1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Liu H, Tao T, Gan Z, Xie Y, Wang Y, Yang Y, Zhang X, Li X, Qin J. Organoid in droplet: Production of uniform pancreatic cancer organoids from single cells. Mater Today Bio 2025; 32:101765. [PMID: 40270893 PMCID: PMC12017920 DOI: 10.1016/j.mtbio.2025.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer organoids have improved our understanding of recapitulating the histology, genotypes, and drug response of patient tumors for personalized medicine. However, the existing cancer organoids are typically grown in animal-derived matrices (e.g., Matrigel), which suffer from poor reproducibility and low throughput due to uncontrollable origin of seed cells, undefined matrix, and manual manipulation. Here, we report a new strategy to massively generate uniform pancreatic cancer organoids (PCOs) in a droplet system from single cells. This system is composed of all-in-water fluids that allow to mildly encapsulate single tumor cell into isolated droplet, which subsequently proliferate and self-assemble into organoids, resembling the initial state of a tumor in the body. This high-throughput method can produce thousands of organoids in a single batch. The droplets can serve as templates for synthesizing defined microgels with proper stiffness similar to that of native tumors, facilitating functional expressions of PCOs. These organoids exhibit superior uniformity and controllability in terms of size and morphologies compared with organoids cultured in manually dropped Matrigel, due mainly to the controllable number of initiating cells and defined microgels. In addition, the established organoids maintain the key biomarkers of pancreatic tumor (e.g., KRT7, KRT19 and SOX9) and higher expression of genes associated with drug metabolism confirmed by RNA-seq and PCR analysis. Furthermore, they show distinguishing responses to four clinically used drugs in a reproducible manner in automatic pipetting workstation, indicating the feasibility of the proposed method in high-throughput drug testing. The established strategy has integrated the formation, 3D cultures, and analysis of PCOs derived from single cells in a whole system, which may provide a novel platform for advancing organoids research with standardized procedure in translational applications.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tingting Tao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Yizhao Yang
- Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianliang Li
- Department of HBP Surgery, Beijing Chao Yang Hospital, the Capital Medical University, Beijing, 100020, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| |
Collapse
|
3
|
Wu Y, Zhang F, Du F, Huang J, Wei S. Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 2025; 31:140. [PMID: 40183402 PMCID: PMC11976518 DOI: 10.3892/mmr.2025.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Fan Zhang
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Furong Du
- Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuqing Wei
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
4
|
Schwerd‐Kleine P, Würth R, Cheytan T, Michel L, Thewes V, Gutjahr E, Seker‐Cin H, Kazdal D, Neuberth S, Thiel V, Schwickert J, Vorberg T, Wischhusen J, Stenzinger A, Zapatka M, Lichter P, Schneeweiss A, Trumpp A, Sprick MR. Biopsy-derived organoids in personalised early breast cancer care: Challenges of tumour purity and normal cell overgrowth cap their practical utility. Int J Cancer 2025; 156:2200-2209. [PMID: 40022208 PMCID: PMC11970545 DOI: 10.1002/ijc.35386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/05/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
The ability to establish organoids composed exclusively of tumour rather than healthy cells is essential for their implementation into clinical practice. Organoids have recently emerged as a powerful tool to expand patient material in culture and generate modifiable 3D models derived from humans or animal models. For translational research, they enable the creation of model systems for an ever-increasing number of cell types and diseases. And in personalised medicine, they potentially allow for functional drug testing with high predictive power in certain settings. We found that using biopsy material from untreated, early-stage primary breast cancer patients poses significant challenges for consistently culturing tumour cells as organoids. Specifically, we observed frequent outgrowth of genetically normal, non-cancerous epithelial cells. We analysed >100 biopsy samples from early-stage breast cancer and present our large collection of >70 organoid lines. We also show methods of assessing successful tumour cell culture in a time, and cost-efficient manner, proving a high rate (>85%) of normal cell overgrowth in early-stage breast cancer organoids. Finally, we show a number of successful attempts to culture cancer organoids from mastectomy-derived tissue of advanced, metastatic breast cancer. We conclude that the usefulness of organoids from early breast cancer for translational research and personalised medicine, especially guidance of adjuvant or post-surgical maintenance therapy, is strongly limited by the low success rate of culturing cancerous cells under organoid conditions.
Collapse
Affiliation(s)
- Paul Schwerd‐Kleine
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Roberto Würth
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Tasneem Cheytan
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Laura Michel
- Division of Gynecologic OncologyNational Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Verena Thewes
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Ewgenija Gutjahr
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Huriye Seker‐Cin
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University HospitalHeidelbergGermany
| | - Sarah‐Jane Neuberth
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Vera Thiel
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Jonas Schwickert
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Tim Vorberg
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Jennifer Wischhusen
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | | | - Marc Zapatka
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Lichter
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Andreas Schneeweiss
- Division of Gynecologic OncologyNational Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Martin R. Sprick
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| |
Collapse
|
5
|
Yang D, Zhang X, Hu Z, Sun Q, Fu H, Yao J, Zheng B, Zhang X, Wang W. Organoid-based single cell sequencing revealed the lineage evolution during docetaxel treatment in gastric cancer. Cancer Lett 2025; 619:217617. [PMID: 40118243 DOI: 10.1016/j.canlet.2025.217617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Docetaxel resistance in gastric cancer poses a major therapeutic challenge. In this study, we established docetaxel-sensitive and -resistant gastric cancer organoids and performed single-cell RNA sequencing to identify cellular and molecular alterations. We observed significant shifts in cell populations, with increased secretory, immune-chemotactic, and transitional gastric cancer cells in the resistant group. Key resistance-related genes, including FOS, IFI27, and PTTG1IP, were upregulated in resistant organoids and gastric cancer patients. A pseudo-time trajectory analysis revealed that resistant cells predominantly occupied terminal differentiation stages. Knocking down FOS, IFI27, and PTTG1IP enhanced docetaxel sensitivity in both cell lines and organoids, regulating ROS production, autophagy, and apoptosis. In vivo, silencing these genes reduced tumor growth in response to docetaxel. These findings suggest that targeting FOS, IFI27, and PTTG1IP could overcome resistance and improve treatment outcomes for gastric cancer patients.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Xin Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Yangpu District, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qiang Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jun Yao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Binbin Zheng
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
6
|
Cui G, Xue S, Wang X, Song W. The advancements of organoids push the boundaries of glioblastoma research. Postgrad Med J 2025; 101:497-503. [PMID: 39500345 DOI: 10.1093/postmj/qgae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 05/21/2025]
Abstract
Glioblastoma (GBM) is a malignant tumor of the nervous system, which is difficult to treat due to its strong invasiveness, rapid progression, and poor prognosis. To understand the complex biological behavior of glioblasts and the interaction between tumors and hosts, a new in vitro platform based on human cells is required, which can summarize the complex cellular structure and cell diversity of the human brain, as well as the biological behavior of GBM. Organoids are 3D self-organizing tissues, partially similar to source tissues, which can simulate the structure and physiological functions of organs or tissues in vitro. In this review, we underline the widespread application of different types of GBOs models in GBM pathogenesis, including cells derived, tumor tissues derived, and other co-culture models, as well as their application and shortcomings in the treatment of GBM.
Collapse
Affiliation(s)
- Gang Cui
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369, Jingshi Road Jinan City, Shandong Province, 250014, China
| | - Song Xue
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369, Jingshi Road Jinan City, Shandong Province, 250014, China
| | - Xiaoshan Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, 16369, Jingshi Road Jinan City, Shandong Province, 250014, China
| | - Wei Song
- Department of Minimally Invasive Oncology Treatment, Shandong Provincial Hospital of Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan City, Shandong Province, 250021, China
| |
Collapse
|
7
|
Dal Secco C, Tonon S, Trevisan C, Martinis E, Valeri V, Codrich M, Tell G, Frossi B, Pucillo CEM. Mast cells-intestinal cancer cells crosstalk is mediated by TNF-alpha and sustained by the IL-33/ST2 axis. Cancer Immunol Immunother 2025; 74:205. [PMID: 40372523 DOI: 10.1007/s00262-025-04054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
It is common knowledge that mast cells (MCs) exert different roles in the gastrointestinal tract, from the maintenance of homeostasis to the onset and propagation of different gut diseases such as food allergies, infections, inflammation, and cancer. However, the mechanisms through which MCs dialog and influence the intestinal tissue are not completely known. To get insight into the bidirectional crosstalk between MCs and the intestinal microenvironment, both in homeostatic and pathological settings, colon organoids from intestinal epithelium of healthy mice and adenomas from AOM/DSS-treated mice have been exploited and co-cultured with MCs. The influence of MCs on organoid architecture and the effect of healthy and tumoral organoids on the phenotype and responsiveness of MCs have been addressed. We observed that MCs interact with intestinal organoids and contribute to the differentiation of healthy organoids by upregulating the expression of mucin-2, chromogranin A, cadherin-1, and claudin 4. On the contrary, in co-culture with tumoral organoids a decrease in cell proliferation, chromogranin A, and lysozyme expression was observed. Tumoral organoids have been shown to activate MCs via the IL-33/ST2 axis leading to increased release of TNF-α which in turn was responsible for the observed effects on tumoral organoids. Our results indicate that MCs are important mediators of intestinal tissue homeostasis and that a different environment can shape and direct MCs toward the dampening or propagation of the inflammatory response. Ultimately, our MC-organoid co-cultures represent a valid in vitro tool to investigate the role of MCs in the gut.
Collapse
Affiliation(s)
- Chiara Dal Secco
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Silvia Tonon
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Caterina Trevisan
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Eleonora Martinis
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Viviana Valeri
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Marta Codrich
- Molecular Biology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Gianluca Tell
- Molecular Biology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Frossi
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Carlo E M Pucillo
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
8
|
Yang R, Wang S, Li Z, Yin C, Huang W, Huang W. Patient-derived organoid co-culture systems as next-generation models for bladder cancer stem cell research. Cancer Lett 2025; 625:217793. [PMID: 40368172 DOI: 10.1016/j.canlet.2025.217793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Three-dimensional patient-derived organoids (PDOs) have emerged as a powerful model for investigating the molecular and cellular mechanisms underlying bladder cancer, particularly in the context of cancer stem cells (CSCs) and drug screening. However, a significant limitation of conventional PDOs is the absence of tumor microenvironment (TME), which includes critical stromal, immune and microbial components that influence tumor behavior and treatment response. In this review, we provide a comprehensive overview of the recent advancements in PDO co-culture systems designed to integrate TME elements. Additionally, we emphasize the role of biomedical engineering technologies, such as 3D bioprinting and organoids-on-a-chip, in enhancing the physiological relevance of these models. Furthermore, we explore how bladder PDO co-culture systems are applied in research on bladder CSC characterization, evolution and treatment responses. Finally, we discuss future directions for improving PDO systems to achieve more accurate preclinical modeling and drug discovery.
Collapse
Affiliation(s)
- Ruici Yang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanzhao Wang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Li
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Cong Yin
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiren Huang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
9
|
Farkas KG, Vincze K, Tordai C, Özgen Eİ, Gürler D, Deli V, Lilienberg J, Erdei Z, Sarkadi B, Réthelyi JM, Apáti Á. Functional Analysis of Antipsychotics in Human iPSC-Based Neural Progenitor 2D and 3D Schizophrenia Models. Int J Mol Sci 2025; 26:4444. [PMID: 40362679 PMCID: PMC12072398 DOI: 10.3390/ijms26094444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia is a complex psychiatric disorder of complex etiology. Despite decades of antipsychotic drug development and treatment, the mechanisms underlying cellular drug effects remain incompletely understood. Induced pluripotent stem cell (iPSC)-based disease and pharmacological modelling offer new avenues for drug development. In this study, we explored the development of two- and three-dimensional neural progenitor cultures and the impact of different antipsychotics in a schizophrenia model. Four human iPSC lines, including two carrying a de novo ZMYND11 gene mutation associated with schizophrenia, were differentiated into hippocampal neural progenitor cells (NPCs), cultured either in monolayers or as 3D spheroids. While in monolayers the proliferation of the NPCs was similar, spheroids showed significant differences in scattered cell number and outgrowth size between schizophrenia mutant and wild-type NPCs. Since there is only limited information about the effects of antipsychotic agents on neural progenitor cell proliferation and differentiation, we investigated the effects of three molecules, representing three subgroups of antipsychotics, in the 2D and 3D NPC models. Our findings suggest that cell adhesion may play a crucial role in the molecular disease pathways of schizophrenia, highlighting the value of spheroid models for mechanistic and drug development studies. These studies may significantly help our understanding of the effects of schizophrenia on neural development and the response of progenitors to antipsychotic medications.
Collapse
Affiliation(s)
- Kiara Gitta Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School, Semmelweis University, H-1094 Budapest, Hungary
| | - Katalin Vincze
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School, Semmelweis University, H-1094 Budapest, Hungary
| | - Csongor Tordai
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School, Semmelweis University, H-1094 Budapest, Hungary
| | - Ece İlay Özgen
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Derin Gürler
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Vera Deli
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Julianna Lilienberg
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Zsuzsa Erdei
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Salus Ltd., H-1037 Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Salus Ltd., H-1037 Budapest, Hungary
| | - János Miklós Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, H-1083 Budapest, Hungary
| | - Ágota Apáti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
10
|
Portik D, Lacombe D, Faivre-Finn C, Achard V, Andratschke N, Correia D, Spalek M, Guckenberger M, Ost P, Ehret F. The 2024 State of Science report from the European Organisation for Research and Treatment of Cancer's Radiation Oncology Scientific Council. Eur J Cancer 2025; 220:115334. [PMID: 40127505 DOI: 10.1016/j.ejca.2025.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Radiotherapy (RT) is a central pillar of a multimodal cancer treatment approach. The ongoing advances in the fields of RT, imaging technologies, cancer biology, and others yield the potential to refine the use of RT. The European Organisation for Research and Treatment of Cancer (EORTC) hosted a dedicated workshop to identify and prioritize key research questions and to define future RT-based treatment strategies to improve the survival and quality of life of cancer patients. METHODS An initial call for relevant RT research topics led to the formation of workgroups to develop these into new clinical research proposals and projects. The EORTC Radiation Oncology Scientific Council (ROSC) State of Science workshop was held in Brussels, Belgium, in February 2024, bringing together EORTC members and international stakeholders to connect and work on the proposals. RESULTS Four topics of interest were identified: I) De-escalation of RT, minimizing toxicity while maintaining patients' quality of life, II) Technology-driven RT utilizing advances in treatment techniques, such as spatially fractionated RT to improve outcomes in patients with bulky disease and localized high tumor burden, III) Biology-driven RT, integrating the rapid advances in cancer biology and functional imaging to guide and personalize RT, and IV) New indications adding value and expanding the use of RT. CONCLUSION The EORTC ROSC State of Science workshop prioritized clinical questions to be addressed in prospective clinical research projects to advance RT care and improve patient outcomes.
Collapse
Affiliation(s)
- Daniel Portik
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium; Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Denis Lacombe
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Corinne Faivre-Finn
- Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Vérane Achard
- Department of Radiotherapy, Institut Bergonié, Bordeaux, France and University of Geneva, Geneva, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dora Correia
- Department of Radiation Oncology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Mateusz Spalek
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Iridium Network, Radiation Oncology, Wilrijk, Belgium
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
11
|
Lu D, Xia B, Feng T, Qi G, Ma Z. The Role of Cancer Organoids in Ferroptosis, Pyroptosis, and Necroptosis: Functions and Clinical Implications. Biomolecules 2025; 15:659. [PMID: 40427552 DOI: 10.3390/biom15050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
The enduring prevalence of cancer worldwide constitutes a significant public health challenge, thereby emphasizing the imperative for the development of therapeutic models capable of accounting for the heterogeneity inherent in tumors. In this context, cancer organoids have emerged as powerful tools for studying tumor biology, providing valuable insights into the complex interactions within the tumor microenvironment. Concurrently, research is increasingly focused on non-apoptotic forms of regulated cell death (RCD)-including ferroptosis, pyroptosis, and necroptosis-which exert pivotal influences on cancer development and progression. Cancer organoids not only recapitulate the genetic and phenotypic heterogeneity of the original tumors but also enable more precise investigations into the roles of non-apoptotic RCDs within oncology. This review explores the utility of cancer organoids in delineating the molecular mechanisms underlying RCDs and their implications for cancer biology and treatment responses. By synthesizing recent research findings, it highlights the essential role of organoid models in uncovering the intricate details of non-apoptotic RCDs. Furthermore, it emphasizes promising directions for future research that aim to deepen our understanding of these pathways and their therapeutic potential. The integration of organoid models into investigations of ferroptosis, pyroptosis, and necroptosis provides novel insights into oncogenic mechanisms and facilitates the development of targeted therapeutic strategies. By bridging cancer organoids with human pathophysiology, this approach not only provides a transformative framework for dissecting oncogenic pathways but also enables the design of precision therapeutics that selectively target the molecular machinery underlying non-apoptotic RCDs.
Collapse
Affiliation(s)
- Dingci Lu
- The First Affiliated Hospital of Yangtze University, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou 434000, China
| | - Bingqian Xia
- The First Affiliated Hospital of Yangtze University, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
| | - Tianquan Feng
- The First Affiliated Hospital of Yangtze University, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
| | - Gui Qi
- The First Affiliated Hospital of Yangtze University, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou 434023, China
| |
Collapse
|
12
|
Sun J, Zhao W, Zhang L, Wu S, Xue S, Cao H, Xu B, Li X, Hu N, Jiang T, Xu Y, Wang Z, Zhang C, Ren J. Centromere protein U mediates the ubiquitination and degradation of RPS3 to facilitate temozolomide resistance in glioblastoma. Drug Resist Updat 2025; 80:101214. [PMID: 40023134 DOI: 10.1016/j.drup.2025.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
AIMS Temozolomide (TMZ) is the first-line chemotherapeutic agent for glioblastoma (GBM) therapy; however, resistance to TMZ remains a major obstacle in GBM treatment. The aim of this study is to elucidate the mechanisms underlying TMZ resistance and explore how to enhance the sensitivity of GBM to TMZ. METHODS GBM organoids were generated from patient samples, and organoid-based TMZ sensitivity testing was performed. Transcriptome sequencing was conducted on GBM organoids, which identified Centromere protein U (CENPU) as a novel key gene mediating TMZ resistance. Histopathological assessments were carried out using immunohistochemistry (IHC) and Hematoxylin and Eosin (HE) staining. Single-cell sequencing data were utilized to determine the functional states of CENPU in GBM cells. Intracranial and subcutaneous glioma mouse models were constructed to evaluate the effect of CENPU on TMZ sensitivity. The underlying mechanisms were further investigated using immunofluorescence, lentivirus transduction, co-immunoprecipitation, mass spectrometry, alkaline comet assay et al. RESULTS: CENPU was found to be highly expressed in TMZ-resistant GBM organoids and enhanced the TMZ resistance of GBM cells by promoting DNA damage repair. Its abnormal expression correlates with poor clinical outcomes in glioma patients. In vivo studies demonstrated that downregulation of CENPU enhances the sensitivity of GBM to TMZ. Correspondingly, rescue of CENPU expression reversed this effect on TMZ sensitivity in GBM cells. Mechanistically, CENPU cooperates with TRIM5α to promote the ubiquitination and degradation of RPS3 by inducing its polyubiquitination at the K214 residue. This process subsequently activates the ERK1/2 pathway and promotes the expression of E2F1 and RAD51. Consequently, the degradation of RPS3 and upregulation of RAD51 in GBM cells enhance DNA damage repair, thereby contributing to TMZ resistance. CONCLUSION Our study identified CENPU as a novel key gene mediating TMZ resistance and elucidated its molecular mechanisms, providing a new target to overcome TMZ resistance in GBM.
Collapse
Affiliation(s)
- Jinmin Sun
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Wenyu Zhao
- Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Sicheng Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Senrui Xue
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Biao Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinmiao Li
- Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Nan Hu
- Laboratory of Clinical and Experimental Pathology, Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Chao Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong, Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
13
|
Branco F, Cunha J, Mendes M, Sousa JJ, Vitorino C. 3D Bioprinting Models for Glioblastoma: From Scaffold Design to Therapeutic Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501994. [PMID: 40116532 DOI: 10.1002/adma.202501994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/23/2025]
Abstract
Conventional in vitro models fail to accurately mimic the tumor in vivo characteristics, being appointed as one of the causes of clinical attrition rate. Recent advances in 3D culture techniques, replicating essential physical and biochemical cues such as cell-cell and cell-extracellular matrix interactions, have led to the development of more realistic tumor models. Bioprinting has emerged to advance the creation of 3D in vitro models, providing enhanced flexibility, scalability, and reproducibility. This is crucial for the development of more effective drug treatments, and glioblastoma (GBM) is no exception. GBM, the most common and deadly brain cancer, remains a major challenge, with a median survival of only 15 months post-diagnosis. This review highlights the key components needed for 3D bioprinted GBM models. It encompasses an analysis of natural and synthetic biomaterials, along with crosslinking methods to improve structural integrity. Also, it critically evaluates current 3D bioprinted GBM models and their integration into GBM-on-a-chip platforms, which hold noteworthy potential for drug screening and personalized therapies. A versatile development framework grounded on Quality-by-Design principles is proposed to guide the design of bioprinting models. Future perspectives, including 4D bioprinting and machine learning approaches, are discussed, along with the current gaps to advance the field further.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - João J Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| |
Collapse
|
14
|
Li K, He Y, Jin X, Jin K, Qian J. Reproducible extracellular matrices for tumor organoid culture: challenges and opportunities. J Transl Med 2025; 23:497. [PMID: 40312683 PMCID: PMC12044958 DOI: 10.1186/s12967-025-06349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025] Open
Abstract
Tumor organoid models have emerged as valuable 3D in vitro systems to study cancer behavior in a physiologically relevant environment. The composition and architecture of the extracellular matrix (ECM) play critical roles in tumor organoid culture by influencing the tumor microenvironment and tumor behavior. Traditional matrices such as Matrigel and collagen, have been widely used, but their batch-to-batch variability and limited tunability hinder their reproducibility and broader applications. To address these challenges, researchers have turned to synthetic/engineered matrices and biopolymer-based matrices, which offer precise tunability, reproducibility, and chemically defined compositions. However, these matrices also present challenges of their own. In this review, we explore the significance of ECMs in tumor organoid culture, discuss the limitations of commonly used matrices, and highlight recent advancements in engineered/synthetic matrices for improved tumor organoid modeling.
Collapse
Affiliation(s)
- Kan Li
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yibo He
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 310006, China
- Department of Breast Surgery, Affiliated Hangzhou First People'S Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China.
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People'S Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China.
| |
Collapse
|
15
|
Hamada A, Kita Y, Sakatani T, Nakamura K, Takada H, Ikeuchi R, Koike S, Masuda N, Murakami K, Sano T, Goto T, Saito R, Teramoto Y, Fujimoto M, Hatano N, Kamada M, Ogawa O, Kobayashi T. PTEN loss drives p53 LOH and immune evasion in a novel urothelial organoid model harboring p53 missense mutations. Oncogene 2025; 44:1336-1349. [PMID: 39987272 PMCID: PMC12052601 DOI: 10.1038/s41388-025-03311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Despite missense mutation accounts for over 60% of p53 alterations while homozygous deletion (HOM) for only 5% or less in advanced bladder cancer cases, most of the previously reported mouse models are deficient of p53. Accordingly, few studies have addressed the mechanisms of missense mutation occurrence and its functional advantage over HOM in bladder cancer development. Organoids derived from Krt5-expressing mouse urothelium (K5-mUrorganoid) demonstrated the crucial role of Pten loss in driving loss of wild-type allele of Trp53 (Trp53R172H/LOH), which conferred tumorigenic ability to K5-mUrorganoid in athymic mice. These tumors recapitulated the histological and genetic characteristics of the human basal-squamous subtype bladder cancer. Both Trp53R172H/Δ; PtenΔ/Δ and Trp53Δ/Δ; PtenΔ/Δ K5-mUrorganoids formed tumors in athymic mice, whereas only Trp53R172H/Δ; PtenΔ/Δ K5-mUrorganoid formed tumors even when directly inoculated in immunocompetent syngeneic mice. The absence of wild-type Trp53 was associated with upregulation of proliferative signaling, and the presence of a mutant Trp53 allele was associated with immune-excluded microenvironment. This study highlights the functional significance of p53 mutant LOH in bladder carcinogenesis conferring several hallmarks of cancer such as sustaining proliferative signaling and avoiding immune destruction, thus provides a novel immunocompetent mouse model of urothelial carcinoma harboring p53 mutations as a novel tool for cancer immunology research.
Collapse
Affiliation(s)
- Akihiro Hamada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Sakatani
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Nakamura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Takada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeuchi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuhei Koike
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Kaoru Murakami
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sano
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Narumi Hatano
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Otsu Red Cross Hospital, Shiga, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Lorenzo-Martín LF, Broguiere N, Langer J, Tillard L, Nikolaev M, Coukos G, Homicsko K, Lutolf MP. Patient-derived mini-colons enable long-term modeling of tumor-microenvironment complexity. Nat Biotechnol 2025; 43:727-736. [PMID: 38956326 DOI: 10.1038/s41587-024-02301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Existing organoid models fall short of fully capturing the complexity of cancer because they lack sufficient multicellular diversity, tissue-level organization, biological durability and experimental flexibility. Thus, many multifactorial cancer processes, especially those involving the tumor microenvironment, are difficult to study ex vivo. To overcome these limitations, we herein implemented tissue-engineering and microfabrication technologies to develop topobiologically complex, patient-specific cancer avatars. Focusing on colorectal cancer, we generated miniature tissues consisting of long-lived gut-shaped human colon epithelia ('mini-colons') that stably integrate cancer cells and their native tumor microenvironment in a format optimized for real-time, high-resolution evaluation of cellular dynamics. We demonstrate the potential of this system through several applications: a comprehensive evaluation of drug effectivity, toxicity and resistance in anticancer therapies; the discovery of a mechanism triggered by cancer-associated fibroblasts that drives cancer invasion; and the identification of immunomodulatory interactions among different components of the tumor microenvironment. Similar approaches should be feasible for diverse tumor types.
Collapse
Affiliation(s)
- L Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jakob Langer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucie Tillard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mikhail Nikolaev
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute Branch at the University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Agora Translational Research Center, Lausanne, Switzerland
| | - Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute Branch at the University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Agora Translational Research Center, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
17
|
Hanitrarimalala V, Prgomet Z, Hedhammar M, Tassidis H, Wingren AG. In vitro 3D modeling of colorectal cancer: the pivotal role of the extracellular matrix, stroma and immune modulation. Front Genet 2025; 16:1545017. [PMID: 40376304 PMCID: PMC12078225 DOI: 10.3389/fgene.2025.1545017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/23/2025] [Indexed: 05/18/2025] Open
Abstract
Colorectal cancer (CRC) is a leading global cancer with high mortality, especially in metastatic cases, with limited therapeutic options. The tumor microenvironment (TME), a network comprising various immune cells, stromal cells and extracellular (ECM) components plays a crucial role in influencing tumor progression and therapy outcome. The genetic heterogeneity of CRC and the complex TME complicates the development of effective, personalized treatment strategies. The prognosis has slowly improved during the past decades, but metastatic CRC (mCRC) is common among patients and is still associated with low survival. The therapeutic options for CRC differ from those for mCRC and include surgery (mostly for CRC), chemotherapy, growth factor receptor signaling pathway targeting, as well as immunotherapy. Malignant CRC cells are established in the TME, which varies depending on the primary or metastatic site. Herein, we review the role and interactions of several ECM components in 3D models of CRC and mCRC tumor cells, with an emphasis on how the TME affects tumor growth and treatment. This comprehensive summary provides support for the development of 3D models that mimic the interactions within the TME, which will be essential for the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Veroniaina Hanitrarimalala
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Zdenka Prgomet
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - My Hedhammar
- KTH Royal Institute of Technology, Division of Protein Technology, Stockholm, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, Kristianstad, Sweden
| | - Anette Gjörloff Wingren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
18
|
Liu P, Zhou S, Zhou Z, Jin Z, Chen W, Li Z, Xu J, Chen F, Li Y, Wen Y, Zhang S, Zhang C, Li B, Zhao J, Chen H. Discovery and antitumor evaluation of a mitochondria-targeting ruthenium complex for effective cancer therapy. Cancer Lett 2025; 616:217582. [PMID: 40021041 DOI: 10.1016/j.canlet.2025.217582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Ruthenium-based metallodrugs have garnered attention as a promising alternative for anticancer therapy, aiming to overcome chemoresistance and severe side effects linked to platinum-based drugs. However, ruthenium complexes tested in clinical trials to date have yielded unsatisfactory results. This study synthesized a positively charged ruthenium complex (Ru-2) that effectively penetrated cancer cells and exhibited superior cytotoxicity to cisplatin in vitro against cancer cell lines and organoids. Ru-2 selectively targeted mitochondria, disrupting their function by depolarizing mitochondrial membrane potential, elevating reactive oxygen species production, and impairing both oxidative phosphorylation and the tricarboxylic acid cycle. Furthermore, Ru-2 triggered endoplasmic reticulum (ER) stress and apoptosis. Integrative transcriptomic and proteomic analyses, performed using RNA sequencing and mass spectrometry, identified key molecular changes in cancer cells treated with Ru-2. For enhanced in vivo application, we developed a transferrin-based nanomedicine formulation, TF/Ru-2, incorporating Ru-2 into transferrin. In vivo studies demonstrated that both Ru-2 and TF/Ru-2 exhibited superior antitumor efficacy and improved biosafety compared to cisplatin. This study presents a novel ruthenium complex and a transferrin-based drug delivery platform with significant potential for future cancer therapies.
Collapse
Affiliation(s)
- Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shangbo Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zihan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
19
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
20
|
Martinez MN, Mochel JP, Toutain PL. Evolving value and validity of animal models in veterinary therapeutic research: Impact of scientific progress. Eur J Pharm Sci 2025; 210:107111. [PMID: 40286991 DOI: 10.1016/j.ejps.2025.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
In veterinary medicine, experimental in vivo animal models have long been integral to advancing our understanding of disease mechanisms and assessing the safety and efficacy of potential therapies. However, the value and validity of these models warrants reassessment in light of emerging scientific evidence, evolving standards in animal welfare, and the development of alternative methodologies. Such a reassessment is essential for maintaining ethical scientific practices and ensuring that research approaches remain both relevant and justifiable, especially as our awareness of animal pain, sentience, and consciousness deepens. While interspecies extrapolation of findings from these models poses challenges when applied to human medicine, what about cases where an animal species serves as both the experimental subject and the intended veterinary patient? Additionally, what alternative tools are potentially available to replace in vivo studies in these contexts? This commentary explores how veterinary research may improve efforts to meet the principles of the 3R's by integrating alternative in vitro and in silico models early in the investigative process and utilizing specialized tools within the target veterinary population during clinical trials.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD, USA.
| | - Jonathan P Mochel
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 DW. Brooks Drive, Athens, GA 30602, USA.
| | - Pierre-Louis Toutain
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
21
|
Andersen MS, Nielsen AY, Wirenfeldt M, Petersen JK, Møller MW, Powell CL, Castro A, Herrgott G, Mathiesen T, Poulsen CA, Olsen BB, Boldt HB, Pedersen CB, Halle B, Poulsen FR. Establishment of a patient-derived 3D in vitro meningioma model in xeno-free hydrogel for clinical applications. Acta Neuropathol Commun 2025; 13:81. [PMID: 40269981 PMCID: PMC12020064 DOI: 10.1186/s40478-025-02008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Meningiomas exhibit a complex biology that, despite notable successes in preclinical studies, contributes to the failures of pharmaceutical clinical trials. Animal models using patient tumor cells closely mimic in vivo conditions but are labor-intensive, costly, and unsuitable for high-throughput pharmaceutical testing. In comparison, monolayer cell models (two-dimensional, 2D) are cost-efficient but lack primary tumor cell-cell interactions, potentially overestimating treatment effects. Three-dimensional (3D) models offer an alternative through more precise mimicking of tumor morphology and physiology than 2D models and are less costly than in vivo methods. Here, we aimed to establish a 3D cell model in a solid xeno-free medium using patient-derived tumors, thus creating a bench-to-clinic pathway for personalized pharmaceutical testing. METHODS Four WHO grade 1 and one WHO grade 2 (third-passage, fresh) and 12 WHO grade 1 patient-derived meningioma cells (sixth-passage, frozen) and the malignant IOMM-Lee cell line were used to establish 2D and 3D models. The 3D model was developed using a solid xeno-free medium. After 3 months for the primary tumor and 13 days for the IOMM-Lee cell line, the 3D models were extracted and assessed using histology, immunohistochemistry, and epigenetic analyses (EPICv2 array) on five pairs to evaluate their structural fidelity, cellular composition, and epigenetic landscape compared to the original tumor. RESULTS None of the frozen samples successfully generated 3D models. Models from fresh meningioma samples were more immunohistochemically similar to the primary tumors compared to 2D models, particularly regarding proliferation. 3D models displayed loss of fibrous tissue. All 3D models had similar copy number variation profiles, visually. Genome-wide DNA methylation level patterns were similar between pairs of 3D models and primary tumors. Correlation plots between CpG methylation levels showed high congruency between primary meningiomas and their corresponding 3D models for all samples (R > 0.95). CONCLUSIONS Our patient-derived 3D meningioma models closely mimicked primary tumors in terms of cell morphology, immunohistochemical markers and genome-wide DNA methylation patterns, providing a cost-effective and accessible alternative to in vivo models. This approach has the potential to facilitate personalized treatment strategies for patients requiring additional therapy beyond surgery.
Collapse
Affiliation(s)
- Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark.
| | - Aaraby Yoheswaran Nielsen
- Department of Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Martin Wirenfeldt
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Pathology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jeanette Krogh Petersen
- Department of Pathology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Morten Winkler Møller
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| | | | - Anavaleria Castro
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, USA
- Michigan State University, East Lansing Michigan, USA
| | | | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Charlotte Aaberg Poulsen
- Department of Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Henning Bünsow Boldt
- Department of Pathology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- BRIDGE (Brain Research ‑ Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Zhao K, Yan Y, Jin XK, Pan T, Zhang SM, Yang CH, Rao ZY, Zhang XZ. An orally administered gene editing nanoparticle boosts chemo-immunotherapy in colorectal cancer. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01904-5. [PMID: 40269250 DOI: 10.1038/s41565-025-01904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Chemoresistance and immunosuppression are common obstacles to the efficacy of chemo-immunotherapy in colorectal cancer (CRC) and are regulated by mitochondrial chaperone proteins. Here we show that the disruption of the tumour necrosis factor receptor-associated protein 1 (TRAP1) gene, which encodes a mitochondrial chaperone in tumour cells, causes the translocation of cyclophilin D in tumour cells. This process results in the continuous opening of the mitochondrial permeability transition pore, which enhances chemotherapy-induced cell necrosis and promotes immune responses. On the basis of this discovery we developed an oral CRISPR-Cas9 delivery system based on zwitterionic and polysaccharide polymer-coated nanocomplexes that disrupts the TRAP1 gene in CRC. This system penetrates the intestinal mucus layer and undergoes epithelial transcytosis, accumulating in CRC tissues. It enhances chemotherapeutic efficacy by overcoming chemoresistance and activating the tumour immune microenvironment in orthotopic, chemoresistant and spontaneous CRC models, with remarkable synergistic antitumour effects. This oral CRISPR-Cas9 delivery system represents a promising therapeutic strategy for the clinical management of CRC.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Yu Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Chi-Hui Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, P. R. China.
| |
Collapse
|
23
|
Bhartiya D, Dutta S, Tripathi A, Tripathi A. Misconceptions Thrive in the Field of Cancer as Technological Advances Continue to Confuse Stem Cell Biology. Stem Cell Rev Rep 2025:10.1007/s12015-025-10880-1. [PMID: 40238074 DOI: 10.1007/s12015-025-10880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Despite the huge thrust on targeted therapies, cancer survival rates have not improved and both cancer incidence and fatalities continue to rise globally. There is no consensus on how cancer initiates and two contrasting views were published in 2024 regarding cancer initiation. Based on the premise that no stem cells exist in tissues like liver, lungs, and pancreas but they are still affected by cancer; it was suggested that somatic cells dedifferentiate and undergo 'paligenosis' to initiate cancer. The second view discussed that tissue-resident, very small embryonic-like stem cells (VSELs) are vulnerable to extrinsic/intrinsic insults and their dysfunctions initiate cancer. The present article examines the underlying technical reasons that have led to these conflicting views. Scientists have struggled to detect quiescent cancer stem cells (CSCs) that survive chemotherapy, and radiotherapy and escape immunotherapy, cause recurrence and eventually therapeutic resistance leading to death. Lineage tracing studies fail to detect quiescent, acyclic stem cells and instead, the role of actively dividing LGR5+ cells was highlighted for tumor initiation, growth, and metastasis. Similarly, technologies like flow cytometry, and single-cell RNAseq, widely used to comprehend cancer biology, provide insights into cell populations present in abundance. Our article reviews why VSELs/CSCs in the pancreas have remained elusive despite employing advanced technologies, and the critique can be generalized to multiple other organs. This understanding is crucial as it will help to develop better therapeutic strategies for cancer, offer early detection when cancer is a weak disease, and pave the path for prevention over treatment.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India.
| | - Shruti Dutta
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel (West), Mumbai, 400013, India
- TZAR Labs, 23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore
| |
Collapse
|
24
|
Tao ZH, Han JX, Xu J, Zhao E, Wang M, Wang Z, Lin XL, Xiao XY, Hong J, Chen H, Chen YX, Chen HM, Fang JY. Screening of patient-derived organoids identifies mitophagy as a cell-intrinsic vulnerability in colorectal cancer during statin treatment. Cell Rep Med 2025; 6:102039. [PMID: 40154491 PMCID: PMC12047522 DOI: 10.1016/j.xcrm.2025.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/26/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Statins, commonly used to lower cholesterol, are associated with improved prognosis in colorectal cancer (CRC), though their effectiveness varies. This study investigates the anti-cancer effects of atorvastatin in CRC using patient-derived organoids (PDOs) and PDO-derived xenograft (PDOX) models. Our findings reveal that atorvastatin induces mitochondrial dysfunction, leading to apoptosis in cancer cells. In response, cancer cells induce mitophagy to clear damaged mitochondria, enhancing survival and reducing statin efficacy. Analysis of a clinical cohort confirms mitophagy's role in diminishing statin effectiveness. Importantly, inhibiting mitophagy significantly enhances the anti-cancer effects of atorvastatin in CRC PDOs, xenograft models, and azoxymethane (AOM)-dextran sulfate sodium (DSS) mouse models. These findings identify mitophagy as a critical pro-survival mechanism in CRC during statin treatment, providing insights into the variable responses observed in epidemiological studies. Targeting this vulnerability through combination therapy can elicit potent therapeutic responses.
Collapse
Affiliation(s)
- Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Lin Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiu-Ying Xiao
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Min Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Wang Y, Sun X, Lu B, Zhang D, Yin Y, Liu S, Chen L, Zhang Z. Current applications, future Perspectives and challenges of Organoid technology in oral cancer research. Eur J Pharmacol 2025; 993:177368. [PMID: 39947346 DOI: 10.1016/j.ejphar.2025.177368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Oral cancer poses significant health risks with an increasing incidence annually. Despite advancements in treatment methods, their efficacy is frequently constrained by cancer heterogeneity and drug resistance, leading to minimal improvement in the 5-year survival rate. Therefore, there is a critical need for new treatment methods leaded by representative preclinical research models. Compared to other models, organoids can more precisely simulate the tissue structure, genetic characteristics, and tumor microenvironment (TME) of in vivo tumors, exhibiting high tumor specificity. This makes organoid technology a valuable tool in investigating tumor development, mechanisms of metastasis, drug screening, prediction of clinical responses, and personalized patient treatment. Moreover, integrating organoid technology with other biotechnologies could expand its applications in tissue regeneration. Although organoid technology is increasingly utilized in oral cancer research, a systematic review in this field is absent. This paper is to bridge the gap by reviewing the development and current status of organoid research, highlighting its applications, future prospects, and challenges in oral cancer. It aims to provide novel insights into the role of organoids in precision treatment and regenerative medicine for oral cancer.
Collapse
Affiliation(s)
- Yunyi Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bingxu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yaping Yin
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Zhao H, Ho VWS, Liu K, Chen X, Wu H, Chiu PKF, Chan LY, Yuen SKK, Leung DKW, Liu AQ, Wong CHM, Ko ICH, Ng CF, Wu D, Teoh JYC. Organoid models in bladder cancer: From bench to bedside? Bladder Cancer 2025; 11:23523735251330404. [PMID: 40296875 PMCID: PMC12033766 DOI: 10.1177/23523735251330404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Background Bladder cancer (BC), one of the most prevalent and aggressive urological malignancies, poses significant challenges in diagnosis, treatment, and recurrence management. Patient-derived organoid provides new directions for the precision diagnosis and treatment of bladder cancer. Objective To make a comprehensive summary of the current bladder cancer organoid studies. Methods A comprehensive database search was conducted to provide an in-depth overview of the current state of bladder cancer organoid models, with a focus on their applications in basic research, clinical translation, and therapeutic discovery. Results We summarized the current bladder cancer organoid studies, highlighting their advantages, such as genetic fidelity and high-throughput drug screening capabilities. Additionally, we also address the challenges, including their limited representation of the tumour microenvironment and technical complexity. Finally, we discuss future directions, including the integration of immunotherapy, the development of co-culture systems, and the exploration of non-invasive sampling methods and organoid-on-chip systems. Conclusions Traditional pre-clinical models have inherent limitations in mimicking the complexity of human tumours. The emergence of organoid technology has offered a groundbreaking approach to address this challenge, providing an innovative tool for studying tumour biology, genetic alterations, drug screening, and personalized medicine in bladder cancer.
Collapse
Affiliation(s)
- Hongda Zhao
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Vincy Wing Sze Ho
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kang Liu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xuan Chen
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hongwei Wu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu-Yan Chan
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Steffi Kar-Kei Yuen
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - David Ka-Wai Leung
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex Qinyang Liu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Ming Wong
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Ivan Ching-Ho Ko
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Urology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Holowatyj AN, Overman MJ, Votanopoulos KI, Lowy AM, Wagner P, Washington MK, Eng C, Foo WC, Goldberg RM, Hosseini M, Idrees K, Johnson DB, Shergill A, Ward E, Zachos NC, Shelton D. Defining a 'cells to society' research framework for appendiceal tumours. Nat Rev Cancer 2025; 25:293-315. [PMID: 39979656 DOI: 10.1038/s41568-024-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/22/2025]
Abstract
Tumours of the appendix - a vestigial digestive organ attached to the colon - are rare. Although we estimate that around 3,000 new appendiceal cancer cases are diagnosed annually in the USA, the challenges of accurately diagnosing and identifying this tumour type suggest that this number may underestimate true population incidence. In the current absence of disease-specific screening and diagnostic imaging modalities, or well-established risk factors, the incidental discovery of appendix tumours is often prompted by acute presentations mimicking appendicitis or when the tumour has already spread into the abdominal cavity - wherein the potential misclassification of appendiceal tumours as malignancies of the colon and ovaries also increases. Notwithstanding these diagnostic difficulties, our understanding of appendix carcinogenesis has advanced in recent years. However, there persist considerable challenges to accelerating the pace of research discoveries towards the path to improved treatments and cures for patients with this group of orphan malignancies. The premise of this Expert Recommendation article is to discuss the current state of the field, to delineate unique challenges for the study of appendiceal tumours, and to propose key priority research areas that will deliver a more complete picture of appendix carcinogenesis and metastasis. The Appendix Cancer Pseudomyxoma Peritonei (ACPMP) Research Foundation Scientific Think Tank delivered a consensus of core research priorities for appendiceal tumours that are poised to be ground-breaking and transformative for scientific discovery and innovation. On the basis of these six research areas, here, we define the first 'cells to society' research framework for appendix tumours.
Collapse
Affiliation(s)
- Andreana N Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Patrick Wagner
- Division of Surgical Oncology, Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Mary K Washington
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cathy Eng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, San Diego, CA, USA
| | - Kamran Idrees
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ardaman Shergill
- Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Erin Ward
- Section of Surgical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicholas C Zachos
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deborah Shelton
- Appendix Cancer Pseudomyxoma Peritonei (ACPMP) Research Foundation, Springfield, PA, USA
| |
Collapse
|
28
|
Chaudhary N, La Ferlita A, Choudhary BS, Jog E, Kazi M, Yahya S, Dalwai A, Ostwal V, Singh S, Redkar S, Khapare N, Kailaje V, B A, Gera P, Bal M, Verma N, Thorat R, Saklani A, Sehgal L, Dalal SN. Patient-Derived Organoids and Xenografts Uncover Therapeutic Vulnerabilities in Colorectal Signet Ring Cell Carcinomas. Clin Cancer Res 2025; 31:1359-1373. [PMID: 39879477 DOI: 10.1158/1078-0432.ccr-24-2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Identifying therapeutic targets for signet ring cell carcinoma (SRCC) of the colon and rectum is a clinical challenge because of the lack of patient-derived organoids (PDO) or patient-derived xenografts (PDX). To address this unmet need, we present a robust method for establishing PDO and PDX models. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis. EXPERIMENTAL DESIGN We derived nine PDO and PDX models from patients with colorectal SRCC. Detailed histopathologic characterization confirmed the fidelity of these models to the original tumors. Drug sensitivity assays were conducted in vitro and in vivo to assess the therapeutic efficacy and impact on peritoneal metastasis. An RNA sequencing analysis was performed to identify critical pathways contributing to therapy resistance and metastatic progression. RESULTS We successfully developed and characterized PDO and PDX models from nine patients with SRCC. The SRCC PDO and PDX models exhibited histopathologic features consistent with those of the original tumors, including high mucin content and eccentric nuclei. They demonstrated increased sensitivity to FOLFIRI combined with paclitaxel or vincristine, reducing peritoneal metastasis. RNA sequencing analysis revealed the upregulation of autophagy genes in SRCC. Treatment with chloroquine alone resulted in decreased tumor growth and peritoneal metastasis. CONCLUSIONS Our study establishes PDO and PDX models as robust platforms for studying SRCC and identifying potential therapeutic strategies. Combining FOLFIRI with paclitaxel/vincristine or chloroquine alone inhibits tumor growth and prevents peritoneal metastasis, showing promise for clinical translation. These findings suggest that combining FOLFIRI with intraperitoneal paclitaxel warrants further investigation in phase I clinical trials for patients with SRCC.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Alessandro La Ferlita
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Bhagya Shree Choudhary
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Eeshrita Jog
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mufaddal Kazi
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Department of Gastrointestinal Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Showket Yahya
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Afiya Dalwai
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikas Ostwal
- Department of Gastrointestinal Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Siddhi Redkar
- Electron Microscopy Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nileema Khapare
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vaishali Kailaje
- Digital Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Akshaya B
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Poonam Gera
- Department of Biorepository, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Munita Bal
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Nandini Verma
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- TNBC Precision Medicine Research Group, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Avanish Saklani
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Department of Gastrointestinal Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
29
|
Gutmann DH, Boehm JS, Karlsson EK, Padron E, Seshadri M, Wallis D, Snyder JC. Precision preclinical modeling to advance cancer treatment. J Natl Cancer Inst 2025; 117:586-594. [PMID: 39383197 PMCID: PMC11972679 DOI: 10.1093/jnci/djae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
A new era of cancer management is underway in which treatments are being developed for the entire continuum of the disease process. The availability of genetically engineered and naturally occurring preclinical models serves as instructive platforms for evaluating therapeutic mechanisms. However, a major clinical challenge is that the entire malignancy process occurs across multiple scales including genetic mutations, malignant changes in cell behavior, dysregulated tumor microenvironments, and systemic adaptations in the host. A multidisciplinary group of investigators coalesced at the National Cancer Institute Oncology Models Forum with the overall goal to provide updates on the use of precision preclinical models of cancer. The benefits and limitations of preclinical models were discussed to identify strategies for maximizing opportunities in modeling that could inform future cancer prevention and treatment approaches. Our shared perspective is that the continuum of single cell, multicell, organoid, and in situ models are remarkable resources for the clinical challenges ahead. We provide a roadmap for parsing already available models and include preliminary recommendations for the application of next-generation preclinical modeling in cancer intervention.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University, St Louis, MO 63110, United States
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joshua C Snyder
- Department of Surgery, Duke University, Durham, NC 27710, United States
| |
Collapse
|
30
|
Chen P, Zhou JB, Chu XP, Feng YY, Zeng QB, Lei JH, Wong KP, Chan TI, Lam CW, Zhu WL, Chu WK, Hu F, Luo GH, Chan KI, Deng CX. Establishing a cryopreserved biobank of living tumor tissues for drug sensitivity testing. Bioact Mater 2025; 46:582-596. [PMID: 40061435 PMCID: PMC11889390 DOI: 10.1016/j.bioactmat.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025] Open
Abstract
The cryopreservation of cancer tissues to generate frozen libraries is a common practice used worldwide for storing patient samples for later applications. However, frozen samples stored by existing methods cannot be used for initiating living cell cultures, such as patient-derived tumor organoids (PDOs), which offer great potential for personalized treatment. To overcome this challenge, we developed a novel procedure for culturing PDOs using frozen live tumor tissues. We show that tumor specimens stored using this technique maintain their viability and can be successfully used to generate organoids even after long-term freezing, with an impressive success rate of 95.2 %. Importantly, we found that the structural features, tumor marker expression, and drug responses of organoids derived from frozen tissues are similar to those derived from fresh tissues. Moreover, organoids derived from frozen tissues can be routinely passaged and frozen, making them ideal for high-throughput drug screening at any time. Notably, cryopreserved tumor tissues can also be utilized in air-liquid interface (ALI) culture. This method allows for preserving the original tumor microenvironment, making it an invaluable resource for conducting tests on antitumor drug responses, including immune checkpoint inhibitors (ICIs). This innovation has the potential to enable the identification of potentially effective drugs for patients and facilitate the development of novel therapeutic drugs. Thus, we have established protocols for the long-term cryopreservation of cancer tissues to maintain their viability and microenvironment, which are useful for personalized therapy.
Collapse
Affiliation(s)
- Ping Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Bo Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiang-Peng Chu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yang-Yang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Qi-Bing Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Josh-Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Ka-Pou Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | | | | | - Wen-Li Zhu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | - Feng Hu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | | | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
31
|
Mukhare R, Gandhi KA, Kadam A, Raja A, Singh A, Madhav M, Chaubal R, Pandey S, Gupta S. Integration of Organoids With CRISPR Screens: A Narrative Review. Biol Cell 2025; 117:e70006. [PMID: 40223602 PMCID: PMC11995251 DOI: 10.1111/boc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Organoids represent a significant advancement in disease modeling, demonstrated by their capacity to mimic the physiological/pathological structure and functional characteristics of the native tissue. Recently CRISPR/Cas9 technology has emerged as a powerful tool in combination with organoids for the development of novel therapies in preclinical settings. This review explores the current literature on applications of pooled CRISPR screening in organoids and the emerging role of these models in understanding cancer. We highlight the evolution of genome-wide CRISPR gRNA library screens in organoids, noting their increasing adoption in the field over the past decade. Noteworthy studies utilizing these screens to investigate oncogenic vulnerabilities and developmental pathways in various organoid systems are discussed. Despite the promise organoids hold, challenges such as standardization, reproducibility, and the complexity of data interpretation remain. The review also addresses the ideas of assessing tumor organoids (tumoroids) against established cancer hallmarks and the potential of studying intercellular cooperation within these models. Ultimately, we propose that organoids, particularly when personalized for patient-specific applications, could revolutionize drug screening and therapeutic approaches, minimizing the reliance on traditional animal models and enhancing the precision of clinical interventions.
Collapse
Affiliation(s)
- Rushikesh Mukhare
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Khushboo A. Gandhi
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Anushree Kadam
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Aishwarya Raja
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Ankita Singh
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Mrudula Madhav
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Rohan Chaubal
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Surgical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Shwetali Pandey
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Sudeep Gupta
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| |
Collapse
|
32
|
Yazgan Y, Cinar R. Gallic Acid Enhances Cisplatin-induced Death of Human Laryngeal Cancer Cells by Activating the TRPM2 Channel. DOKL BIOCHEM BIOPHYS 2025; 521:221-231. [PMID: 40216719 DOI: 10.1134/s1607672924601276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 05/16/2025]
Abstract
Cisplatin (CIS) is widely used in the treatment of laryngeal cancer, one of the most common and lethal cancers. However, it is not a satisfactory chemotherapeutic agent. Therefore, there is a need to identify new agents, such as gallic acid (GAL), that can exert a synergistic effect to elucidate the pathophysiological mechanisms of the chemotherapeutic effects of CIS and to increase the effectiveness of treatment by preventing drug resistance. For this purpose, we investigated the stimulatory role of GAL on CIS-induced human laryngeal cancer (Hep-2) cell death via TRPM2 channel activation. For the study, four groups were formed from human laryngeal cancer (Hep-2) cells as Control, GAL (1OO μM), CIS (25 μM), and GAL + CIS. In the analyses made, cell viability, glutathione (GSH) and glutathione peroxidase (GSH-Px) enzyme activity, lipid peroxidation (LPx) levels, inflammation markers I-1β, IL-6, and TNF-α, Total Oxidant/Antioxidant (TOS and TAS) status, reactive oxygen species (ROS), caspase (Cas-3-9) activity, Transient Receptor Potential Melastatin 2 (TRPM2), and Poly Adp Ribose Polymerase-1, (PARP-1) levels in the cells were determined. CIS treatment caused laryngeal cancer cell cytotoxic and increased Cas-3-9, ROS, IL-1β, TNF-α, IL-6, TOS, LPx, TRPM2, and PARP-1 levels while decreasing cell viability, GSH-Px, GSH, and TAS levels. The combination of GAL and CIS treatment made the treatment even more effective. In conclusion, the increase in ROS and cell death levels mediated by TRPM2 activation in CIS Hep-2 cells was further enhanced by GAL treatment. Thus, CIS chemotherapy in Hep-2 cells may be enhanced by the synergistic effect of the GAL combination, and drug resistance may be reduced.
Collapse
Affiliation(s)
- Yener Yazgan
- Department of Biophysics, Faculty of Medicine, Kastamonu University, Kastamonu, Türkiye.
| | - Ramazan Cinar
- Department of Biophysics, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
33
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
34
|
Gao T, He X, Wang J, Liu J, Hu X, Bai C, Yin S, Shi Y, Wang Y, Tan Z, Cao F, Li S, Shi YJ, Xue R, Li J, He Y, Li J, Lu H, Zhang H, Zhang L, Fang Z, Wang X, Liu M, Fu W, Tang L, Ye B, Fan Z, Xi JJ. Self-assembled patient-derived tumor-like cell clusters for personalized drug testing in diverse sarcomas. Cell Rep Med 2025; 6:101990. [PMID: 40054460 PMCID: PMC11970405 DOI: 10.1016/j.xcrm.2025.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/30/2024] [Accepted: 02/04/2025] [Indexed: 03/21/2025]
Abstract
Several patient-derived tumor models have emerged recently. However, soft tissue sarcomas (STSs) present a challenge in developing preclinical drug-testing models due to their non-epithelial and complex nature. Here, we report a model termed patient-derived tumor-like cell clusters (PTCs) derived from STS patients. PTCs result from the self-assembly and proliferation of mesenchymal stem cells (MSCs), epithelial cells, and immune cells, faithfully recapitulating the morphology and function of the original tumors. Through standardized culture and drug-response assessment protocols, PTCs facilitate personalized drug testing, evaluating hundreds of therapies within two weeks. Notably, PTCs exhibit 100% accuracy in distinguishing between complete or partial response and disease progression. We demonstrate the utility of PTCs in guiding chemotherapy selection for a patient with relapse and metastases following conventional therapy, who exhibited a positive response after non-conventional therapy identified through PTC. These findings underscore the potential of PTCs for prospective use in clinical decision-making regarding therapy selection.
Collapse
Affiliation(s)
- Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinyu He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Junyi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jiayong Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiongbing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Chujie Bai
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shenyi Yin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; GeneX Health Co., Ltd., Beijing 100195, China
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanmin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhichao Tan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fang Cao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shu Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan-Jie Shi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ruifeng Xue
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Juan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jiaxin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; Peking University Yangtze Center of Future Health Technology, Wuxi 214111, China
| | - Huinan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; Peking University Yangtze Center of Future Health Technology, Wuxi 214111, China
| | - Hanshuo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; GeneX Health Co., Ltd., Beijing 100195, China
| | - Lu Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhiwei Fang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinyu Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mengmeng Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenjun Fu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lei Tang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Buqing Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhengfu Fan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China; Peking University Yangtze Center of Future Health Technology, Wuxi 214111, China.
| |
Collapse
|
35
|
Chen J, Liu L, Yang Y, Luo J, Liu S. Patient-derived organoid models of malignant phyllodes tumours for drug sensitivity testing and identification of targeted therapeutic strategies. J Drug Target 2025:1-11. [PMID: 40059613 DOI: 10.1080/1061186x.2025.2473010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Malignant phyllodes tumours (MPT) of the breast are rare fibroepithelial neoplasms. It exhibits rapid growth, large size, and a high local recurrence rate. METHODS In this study, we established novel patient-derived organoid (PDO) models from two primary MPT samples and conducted comprehensive genetic profiling and drug screening. RESULTS The PDO models faithfully recapped the histopathological and molecular features of the primary tumours, including stromal overgrowth, leaf-like projections, and the expression of key diagnostic markers. Drug testing revealed significant heterogeneity in response profiles to chemotherapeutic reagents between the two MPT-derived organoids, implying the importance of personalised drug testing. Next-generation sequencing analysis identified recurrent mutations in TP53, RB1, EGFR, ATM, and RECQL4, which correlated with the drug sensitivity profiles observed in the organoid models. Targeted therapeutic drugs, such as Abemaciclib (targeting the RB1 pathway) with an IC50 value of 1.744 µM, and Alflutinib Mesylate (targeting the EGFR pathway) with an IC50 value of 0.9150 µM, exhibited significant cytotoxic effects in the MPT2 organoid models. CONCLUSIONS This study highlights the novel application of PDOs for studying the molecular landscape of MPTs and identifying effective therapeutic targets, offering a promising platform for guiding personalised treatment strategies for this rare and challenging cancer.
Collapse
Affiliation(s)
- Jie Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangquan Liu
- Department of Breast Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunxu Yang
- Chengdu OrganoidMed Medical Laboratory, West China Health Valley, Chengdu, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Telang NT. Natural Bioactive Agents: Testable Stem Cell-Targeting Alternatives for Therapy-Resistant Breast Cancer. Int J Mol Sci 2025; 26:2529. [PMID: 40141171 PMCID: PMC11942498 DOI: 10.3390/ijms26062529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of estrogen receptor-α (ER-α), progesterone receptor (PR) hormone receptors, and/or of human epidermal growth factor receptor-2 (HER-2). The breast cancer subtypes Luminal A, Luminal B, and HER-2-enriched express hormone/growth factor receptors and exhibit a favorable response to hormone receptor modulators and growth factor receptor antagonists. The triple-negative breast cancer subtype lacks the expression of hormone/growth factor receptors and responds only to cytotoxic conventional chemotherapy. The clinical limitations, due to the modest therapeutic responses of chemo-resistant cancer-initiating stem cells, emphasize the need for the identification of stem cells targeting testable alternatives for therapy-resistant breast cancer. Developed drug-resistant stem cell models exhibit upregulated expression of select cellular biomarker tumor spheroid (TS) formations and cluster of differentiation44 (CD44), DNA-binding protein (NANOG), and octamer-binding protein-4 (OCT-4) molecular biomarkers that represent novel experimentally modifiable quantitative endpoints. Naturally occurring dietary phytochemicals and nutritional herbs containing polyphenols, flavones, terpenes, saponins, lignans, and tannins have documented human consumption, lack systemic toxicity, lack phenotypic drug resistance, and exhibit preclinical efficacy. Constituent bioactive agents may provide testable stem cell-targeting alternatives. The present report provides an overview of (i) clinically relevant cellular models and drug-resistant cancer stem cell models for breast cancer subtypes, (ii) evidence for preclinical efficacy and mechanistic leads for natural phytochemicals and nutritional herbs, and (iii) the potential for the stem cell-targeting efficacy of natural bioactive agents as testable drug candidates for therapy-resistant breast cancer.
Collapse
Affiliation(s)
- Nitin T Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645-1559, USA
| |
Collapse
|
37
|
Issing C, Menche C, Richter MR, Mosa MH, von der Grün J, Fleischmann M, Thoenissen P, Winkelmann R, Darvishi T, Loth AG, Ghanaati S, Rödel F, Wild PJ, Brandts CH, Stöver T, Farin HF. Head and neck tumor organoid biobank for modelling individual responses to radiation therapy according to the TP53/HPV status. J Exp Clin Cancer Res 2025; 44:85. [PMID: 40045309 PMCID: PMC11881459 DOI: 10.1186/s13046-025-03345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Head and neck cancers (HNC) represent an extremely heterogeneous group of diseases with a poorly predictable therapy outcome. Patient-derived tumor organoids (PDTO) offer enormous potential for individualized therapy testing and a better mechanistic understanding of the main HNC drivers. METHODS Here, we have established a comprehensive molecularly and functionally characterized head and neck organoid biobank (HNOB) recapitulating the clinically relevant subtypes of TP53 mutant and human papillomavirus type 16 (HPV 16) infection-driven HNC. Organoids were exposed to radiotherapy, and responses were correlated with clinical data. Genetically engineered normal and tumor organoids were used for testing the direct functional consequences of TP53-loss and HPV infection. RESULTS The HNOB consisting of 18 organoid models, including 15 tumor models, was generated. We identified subtype-associated transcriptomic signatures and pathological features, including sensitivity to TP53 stabilization by the MDM2 inhibitor Nutlin-3. Furthermore, we describe an in vitro radio response assay revealing phenotypic heterogeneity linked to the individual patient's treatment outcome, including relapse probability. Using genetically engineered organoids, the possibility of co-existence of both cancer drivers was confirmed. TP53 loss, as well as HPV, increased growth in normal and tumor organoids. TP53 loss-of-function alone was insufficient to promote radiation resistance, whereas HPV 16 oncogenes E6/E7 mediated radiosensitivity via induction of cell cycle arrest. CONCLUSION Our results highlight the translational value of the head and neck organoid models not only for patient stratification but also for mechanistic validation of therapy responsiveness of specific cancer drivers.
Collapse
Affiliation(s)
- Christian Issing
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mara Romero Richter
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Jens von der Grün
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany
- Department of Radio-oncology, University Hospital Zürich, Zürich, Switzerland
| | - Maximilian Fleischmann
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Philipp Thoenissen
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Tahmineh Darvishi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Andreas G Loth
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Shahram Ghanaati
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Peter J Wild
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Christian H Brandts
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Timo Stöver
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Lee J, Kim Y, Lee C, Jeon SS, Seo H, Lee J, Choi J, Kang M, Kim E, Shin K. Generation of prostate cancer assembloids modeling the patient-specific tumor microenvironment. PLoS Genet 2025; 21:e1011652. [PMID: 40163511 PMCID: PMC12002641 DOI: 10.1371/journal.pgen.1011652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/16/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed malignancy among men and contributes significantly to cancer-related mortality. While recent advances in in vitro PC modeling systems have been made, there remains a lack of robust preclinical models that faithfully recapitulate the genetic and phenotypic characteristics across various PC subtypes-from localized PC (LPC) to castration-resistant PC (CRPC)-along with associated stromal cells. Here, we established human PC assembloids from LPC and CRPC tissues by reconstituting tumor organoids with corresponding cancer-associated fibroblasts (CAFs), thereby incorporating aspects of the tumor microenvironment (TME). Established PC organoids exhibited high concordance in genomic landscape with parental tumors, and the tumor assembloids showed a higher degree of phenotypic similarity to parental tumors compared to tumor organoids without CAFs. PC assembloids displayed increased proliferation and reduced sensitivity to anti-cancer treatments, indicating that PC assembloids are potent tools for understanding PC biology, investigating the interaction between tumor and CAFs, and identifying personalized therapeutic targets.
Collapse
Affiliation(s)
- Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yunhee Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hae Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunjee Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kunyoo Shin
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Liu D, Chen Z, Deng W, Lan J, Zhu Y, Wang H, Xu X, Zhang Y, Wu X, Yang K, Cai J. An Organoid Model for the Therapeutic Effect of Hyperthermic Intraperitoneal Chemotherapy for Colorectal Cancer. Ann Surg Oncol 2025; 32:1925-1940. [PMID: 39589577 PMCID: PMC11811434 DOI: 10.1245/s10434-024-16469-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Consensus regarding the hyperthermic intraperitoneal chemotherapy (HIPEC) for colorectal cancer (CRC) regimen remains elusive. In this study, patient-derived tumor organoids from CRC were utilized as a preclinical model for in vitro drug testing of HIPEC regimens commonly used in clinical practice. This approach was used to facilitate the clinical formulation of HIPEC. METHOD Tumor tissues and corresponding clinical data were obtained from patients diagnosed with CRC at the Sixth Affiliated Hospital of Sun Yat-Sen University. Qualified samples were cultured and passaged. We aimed to assess the sensitivity of in vitro hyperthermic perfusion using five different regimens, i.e. mitomycin C, mitomycin C combined with cisplatin, mitomycin C combined with 5-fluorouracil, oxaliplatin, and oxaliplatin combined with 5-fluorouracil. RESULTS Tumor organoids obtained from 46 patients with CRC were cultured, and in vitro hyperthermic perfusion experiments were conducted on 42 organoids using five different regimens. The average inhibition rate of mitomycin C was 85.2% (95% confidence interval [CI] 80.4-89.9%), mitomycin C combined with cisplatin was 85.5% (95% CI 80.2-90.7%), mitomycin C combined with 5-fluorouracil was 65.6% (95% CI 59.6-71.6%), oxaliplatin was 37.9% (95% CI 31.5-44.3%), and oxaliplatin combined with 5-fluorouracil was 40.7% (95% CI 33.9-47.5%). CONCLUSION In vitro hyperthermic perfusion demonstrates that the inhibition rate of mitomycin C, both alone and in combination with cisplatin, surpasses that of the combination of mitomycin C with 5-fluorouracil and oxaliplatin. In clinical practice, the combination of mitomycin C and cisplatin can be regarded as the optimal choice for HIPEC in CRC.
Collapse
Affiliation(s)
- Duo Liu
- Department of Colorectal Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Accurate International Biotechnology Co. Ltd., Guangzhou, China
| | - Weihao Deng
- Department of Pathology, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianqiang Lan
- Guangdong Research Center of Organoid Engineering and Technology, Accurate International Biotechnology Co. Ltd., Guangzhou, China
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, Accurate International Biotechnology Co. Ltd., Guangzhou, China
| | - Huaiming Wang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Xu
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yuanxin Zhang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangwei Wu
- Qiantang Biotechnology Co. Ltd., Suzhou, China
| | - Keli Yang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jian Cai
- Department of Colorectal Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.
| |
Collapse
|
40
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025; 39:237-260. [PMID: 39826071 PMCID: PMC11906529 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
41
|
Kim J, Kim R, Lee W, Kim GH, Jeon S, Lee YJ, Lee JS, Kim KH, Won J, Lee W, Park K, Kim HJ, Im S, Lee KJ, Park C, Kim J, Lee JY. Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion. Mol Oncol 2025; 19:698-715. [PMID: 39473365 PMCID: PMC11887666 DOI: 10.1002/1878-0261.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 03/08/2025] Open
Abstract
Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Rokhyun Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Wonseok Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Department of Transitional MedicineSeoul National University College of MedicineSeoulKorea
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Gyu Hyun Kim
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Seeun Jeon
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Yun Jin Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Jong Seok Lee
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Kyung Hyun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Jae‐Kyung Won
- Department of Pathology, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Woochan Lee
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Kyunghyuk Park
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
| | - Hyun Je Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| | - Sun‐Wha Im
- Department of Biochemistry and Molecular BiologyKangwon National University School of MedicineChuncheonKorea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Chul‐Kee Park
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Jong‐Il Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Ji Yeoun Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
- Neuroscience Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
42
|
Moll M, Baumjohann D. Boosting human immunology: harnessing the potential of immune organoids. EMBO Mol Med 2025; 17:385-394. [PMID: 39870882 PMCID: PMC11903751 DOI: 10.1038/s44321-025-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025] Open
Abstract
Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils. Thus, there is a clear demand for novel enhanced experimental systems that faithfully recapitulate the intricate dynamics of the human immune system as much as possible. In this review, we discuss recent advances in versatile human tonsil/adenoid tissue-based ex vivo immune organoid cultures as well as related cancer and autoimmunity-focused experimental setups. These systems have been implemented as translational immunology platforms for in-depth analyses of human B and T cell-mediated immune responses, thereby facilitating mechanistic studies as well as drug and vaccine testing in a human-first approach.
Collapse
Affiliation(s)
- Maximilian Moll
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
43
|
Ji L, Chen J, He L, Zhang F, Deng Z, Lin J, Qi Z, Luo X, Giuliano AE, Cui X, Lin SL, Cui Y. Reversal of endocrine resistance via N6AMT1-NEDD4L pathway-mediated p110α degradation. Oncogene 2025; 44:530-544. [PMID: 39623076 PMCID: PMC11832415 DOI: 10.1038/s41388-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 02/19/2025]
Abstract
Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.
Collapse
Affiliation(s)
- Likeng Ji
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiongyu Chen
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lifang He
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fan Zhang
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zihao Deng
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaochang Qi
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xi Luo
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
44
|
Li T, Bo RQ, Yan J, Johnson NL, Liao MT, Li Y, Chen Y, Lin J, Li J, Chu FH, Ding X. Global landscape of hepatic organoid research: A bibliometric and visual study. World J Hepatol 2025; 17:95624. [PMID: 40027550 PMCID: PMC11866153 DOI: 10.4254/wjh.v17.i2.95624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Hepatic organoid-based modelling, through the elucidation of a range of in vivo biological processes and the recreation of the intricate liver microenvironment, is yielding groundbreaking insights into the pathophysiology and personalized medicine approaches for liver diseases. AIM This study was designed to analyse the global scientific output of hepatic organoid research and assess current achievements and future trends through bibliometric analysis. METHODS Articles were retrieved from the Web of Science Core Collection, and CiteSpace 6.3.R1 was employed to analyse the literature, including outputs, journals, and countries, among others. RESULTS Between 2010 and 2024, a total of 991 articles pertaining to hepatic organoid research were published. The journal Hepatology published the greatest number of papers, and journals with an impact factor greater than 10 constituted 60% of the top 10 journals. The United States and Utrecht University were identified as the most prolific country and institution, respectively. Clevers H emerged as the most prolific author, whereas Huch M had the highest number of cocitations, suggesting that both are ideal candidates for academic collaboration. Research on hepatic organoids has exhibited a progressive shift in focus, evolving from initial investigations into model building, differentiation research in stem cells, bile ducts, and progenitor cells, to a broader spectrum encompassing lipid metabolism, single-cell RNA sequencing, and therapeutic applications. The phrases exhibiting citation bursts from 2022 to 2024 include "drug resistance", "disease model", and "patient-derived tumor organoids". CONCLUSION Research on hepatic organoids has increased over the past decade and is expected to continue to grow. Key research areas include applications for liver diseases and drug development. Future trends likely to gain focus include patient-derived tumour organoids, disease modelling, and personalized medicine.
Collapse
Affiliation(s)
- Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rong-Qiang Bo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Nadia L Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Meng-Ting Liao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jian Li
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fu-Hao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
45
|
Dornhof J, Kieninger J, Rupitsch SJ, Weltin A. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip (2019-2024). LAB ON A CHIP 2025; 25:1149-1168. [PMID: 39775787 DOI: 10.1039/d4lc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as in vitro models, e.g., in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms. We identify building blocks, features and essential advantages to underline the relevance of these systems and to derive appropriate requirements for development and practical use. We discuss different formats and geometries of cell culture, microfluidics and the resulting consequences for sensor placement, as the prerequisite for understanding the various approaches and classification of the systems. The major chemical and biosensors based on electrochemical and optical principles are discussed for general understanding and to contextualize current developments. We then review selected recent sensor systems with real-world implementations of sensing in cell cultures and organs-on-chip, employing a helpful characterization. That includes formats and cell models, microfluidic systems and sensor types applied in static and dynamic monitoring of 2D and 3D cell cultures, as well as single spheroids. We discuss notable advances, particularly with respect to sensor performance and the demonstration of long-term continuous measurements. We outline current approaches to system fabrication technologies, material choice, and interfacing, and comment on recent trends. Finally, we conclude with critical remarks on the current state of sensors in cell culture monitoring and identify avenues for future improvements for both developers and users of such systems, which will lead to better and more predictive in vitro models.
Collapse
Affiliation(s)
- Johannes Dornhof
- Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Jochen Kieninger
- Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Stefan J Rupitsch
- Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | - Andreas Weltin
- Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
46
|
Nagashima Y, Yamamoto H, Elbadawy M, Ishihara Y, Tsurukami I, Abugomaa A, Kaneda M, Yamawaki H, Usui T, Sasaki K. Establishment of an experimental model of canine apocrine gland anal sac adenocarcinoma organoid culture using a three-dimensional culture method. Sci Rep 2025; 15:6108. [PMID: 39972078 PMCID: PMC11840023 DOI: 10.1038/s41598-025-90623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is a rare, malignant tumor in dogs. To date, few cell lines are available and used to establish the current treatment protocols. Organoids are three-dimensional cell cultures derived mainly from stem cells and can reproduce tissue's epithelial structure, function, and genetics, and thus, of great promise in precision medicine. In the current investigation, 10 AGASACA organoid lines were developed from surgically removed tissues of AGASACA-affected dogs and analyzed for comparison with the original tissues. AGASACA organoids were successfully generated from all cases and were positive for CK7, HER2, p53, p63, VEGF, and Ki67, and negative for CK20, consistent with previous reports in dogs and humans. Electron microscopic imaging of AGASACA organoids showed organelles, including numerous granules and fat droplets that characterize apocrine gland cells. AGASACA organoids were tumorigenic in vivo in immunodeficient mice. In addition, treatment of the AGASACA organoids with carboplatin, mitoxantrone, toceranib, and lapatinib revealed different sensitivity profiles among lineages, with carboplatin and lapatinib, in particular, being divided into sensitive and resistant ones. In contrast, mitoxantrone and toceranib showed generally high efficacy in all organoids. In conclusion, our established AGASACA organoids have the potential to be an experimental tool for the development of novel therapies for canine and human apocrine gland adenocarcinoma.
Collapse
Affiliation(s)
- Yuko Nagashima
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- AIRDEC Mini CO., LTD, 1-2-36 Kajino-Cho, Koganei, Tokyo, 184-0002, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt.
- Department of Pathology, College of Veterinary Medicine, Precision One Health Initiative, University of Georgia, Athens, GA, 30602, USA.
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Issei Tsurukami
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 Ban-Cho, Towada, Aomori, 034-8628, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
47
|
Huang L, Liao C, Xiong Z, Chen Z, Zhang S. Hsa-miR-526b-5p Regulates the Sensitivity of Colorectal Cancer to 5-Fluorouracil by Targeting TP53 in Organoid Models. Biochem Genet 2025:10.1007/s10528-025-11045-y. [PMID: 39953363 DOI: 10.1007/s10528-025-11045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
This study aimed to explore the mechanisms through which microRNAs (miRNAs) regulate 5-fluorouracil (5-FU) sensitivity in colorectal cancer (CRC) using organoid models. Fresh tissue samples from CRC tumors were collected, and CRC organoids were isolated and cultured. The consistency between CRC organoids and their derived tissues was validated. CRC organoids were treated with 5-FU, and ATP activity was measured. High-throughput sequencing of CRC organoids, combined with Gene Expression Omnibus (GEO) data analysis, was performed to examine miRNA expression following 5-FU treatment. Next, we investigated the cellular function of miR-526b-5p in CRC organoids and cells. Dual-luciferase reporter assays validated the binding of miR-526b-5p to the 3' UTR of TP53 mRNA. We successfully established CRC organoids that exhibited characteristics consistent with their source tissues. 5-FU treatment suppressed the proliferation and ATP activity of CRC organoids. High-throughput sequencing of CRC organoids, combined with GEO data analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation, revealed that hsa-miR-526b-5p levels were elevated following 5-FU treatment in CRC organoids and cells. Furthermore, hsa-miR-526b-5p was upregulated in CRC tissues compared to adjacent normal tissues, correlating with poor survival in CRC patients. Overexpression of hsa-miR-526b-5p mitigated the inhibitory effects of 5-FU on CRC organoid proliferation, migration, invasion, and ferroptosis. In contrast, silencing of hsa-miR-526b-5p impaired cell function and ferroptosis. Additionally, overexpression of hsa-miR-526b-5p decreased TP53 mRNA and protein levels while increasing the expression of SLC7A11 mRNA and protein. Silencing of hsa-miR-526b-5p resulted in the opposite effect. hsa-miR-526b-5p directly targeted and inhibited TP53 expression. Overexpression of TP53 diminished the promotive effect of hsa-miR-526b-5p on ferroptosis-related proteins GPX4 and SLC7A11, whereas inhibition of TP53 reversed the impact of hsa-miR-526b-5p silencing. Our study demonstrates that hsa-miR-526b-5p targets TP53 to regulate 5-FU sensitivity in CRC through the ferroptosis pathway based on CRC organoid models.
Collapse
Affiliation(s)
- Lizhe Huang
- Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Cun Liao
- Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Zuming Xiong
- Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Zhongyang Chen
- Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Sen Zhang
- Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
48
|
Mallya D, Gadre MA, Varadharajan S, Vasanthan KS. 3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns. Front Bioeng Biotechnol 2025; 13:1457872. [PMID: 40028291 PMCID: PMC11868281 DOI: 10.3389/fbioe.2025.1457872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
A drug to be successfully launched in the market requires a significant amount of capital, resources and time, where the unsuccessful results in the last stages lead to catastrophic failure for discovering drugs. This is the very reason which calls for the invention of innovative models that can closely mimic the human in vivo model for producing reliable results. Throughout the innovation line, there has been improvement in the rationale in silico designing but yet there is requirement for in vitro-in vivo correlations. During the evolving of the drug testing models, the 3D models produced by different methods have been proven to produce better results than the traditional 2D models. However, the in vitro fabrications of live tissues are still bottleneck in realizing their complete potential. There is an urgent need for the development of single, standard and simplified in vitro 3D tissue models that can be reliable for investigating the biological and pathological aspects of drug discovery, which is yet to be achieved. The existing pre-clinical models have considerable drawbacks despite being the gold standard in pre-clinical research. The major drawback being the interspecies differences and low reliability on the generated results. This gap could be overcome by the fabrication of bioengineered human disease models for drug screening. The advancement in the fabrication of 3D models will provide a valuable tool in screening drugs at different stages as they are one step closer to bio-mimic human tissues. In this review, we have discussed on the evolution of preclinical studies, and different models, including mini tissues, spheroids, organoids, bioengineered three dimensional models and organs on chips. Furthermore, we provide details of different disease models fabricated across various organs and their applications. In addition to this, the review also focuses on the limitations and the current prospects of the role of three dimensionally bioprinted models in drug screening and development.
Collapse
Affiliation(s)
- Divya Mallya
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mrunmayi Ashish Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S. Varadharajan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
49
|
Tao W, Sun Q, Xu B, Wang R. Towards the Prediction of Responses to Cancer Immunotherapy: A Multi-Omics Review. Life (Basel) 2025; 15:283. [PMID: 40003691 PMCID: PMC11856636 DOI: 10.3390/life15020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor treatment has undergone revolutionary changes with the development of immunotherapy, especially immune checkpoint inhibitors. Because not all patients respond positively to immune therapeutic agents, and severe immune-related adverse events (irAEs) are frequently observed, the development of the biomarkers evaluating the response of a patient is key for the application of immunotherapy in a wider range. Recently, various multi-omics features measured by high-throughput technologies, such as tumor mutation burden (TMB), gene expression profiles, and DNA methylation profiles, have been proved to be sensitive and accurate predictors of the response to immunotherapy. A large number of predictive models based on these features, utilizing traditional machine learning or deep learning frameworks, have also been proposed. In this review, we aim to cover recent advances in predicting tumor immunotherapy response using multi-omics features. These include new measurements, research cohorts, data sources, and predictive models. Key findings emphasize the importance of TMB, neoantigens, MSI, and mutational signatures in predicting ICI responses. The integration of bulk and single-cell RNA sequencing has enhanced our understanding of the tumor immune microenvironment and enabled the identification of predictive biomarkers like PD-L1 and IFN-γ signatures. Public datasets and machine learning models have also improved predictive tools. However, challenges remain, such as the need for large and diverse clinical datasets, standardization of multi-omics data, and model interpretability. Future research will require collaboration among researchers, clinicians, and data scientists to address these issues and enhance cancer immunotherapy precision.
Collapse
Affiliation(s)
- Weichu Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Qian Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| |
Collapse
|
50
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|