and the level of serum inflammatory factors in septic mice were significantly reduced, and also neutrophil NETosis was significantly inhibited; thus, the survival rate of septic mice was dramatically increased. Pathological analysis revealed that the combination treatment was safe and effective and could significantly reduce the formation of immunothrombosis in septic mice.
Collapse
Affiliation(s)
- Zhengjie Meng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haixiao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jiaqi Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Dong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qihao Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yunhao Bai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Luming Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yangkai Fu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hengjian Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qiyue Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xueming Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Huang J, Li J, Wu N, Yang X, Zhang L, Bian F, Hu D. Microfluidic magnetic droplet-based chemiluminescence enzyme immunoassay for multiplex sepsis biomarker screening. Analyst 2025; 150:1553-1562. [PMID: 40079594 DOI: 10.1039/d4an01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, requiring the joint detection of multiplex biomarkers for specific diagnosis. Here, we present a chemiluminescence enzyme immunoassay based on microfluidic magnetic droplets for multiplex sepsis biomarker screening. The droplet-based chemiluminescence enzyme immunoassay (CLIA) technology utilizes multicolor-encoded microspheres to distinguish biomarkers and mesoporous silica-loaded enzymes for signal amplification and catalytic fluorescent substrates. Additionally, digital immunoassays via Poisson distribution in the generated droplets provide a reliable quantitative strategy for detecting rare targets. This method achieves high sensitivity, low interference, and simultaneous detection with satisfactory specificity of various sepsis biomarkers, such as procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP). These features demonstrate that the microfluidic droplet-based CLIA method has great potential for broader applications in multiplex biomolecule detection and early disease diagnosis.
Collapse
Affiliation(s)
- Jiayue Huang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, P.R. China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinbo Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, P.R. China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Nan Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, P.R. China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Feika Bian
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, P.R. China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, P.R. China.
| | - Danhong Hu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, P.R. China.
| |
Collapse
|
8
|
Chen J, Feng M, Zhang T, Zhong M, Wang Y, Zhang Q, Sun Y. Integrative bioinformatics analysis reveals CGAS as a ferroptosis-related signature gene in sepsis and screens the potential natural inhibitors of CGAS. Int J Biol Macromol 2025; 297:139778. [PMID: 39805448 DOI: 10.1016/j.ijbiomac.2025.139778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sepsis is a fatal organ dysfunction characterized by the simultaneous hyperinflammation and immunosuppression. Nowadays, the early precision intervention of sepsis is challenging. Ferroptosis is involved in the development of sepsis. The current study aimed to find out the signature genes of sepsis with network topology analysis and machine learning, and further provide the potential natural compounds for sepsis with virtual screening and in vitro validation. In this study, five genes namely CGAS, DPP4, MAPK14, PPARG and TXN were identified as ferroptosis-related signature genes for sepsis by network topological analysis, machine learning algorithms, and external datasets verification. The results of immune infiltration analysis confirmed these genes were significantly associated with the infiltration abundance of some immune cells including neutrophil, macrophage, plasmacytoid dendritic cell and activated dendritic cell. Moreover, coniferin, 5-O-caffeoylshikimic acid, and psoralenoside were initially identified as the natural inhibitors of CGAS by virtual screening. However, further in vitro study on macrophages revealed coniferin and psoralenoside had better inhibitory activities on CGAS. In summary, the present study pointed out the importance of CGAS in sepsis, and discovered novel natural inhibitors of CGAS.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Tianyao Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
9
|
Cho HB, Kim H, Lee S, Cho CW, Park J, Youn S, So G, Kang S, Kim HJ, Park K. Near Infrared-Mediated Intracellular NADH Delivery Strengthens Mitochondrial Function and Stability in Muscle Dysfunction Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415303. [PMID: 39887582 PMCID: PMC11948086 DOI: 10.1002/advs.202415303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Mitochondrial transfer emerges as a promising therapy for the restoration of mitochondrial function in damaged cells, mainly due to its limited immunogenicity. However, isolated mitochondria rapidly lose function because they produce little energy outside cells. Therefore, this study investigates whether near infrared (NIR)-mediated nicotinamide adenine dinucleotide (NADH) pre-treatment enhances mitochondrial function and stability in mitochondria-donor cells prior to transplantation. Clinical applications of NADH, an essential electron donor in the oxidative phosphorylation process, are restricted due to the limited cellular uptake of NADH. To address this, a photo-mediated method optimizes direct NADH delivery into cells and increases NADH absorption. L6 cells treated with NADH and irradiated with NIR enhanced NADH uptake, significantly improving mitochondrial energy production and function. Importantly, the improved functional characteristics of the mitochondria are maintained even after isolation from cells. Primed mitochondria, i.e., those enhanced by NIR-mediated NADH uptake (P-MT), are encapsulated in fusogenic liposomes and delivered into muscle cells with mitochondrial dysfunction. Compared to conventional mitochondria, P-MT mitochondria promote greater mitochondrial recovery and muscle regeneration. These findings suggest that NIR-mediated NADH delivery is an effective strategy for improving mitochondrial function, and has the potential to lead to novel treatments for mitochondrial disorders and muscle degeneration.
Collapse
Affiliation(s)
- Hui Bang Cho
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Hye‐Ryoung Kim
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Sujeong Lee
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Chae Won Cho
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Ji‐In Park
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Seulki Youn
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Gyuwon So
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Sumin Kang
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Hye Jin Kim
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Keun‐Hong Park
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| |
Collapse
|
10
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2025; 14:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
11
|
Rana K, Yadav P, Chakraborty R, Jha SK, Agrawal U, Bajaj A. Engineered Nanomicelles Delivering the Combination of Steroids and Antioxidants Can Mitigate Local and Systemic Inflammation, Including Sepsis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11595-11610. [PMID: 39946544 DOI: 10.1021/acsami.4c14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chronic inflammation is mainly characterized by the release of proinflammatory cytokines (cytokine storm) and reactive oxygen/nitrogen species. Sepsis is a life-threatening condition resulting from the successive chronic inflammatory responses toward infection, leading to multiple organ failure and, ultimately, death. As inflammation and oxidative stress are known to nourish each other and initiate an uncontrolled immune response, inhibiting the cross-talk between the inflammatory response using anti-inflammatory drugs and oxidative stress using antioxidants can be a promising strategy to target sepsis. Here, we present the engineering of chimeric nanomicelles (NMs) using an ester-linked polyethylene glycol-derived lithocholic acid-drug conjugate using dexamethasone (DEX), a potent glucocorticoid possessing anti-inflammatory properties, and vitamin E (VITE), an antioxidant to target oxidative stress. Interestingly, these chimeric DEX-VITE NMs show enhanced accumulation at the inflamed sites driven by enhanced permeation and retention effect and mitigate localized acute inflammation in paw, lung, and liver inflammation models. We further demonstrated the efficacy of these NMs in mitigating LPS-induced endotoxemia and CLP-induced microbial sepsis, conferring survival advantages. DEX-VITE NMs also modulate immune homeostasis by decreasing the infiltration of total immune cells, neutrophils, and overall macrophages. Finally, administration of DEX-VITE NMs also reduces the release of proinflammatory cytokines and prevents vascular damage, two critical factors of sepsis pathogenesis. Therefore, this therapeutic approach of chimeric NMs can effectively deliver steroids and antioxidants to mitigate uncontrolled localized and systemic inflammation.
Collapse
Affiliation(s)
- Kajal Rana
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Poonam Yadav
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Ruchira Chakraborty
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Somesh K Jha
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Usha Agrawal
- Asian Institute of Public Health University, Haridamada, Jatani, Bhubaneswar, Odisha 752054, India
| | - Avinash Bajaj
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
12
|
Li JM, Zhang L, Pei SL, Guo L, Shen HL, He J, Guo YY, Zhang WQ, Lin F. Copper-Based Nanoparticles for Effective Treatment Against Sepsis-Induced Lung Injury in Mice Model. Int J Nanomedicine 2024; 19:13507-13524. [PMID: 39713221 PMCID: PMC11662683 DOI: 10.2147/ijn.s488357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (Cu4.5O USNPs) was developed to address sepsis-induced lung injury (SILI). Methods The synthesized nanoparticles were thoroughly characterized to assess their properties. In vitro experiments were conducted to determine the biologically effective concentration and elucidate the anti-inflammatory mechanism of action. These findings were further supported by in vivo studies, showcasing the material's efficacy in mitigating SILI. Results The Cu4.5O USNPs demonstrated remarkable scavenging capabilities for hydrogen peroxide (H2O2), superoxide anions (O2 -), and hydroxyl radicals (·OH), attributed to their catalase (CAT)- and superoxide dismutase (SOD)-like activities. Additionally, the nanoparticles exhibited strong anti-inflammatory effects, preserved mitochondrial homeostasis through potent ROS scavenging, and significantly reduced cell death. In vivo studies on mice further validated their protective role against SILI. The conclusion This study highlights the therapeutic potential of Cu4.5O USNPs in treating sepsis-induced lung injury by effectively scavenging ROS and reducing cell death. These findings provide compelling evidence for the future use of copper-based nanoparticles as antioxidant therapeutics.
Collapse
Affiliation(s)
- Jie-Mei Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Lu Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Sheng-Lin Pei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi, People’s Republic of China
| | - Liang Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi, People’s Republic of China
| | - Hong-Lei Shen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Jing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - You-Yuan Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Wei-Qing Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
13
|
Dong X, Zhu W, Wang N. Cepharanthine inhibits the proliferation of glioblastoma cells by blocking the autophagy-lysosomal pathway. Toxicol Appl Pharmacol 2024; 493:117141. [PMID: 39500397 DOI: 10.1016/j.taap.2024.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Cepharanthine (CEP) is a Stephania cepharantha-derived bioactive alkaloid that can inhibit the progression of numerous tumors. However, the effects and specific mechanisms of CEP performance in glioblastoma (GBM) remain unclear. Thus, this study focused on exploring the effects of CEP on GBM and clarifying the underlying mechanisms. U251 and U87 cells were selected to estimate the anti-GBM effects of CEP, and the possible targets of CEP were analyzed using RNA sequencing (RNA-seq). Validation experiments based on RNA-seq data were performed to clarify the key pathway by which CEP mediates GBM cells response. Results showed that CEP administration successfully inhibited the proliferation and induced the cell cycle arrest and apoptosis of the GBM cells. RNA-seq analysis after CEP administration identified 386 differentially expressed genes, which were highly enriched in the autophagy-lysosomal pathway. Subsequent findings demonstrated that CEP exhibited the potential to curb GBM progression by causing lysosomal and autophagic dysfunction. Taken together, our results indicate that CEP is a potential drug candidate for GBM intervention.
Collapse
Affiliation(s)
- Xiangjun Dong
- Department of Pediatrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing 401147, China
| | - Weiyi Zhu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Nianrong Wang
- Department of Pediatrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing 401147, China.
| |
Collapse
|
14
|
Maiese K. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways. World J Cardiol 2024; 16:632-643. [PMID: 39600987 PMCID: PMC11586725 DOI: 10.4330/wjc.v16.i11.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
As a non-communicable disease, cardiovascular disorders have become the leading cause of death for men and women. Of additional concern is that cardiovascular disease is linked to chronic comorbidity disorders that include nonalcoholic fatty liver disease (NAFLD). NAFLD, also termed metabolic-dysfunction-associated steatotic liver disease, is the greatest cause of liver disease throughout the world, increasing in prevalence concurrently with diabetes mellitus (DM), and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fibrosis. Individuals with metabolic disorders, such as DM, are more than two times likely to experience cardiac disease, stroke, and liver disease that includes NAFLD when compared individuals without metabolic disorders. Interestingly, cardiovascular disorders and NAFLD share a common underlying cellular mechanism for disease pathology, namely the silent mating type information regulation 2 homolog 1 (SIRT1; Saccharomyces cerevisiae). SIRT1, a histone deacetylase, is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues, including trophic factors such as erythropoietin, stem cells, and AMP-activated protein kinase. Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients, but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
| |
Collapse
|
15
|
Yin L, Tong Y, Xie R, Zhang Z, Islam ZH, Zhang K, Burger J, Hoyt N, Kent EW, Marcum WA, Johnston C, Kanchetty R, Tetz Z, Stanisic S, Huang Y, Guo LW, Gong S, Wang B. Targeted NAD + repletion via biomimetic nanoparticle enables simultaneous management of intimal hyperplasia and accelerated re-endothelialization: A proof-of-concept study toward next-generation of endothelium-protective, anti-restenotic therapy. J Control Release 2024; 376:806-815. [PMID: 39461367 DOI: 10.1016/j.jconrel.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Endovascular interventions often fail due to restenosis, primarily caused by smooth muscle cell (SMC) proliferation, leading to intimal hyperplasia (IH). Current strategies to prevent restenosis are far from perfect and impose significant collateral damage on the fragile endothelial cell (EC), causing profound thrombotic risks. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme and signaling substrate implicated in redox and metabolic homeostasis, with a pleiotropic role in protecting against cardiovascular diseases. However, a functional link between NAD+ repletion and the delicate duo of IH and EC regeneration has yet to be established. NAD+ repletion has been historically challenging due to its poor cellular uptake and low bioavailability. We have recently invented the first nanocarrier that enables direct intracellular delivery of NAD+ in vivo. Combining the merits of this prototypic NAD+-loaded calcium phosphate (CaP) nanoparticle (NP) and biomimetic surface functionalization, we created a biomimetic P-NAD+-NP with platelet membrane coating, which enabled an injectable modality that targets IH with excellent biocompatibility. Using human cell primary culture, we demonstrated the benefits of NP-assisted NAD+ repletion in selectively inhibiting the excessive proliferation of aortic SMC, while differentially protecting aortic EC from apoptosis. Moreover, in a rat balloon angioplasty model, a single-dose treatment with intravenously injected P-NAD+-NP immediately post angioplasty not only mitigated IH, but also accelerated the regeneration of EC (re-endothelialization) in vivo in comparison to control groups (i.e., saline, free NAD+ solution, empty CaP-NP). Collectively, our current study provides proof-of-concept evidence supporting the role of targeted NAD+ repletion nanotherapy in managing restenosis and improving reendothelialization.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Yao Tong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zhanpeng Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kaijie Zhang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Jacobus Burger
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - William Aaron Marcum
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zoe Tetz
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sophia Stanisic
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Bowen Wang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60603, USA; Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
16
|
Jiang M, Li L, Jin Y, Lu L, Lu Z, Lv W, Wang X, Di L, Liu Z. Derivative spectrophotometry-assisted determination of tryptophan metabolites emerges host and intestinal flora dysregulations during sepsis. Anal Biochem 2024; 694:115605. [PMID: 38992485 DOI: 10.1016/j.ab.2024.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Dysregulated tryptophan (TRP) metabolites serve as significant indicators for endogenous immune turnovers and abnormal metabolism in the intestinal microbiota during sepsis. Therefore, a high coverage determination of TRP and its metabolites in sepsis is beneficial for the diagnosis and prognosis of sepsis, as well as for understanding the underlying mechanism of sepsis development. However, similar structures in TRP metabolites make it challenging for separation and metabolite identification. Here, high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was developed to determine TRP metabolites in rat serum. The first-order derivative spectrophotometry of targeted metabolites in the serum was investigated and proved to be promising for chromatographic peak annotation across different columns and systems. The established method separating the targeted metabolites was optimized and validated to be sensitive and accurate. Application of the method revealed dysregulated TRP metabolites, associated with immune disorders and NAD + metabolism in both the host and gut flora in septic rats. Our findings indicate that the derivative spectrophotometry-assisted method enhances metabolite identifications for the chromatographic systems based on DAD detectors and holds promise for precision medicine in sepsis.
Collapse
Affiliation(s)
- Mengyu Jiang
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Li Li
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yuan Jin
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Liuliu Lu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Zhenchen Lu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Wangjie Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Di
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| | - Zhicheng Liu
- School of Pharmacy, Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Li M, Wang C, Yu Q, Chen H, Ma Y, Wei L, Wu MX, Yao M, Lu M. A wearable and stretchable dual-wavelength LED device for home care of chronic infected wounds. Nat Commun 2024; 15:9380. [PMID: 39477919 PMCID: PMC11525593 DOI: 10.1038/s41467-024-53579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Phototherapy can offer a safe and non-invasive solution against infections, while promoting wound healing. Conventional phototherapeutic devices are bulky and limited to hospital use. To overcome these challenges, we developed a wearable, flexible red and blue LED (r&bLED) patch controlled by a mobile-connected system, enabling safe self-application at home. The patch exhibits excellent skin compatibility, flexibility, and comfort, with high safety under system supervision. Additionally, we synthesized a sprayable fibrin gel (F-gel) containing blue light-sensitive thymoquinone and red light-synergistic NADH. Combined with bLED, thymoquinone eradicated microbes and biofilms within minutes, regardless of antibiotic resistance. Furthermore, NADH and rLED synergistically improved macrophage and endothelial cell mitochondrial function, promoting wound healing, reducing inflammation, and enhancing angiogenesis, as validated in infected diabetic wounds in mice and minipigs. This innovative technology holds great promise for revolutionizing at-home phototherapy for chronic infected wounds.
Collapse
Affiliation(s)
- Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Huang S, Yang X, Gao Y, Huang H, Li T, Li M, Wu F, Yang H, Li C. Multifunctional nano co-delivery system for efficiently eliminating neuroblastoma by overcoming cancer heterogeneity. Biomed Mater 2024; 19:065033. [PMID: 39419089 DOI: 10.1088/1748-605x/ad8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The high heterogeneity of neuroblastoma (NB) is currently the main challenge in clinical treatment, impeding the complete eradication of the tumor through monotherapy alone. In this study, we propose a combination strategy using a targeted nano co-delivery system (ADRF@Ag2Se) comprising phototheranostic agents, differentiation inducers and chemotherapy drugs for sequential therapy of NB. Upon intravenous injection, ADRF@Ag2Se demonstrates effective tumor targeting by the specific binding of AF7P to MMP14, which is overexpressed on the surface of NB cells. Subsequent implementation of local photothermal therapy (PTT) leverages the robust photothermal conversion capabilities of the amphiphilic photothermal reagent PF. This is followed by the temperature-triggered release of differentiation-inducing agent 13-cis-retinoic acid and chemo-drug doxorubicin to synergistically eliminate the residual lesions. This nanotherapeutic strategy facilitatesin vivotargeted delivery and PTT under the supervision of NIR-II fluorescence, and it also enhances the chemotherapeutic response through differentiation induction of poorly differentiated cancer cells. In the NB tumor model, this co-delivery strategy effectively inhibited tumor growth and significantly prolonged the survival of the mice.
Collapse
Affiliation(s)
- Shungen Huang
- Pediatric Surgery, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Xian Yang
- Pediatric Surgery, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yajuan Gao
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Haoying Huang
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Tuanwei Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Meng Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Feng Wu
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Hongcao Yang
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chunyan Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
19
|
Cai X, Huang Y, Wang T, Wang Z, Jiao L, Liao J, Zhou L, Zhu C, Rong S. A biocompatible polydopamine platform for targeted delivery of nicotinamide mononucleotide and boosting NAD+ levels in the brain. NANOSCALE 2024; 16:19335-19343. [PMID: 39324237 DOI: 10.1039/d4nr02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nicotinamide mononucleotide (NMN), a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD+), has gained wide attention as an anti-aging agent, which plays a significant role in intracellular redox reactions. However, its effectiveness is limited by easy metabolism in the liver and subsequent excretion as nicotinamide, resulting in low bioavailability, particularly in the brain. Additionally, the blood-brain barrier (BBB) further hinders NMN supply to the brain, compromising its potential anti-aging effects. Herein, we developed a biocompatible polydopamine (PDA) platform to deliver NMN for boosting NAD+ levels in the brain for the first time. The lactoferrin (Lf) ligand was covalently attached to the PDA spheres to improve BBB transport efficiency. The resultant PDA-based system, referred to as PDA-Lf-NMN, not only exhibited superior BBB penetration ability but also improved the utilization rate of brain NMN in elevating NAD+ levels compared to NMN alone for both young (3 months) and old (21 months) mice. Moreover, after the old mice were treated with low-dose PDA-Lf-NMN (8 mg kg-1 day-1), they exhibited improved spatial cognition. Importantly, these nanomedicines did not induce any cellular necrosis or apoptosis. It provides a promising avenue for delivering NMN specifically to the brain, boosting NAD+ levels for promoting longevity and treating brain aging-related diseases.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
20
|
Mathur R, Elsafy S, Press AT, Brück J, Hornef M, Martin L, Schürholz T, Marx G, Bartneck M, Kiessling F, Metselaar JM, Storm G, Lammers T, Sofias AM, Koczera P. Neutrophil Hitchhiking Enhances Liposomal Dexamethasone Therapy of Sepsis. ACS NANO 2024; 18:28866-28880. [PMID: 39393087 DOI: 10.1021/acsnano.4c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Sepsis is characterized by a dysregulated immune response and is very difficult to treat. In the cecal ligation and puncture (CLP) mouse model, we show that nanomedicines can effectively alleviate systemic and local septic events by targeting neutrophils. Specifically, by decorating the surface of clinical-stage dexamethasone liposomes with cyclic arginine-glycine-aspartic acid (cRGD) peptides, we promote their engagement with neutrophils in the systemic circulation, leading to their prominent accumulation at primary and secondary sepsis sites. cRGD-targeted dexamethasone liposomes potently reduce immature circulating neutrophils and neutrophil extracellular traps in intestinal sepsis induction sites and the liver. Additionally, they mitigate inflammatory cytokines systemically and locally while preserving systemic IL-10 levels, contributing to lower IFN-γ/IL-10 ratios as compared to control liposomes and free dexamethasone. Our strategy addresses sepsis at the cellular level, illustrating the use of neutrophils both as a therapeutic target and as a chariot for drug delivery.
Collapse
Affiliation(s)
- Ritvik Mathur
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sara Elsafy
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Medical Faculty, Friedrich-Schiller-University, Jena 07747, Germany
| | - Julian Brück
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Josbert Maarten Metselaar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
21
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
22
|
Shi P, Du Y, Zhang Y, Yang B, Guan Q, Jing Y, Tang H, Tang J, Yang C, Ge X, Shen S, Li L, Wu C. Ubiquitin-independent degradation of Bim blocks macrophage pyroptosis in sepsis-related tissue injury. Cell Death Dis 2024; 15:703. [PMID: 39349939 PMCID: PMC11442472 DOI: 10.1038/s41419-024-07072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.
Collapse
Affiliation(s)
- Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Bo Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiujing Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiming Jing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Jianguo Tang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chunhui Yang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiaoli Ge
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shihui Shen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Chunrong Wu
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Department of Emergency Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
23
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
24
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Qin Y, Li W, Liu J, Wang F, Zhou W, Xiao L, Zhou P, Wu F, Chen X, Xu S, Liu L, Xiao X, Zhang D. Andrographolide ameliorates sepsis-induced acute lung injury by promoting autophagy in alveolar macrophages via the RAGE/PI3K/AKT/mTOR pathway. Int Immunopharmacol 2024; 139:112719. [PMID: 39032470 DOI: 10.1016/j.intimp.2024.112719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy in alveolar macrophages (AMs) is an important mechanism for maintaining immune homeostasis and normal lung tissue function, and insufficient autophagy in AMs may mediate the development of sepsis-induced acute lung injury (SALI). Insufficient autophagy in AMs and the activation of the NLRP3 inflammasome were observed in a mouse model with SALI induced by cecal ligation and puncture (CLP), resulting in the release of a substantial quantity of proinflammatory factors and the formation of SALI. However, after andrographolide (AG) intervention, autophagy in AMs was significantly promoted, the activation of the NLRP3 inflammasome was inhibited, the release of proinflammatory factors and pyroptosis were suppressed, and SALI was then ameliorated. In the MH-S cell model stimulated with LPS, insufficient autophagy was discovered to promote the overactivation of the NLRP3 inflammasome. AG was found to significantly promote autophagy, inhibit the activation of the NLRP3 inflammasome, and attenuate the release of proinflammatory factors. The primary mechanism of AG promoting autophagy was to inhibit the activation of the PI3K/AKT/mTOR pathway by binding RAGE to the membrane. In addition, it inhibited the activation of the NLRP3 inflammasome to ameliorate SALI. Our findings suggest that AG promotes autophagy in AMs through the RAGE/PI3K/AKT/mTOR pathway to inhibit the activation of the NLRP3 inflammasome, remodel the functional homeostasis of AMs in SALI, and exert anti-inflammatory and lung-protective effects. It has also been the first to suggest that RAGE is likely a direct target through which AG regulates autophagy, providing theoretical support for a novel therapeutic strategy in sepsis.
Collapse
Affiliation(s)
- Yuping Qin
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjuan Li
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jinglun Liu
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Fenglin Wang
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wushuang Zhou
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Linlin Xiao
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Pengfei Zhou
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Fan Wu
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoying Chen
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Xu
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Liu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dan Zhang
- Department of Emergency and Critical Care Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
26
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
27
|
Kong Y, Chen X, Liu F, Tang J, Zhang Y, Zhang X, Zhang L, Zhang T, Wang Y, Su M, Zhang Q, Chen H, Zhou D, Yi F, Liu H, Fu Y. Ultrasmall Polyphenol-NAD + Nanoparticle-Mediated Renal Delivery for Mitochondrial Repair and Anti-Inflammatory Treatment of AKI-to-CKD Progression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310731. [PMID: 38805174 DOI: 10.1002/adma.202310731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/21/2024] [Indexed: 05/29/2024]
Abstract
As a central metabolic molecule, nicotinamide adenine dinucleotide (NAD+) can potentially treat acute kidney injury (AKI) and chronic kidney disease (CKD); however, its bioavailability is poor due to short half-life, instability, the deficiency of targeting, and difficulties in transmembrane transport. Here a physiologically adaptive gallic acid-NAD+ nanoparticle is designed, which has ultrasmall size and pH-responsiveness, passes through the glomerular filtration membrane to reach injured renal tubules, and efficiently delivers NAD+ into the kidneys. With an effective accumulation in the kidneys, it restores renal function, immune microenvironment homeostasis, and mitochondrial homeostasis of AKI mice via the NAD+-Sirtuin-1 axis, and exerts strong antifibrotic effects on the AKI-to-CKD transition by inhibiting TGF-β signaling. It also exhibits excellent stability, biodegradable, and biocompatible properties, ensuring its long-term safety, practicality, and clinical translational feasibility. The present study shows a potential modality of mitochondrial repair and immunomodulation through nanoagents for the efficient and safe treatment of AKI and CKD.
Collapse
Affiliation(s)
- Ying Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Xu Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Jiageng Tang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yijing Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiangxiang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Luyao Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Tong Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yaqi Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Mengxiao Su
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Qixin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Hanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Di Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, China
- National Key Laboratoy for innovation and Transfomation of Luobing Theoy, Key Laboratory of Cardiovascular Health, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yi Fu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| |
Collapse
|
28
|
You QY, Hu MD, Qian H. Advanced Nanoarchitectonics of Drug Delivery Systems with Pyroptosis Inhibition for Noncancerous Disease Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202315199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/06/2025]
Abstract
AbstractProgrammed cell death (PCD) is a controlled and organized form of death regulated by genes, allowing cells to adapt to their environment. Pyroptosis, a recently discovered type of programmed cell death, differs from apoptosis and necrosis. It is characterized by the activation of caspase and the cleavage of gasdermin. Many studies have focused on understanding the mechanisms and roles of pyroptosis, particularly in cancer research. While inducing pyroptosis in tumor cells for cancer treatment is a major research focus, it is equally important to explore methods of reducing pyroptosis in noncancerous diseases. Recent advancements in drug delivery systems, specifically nanoarchitectonics, offer site‐specific targeting, prolonged drug circulation, enhanced efficacy, improved solubility, and better absorption. Although several reviews have described how nanoarchitectonics can trigger pyroptosis in tumor cells, little attention is given to their potential to inhibit pyroptosis in noncancerous diseases. Therefore, it is crucial to bridge this gap and explore the future directions for utilizing nanoarchitectonics as a powerful tool against noncancerous diseases. This review aims to delve into the recent progress made in nanoarchitectonics‐based advanced drug delivery systems for the treatment of noncancerous diseases by reducing pyroptosis, while also highlighting potential future perspectives in this emerging field.
Collapse
Affiliation(s)
- Qian Yi You
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
- Institute of Respiratory Diseases Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| | - Ming Dong Hu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| | - Hang Qian
- Institute of Respiratory Diseases Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| |
Collapse
|
29
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
30
|
Huang Z, Li X, Yu D, Wang H, Chun C, Zhao Y. Efferocytosis-Inspired Biomimetic Nanoplatform for Targeted Acute Lung Injury Therapy. Adv Healthc Mater 2024; 13:e2304304. [PMID: 38306647 DOI: 10.1002/adhm.202304304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury (ALI) is a serious inflammatory disease that causes impairment of pulmonary function. Phenotypic modulation of macrophage in the lung using fibroblast growth factor 21 (FGF21) may be a potential strategy to alleviate lung inflammation. Consequently, achieving specific delivery of FGF21 to the inflamed lung and subsequent efficient FGF21 internalization by macrophages within the lung becomes critical for effective ALI treatment. Here, an apoptotic cell membrane-coated zirconium-based metal-organic framework UiO-66 is reported for precise pulmonary delivery of FGF21 (ACM@U-FGF21) whose design is inspired by the process of efferocytosis. ACM@U-FGF21 with apoptotic signals is recognized and internalized by phagocytes in the blood and macrophages in the lung, and then the intracellular ACM@U-FGF21 can inhibit the excessive secretion of pro-inflammatory cytokines by these cells to relieve the inflammation. Utilizing the homologous targeting properties inherited from the source cells and the spontaneous recruitment of immune cells to inflammatory sites, ACM@U-FGF21 can accumulate preferentially in the lung after injection. The results prove that ACM@U-FGF21 effectively reduces inflammatory damage to the lung by modulating lung macrophage polarization and suppressing the excessive secretion of pro-inflammatory cytokines by activated immune cells. This study demonstrates the usefulness of efferocytosis-inspired ACM@U-FGF21 in the treatment of ALI.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Xinze Li
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Dedong Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hengcai Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| |
Collapse
|
31
|
Nirmal GR, Lin ZC, Chiu TS, Alalaiwe A, Liao CC, Fang JY. Chemo-photothermal therapy of chitosan/gold nanorod clusters for antibacterial treatment against the infection of planktonic and biofilm MRSA. Int J Biol Macromol 2024; 268:131673. [PMID: 38642681 DOI: 10.1016/j.ijbiomac.2024.131673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Bacterial infections trigger inflammation and impede the closure of skin wounds. The misuse of antibiotics exacerbates skin infections by generating multidrug-resistant bacteria. In this study, we developed chemo-photothermal therapy (chemo-PTT) based on near-infrared (NIR)-irradiated chitosan/gold nanorod (GNR) clusters as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. The nanocomposites exhibited an average size of 223 nm with a surface charge of 36 mV. These plasmonic nanocomposites demonstrated on-demand and rapid hyperthermal action under NIR. The combined effect of positive charge and PTT by NIR-irradiated nanocomposites resulted in a remarkable inhibition rate of 96 % against planktonic MRSA, indicating a synergistic activity compared to chitosan nanoparticles or GNR alone. The nanocomposites easily penetrated the biofilm matrix. The combination of chemical and photothermal treatments by NIR-stimulated clusters significantly damaged the biofilm structure, eradicating MRSA inside the biomass. NIR-irradiated chitosan/GNR clusters increased the skin temperature of mice by 13 °C. The plasmonic nanocomposites induced negligible skin irritation in vivo. In summary, this novel nanosystem demonstrated potent antibacterial effects against planktonic and biofilm MRSA, showcasing the possible efficacy in treating skin infections.
Collapse
Affiliation(s)
- G R Nirmal
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Tai-Sheng Chiu
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
32
|
Liu X, Ou X, Zhang T, Li X, Qiao Q, Jia L, Xu Z, Zhang F, Tian T, Lan H, Yang C, Kong L, Zhang Z. In situ neutrophil apoptosis and macrophage efferocytosis mediated by Glycyrrhiza protein nanoparticles for acute inflammation therapy. J Control Release 2024; 369:215-230. [PMID: 38508529 DOI: 10.1016/j.jconrel.2024.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liyuan Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangxi Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fangming Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
34
|
Ansari SR, Mahajan J, Teleki A. Iron oxide nanoparticles for treatment and diagnosis of chronic inflammatory diseases: A systematic review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1963. [PMID: 38725229 DOI: 10.1002/wnan.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/15/2024]
Abstract
Chronic inflammatory conditions are among the most prevalent diseases worldwide. Several debilitating diseases such as atherosclerosis, inflammatory bowel disease, rheumatoid arthritis, and Alzheimer's are linked to chronic inflammation. These conditions often develop into complex and fatal conditions, making early detection and treatment of chronic inflammation crucial. Current diagnostic methods show high variability and do not account for disease heterogeneity and disease-specific proinflammatory markers, often delaying the disease detection until later stages. Furthermore, existing treatment strategies, including high-dose anti-inflammatory and immunosuppressive drugs, have significant side effects and an increased risk of infections. In recent years, superparamagnetic iron oxide nanoparticles (SPIONs) have shown tremendous biomedical potential. SPIONs can function as imaging modalities for magnetic resonance imaging, and as therapeutic agents due to their magnetic hyperthermia capability. Furthermore, the surface functionalization of SPIONs allows the detection of specific disease biomarkers and targeted drug delivery. This systematic review explores the utility of SPIONs against chronic inflammatory disorders, focusing on their dual role as diagnostic and therapeutic agents. We extracted studies indexed in the Web of Science database from the last 10 years (2013-2023), and applied systematic inclusion criteria. This resulted in a final selection of 38 articles, which were analyzed for nanoparticle characteristics, targeted diseases, in vivo and in vitro models used, and the efficacy of the therapeutic or diagnostic modalities. The results revealed that ultrasmall SPIONs are excellent for imaging arterial and neuronal inflammation. Furthermore, novel therapies using SPIONs loaded with chemotherapeutic drugs show promise in the treatment of inflammatory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Shaquib Rahman Ansari
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mahajan
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Xu HN, Gonzalves D, Hoffman JH, Baur JA, Li LZ, Jensen EA. Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples. Antioxidants (Basel) 2024; 13:546. [PMID: 38790651 PMCID: PMC11117937 DOI: 10.3390/antiox13050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jonathan H. Hoffman
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Joseph A. Baur
- Department of Physiology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.H.H.); (L.Z.L.)
| | - Erik A. Jensen
- Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
36
|
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, Xu J. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS NANO 2024; 18:7711-7738. [PMID: 38427687 DOI: 10.1021/acsnano.3c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Jiaji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wentai Cai
- The First Clinical College, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaowei Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
37
|
Li H, Duan S, Li L, Zhao G, Wei L, Zhang B, Ma Y, Wu MX, Mao Y, Lu M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310532. [PMID: 38095435 DOI: 10.1002/adma.202310532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Metallo-β-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
38
|
Gao Q, Yan Y, Zhang J, Li X, Wang J, Feng Y, Li P, Wang H, Zhang Y, He L, Shan Z, Li B. Autologous cryo-shocked neutrophils enable targeted therapy of sepsis via broad-spectrum neutralization of pro-inflammatory cytokines and endotoxins. Front Chem 2024; 12:1359946. [PMID: 38449477 PMCID: PMC10914999 DOI: 10.3389/fchem.2024.1359946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Sepsis is a life-threatening disease characterized by multiple organ failure due to excessive activation of the inflammatory response and cytokine storm. Despite recent advances in the clinical use of anti-cytokine biologics, sepsis treatment efficacy and improvements in mortality remain unsatisfactory, largely due to the mechanistic complexity of immune regulation and cytokine interactions. Methods: In this study, a broad-spectrum anti-inflammatory and endotoxin neutralization strategy was developed based on autologous "cryo-shocked" neutrophils (CS-Neus) for the management of sepsis. Neutrophils were frozen to death using a novel liquid nitrogen "cryo-shock" strategy. The CS-Neus retained the source cell membrane structure and functions related to inflammatory site targeting, broad-spectrum inflammatory cytokines, and endotoxin (LPS) neutralizing properties. This strategy aimed to disable harmful pro-inflammatory functions of neutrophils, such as cytokine secretion. Autologous cell-based therapy strategies were employed to avoid immune rejection and enhance treatment safety. Results: In both LPS-induced sepsis mouse models and clinical patient-derived blood samples, CS-Neus treatment significantly ameliorated cytokine storms by removing inflammatory cytokines and endotoxin. The therapy showed notable anti-inflammatory therapeutic effects and improved the survival rate of mice. Discussion: The results of this study demonstrate the potential of autologous "cryo-shocked" neutrophils as a promising therapeutic approach for managing sepsis. By targeting inflammatory organs and exhibiting anti-inflammatory activity, CS-Neus offer a novel strategy to combat the complexities of sepsis treatment. Further research and clinical trials are needed to validate the efficacy and safety of this approach in broader populations and settings.
Collapse
Affiliation(s)
- Qiuxia Gao
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Translational Medicine, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Peiran Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yunlong Zhang
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjie He
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Translational Medicine, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
39
|
Xu Y, An X, Liu L, Cao X, Wu Z, Jia W, Sun J, Wang H, Huo J, Sun Z, Zhen M, Wang C, Bai C. Self-Cascade Redox Modulator Trilogically Renovates Intestinal Microenvironment for Mitigating Endotoxemia. ACS NANO 2024; 18:2131-2148. [PMID: 38198697 DOI: 10.1021/acsnano.3c09397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.
Collapse
Affiliation(s)
- Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin An
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
41
|
Guo J, Chen L, Ma M. Ginsenoside Rg1 Suppresses Ferroptosis of Renal Tubular Epithelial Cells in Sepsis-induced Acute Kidney Injury via the FSP1-CoQ 10- NAD(P)H Pathway. Curr Med Chem 2024; 31:2119-2132. [PMID: 37287288 DOI: 10.2174/0929867330666230607125054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Sepsis-induced acute kidney injury is related to an increased mortality rate by modulating ferroptosis through ginsenoside Rg1. In this study, we explored the specific mechanism of it. METHODS Human renal tubular epithelial cells (HK-2) were transfected with oe-ferroptosis suppressor protein 1 and treated with lipopolysaccharide for ferroptosis induction, and they were then treated with ginsenoside Rg1 and ferroptosis suppressor protein 1 inhibitor. Ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and intracellular NADH levels in HK-2 cells were assessed by Western blot, ELISA kit, and NAD/NADH kit. NAD+/NADH ratio was also calculated, and 4-Hydroxynonal fluorescence intensity was assessed by immunofluorescence. HK-2 cell viability and death were assessed by CCK-8 and propidium iodide staining. Ferroptosis, lipid peroxidation, and reactive oxygen species accumulation were assessed by Western blot, kits, flow cytometry, and C11 BODIPY 581/591 molecular probe. Sepsis rat models were established by cecal ligation and perforation to investigate whether ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. RESULTS LPS treatment diminished ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and NADH contents in HK-2 cells, while facilitating NAD+/NADH ratio and relative 4- Hydroxynonal fluorescence intensity. FSP1 overexpression inhibited lipopolysaccharideinduced lipid peroxidation in HK-2 cells via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. The ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway suppressed lipopolysaccharide-induced ferroptosis in HK-2 cells. Ginsenoside Rg1 alleviated ferroptosis in HK-2 cells by regulating the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. Moreover, ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. CONCLUSION Ginsenoside Rg1 alleviated sepsis-induced acute kidney injury by blocking renal tubular epithelial cell ferroptosis via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway.
Collapse
Affiliation(s)
- Jun Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, Jiangsu Province, China
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| | - Long Chen
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| | - Min Ma
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| |
Collapse
|
42
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
44
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Li J, Huang X, Yang Y, Zhou J, Yao K, Li J, Zhou Y, Li M, Wong TH, Yu X. Wearable and battery-free wound dressing system for wireless and early sepsis diagnosis. Bioeng Transl Med 2023; 8:e10445. [PMID: 38023725 PMCID: PMC10658553 DOI: 10.1002/btm2.10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a severe organ dysfunction typically caused by wound infection which leads to septic shock, organ failure or even death if no early diagnosis and property medical treatment were taken. Herein, we report a soft, wearable and battery-free wound dressing system (WDS) for wireless and real-time monitoring of wound condition and sepsis-related biomarker (procalcitonin [PCT]) in wound exudate for early sepsis detection. The battery-free WDS powered by near-field communication enables wireless data transmission, signal processing and power supply, which allows portable intelligent wound caring. The exudate collection associates with soft silicone based microfluidic technologies (exudate collection time within 15 s), that can filtrate contamination at the cell level and enable a superior filtration rate up to 95% with adopting microsphere structures. The battery-free WDS also includes state-of-the-art biosensors, which can accurate detect the pH value, wound temperature, and PCT level and thus for sepsis diagnosis. In vivo studies of SD rats prove the capability of the WDS for continuously monitoring wound condition and PCT concentration in the exudate. As a result, the reported fully integrated WDS provides a potential solution for further developing wearable, multifunctional and on-site disease diagnosis.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong Kong
| | - Xingcan Huang
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
| | - Yawen Yang
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
| | - Jingkun Zhou
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong Kong
| | - Kuanming Yao
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
| | - Jian Li
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong Kong
| | - Yingying Zhou
- Department of Biomedical EngineeringHong Kong Polytechnic UniversityKowloonHong Kong
| | - Meixi Li
- Leshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Tsz Hung Wong
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
| | - Xinge Yu
- Department of Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong Kong
| |
Collapse
|
46
|
Zheng X, Xing Y, Sun K, Jin H, Zhao W, Yu F. Combination Therapy with Resveratrol and Celastrol Using Folic Acid-Functionalized Exosomes Enhances the Therapeutic Efficacy of Sepsis. Adv Healthc Mater 2023; 12:e2301325. [PMID: 37530416 DOI: 10.1002/adhm.202301325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/30/2023] [Indexed: 08/03/2023]
Abstract
Overactivated macrophages are a prominent feature of many inflammatory and autoimmune diseases, including sepsis. Attention and regulation of macrophages activity is of great significance for sepsis treatment. Herein, this study shows that folic acid-functionalized exosomes accumulate in the lung of septic mice and specifically target inflammatory macrophages. Therefore, FA-functionalized exosomes co-loaded with resveratrol (an anti-inflammatory polyphenol) and celastrol (an immunosuppressive pentacyclic triterpenoid; FA-Exo/R+C), which exhibit powerful anti-inflammatory and immunosuppressive activities against LPS-stimulated macrophages in vitro by regulating NF-κB and ERK1/2 signaling pathways, are designed. Encouraged by these positive data, the efficacy of FA-Exo/R+C is systematically investigated in an LPS-induced mouse sepsis model. FA-Exo/R+C shows striking therapeutic benefits in terms of attenuated cytokine storm, reduced acute lung injury, and increased survival of septic mice by inhibiting the inflammation and proliferation of proinflammatory M1 macrophages. Importantly, multiple administrations of FA-Exo/R+C significantly enhance and prolong the protective effect, and resist rechallenge to LPS. Collectively, the strategy of co-delivering drugs combination through functionalized exosomes offers a new avenue for sepsis treatment.
Collapse
Affiliation(s)
- Xue Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Yujie Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Ke Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| |
Collapse
|
47
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
48
|
Ding N, Luo G, Li H, Xing C, Gao Y, Xi W, Wu W, Wang D, Zheng L, Kang Y, Chi X. A Cyclodextrin-Based pH-Responsive MicroRNA Delivery Platform Targeting Polarization of M1 to M2 Macrophages for Sepsis Therapy. Adv Healthc Mater 2023; 12:e2301243. [PMID: 37463303 DOI: 10.1002/adhm.202301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The mortality rate of sepsis remains high despite improvements in the diagnosis and treatment of sepsis using symptomatic and supportive therapies, such as anti-infection therapy and fluid resuscitation. Nucleic acid-based drugs have therapeutic potential, although their poor stability and low delivery efficiency have hindered their widespread use. Herein, it is confirmed that miR-223 can polarize proinflammation M1 macrophages to anti-inflammation M2 macrophages. A pH-sensitive nano-drug delivery system comprising β-cyclodextrin-poly(2-(diisopropylamino)ethyl methacrylate)/distearoyl phosphoethanolamine-polyethylene glycol (β-CD-PDPA/DSPE-PEG) is synthesized and developed to target M1 macrophages and miR-223 is encapsulated into nanoparticles (NPs) for sepsis treatment. NPs/miR-223 demonstrated in vitro pH responsiveness with favorable biosafety, stability, and high delivery efficiency. In vivo studies demonstrate that NPs/miR-223 are preferentially accumulated and retained in the inflammation site, thereby reducing inflammation and improving the survival rate of mice with sepsis while exhibiting ideal biosafety. Mechanically, NPs/miR-223 regulates macrophage polarization by targeting Pknox1 and inhibiting the activation of the NF-κB signaling pathway, thereby achieving an anti-inflammatory effect. Collectively, it is demonstrated that the miRNA delivery vector described here provides a new approach for sepsis treatment and accelerates the advancement of nucleic acid drug therapy.
Collapse
Affiliation(s)
- Ni Ding
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wenjie Xi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Wang
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lei Zheng
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
49
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
50
|
Zhou M, Chen H, Zeng Y, Lv Z, Hu X, Tong Y, Wang P, Zhao M, Mu R, Yu J, Chen Y, Wei L, Gu J, Lan Q, Zhen X, Han L. DH5α Outer Membrane-Coated Biomimetic Nanocapsules Deliver Drugs to Brain Metastases but not Normal Brain Cells via Targeting GRP94. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300403. [PMID: 37104822 DOI: 10.1002/smll.202300403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- MJiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ziyan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoxiao Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Pan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ju Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Lin Wei
- MJiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
- School of Life Science, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jiang Gu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|