1
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
2
|
Kazmi A, Gill R, Restrepo P, Ji AL. The spatial and single-cell landscape of skin: Charting the multiscale regulation of skin immune function. Semin Immunol 2025; 78:101958. [PMID: 40267702 DOI: 10.1016/j.smim.2025.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Immune regulation is a key function of the skin, a barrier tissue that exhibits spatial compartmentalization of innate and adaptive immune cells. Recent advances in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have facilitated systems-based investigations into the molecular and cellular features of skin immunity at single-cell resolution, identifying cell types that maintain homeostasis in a coordinated manner, and those that exhibit dysfunctional cell-cell interactions in disease. Here, we review how technological innovation is uncovering the multiple scales of heterogeneity in the immune landscape of the skin. The microanatomic scale encompasses the skin's diverse cellular components and multicellular spatial organization, which govern the functional cell interactions and behaviors necessary to protect the host. On the macroanatomic scale, understanding heterogeneity in cutaneous tissue architecture across anatomical sites promises to unearth additional functional immune variation and resulting disease consequences. We focus on how single-cell and spatial dissection of the immune system in experimental models and in humans has led to a deeper understanding of how each cell type in the skin contributes to overall immune function in a context-dependent manner. Finally, we highlight translational opportunities for adopting these technologies, and insights gleaned from them, into the clinic.
Collapse
Affiliation(s)
- Abiha Kazmi
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raman Gill
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Restrepo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew L Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Jie F, Shelke O, Yijie Z, Yulan C, Yongbo L. Q1 and Q2 selection, Q3, IVRT, IVPT, pharmacokinetic and pharmacodynamic evaluation of topical generic product. Drug Dev Ind Pharm 2025:1-11. [PMID: 40176255 DOI: 10.1080/03639045.2025.2486487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE To establish a detailed step-by-step example for the topical development of generic products. SIGNIFICANCE Topical semisolids are complex products requiring extensive research for bioequivalence by establishing Q1/Q2/Q3. METHODS The detailed process establishes Q1/Q2 selection and Q3 evaluation of the innovator and proposed formulation. The proposed generic product along with the innovator formulation has been evaluated for physicochemical properties. Once the Q3 structure is matched with innovator formulation, the invitro release and in-vitro permeation study have been conducted to move forward for the bioequivalence study. Pharmacokinetic and pharmacodynamic studies were employed for bioequivalence with an innovator in humans. RESULTS Selection of Q1 and Q2 establish the formulation composition through literature search and reverse engineering. The test and reference products are pharmaceutically equivalent through Q3 characterization, IVRT, and IVPT. In the PK study, test and reference samples were compared for Cmax, Tmax, and t1/2 and found bioequivalent. The PD study was performed in pilot and pivotal study to establish dose duration response relationship and bioequivalence respectively without adverse events. A crucial study has exhibited that reference and test formulations are bioequivalent with a 90% confidence interval and results in 84.67%-101.09%. CONCLUSION The Cutivate® cream 0.05%, and proposed generic product Fluticasone Propionate cream 0.05% formulations are bioequivalent and have a favorable safety profile.
Collapse
Affiliation(s)
- Feng Jie
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Om Shelke
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Zhu Yijie
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Chen Yulan
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Liu Yongbo
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Fan Z, Xu Y, Lu Y, Li X, Xu M, Liu J, Cai Z, Liu J, Su J, Wang J, Luo Q, Zhang Z, Liu Z. The crosstalk of monocyte-neutrophil in hair follicles regulates neutrophil transepidermal migration in contact dermatitis. Commun Biol 2025; 8:564. [PMID: 40185981 PMCID: PMC11971313 DOI: 10.1038/s42003-025-07960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
The excessive accumulation of neutrophils within the epidermis is a significant hallmark of cutaneous diseases; however, the mechanisms governing neutrophil transepidermal migration (NTEM) remain inadequately understood. In this study, we develop trichromatic-fluorescence-labeled chimeric mice by utilizing Cx3cr1GFP/+Lyz2RFP/+ mice as bone marrow donors and Krt14YFP/+ mice as recipients. This approach enables us to visualize the process of NTEM and the crosstalk between neutrophils and monocytes in a murine model of irritant contact dermatitis (ICD). Intravital imaging reveals a preferential transmigration of neutrophils through hair follicle (HF), where dermal neutrophils exhibit limited mobility and interact with dermal monocytes. Notably, 18 h following hapten exposure, dermal neutrophils continuously migrate toward HF regions and form clusters within 3 h. Importantly, MMP-9 is identified as essential for the NTEM process; the depletion of dermal monocytes results in a significant reduction of MMP-9 expression in the skin and inhibits the NTEM process in ICD. Mechanistically, dermal monocytes are found to be a crucial source of the cytokines TNF-α and CXCL2, which promote the upregulation of MMP-9 in neutrophils. Therefore, our results highlight HF regions as crucial gateways for dermal monocyte-modulated NTEM and provide visual insights into the crosstalk between neutrophils and monocytes in inflammatory skin disorders.
Collapse
Affiliation(s)
- Zhan Fan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Yilun Xu
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinlin Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengli Xu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Jinxin Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jiayang Liu
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jingping Su
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
| | - Zhihong Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China.
| | - Zheng Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China.
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
| |
Collapse
|
5
|
Ghobadi F, Kalantarzadeh R, Ashrafnia Menarbazari A, Salehi G, Fatahi Y, Simorgh S, Orive G, Dolatshahi-Pirouz A, Gholipourmalekabadi M. Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects. Int J Biol Macromol 2025; 298:140013. [PMID: 39832576 DOI: 10.1016/j.ijbiomac.2025.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The field of three-dimensional (3D) bio/printing, known as additive manufacturing (AM), heavily relies on bioinks possessing suitable mechanical properties and compatibility with living cells. Among the array of potential hydrogel precursor materials, chitosan (CS) has garnered significant attention due to its remarkable physicochemical and biological attributes. These attributes include biodegradability, nontoxicity, antimicrobial properties, wound healing promotion, and immune system activation, making CS a highly appealing hydrogel-based bioink candidate. This review explores the transformative potential of CS-based bioink for enhancing dermal wound healing therapies. We highlight CS's unique qualities that make it an optimal choice for bioink development. Advancements in 3D bio/printing technology for tissue engineering (TE) are discussed, followed by an examination of strategies for CS-based bioink formulation and their impacts on wound healing. To address the progress in translating advanced wound healing from lab to clinic, we highlight the current and ongoing research in CS-based bioink for 3D bio/printing in skin wound healing applications. Finally, we explore current evidence, commercialization prospects, emerging innovations like 4D printing, and the challenges and future directions in this promising field.
Collapse
Affiliation(s)
- Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rooja Kalantarzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Arezoo Ashrafnia Menarbazari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Salehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
6
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
7
|
Hara R, Saito-Sasaki N, Sawada Y. Maresin-1 impairs cutaneous wound healing response. Immunohorizons 2025; 9:vlaf010. [PMID: 40175080 PMCID: PMC11964490 DOI: 10.1093/immhor/vlaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 04/04/2025] Open
Abstract
Maresin-1 is a derivative of docosahexaenoic acid with strong anti-inflammatory action in various disease models. However, these effects may not always be beneficial. In instances like cutaneous diseases in which wound healing is important, inflammation is required. In this study, we investigated the effects of maresin-1 on cutaneous wound healing and found that wound healing was significantly delayed in maresin-1-treated mouse skin in the early phase of wound healing on days 1 to 3. Histological analyses revealed that maresin-1 suppressed re-epithelization in the wounded skin. Despite the direct influence of maresin-1 on keratinocyte migration, a comprehensive quantitative polymerase chain reaction analysis revealed that maresin-1-treated wound skin showed a decrease in tumor necrosis factor α, indicating that maresin-1 indirectly suppresses keratinocyte migration mediated by reduced tumor necrosis factor α derived from wounded skin, leading to delayed wound healing.
Collapse
Affiliation(s)
- Reiko Hara
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
8
|
Papa V, Li Pomi F, Di Gioacchino M, Mangifesta R, Borgia F, Gangemi S. Mast Cells and Microbiome in Health and Disease. FRONT BIOSCI-LANDMRK 2025; 30:26283. [PMID: 40152378 DOI: 10.31083/fbl26283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
Inter-kingdom communication between human microbiota and mast cells (MCs), as sentinels of innate immunity, is crucial in determining health and disease. This complex signaling hub involves micro-organisms and, more importantly, their metabolic products. Gut microbiota is the host's largest symbiotic ecosystem and, under physiological conditions, it plays a vital role in mediating MCs tolerogenic priming, thus ensuring immune homeostasis across organs. Conversely, intestinal dysbiosis of various etiologies promotes MC-oriented inflammation along major body axes, including gut-skin, gut-lung, gut-liver, and gut-brain. This review of international scientific literature provides a comprehensive overview of the cross-talk under investigation. This process is a key biological event involved in disease development across clinical fields, with significant prognostic and therapeutic implications for future research.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Nunes KC, Lazarin-Bidoia D, Ueda-Nakamura T, de Oliveira Silva Lautenschlager S, Michel R, Auzély-Velty R, Nakamura CV. Syringic acid protective role: Combatting oxidative stress induced by UVB radiation in L-929 fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113104. [PMID: 39884103 DOI: 10.1016/j.jphotobiol.2025.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Neglecting proper skin care and repeated exposure to ultraviolet (UV) radiation can have serious consequences, including skin burns, photoaging and even the development of skin cancer. UV radiation-induced damage is mediated by highly unstable and reactive molecules, named reactive oxygen species (ROS). To counteract ROS, the skin has an endogenous antioxidant system. Considering that, many sunscreens incorporate antioxidant substances to ensure additional photochemioprotective action in the formulation. Syringic acid (SA) is classified as a phenolic acid derived from hydroxybenzoic acid. It has antioxidant properties, which can reduce oxidative stress, and has shown potential to prevent skin cancer. The aim of this study was to assess the ability of SA to protect L-929 fibroblasts from UVB radiation by evaluating oxidative stress biomarkers. As a result, we demonstrated the antioxidant activity of SA through four methodologies, and confirmed the photochemioprotective activity of SA by attenuating the cytotoxicity of UVB radiation in L-929 fibroblasts. The mechanisms involved in the photoprotection of SA include a significant reduction in total ROS, maintenance of mitochondrial membrane potential, decrease in lipid peroxidation, preservation of endogenous antioxidant system enzymes and reduced glutathione (GSH) levels, thereby mitigating the ultrastructural damage caused by UVB. Additionally, SA showed promising results in wound healing. Considering such properties, SA emerges as a strong candidate for incorporation into photoprotective and multifunctional formulations.
Collapse
Affiliation(s)
- Karine Campos Nunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Raphaël Michel
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
10
|
Pakkiyam S, Marimuthu M, Kumar J, Ganesh V, Veerapandian M. Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics. Int J Biol Macromol 2025; 293:139369. [PMID: 39743089 DOI: 10.1016/j.ijbiomac.2024.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system. Classical methods deployed in dermal biofilm crosstalk studies often hamper many individuals from early diagnosis and rationalized therapy. Herein, the present report aims to study the role of skin microbiota and mechanisms of microbial crosstalk with host immune system. The emerging analytical tools devised for sensor/biosensor platforms, including molecularly imprinted polymers, microarrays, aptamers, CRISPR-cas9, and optical/electrochemical approaches, are discussed as alternative methods for important biomarker analysis. Further, the types and characteristics of microorganism-derived macromolecules and the recent skin organoid toward personalized therapy are highlighted. This information will largely benefit researchers involved in the pathophysiology of skin disease, wound dressing materials, including diagnostic and healing patch designs, in addition to biological macromolecules devoted to wound repair.
Collapse
Affiliation(s)
- Sangavi Pakkiyam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Marimuthu
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology Tiruchirappalli Campus, Trichy 621 105, Tamil Nadu, India; Innovaspark STEM Edutainment Centre, Karaikudi 630 003, Tamil Nadu, India
| | - Jitendra Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - V Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
11
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
12
|
Barik S, Goswami S, Nanda PK, Sarkar A, Saha B, Sarkar A, Bhattacharjee S. TGF-beta plays dual roles in immunity and pathogenesis in leishmaniasis. Cytokine 2025; 187:156865. [PMID: 39874938 DOI: 10.1016/j.cyto.2025.156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable. In conjunction with IL-6, TGF-β modulates pathogenic Th17 responses which intensify inflammatory damage and disrupt tissue architecture. While TGF-β's immunosuppressive actions enable parasite persistence, its role in maintaining tissue integrity introduces therapeutic potential. Targeted modulation of TGF-β signaling, through selective inhibitors of TGF-β receptors or signaling intermediates, has the potential to enhance parasite clearance while minimizing immunopathology. Experimental studies suggest that phase-specific intervention strategies may allow for controlled immunostimulation or fibrosis reduction, enhancing host resistance without incurring inflammatory injury. This review discusses the intricate role of TGF-β in orchestrating immune deviation, fibrosis, and pathogenesis in leishmaniasis, proposing novel therapeutic avenues for selective modulation of TGF-β pathways to restore host immunity.
Collapse
Affiliation(s)
- Susmita Barik
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Goswami
- Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India
| | | | - Argajit Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India
| | - Bhaskar Saha
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India; JSPS Government Homeopathic Medical College, Ramanthapur, Hyderabad, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India.
| |
Collapse
|
13
|
Hindle SA, Bachas Brook H, Chrysanthou A, Chambers ES, Caley MP, Connelly JT. Replicating Dynamic Immune Responses at Single-Cell Resolution within a Microfluidic Human Skin Equivalent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415717. [PMID: 39836544 PMCID: PMC11905070 DOI: 10.1002/advs.202415717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
To enable in vitro investigation of human skin immunology, this study develops a microfluidic human skin equivalent (HSE) that supports the delivery of circulating immune cells via a vascular microchannel embedded within the dermis of a full-thickness construct. Within this platform, activation of keratinocyte inflammation promotes monocyte migration out of the vascular channel and into the dermal and epidermal compartments. Single-cell transcriptomic analysis reveals dynamic and cell-specific patterns of gene expression that are characteristic of acute activation and resolution of an inflammatory immune response, and the gene signatures of the monocyte-derived cells closely matches the differentiation trajectory of the monocytes into mature dermal macrophages. The microfluidic HSE is also applied to modeling age-associated immune dysfunction and accurately replicates elevated monocyte recruitment in aged skin. Thus, the microfluidic HSE presented here replicates key aspects of dynamic inflammatory immune responses and represents a tractable experimental tool for interrogating mechanisms of human skin immunology.
Collapse
Affiliation(s)
- Sarah A Hindle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Holly Bachas Brook
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alexandra Chrysanthou
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Matthew P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| |
Collapse
|
14
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, Zeyneloglu C, Giannelli Viscardi O, Ardicli O, Kiykim A, Garcia-Sanchez A, Lopez JF, Shi LL, Yang M, Schneider SR, Skolnick S, Dhir R, Radzikowska U, Kulkarni AJ, Imam MB, Veen WVD, Sokolowska M, Martin-Fontecha M, Palomares O, Nadeau KC, Akdis M, Akdis CA. Type 2 immunity in allergic diseases. Cell Mol Immunol 2025; 22:211-242. [PMID: 39962262 PMCID: PMC11868591 DOI: 10.1038/s41423-025-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Carina Beha
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Bingjie Zhao
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical and Diagnostic Science, School of Medicine, University of Salamanca, Salamanca, Spain
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, CA, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, CA, USA
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abhijeet J Kulkarni
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mar Martin-Fontecha
- Departamento de Quimica Organica, Facultad de Optica y Optometria, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
15
|
Cai Y, Zhang X, Hu W, Song F, Wang H, Zhang H, Sun X. Enhancing transdermal delivery of chrysomycin A for the treatment of cutaneous melanoma and MRSA infections using Skin-Penetrating Peptide-Functionalized deformable liposomes. Int J Pharm 2025; 670:125130. [PMID: 39722374 DOI: 10.1016/j.ijpharm.2024.125130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Transdermal drug delivery represents a promising avenue for the treatment of dermatologic diseases, such as cutaneous melanoma and skin infections. This study involves the development of a novel therapeutic strategy that employs a skin-penetrating peptide SPACE-modified flexible liposomal chrysomycin A (CA@SPACE-LP) with a particle size of 111.5 nm. In vitro transdermal experiments demonstrated that CA@SPACE-LP was effective in enhancing the ability of the drug to penetrate the stratum corneum and enter deep into the skin tissue, increasing the intradermal drug concentration up to threefold compared to free CA. Furthermore, CA@SPACE-LP was observed to maintain the biological activity of CA against planktonic Methicillin-resistant Staphylococcus aureus (MRSA) and melanoma cells. In vivo studies demonstrated that the topical administration of CA@SPACE-LP was efficacious in controlling the progression of cutaneous melanoma, with a tumor suppression rate of approximately 60 %, which was more pronounced than that observed with intravenous Taxol. Furthermore, CA@SPACE-LP demonstrated efficacy in the management of intradermal MRSA infections, with a significantly reduced area of ulceration in the treated mice (0.25 cm2) compared to the positive control drug (Mupirocin Ointment). These results suggest that the topical delivery system developed in this study has the potential to be used for the simultaneous treatment of skin cancer and invasive MRSA infection.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Wentao Hu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, 100048 Beijing, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Huawei Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China.
| |
Collapse
|
16
|
Ezure T, Matsuzaki K, Urakubo H, Ohno N. Three-dimensional ultrastructural analysis of human skin with the arrector pili muscle interacting with the hair follicle epithelium. Sci Rep 2025; 15:4195. [PMID: 39905217 PMCID: PMC11794863 DOI: 10.1038/s41598-025-88615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
This study developed a three-dimensional ultrastructural analysis application using serial block-face scanning electron microscopy (SBF-SEM) to investigate surgically acquired human skin tissues containing the arrector pili muscle. We utilized the en bloc staining, including reduced osmium, thiocarbohydrazide, and lead aspartate, as well as the embedding using a carbon-based conductive resin. Next, we obtained serial images with SBF-SEM. The results revealed dense nerve fiber networks branching from nearby nerve fiber bundles outside the muscle and running among muscle fibers. Additionally, the dense nerve network running through and along arrector pili muscle fibers rarely penetrates the connective tissues between smooth muscle fibers and epithelial cells. Furthermore, in the observation area, no individual smooth muscle fibers formed adhesion structures with the epithelial cells of the hair follicle, ending in the dermal extracellular matrix near the epithelial cells. These results indicate the usefulness of this approach for three-dimensional ultrastructural analyses of human skin tissues comprising follicular units and revealing structural changes in skin tissues, especially the arrector pili muscle and nerve fibers with hair follicular epithelium, in aging and diseased conditions.
Collapse
Affiliation(s)
- Tomonobu Ezure
- MIRAI Technology Institute, Shiseido Co., Ltd, Yokohama, Kanagawa, Japan.
| | - Kyoichi Matsuzaki
- Department of Plastic and Reconstructive Surgery, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hidetoshi Urakubo
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
17
|
Wuergezhen D, Gindroz E, Morita R, Hashimoto K, Abe T, Kiyonari H, Fujiwara H. An eGFP-Col4a2 mouse model reveals basement membrane dynamics underlying hair follicle morphogenesis. J Cell Biol 2025; 224:e202404003. [PMID: 39656438 PMCID: PMC11629887 DOI: 10.1083/jcb.202404003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Precisely controlled remodeling of the basement membrane (BM) is crucial for morphogenesis, but its molecular and tissue-level dynamics, underlying mechanisms, and functional significance in mammals remain largely unknown due to limited visualization tools. We developed mouse lines in which the endogenous collagen IV gene (Col4a2) was fused with a fluorescent tag. Through live imaging of developing hair follicles, we reveal a spatial gradient in the turnover rate of COL4A2 that is closely coupled with both the BM expansion rate and the proliferation rate of epithelial progenitors. Epithelial progenitors are displaced with directionally expanding BMs but do not actively migrate on stationary BM. The addition of a matrix metalloproteinase inhibitor delays COL4A2 turnover, restrains BM expansion, and increases perpendicular divisions of epithelial progenitors, altering hair follicle morphology. Our findings highlight the spatially distinct dynamics of BM and their key roles in orchestrating progenitor cell behavior and organ shape during development.
Collapse
Affiliation(s)
- Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eleonore Gindroz
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ritsuko Morita
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kei Hashimoto
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Baker MG, Ford LS, Campbell DE, Sampson HA. Just scratching the surface: A review of pediatric skin allergies. Pediatr Allergy Immunol 2025; 36:e70038. [PMID: 39953855 DOI: 10.1111/pai.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
The skin is a large and sophisticated organ populated by innate and adaptive immune effector cells. These immune cells provide a critical first line of defense against pathogens, but genetic and environmental factors can lead to inappropriate signaling that may manifest as hypersensitivity. The most common cutaneous allergic disorders in children include atopic dermatitis, urticaria/angioedema, and contact dermatitis. In this review, we will briefly review these conditions, with a focus on recent developments in our understanding of the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Mary Grace Baker
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| | - Lara S Ford
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dianne E Campbell
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- DBV Technologies, Montrouge, France
| | - Hugh A Sampson
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| |
Collapse
|
19
|
Lee JM, Sage PT. Skin in the game - locally made antibodies fight resident bacteria. Nature 2025; 638:894-896. [PMID: 39702488 DOI: 10.1038/d41586-024-04205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
|
20
|
Rastegar Lari T, Macias L, Robrahn L, Dikmen HO, Prüßmann J, Kiehne C, Engster S, Weyers I, Szymczak S, van Beek N, Hoffmann MH, Schmidt E, Emtenani S. Localization of Lesions in Autoimmune Blistering Diseases Is Independent of Site-Specific Target Antigen Expression. Life (Basel) 2025; 15:218. [PMID: 40003627 PMCID: PMC11857079 DOI: 10.3390/life15020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autoimmune blistering diseases (AIBDs) involve autoantibodies targeting proteins in the epidermal/epithelial desmosome (pemphigus) or basement membrane zone (pemphigoid). Despite widespread antigen distribution, lesions exhibit a scattered involvement pattern. This study maps the frequency/severity of AIBD lesions on various body parts and investigates whether differential antigen expression contributes to specific predilection sites. We analyzed affected sites presenting blisters/erosions, erythematous/urticarial lesions, and mucosal lesions in bullous pemphigoid (BP-cohort 1, n = 65; BP-cohort 2, n = 119), pemphigus vulgaris (PV, n = 67), and pemphigus foliaceus (PF, n = 20) patients. To assess antigen expression, we conducted indirect immunofluorescence (IF) staining of 11 AIBD antigens from 13 anatomical sites of 10 body donors without AIBD. In BP, blisters/erosions and erythematous/urticarial lesions predominantly affected arms and legs, while PV/PF patients exhibited frequent involvement of buccal mucosa and back, respectively. IF staining identified significant regional differences in BP180, BP230, and integrin β4 expression, although these variations did not correlate with a higher lesion frequency/severity. Other antigens showed consistent expression across all regions. Our findings suggest that predilection sites for BP and PV/PF are largely unaffected by regional variations in antigen expression but may be influenced by factors like microbiota, mechanical stress, sunlight exposure, local immunity, or genetics.
Collapse
Affiliation(s)
- Tina Rastegar Lari
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| | - Louis Macias
- Institute of Medical Biometry and Statistics, University of Lübeck, 23562 Lübeck, Germany; (L.M.); (S.S.)
| | - Lara Robrahn
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Hasan Onur Dikmen
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Jasper Prüßmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Charlotte Kiehne
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Simon Engster
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| | - Imke Weyers
- Institute of Anatomy, University of Lübeck, 23562 Lübeck, Germany;
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, 23562 Lübeck, Germany; (L.M.); (S.S.)
| | - Nina van Beek
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Markus H. Hoffmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| |
Collapse
|
21
|
Du W, Zeng W, Wang Z, Hu H, Ruan H, Qu G. Cybertoxicology, molecular docking, and experimental verification reveal the mechanism of action of chlorpyrifos on skin damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117587. [PMID: 39752966 DOI: 10.1016/j.ecoenv.2024.117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/16/2025]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum organophosphate chloride (OP) insecticide widely used in domestic use and open field. However, there is currently no relevant research revealing the toxic effects of CPF exposure on the skin, then it is necessary to comprehensively understand the toxic effects and mechanisms. The results showed that the skin tissue structure and function of mice were significantly disrupted after CPF exposure. Furthermore, PPI network analysis and molecular docking experiments pinpointed core targets such as Bcl2, EGFR, Caspase-3, TNF-α, IL-1β, and VEGF. Additionally, through KEGG analysis, the VEGF and apoptosis signaling pathways were identified as pivotal pathways implicated in CPF-induced skin toxicity. These core targets and pathways were subsequently confirmed through animal experimentation. In conclusion, our study suggests that CPF exposure primarily induces skin damage by disrupting tissue structure and function, mediated through apoptosis and proliferation processes in skin cells, alongside aberrant angiogenesis and heightened inflammatory response. These insights are expected to advance the development of preventive and therapeutic strategies aimed at mitigating the adverse effects of CPF exposure on the skin.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| | - Wenxiang Zeng
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhenwei Wang
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Huahui Hu
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Gang Qu
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Nakamizo S, Kabashima K, Morimoto N, Fujimori H, Yan X, Kabashima K. Single-Cell RNA Sequencing Reveals Age-Related Changes in Epidermal Cell Populations and Interactions. J Invest Dermatol 2025:S0022-202X(24)03052-5. [PMID: 39756533 DOI: 10.1016/j.jid.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; A∗STAR Skin Research Labs (A∗SRL) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
23
|
Zhang T, Luo R, Ehrström M, Melican K. Staphylococcus lugdunensis does not exert competitive exclusion on human corneocytes. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 39888662 DOI: 10.1099/mic.0.001522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Human skin is our primary physical barrier and largest immune organ, and it also hosts a protective microbiota. Staphylococci are prominent members of the skin microbiota, including the ubiquitous coagulase-negative staphylococci (CoNS). The coagulase-positive Staphylococcus aureus is found as part of the microbiota, but it poses clinical concern due to its potential pathogenicity and antibiotic resistance. Recently, a CoNS, Staphylococcus lugdunensis, has been shown to inhibit S. aureus growth via the production of a novel antibiotic, lugdunin. In this study, we use human skin models to understand the spatial relationships between the CoNS Staphylococcus epidermidis and S. lugdunensis with S. aureus during colonization of human skin. We investigated the attachment patterns of the bacteria, both individually and in competition. Surprisingly, we found that attachment did not always correlate with colonization ability. S. lugdunensis exhibited significantly reduced attachment to human skin stratum corneum but was an efficient longer-term colonizer. S. lugdunensis had a distinct attachment pattern on human corneocytes, with no significant overlap, or competitive exclusion, with the other strains. S. lugdunensis is a potential probiotic strain, with a proven ability to suppress S. aureus. Before this potential can be realized, however, further research is needed to understand how this strain adheres and interacts with other bacteria in the human skin microenvironment.
Collapse
Affiliation(s)
- Tianqi Zhang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ran Luo
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
24
|
Tian J, Shi L, Zhang D, Yao X, Zhao M, Kumari S, Lu J, Yu D, Lu Q. Dysregulation in keratinocytes drives systemic lupus erythematosus onset. Cell Mol Immunol 2025; 22:83-96. [PMID: 39627610 PMCID: PMC11686216 DOI: 10.1038/s41423-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, multiorgan autoimmune disorder. Although it is widely believed that SLE originates from immune cell dysregulation, the etiology of SLE is not yet clear. Here, we propose a new theory in which SLE can be directly initiated by molecular alterations in keratinocytes rather than immune cells. We found that the level of peroxisome proliferator-activated receptor gamma (PPARγ) is substantially reduced in the skin lesions of patients, and replicating this reduction in mice led to rapid disease onset with multiple hallmarks of SLE. As PPARγ decreases in keratinocytes, which is accompanied by increased occupancy of interferon regulatory factor 3 at the type I interferon locus, dendritic cells (DCs) are recruited to the epidermis and are activated by keratinocyte-secreted type I interferon. These activated DCs migrate to local draining lymph nodes, where they activate CD4+ T cells in a non-MHC II-dependent manner, promoting their differentiation into effector T cells and thus contributing to disease onset. Our study revealed that the dysregulation of keratinocytes can be a pathogenic driver of SLE and describes a new mouse model that mimics human SLE. Our data also emphasize the pivotal role of skin immunity in the onset of systemic autoimmune disease.
Collapse
Affiliation(s)
- Jingru Tian
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liqing Shi
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Dingyao Zhang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xu Yao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Snehlata Kumari
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Jun Lu
- Yale Stem Cell Center, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Yale Center for RNA Science and Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Faculty of Medicine, Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
25
|
Lima JDS, Leite VC, Silva J, Ferrarez MA, Bahia GD, Rezende LVN, Guedes MCM, Macedo GC, Silva ND, Tavares GD, Reis ACC, Follis GO, Lempk VV, Fernandes MF, Scio E, Pinto NDCC. Stachys byzantina K. Koch in the Treatment of Skin Inflammation: A Comprehensive Evaluation of Its Therapeutic Properties. ACS OMEGA 2024; 9:49899-49912. [PMID: 39713701 PMCID: PMC11656372 DOI: 10.1021/acsomega.4c08830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Stachys byzantina is a plant widely cultivated for food and medicinal purposes. Stachys species have been reported as anti-inflammatory, antibacterial, anxiolytic, and antinephritic agents. This study aimed to evaluate the anti-inflammatory potential of the ethanolic extract (EE) from the aerial parts of S. byzantina and its most promising fraction in models of acute and chronic inflammation, including a psoriasis-like mouse model. The EE was fractionated into hexane (HF), dichloromethane (DF), ethyl acetate (AF), and hydroalcoholic (HD) fractions. Screening for anti-inflammatory activity based on nitric oxide inhibition (IC50 μg/mL: HF 24.29 ± 5.87, EE 176.45 ± 18.65), hydroxyl radical scavenging (HF 3.89 ± 0.61, EE 6.38 ± 2.25), β-carotene/linoleic acid assay (HF 10.13 ± 3.81, EE 25.64 ± 2.12), and ORAC identified HF as the most active fraction. Topical application of HF effectively reduced croton oil- and phenol-induced ear edema in mice, with no statistical difference to the reference drugs. A formulation containing HF showed significant activity in the imiquimod-induced psoriasis model, reducing pro-inflammatory cytokines and nitric oxide production in macrophages, with no cytotoxicity to skin cells. Phytochemical analysis of HF revealed the presence of terpenes, steroids (491.68 ± 4.75 mg/g), phenols (34.30 ± 4.96 mg/g), flavonoids (151.77 ± 6.66 mg/g), and α-tocopherol, which was identified and quantified by HPLC-UV analysis (10.56 ± 0.97 mg/g of HF). These findings highlight the therapeutic potential of S. byzantina for skin inflammation, particularly contact dermatitis and psoriasis, encouraging further studies, including in human volunteers.
Collapse
Affiliation(s)
- José
Alisson da Silva Lima
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Victor Campana Leite
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Jéssica
Pereira Silva
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Marcelle Andrade Ferrarez
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Guilherme Dessupoio Bahia
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Luan Vianelo Netto Rezende
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Maria Clara Machado
Resende Guedes
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Gilson Costa Macedo
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Natália
Prado da Silva
- Laboratory
of Nanostructured Systems Development, Department of Pharmaceutical
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Guilherme Diniz Tavares
- Laboratory
of Nanostructured Systems Development, Department of Pharmaceutical
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Ana Carolina Cruz Reis
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Giovanna Oliveira Follis
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Vanessa Viana Lempk
- Center
for Cellular Technology and Applied Immunology (IMUNOCET), Department
of Parasitology, Microbiology and Immunology, Institute of Biological
Science, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Maria Fernanda Fernandes
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Elita Scio
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| | - Nícolas de Castro Campos Pinto
- Laboratory
of Bioactive Natural Products, Department of Biochemistry, Institute
of Biological Science, Federal University
of Juiz de Fora, Juiz de
Fora, MG 36036-900, Brazil
| |
Collapse
|
26
|
Ding J, Jiang J, Tian Y, Su B, Zeng M, Wu C, Wei D, Sun J, Luo H, Fan H. Temperature-Responsive Hydrogel System Integrating Wound Temperature Monitoring and On-demand Drug Release for Sequentially Inflammatory Process Regulation of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67444-67457. [PMID: 39591620 DOI: 10.1021/acsami.4c16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Wound healing faces challenges like inflammation, infection, and limited monitoring capabilities, and traditional dressings often lack the ability to promote healing or provide real-time wound status updates. Early pro-inflammatory responses help clear pathogens and damaged tissue, while timely anti-inflammatory modulation aids tissue regeneration, making sequential inflammation regulation crucial. Additionally, wound temperature, a key infection biomarker, enables real-time monitoring for effective management. We propose a temperature-responsive hydrogel dressing capable of two-stage sequential drug release and wound temperature monitoring. The hydrogel, composed of poly(N-isopropylacrylamide) (PNIPAM) and dopamine/methacrylated-modified hyaluronic acid (HA-MA-DA), allows temperature-based drug release control, sequential regulating pro-inflammatory and anti-inflammatory stages in wound healing. Interleukin-8 (IL-8), a pro-inflammatory molecule, is encapsulated into hydrogel matrix and rapidly released to trigger the initial inflammatory response. Furthermore, photothermally responsive and erastin-loaded polydopamine@PNIPAM nanoparticles (E-PD NPs) are incorporated to release the anti-inflammatory drug erastin upon near-infrared light exposure, terminating inflammation through cytosolic burial, and thus achieve anti-inflammatory effects at the second stage of wound healing. Furthermore, a bluetooth module enables real-time wound temperature monitoring. Combining sequential drug release with temperature monitoring, our hydrogel dressing addresses significant gaps in current wound healing technologies and offers new insights into personalized therapeutic interventions.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ji Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, P. R. China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
27
|
Macon CE, Yang A, Patel D, North JP, Rosenblum MD, Cohen JN. CD4 + T Cells Occupy Perivascular and Perifollicular Niches in Healthy Human Skin. Exp Dermatol 2024; 33:e70023. [PMID: 39673225 DOI: 10.1111/exd.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are specialised T lymphocytes that sit at the nexus of immune regulation and tissue repair. While it is appreciated that a substantial number of Tregs are present in healthy human skin, less is known about their microanatomic spatial localisation. Knowledge about the specialised niches that Tregs occupy may aid in rational drug development to treat dermatologic diseases. Thus, we performed multiplexed immunohistochemistry for CD4 and FOXP3 (the lineage-defining transcription factor of Tregs) on healthy skin sections obtained from eight different cutaneous sites, and quantified Tregs and Tcon in distinct regions. We found that Tregs (CD4+ FOXP3+) comprised roughly 20% of CD4+ T cells in skin and that Tregs and T-conventional cells (Tcon; CD4+ Foxp3-) are enriched in follicularly dense skin and show preferential accumulation in perivascular and perifollicular niches in the upper dermis. Additionally, male skin shows a significant increase in the numbers of Tregs and Tcon, while female skin shows a higher Tcon:Treg ratio. We also find that the frequency of skin Tregs declines over time. Overall, we conclude that the upper dermal perivascular region is a niche that supports the accumulation of CD4+ T cells in steady-state human skin.
Collapse
Affiliation(s)
- Courtney E Macon
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
| | - Annie Yang
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
| | - Dhara Patel
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
| | - Jeffrey P North
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
- Department of Pathology, University of California at San Francisco, San Francisco, California, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
| | - Jarish N Cohen
- Department of Dermatology, University of California at San Francisco, San Francisco, California, USA
- Department of Pathology, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
29
|
Zhang YX, Zhou Y, Xiong YY, Li YM. Beyond skin deep: Revealing the essence of iPS cell-generated skin organoids in regeneration. Burns 2024; 50:107194. [PMID: 39317530 DOI: 10.1016/j.burns.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Various methods have been used for in vivo and in vitro skin regeneration, including stem cell therapy, tissue engineering, 3D printing, and platelet-rich plasma (PRP) injection therapy. However, these approaches are rooted in the existing knowledge of skin structures, which overlook the normal physiological processes of skin development and fall short of replicating the skin's regenerative processes outside the body. This comprehensive review primarily focuses on skin organoids derived from human pluripotent stem cells, which have the capacity to regenerate human skin tissue by restoring the embryonic skin structure, thus offering a novel avenue for producing in vitro skin substitutes. Furthermore, they contribute to the repair of damaged skin lesions in patients with systemic sclerosis or severe burns. Particular emphasis will be placed on the origins, generations, and applications of skin organoids, especially in dermatology, and the challenges that must be addressed before clinical implementation.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yuan Zhou
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yu-Yun Xiong
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
30
|
Scholaert M, Peries M, Braun E, Martin J, Serhan N, Loste A, Bruner A, Basso L, Chaput B, Merle E, Descargues P, Pagès E, Gaudenzio N. Multimodal profiling of biostabilized human skin modules reveals a coordinated ecosystem response to injected mRNA-1273 COVID-19 vaccine. Allergy 2024; 79:3341-3359. [PMID: 39157907 PMCID: PMC11657073 DOI: 10.1111/all.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The field of drug development is witnessing a remarkable surge in the development of innovative strategies. There is a need to develop technological platforms capable of generating human data prior to progressing to clinical trials. METHODS Here we introduce a new flexible solution designed for the comprehensive monitoring of the natural human skin ecosystem's response to immunogenic drugs over time. Based on unique bioengineering to preserve surgical resections in a long survival state, it allows for the first time a comprehensive analysis of resident immune cells response at both organ and single-cell levels. RESULTS Upon injection of the mRNA-1273 COVID-19 vaccine, we characterized precise sequential molecular events triggered upon detection of the exogenous substance. The vaccine consistently targets DC/macrophages and mast cells, regardless of the administration route, while promoting specific cell-cell communications in surrounding immune cell subsets. CONCLUSION Given its direct translational relevance, this approach provides a multiscale vision of genuine human tissue immunity that could pave the way toward the development of new vaccination and drug development strategies.
Collapse
Affiliation(s)
- Manon Scholaert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| | | | | | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Audrey Bruner
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Benoît Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil HospitalCHU ToulouseToulouseFrance
| | | | | | | | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| |
Collapse
|
31
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
32
|
Dajnoki Z, Kapitány A, Eyerich K, Eyerich S, Törőcsik D, Szegedi A. Topographical variations in the skin barrier and their role in disease pathogenesis. J Eur Acad Dermatol Venereol 2024. [PMID: 39607016 DOI: 10.1111/jdv.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
The skin barrier can be divided into at least four functional units: chemical, microbial, physical and immunological barriers. The chemical and microbial barriers have previously been shown to exhibit different characteristics in topographically distinct skin regions. There is increasing evidence that the physical and immunological barriers also show marked variability in different areas of the skin. Here, we review recent data on the topographical variations of skin barrier components, the contribution of these variations to the homeostatic function of the skin and their impact on the pathogenesis of specific immune-mediated skin diseases (such as atopic dermatitis and papulopustular rosacea). Recognition of these topographical barrier differences will improve our understanding of skin homeostasis and disease pathogenesis and provide a basis for body site-specific targeted therapies.
Collapse
Affiliation(s)
- Z Dajnoki
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Kapitány
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - K Eyerich
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - D Törőcsik
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| | - A Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
33
|
Bala N, McGurk A, Carter EM, Sidhu I, Niak S, Leddon SA, Fowell DJ. Th1 cells are critical tissue organizers of myeloid-rich perivascular activation niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625073. [PMID: 39651309 PMCID: PMC11623525 DOI: 10.1101/2024.11.24.625073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Aggregating immune cells within perivascular niches (PVN) can regulate tissue immunity in infection, autoimmunity and cancer. How cells are assembled at PVNs and the activation signals imparted within remain unclear. Here, we integrate dynamic time-resolved in vivo imaging with a novel spatially-resolved platform for microanatomical interrogation of transcriptome, immune phenotype and inflammatory mediators in skin PVNs. We uncover a complex positive-feedback loop within CXCL10 + PVNs that regulates myeloid and Th1 cell positioning for exchange of critical signals for Th1 activation. Th1 cells spend ∼24h in the PVN, receiving initial peripheral activation signals, before redeploying to the inflamed dermal parenchyma. Niche-enriched, CCR2-dependent myeloid cells were critical for Th1 IFNγ-production. In turn, PVN instructional signals enabled Th1s to orchestrate PVN assembly by CXCR2-dependent intra-tissue myeloid cell aggregation. The results reveal a critical tissue organizing role for Th1s, gained rapidly on tissue entry, that could be exploited to boost regional immunity. HIGHLIGHTS Perivascular niche (PVN): myeloid hubs in inflamed mouse and healthy human skinTh1 cells enter, get activated, and leave the PVN within first 24h of tissue entryAntigen-specific signals in the PVN promote the tissue organizing functions of Th1sTh1 cells assemble the PVN via CXCR2-dependent myeloid cell aggregation.
Collapse
|
34
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
35
|
Chen Y, Chen X, Zhang Z. Association between immune cells and urticaria: a bidirectional Mendelian randomization study. Front Immunol 2024; 15:1439331. [PMID: 39606225 PMCID: PMC11599194 DOI: 10.3389/fimmu.2024.1439331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Urticaria is characterized by transient itchy symptoms on the skin, usually accompanied by swelling, which is caused by mast cell activation leading to increased vascular permeability and dilation of the dermis. Urticaria involves recurrent activation of mast cells, T cells, eosinophils, and other immune cells around lesioned venules, with complex regulatory systems affecting mast cell functions, potentially contributing to urticaria pathogenesis. The direct causal relationship between immune cells and urticaria is currently unclear. To address this, our study utilized a bidirectional Mendelian randomization analysis, employing instrumental variables (IVs) associated with immune cells and urticaria, to investigate this causal relationship. First, by utilizing Genome-wide Association Study (GWAS) data, we identified 31 immunophenotypes associated with urticaria risk, with 18 increasing and 13 decreasing the risk. Through rigorous criteria, we identified 4 immunophenotypes that have a strong causal relationship with urticaria. Notably, HLA DR+ CD4+AC, CD45 on CD8br, and HLA DR on plasmacytoid dendritic cells were associated with an increased risk, while CD8dim NKT %lymphocyte was identified as a protective factor. Sensitivity analyses, including the MR-Egger intercept test, scatter plots, funnel plots, and leave-one-out analysis, supported the robustness of the findings. Reverse MR analysis suggested an inverse causal effect of urticaria on CD8dim NKT %lymphocyte, reinforcing the potential bidirectional nature of the relationship between urticaria and immune cell phenotypes. Our research substantiates the bidirectional causal relationship between immune cells and urticaria, thus benefiting for urticaria-targeted therapy development.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Xuejie Chen
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China
| |
Collapse
|
36
|
Lee EJ, Lee CH, Baek JH, Koh JS, Boo YC. A Spectrophotometric Method to Determine Minimal Erythema Dose for Ultraviolet Radiation in Human Skin. Biomedicines 2024; 12:2544. [PMID: 39595110 PMCID: PMC11591902 DOI: 10.3390/biomedicines12112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Ultraviolet radiation (UVR) induces oxidative stress in the skin by generating reactive oxygen species (ROS), which can lead to inflammatory conditions including erythema (a sign of sunburn). This clinical study aims to develop an instrumental evaluation method to determine the minimal erythema dose (MED) for UVR. Methods: Fourteen human subjects aged 27 to 57 years (48.93 ± 8.54) participated in this study. Six subsites were designated on the test skin site of each subject and irradiated with UVR at different doses. The examiner visually assessed erythema, determining the 'visual MED'. Additionally, the a* value (a chrominance parameter presenting greenness to redness) was measured using a spectrophotometer as an indicator of erythema. The a* values of the UVR-irradiated subsites were compared to the non-irradiated control value, and the differences were referred to as Δa*. The Δa* value of the subsites irradiated with UVR at the 'visual MED' was referred to as the Δa*VMED for each subject. The mean of the Δa*VMED values of all subjects was chosen as a criterion value for the 'instrumental MED'. The 'instrumental MED' was defined as the lowest dose of UVR that causes an Δa* value equivalent to the criterion value. The 'visual MED' and 'instrumental MED' values of all subjects were subjected to correlation analysis. Results: The mean of the Δa*VMED values of all subjects was 1.88 ± 0.8. The means of the 'visual MED' and 'instrumental MED' values (in J m-2 unit) of all subjects were 300.14 ± 84.16 and 303.29 ± 77.99, respectively. In Pearson correlation analysis, the 'instrumental MED' and 'visual MED' values had a very strong positive correlation with each other (r = 0.864, p = 0.000). Conclusions: This study suggests that the instrumental evaluation method of MED based on the spectrophotometric measurement of the a* values can complement or replace the visual evaluation method and that this method will be useful in monitoring skin tolerance to oxidative stress affected by prooxidant factors and defensive factors.
Collapse
Affiliation(s)
- Eun Ju Lee
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (C.H.L.); (J.H.B.)
| | - Chung Han Lee
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (C.H.L.); (J.H.B.)
| | - Ji Hwoon Baek
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (C.H.L.); (J.H.B.)
| | - Jae Sook Koh
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (C.H.L.); (J.H.B.)
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
37
|
Zhai S, Chen L, Liu H, Wang M, Xue J, Zhao X, Jiang H. Skin barrier: new therapeutic targets for chronic kidney disease-associated pruritus - a narrative review. Int J Dermatol 2024; 63:1513-1521. [PMID: 38855995 DOI: 10.1111/ijd.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
The current incidence of chronic kidney disease-associated pruritus (CKD-aP) in patients with end-stage renal disease (ESRD) is approximately 70%, especially in those receiving dialysis, which negatively affects their work and private lives. The CKD-aP pathogenesis remains unclear, but uremic toxin accumulation, histamine release, and opioid imbalance have been suggested to lead to CKD-aP. Current therapeutic approaches, such as opioid receptor modulators, antihistamines, and ultraviolet B irradiation, are associated with some limitations and adverse effects. The skin barrier is the first defense in preventing external injury to the body. Patients with chronic kidney disease often experience itch due to the damaged skin barrier and reduced secretion of sweat and secretion from sebaceous glands. Surprisingly, skin barrier-repairing agents repair the skin barrier and inhibit the release of inflammatory cytokines, maintain skin immunity, and ameliorate the micro-inflammatory status of afferent nerve fibers. Here, we summarize the epidemiology, pathogenesis, and treatment status of CKD-aP and explore the possibility of skin barrier repair in CKD-aP treatment.
Collapse
Affiliation(s)
- Siyue Zhai
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Liu
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhong Xue
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Zhao
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Hoytema van Konijnenburg DP, Nigrovic PA, Zanoni I. Regional specialization within the mammalian respiratory immune system. Trends Immunol 2024; 45:871-891. [PMID: 39438172 PMCID: PMC11560516 DOI: 10.1016/j.it.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The respiratory tract is exposed to infection from inhaled pathogens, including viruses, bacteria, and fungi. So far, a comprehensive assessment that integrates common and distinct aspects of the immune response along different areas of the respiratory tract has been lacking. Here, we discuss key recent findings regarding anatomical, functional, and microbial factors driving regional immune adaptation in the mammalian respiratory system, how they differ between mice and humans, and the similarities and differences with the gastrointestinal tract. We demonstrate that, under evolutionary pressure, mammals evolved spatially organized immune defenses that vary between the upper and lower respiratory tract. Overall, we propose that the functional specialization of the immune response along the respiratory tract has fundamental implications for the management of infectious or inflammatory diseases.
Collapse
Affiliation(s)
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
39
|
Ferrara V, Perfili C, Artemi G, Iacolino B, Sciandra F, Perini G, Fusco L, Pogorielov M, Delogu LG, Papi M, De Spirito M, Palmieri V. Advanced approaches in skin wound healing - a review on the multifunctional properties of MXenes in therapy and sensing. NANOSCALE 2024; 16:18684-18714. [PMID: 39312211 DOI: 10.1039/d4nr02843k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
In recent years, the use of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides, has shown significant promise in the field of skin wound healing. This review explores the multifunctional properties of MXenes, focusing on their electrical conductivity, photothermal effects, and biocompatibility in this field. MXenes have been utilized to develop advanced wound healing devices such as hydrogels, patches, and smart bandages for healing examination. These devices offer enhanced antibacterial activity, promote tissue regeneration, and provide real-time monitoring of parameters. The review highlights the synthesis methods, chemical features, and biological effects of MXenes, emphasizing their role in innovative skin repair strategies. Additionally, it discusses the potential of MXene-based sensors for humidity, pH, and temperature monitoring, which are crucial for preventing infections and complications in wound healing. The integration of MXenes into wearable devices represents a significant advancement in wound management, promising improved clinical outcomes and enhanced quality of life for patients.
Collapse
Affiliation(s)
- Valeria Ferrara
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
| | - Caterina Perfili
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
| | - Giulia Artemi
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
| | - Brunella Iacolino
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", SCITEC-CNR, c/o Istituto Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go Vito, 1, 00168 RM, Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Laura Fusco
- ImmuneNanoLab, Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Padova, Italy
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, Kharkivska Street, 116, 40007, Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas street, 3, Riga, 1004, Latvia
| | - Lucia Gemma Delogu
- RIC2D, Department of Biological Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNanoLab, Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Padova, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, L.go Agostino Gemelli 8, 00136 RM, Rome, Italy.
- Istituto dei Sistemi Complessi, ISC-CNR, Via dei Taurini 19, 00185, RM, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, L.go Francesco Vito, 1, 00168 RM, Rome, Italy
| |
Collapse
|
40
|
Mashima E, Saito-Sasaki N, Sawada Y. Systemic Implications of Bullous Pemphigoid: Bridging Dermatology and Internal Medicine. Diagnostics (Basel) 2024; 14:2272. [PMID: 39451595 PMCID: PMC11506695 DOI: 10.3390/diagnostics14202272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Bullous pemphigoid is an autoimmune bullous disease that frequently affects a large skin surface area, but it can also present in localized areas. It has been hypothesized that bullous pemphigoid affects the systemic functioning of different organs because inflammatory cells and cytokines circulate throughout numerous organs. Results: Recent clinical and experimental studies have revealed an association between bullous pemphigoid and systemic organ disorders. To avoid the emergence of systemic organ diseases, the significance of systemic treatment in cases of severe bullous pemphigoid should be emphasized. Conclusions: Here, we discuss the specific molecular processes underlying typical systemic organ inflammatory diseases associated with bullous pemphigoids.
Collapse
Affiliation(s)
| | | | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; (E.M.); (N.S.-S.)
| |
Collapse
|
41
|
Chen M, Yang L, Zhou P, Jin S, Wu Z, Tan Z, Xiao W, Xu S, Zhu Y, Wang M, Jian D, Liu F, Tang Y, Zhao Z, Huang Y, Shi W, Xie H, Nie Q, Wang B, Deng Z, Li J. Single-cell transcriptomics reveals aberrant skin-resident cell populations and identifies fibroblasts as a determinant in rosacea. Nat Commun 2024; 15:8737. [PMID: 39384741 PMCID: PMC11464544 DOI: 10.1038/s41467-024-52946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Rosacea is a chronic inflammatory skin disorder, whose underlying cellular and molecular mechanisms remain obscure. Here, we generate a single-cell atlas of facial skin from female rosacea patients and healthy individuals. Among keratinocytes, a subpopulation characterized by IFNγ-mediated barrier function damage is found to be unique to rosacea lesions. Blocking IFNγ signaling alleviates rosacea-like phenotypes and skin barrier damage in mice. The papulopustular rosacea is featured by expansion of pro-inflammatory fibroblasts, Schwann, endothelial and macrophage/dendritic cells. The frequencies of type 1/17 and skin-resident memory T cells are increased, and vascular mural cells are characterized by activation of inflammatory pathways and impaired muscle contraction function in rosacea. Most importantly, fibroblasts are identified as the leading cell type producing pro-inflammatory and vasodilative signals in rosacea. Depletion of fibroblasts or knockdown of PTGDS, a gene specifically upregulated in fibroblasts, blocks rosacea development in mice. Our study provides a comprehensive understanding of the aberrant alterations of skin-resident cell populations and identifies fibroblasts as a key determinant in rosacea development.
Collapse
Grants
- the National Natural Science Funds for Distinguished Young Scholars (No. 82225039), the National Key Research and Development Program of China (No. 2023YFC2509003), the National Natural Science Foundation of China (No. 82373508, No. 82303992, No. 82203958, No. 82073457, No.82203945, No. 82173448, No. 81874251), the Natural Science Funds of Hunan province for excellent Young Scholars (No. 2023JJ20094), the Natural Science Foundation of Hunan Province, China (No. 2021JJ31079).
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Peijie Zhou
- Center for Machine Learning Research, Peking University, Beijing, China
- AI for Science Institute, Beijing, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
42
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
43
|
Cassidy MF, Doudican NA, Frazzette N, Rabbani PS, Carucci JA, Gelb BE, Rodriguez ED, Lu CP, Ceradini DJ. Molecular Signature Associated With Acute Rejection in Vascularized Composite Allotransplantation. Transplant Direct 2024; 10:e1714. [PMID: 39310283 PMCID: PMC11415116 DOI: 10.1097/txd.0000000000001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background A deeper understanding of acute rejection in vascularized composite allotransplantation is paramount for expanding its utility and longevity. There remains a need to develop more precise and accurate tools for diagnosis and prognosis of these allografts, as well as alternatives to traditional immunosuppressive regimens. Methods Twenty-seven skin biopsies collected from 3 vascularized composite allotransplantation recipients, consisting of face and hand transplants, were evaluated by histology, immunohistochemistry staining, and gene expression profiling. Results Biopsies with clinical signs and symptoms of rejection, irrespective of histopathological grading, were significantly enriched for genes contributing to the adaptive immune response, innate immune response, and lymphocyte activation. Inflammation episodes exhibited significant fold change correlations between the face and hands, as well as across patients. Immune checkpoint genes were upregulated during periods of inflammation that necessitated treatment. A gene signature consisting of CCL5, CD8A, KLRK1, and IFNγ significantly predicted inflammation specific to vascularized composite allografts that required therapeutic intervention. Conclusions The mechanism of vascularized composite allograft-specific inflammation and rejection appears to be conserved across different patients and skin on different anatomical sites. A concise gene signature can be utilized to ascertain graft status along with a continuous scale, providing valuable diagnostic and prognostic information to supplement current gold standards of graft evaluation.
Collapse
Affiliation(s)
- Michael F. Cassidy
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY
| | - Nicole A. Doudican
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY
| | - Nicholas Frazzette
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY
| | - John A. Carucci
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY
| | - Bruce E. Gelb
- Transplant Institute, NYU Langone Health, New York, NY
| | | | - Catherine P. Lu
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY
| | - Daniel J. Ceradini
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY
| |
Collapse
|
44
|
Zhu R, Yao X, Li W. Langerhans cells and skin immune diseases. Eur J Immunol 2024; 54:e2250280. [PMID: 39030782 DOI: 10.1002/eji.202250280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan, P. R. China
| | - Xu Yao
- Department, of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
45
|
Kusumoto Y, Ueda M, Hashimoto M, Takeuchi H, Okada N, Yamamoto J, Nishii A, Fujino A, Kurahashi A, Satoh M, Iwasa Y, Okamura K, Obazaki K, Kumagai R, Sakamoto N, Tanaka Y, Kamiya Y, Hoshida T, Kaisho T, Hemmi H, Katakai T, Honda T, Kikuta J, Kataoka K, Ikebuchi R, Moriya T, Adachi T, Watanabe T, Ishii M, Miyawaki A, Kabashima K, Chtanova T, Tomura M. Sublingual immune cell clusters and dendritic cell distribution in the oral cavity. JCI Insight 2024; 9:e167373. [PMID: 39352752 PMCID: PMC11601585 DOI: 10.1172/jci.insight.167373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The oral mucosa is the first line of defense against pathogenic bacteria and plays a vital role in maintaining tolerance to food antigens and commensal bacteria. We used CD11c reporter mice to visualize dendritic cells (DCs), a key immune cell population, in the oral cavity. We identified differences in DC density in each oral tissue region. Sublingual immune cell clusters (SLICs) extended from the lamina propria to the epithelium, where DCs and T cells resided in close contact with each other and innate lymphoid cells. Targeted in situ photolabeling revealed that the SLICs comprised mostly CD11c+CD11b+ DCs and were enriched for cDC1s and Langerhans cells. Although the frequency of T cell subsets was similar within and outside the SLICs, tissue-resident memory T cells were significantly enriched within the clusters and cluster size increased in response to inflammation. Collectively, we found that SLICs form a unique microenvironment that facilitates T cell-DC interactions in the steady state and during inflammation. Since the oral mucosa is an important target for needle-free vaccination and sublingual immunotherapy to induce tolerogenic responses, the insight into the localized immunoregulation provided in this study may accelerate the development of these approaches.
Collapse
Affiliation(s)
- Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Mizuki Ueda
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Mayuko Hashimoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Haruka Takeuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Naoko Okada
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Junya Yamamoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Akiko Nishii
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Atsuki Fujino
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Akiho Kurahashi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Momoka Satoh
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yuki Iwasa
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Koki Okamura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Karin Obazaki
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Ryoto Kumagai
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Naruya Sakamoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yuto Tanaka
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yukika Kamiya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Tetsushi Hoshida
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Graduate School of Medicine, Wakayama, Wakayama, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Graduate School of Medicine, Wakayama, Wakayama, Japan
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama, University of Science, Imabari, Ehime, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University, Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Dermatology, Hamamatsu University School of Medicine, Handayama, Hamamatsu, Japan
| | - Junichi Kikuta
- Laboratory of Immunology and Cell Biology, Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kosuke Kataoka
- Department of Oral Health Science and Social Welfare, Graduate school of Oral Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masaru Ishii
- Laboratory of Immunology and Cell Biology, Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University, Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Kensington, New South Wales, Australia
- Immunology Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| |
Collapse
|
46
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
48
|
Sampson HA. The riddle of response to cutaneous allergen exposure in patients with atopic dermatitis. Ann Allergy Asthma Immunol 2024; 133:244-251. [PMID: 38740132 DOI: 10.1016/j.anai.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
The skin is the largest immunologic organ in the body and contains immune cells that play a role in both food allergen sensitization and desensitization. The dual allergen exposure hypothesis posits that sensitization to food allergens may occur with cutaneous exposure on inflamed skin, eg, atopic dermatitis, but early oral consumption generally leads to tolerance. However, only one-third of children with atopic dermatitis develop a food allergy, suggesting that there is a more complex mechanism for allergen sensitization. Emerging evidence suggests that the outcome of cutaneous allergen exposure is context-dependent and largely influenced by the state of the skin barrier with healthy skin promoting natural tolerance. Current research supports the ability to induce desensitization through repeated application of allergens to the skin, known as epicutaneous immunotherapy. Preclinical research with an occlusive patch has demonstrated a significantly reduced T-helper cell type 2-driven immunologic response when applied to intact, uninflamed skin and induction of a unique population of regulatory T cells that express a broader range of homing receptors, which may be able to maintain sustained protection. In clinical studies of children aged 1 through 11 years with a peanut allergy, epicutaneous immunotherapy with an occlusive patch led to significant desensitization with no major differences in efficacy or safety between children with and without atopic dermatitis. These data begin to answer the conundrum of how allergens that are applied to the skin can lead to both sensitization and desensitization, and future studies should enable us to optimize the power of the skin as a complex immunologic organ to treat allergic, autoimmune, and autoinflammatory disorders.
Collapse
Affiliation(s)
- Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
49
|
Park J, Shin JY, Kim D, Jun SH, Jeong ET, Kang NG. Dihydroavenanthramide D Enhances Skin Barrier Function through Upregulation of Epidermal Tight Junction Expression. Curr Issues Mol Biol 2024; 46:9255-9268. [PMID: 39329899 PMCID: PMC11430283 DOI: 10.3390/cimb46090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Skin barrier dysfunction and thin epidermis are hallmarks of sensitive skin and contribute to premature aging. Avenanthramides are the primary bioactive components of colloidal oatmeal, a commonly used treatment to enhance skin barrier function. This study investigated the relationship between skin barrier function and epidermal characteristics and explored the potential of dihydroavenanthramide D (dhAvD), a synthetic avenanthramide, to improve the skin barrier. We observed a significant correlation between impaired skin barrier function and decreased epidermal thickness, suggesting that a weakened barrier contributes to increased sensitivity. Our in vitro results in HaCaT cells demonstrated that dhAvD enhances keratinocyte proliferation, migration, and tight junction protein expression, thereby strengthening the skin barrier. To mimic skin barrier dysfunction, we treated keratinocytes and full-thickness skin equivalents with IL-4 and IL-13, cytokines that are implicated in atopic dermatitis, and confirmed the downregulation of tight junction and differentiation markers. Furthermore, dhAvD treatment restored the barrier function and normalized the expression of key epidermal components, such as tight junction proteins and natural moisturizing factors, in keratinocytes treated with inflammatory cytokines. In the reconstructed human skin model, dhAvD promoted both epidermal and dermal restoration. These findings suggest that dhAvD has the potential to alleviate skin sensitivity and improve skin barrier function.
Collapse
Affiliation(s)
- Jiye Park
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Jae Young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Daehyun Kim
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Eui Taek Jeong
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70 Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| |
Collapse
|
50
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|