1
|
Wang Q, Jin L, Yang H, Yu L, Cao X, Mao Z. Bacteria/Nanozyme Composites: New Therapeutics for Disease Treatment. SMALL METHODS 2025; 9:e2400610. [PMID: 38923867 DOI: 10.1002/smtd.202400610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Bacterial therapy is recognized as a cost-effective treatment for several diseases. However, its development is hindered by limited functionality, weak inherent therapeutic effects, and vulnerability to harsh microenvironmental conditions, leading to suboptimal treatment activity. Enhancing bacterial activity and therapeutic outcomes emerges as a pivotal challenge. Nanozymes have garnered significant attention due to their enzyme-mimic activities and high stability. They enable bacteria to mimic the functions of gene-edited bacteria expressing the same functional enzymes, thereby improving bacterial activity and therapeutic efficacy. This review delineates the therapeutic mechanisms of bacteria and nanozymes, followed by a summary of strategies for preparing bacteria/nanozyme composites. Additionally, the synergistic effects of such composites in biomedical applications such as gastrointestinal diseases and tumors are highlighted. Finally, the challenges of bacteria/nanozyme composites are discussed and propose potential solutions. This study aims to provide valuable insights to offer theoretical guidance for the advancement of nanomaterial-assisted bacterial therapy.
Collapse
Affiliation(s)
- Qirui Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinran Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China
| |
Collapse
|
2
|
Gulig P, Swindle S, Fields M, Eisenman D. A Review of Clinical Trials Involving Genetically Modified Bacteria, Bacteriophages and Their Associated Risk Assessments. APPLIED BIOSAFETY 2024; 29:186-206. [PMID: 39735407 PMCID: PMC11669762 DOI: 10.1089/apb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Introduction Discussion of gene-modified investigational products (IPs) in clinical trials has largely focused on nucleic acid-based vectors, viral vectors, and gene-modified cellular products involving mammalian cells. Use of bacteria and bacteriophages as IPs is resurgent, and discussion of the risks associated with genetic modification of these organisms has become pertinent to the biosafety community. Methods This review article summarizes the United States Food and Drug Administration classification for IPs comprising bacteria or bacteriophages and provides an overview of clinical trials conducted to date involving genetically modified bacteria. The risk assessment for bacterial or bacteriophage-based IPs is discussed. Conclusion The risk assessment process for bacterial or bacteriophage-based IPs is different from that of gene expression vectors and mammalian cells. Greater consideration must be given to the attenuating mutations affecting virulence, replication competency, antibiotic susceptibility, and persistence in the environment. With the recent growth in clinical trials involving genetically modified bacteria, biosafety professionals and Institutional Biosafety Committees with responsibilities including oversight of clinical trials must become familiar with the associated risk assessment.
Collapse
Affiliation(s)
- Paul Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Advarra, Columbia, Maryland, USA
| | | | - Mark Fields
- Advarra, Columbia, Maryland, USA
- Department of Ophthalmology, Yale University, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
3
|
Zu M, Liu G, Xu H, Zhu Z, Zhen J, Li B, Shi X, Shahbazi MA, Reis RL, Kundu SC, Nie G, Xiao B. Extracellular Vesicles from Nanomedicine-Trained Intestinal Microbiota Substitute for Fecal Microbiota Transplant in Treating Ulcerative Colitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409138. [PMID: 39073205 DOI: 10.1002/adma.202409138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 07/30/2024]
Abstract
The biosafety concerns associated with fecal microbiota transplant (FMT) limit their clinical application in treating ulcerative colitis (UC). Gut microbiota secrete abundant extracellular vesicles (Gm-EVs), which play a critical role in bacteria-to-bacteria and bacteria-to-host communications. Herein, intestinal microbiota are trained using tea leaf lipid/pluronic F127-coated curcumin nanocrystals (CN@Lp127s), which can maintain stability during transit through the gastrointestinal tract. Compared with FMT, Gm-EVs derived from healthy mice significantly improve treatment outcomes against UC by reducing colonic inflammatory responses, restoring colonic barrier function, and rebalancing intestinal microbiota. Strikingly, Gm-EVs obtained from CN@Lp127-trained healthy mice exhibit a superior therapeutic effect on UC compared to groups receiving FMT from healthy mice, Gm-EVs from healthy mice, and FMT from CN@Lp127-trained healthy mice. Oral administration of Gm-EVs from CN@Lp127-trained healthy mice not only alleviates colonic inflammation, promotes mucosal repair, and regulates gut microbiota but also regulates purine metabolism to decrease the uric acid level, resulting in a robust improvement in the UC. This study demonstrates the UC therapeutic efficacy of Gm-EVs derived from nanomedicine-trained gut microbiota in regulating the immune microenvironment, microbiota, and purine metabolism of the colon. These EVs provide an alternative platform to replace FMT as a treatment for UC.
Collapse
Affiliation(s)
- Menghang Zu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Ga Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haiting Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Junfeng Zhen
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Baoyi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, 4800-058, Braga, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, 4800-058, Braga, Portugal
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bo Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Yin Q, Ni J, Ying J. Potential mechanisms and targeting strategies of the gut microbiota in antitumor immunity and immunotherapy. Immun Inflamm Dis 2024; 12:e1263. [PMID: 39031507 PMCID: PMC11259004 DOI: 10.1002/iid3.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Immunotherapies, notably immune checkpoints inhibitors that target programmed death 1/programmed death ligand 1(PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), had profoundly changed the way advanced and metastatic cancers are treated and dramatically improved overall and progression-free survival. AIMS This review article aimed to explore the underlying molecular mechanisms by which the gut microbiota affects antitumor immunity and the efficacy of cancer immunotherapy. METHODS We summarized the latest knowledge supporting the associations among the gut microbiota, antitumor immunity, and immunotherapy. Moreover, we disscussed the therapeutic strategy for improving immunotherapy efficacy by modulating gut microbiota in cancer treatment. RESULTS The potential molecular mechanisms underlying these associations are explained in terms of four aspects: immunomodulation, molecular mimicry, mamps, and microbial metabolites. CONCLUSION The gut microbiota significantly impacts antitumor immunity and alters the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Yin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital)HangzhouZhejiangChina
| | - Jiao‐jiao Ni
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jie‐er Ying
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
5
|
Kolzhetsov N, Markelova N, Frolova M, Alikina O, Glazunova O, Safonova L, Kalashnikova I, Yudin V, Makarov V, Keskinov A, Yudin S, Troshina D, Rechkina V, Shcherbakova V, Shavkunov K, Ozoline O. Enterotype-Dependent Probiotic-Mediated Changes in the Male Rat Intestinal Microbiome In Vivo and In Vitro. Int J Mol Sci 2024; 25:4558. [PMID: 38674145 PMCID: PMC11049970 DOI: 10.3390/ijms25084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.
Collapse
Affiliation(s)
- Nikolay Kolzhetsov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Natalia Markelova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Maria Frolova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Alikina
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Glazunova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Lubov Safonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Irina Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Vladimir Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Valentin Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Anton Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Sergey Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Daria Troshina
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoria Rechkina
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Ozoline
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| |
Collapse
|
6
|
Wan S, Wang K, Huang P, Guo X, Liu W, Li Y, Zhang J, Li Z, Song J, Yang W, Zhang X, Ding X, Leong DT, Wang L. Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation. Nat Commun 2024; 15:3343. [PMID: 38637580 PMCID: PMC11026491 DOI: 10.1038/s41467-024-47710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pathogenic gut microbiota is responsible for a few debilitating gastrointestinal diseases. While the host immune cells do produce extracellular vesicles to counteract some deleterious effects of the microbiota, the extracellular vesicles are of insufficient doses and at unreliable exposure times. Here we use mechanical stimulation of hydrogel-embedded macrophage in a bioelectronic controller that on demand boost production of up to 20 times of therapeutic extracellular vesicles to ameliorate the microbes' deleterious effects in vivo. Our miniaturized wireless bioelectronic system termed inducible mechanical activation for in-situ and sustainable generating extracellular vesicles (iMASSAGE), leverages on wireless electronics and responsive hydrogel to impose mechanical forces on macrophages to produce extracellular vesicles that rectify gut microbiome dysbiosis and ameliorate colitis. This in vivo controllable extracellular vesicles-produced system holds promise as platform to treat various other diseases.
Collapse
Affiliation(s)
- Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Kepeng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Peihong Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Xian Guo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Wurui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
| | - Jiacheng Song
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 210023, Nanjing, China
| | - Wenjing Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 430072, Wuhan, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China.
| |
Collapse
|
7
|
Wang H, Wang Y. What Makes the Gut-Lung Axis Working? From the Perspective of Microbiota and Traditional Chinese Medicine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8640014. [PMID: 38274122 PMCID: PMC10810697 DOI: 10.1155/2024/8640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Background An increasing number of studies have proved that gut microbiota is involved in the occurrence and development of various lung diseases and can interact with the diseased lung. The concept of the gut-lung axis (GLA) provides a new idea for the subsequent clinical treatment of lung diseases through human microbiota. This review aims to summarize the microbiota in the lung and gut and the interaction between them from the perspectives of traditional Chinese medicine and modern medicine. Method We conducted a literature search by using the search terms "GLA," "gut microbiota," "spleen," and "Chinese medicine" in the databases PubMed, Web of Science, and CNKI. We then explored the mechanism of action of the gut-lung axis from traditional Chinese medicine and modern medicine. Results The lung and gut microbiota enable the GLA to function through immune regulation, while metabolites of the gut microbiota also play an important role. The spleen can improve the gut microbiota to achieve the regulation of the GLA. Conclusion Improving the gut microbiota through qi supplementation and spleen fortification provides a new approach to the clinical treatment of lung diseases by regulating the GLA. Currently, our understanding of the GLA is limited, and more research is needed to explain its working principle.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ying Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
8
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Gulumbe BH, Abdulrahim A. Pushing the frontiers in the fight against antimicrobial resistance: the potential of fecal and maggot therapies. Future Sci OA 2023; 9:FSO899. [PMID: 37753364 PMCID: PMC10518815 DOI: 10.2144/fsoa-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) warrants innovative therapeutic strategies. Fecal microbiota transplantation (FMT) and maggot debridement therapy (MDT) represent paradigm-shifting approaches, leveraging biological systems to mitigate AMR. FMT restores a healthy gut microbiome, providing a biotherapeutic counter to pathogenic bacteria, thereby reducing reliance on traditional antibiotics. Conversely, MDT, a form of bio-debridement, utilizes the antimicrobial secretions of maggots to cleanse wounds and eliminate resistant bacteria. Despite the promise these therapies hold, their broader clinical adoption faces multifaceted challenges including the need for rigorous scientific substantiation, standardized protocols, deepened understanding of mechanisms of action, and surmounting regulatory and public acceptance barriers. However, their potential integration with precision medicine could revolutionize disease management, particularly with antibiotic-resistant infections.
Collapse
Affiliation(s)
- Bashar Haruna Gulumbe
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| | - Abdulrakib Abdulrahim
- Department of Microbiology, Faculty of Science, Federal University, Kalgo, Birnin Kebbi, PMB, 1157, Nigeria
| |
Collapse
|
10
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
11
|
Wang C, Liu XL, Sun Q, Zhao FY, Dai PQ, Li LX, Hu DG. Apple consumption affects cecal health by regulating 12 S-hydroxy-5 Z,8 Z,10 E,14 Z-eicosatetraenoic acid (12( S)-HETE) levels through modifying the microbiota in rats. Food Funct 2023; 14:9419-9433. [PMID: 37795613 DOI: 10.1039/d3fo03207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Apples are rich in many nutrients and functional components. However, the mechanism of the effect of fresh apple consumption on rats remains unclear. In the present study, fresh apples (10 g kg-1) were added to the diet of Wistar rats, and changes in the microbiota and metabolite content of the cecum were analyzed after 28 days of feeding, and changes in the 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HETE) content and indicators related to inflammation, oxidative stress, and apoptosis were detected. Subsequently, a fecal microbiota transplantation (FMT) protocol was designed and carried out to verify the relationship between the microbiota and 12(S)-HETE, the cecal structure, and inflammatory factors. The results show that apple consumption significantly reduced the serum levels of alanine aminotransferase (ALT) and immunoglobulin G (IgG), altered the cecal histomorphology, and significantly upregulated the gene expression of claudin-1 and zonula occludens-1 (ZO-1), which encode tight junction proteins. Apple consumption also changed the structure of the cecal microbiota, increasing the abundance of some species (such as Shuttleworthia) and decreasing the abundance of others (such as Alphaproteobacteria). Metabolomic screening identified 64 significantly different metabolites. The FMT results showed that apple consumption reduced 12(S)-HETE metabolite levels in the cecal contents, improved the intestinal structure, and reduced the levels of proinflammatory factor expression by altering the cecal microbiota. In conclusion, this study provides further insight into the effects of apples on animals using rats as experimental animals. It provides basic data for future exploration of the mechanisms of the effect of apple consumption on humans.
Collapse
Affiliation(s)
- Chen Wang
- Shihezi University, Shihezi, 832003, P.R. China.
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | - Xiao-Long Liu
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | - Quan Sun
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| | | | - Pei-Qiang Dai
- Shandong Delta Bioengineering Co., Ltd, Taian, Shandong, 271000, P.R., China
| | - Ling-Xing Li
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, P.R. China.
| | - Da-Gang Hu
- Shihezi University, Shihezi, 832003, P.R. China.
- Shandong Agricultural University, Tai-an, Shandong 271018, P.R. China
| |
Collapse
|
12
|
Pal R, Seleem MN. Antisense inhibition of RNA polymerase α subunit of Clostridioides difficile. Microbiol Spectr 2023; 11:e0175523. [PMID: 37772833 PMCID: PMC10581251 DOI: 10.1128/spectrum.01755-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Clostridioides difficile, the causative agent of antibiotic-associated diarrhea and pseudomembranous colitis, has emerged as a major enteric pathogen in recent years. Antibiotic treatment perturbs the gut microbiome homeostasis, which facilitates the colonization and proliferation of the pathogen in the host intestine. Paradoxically, the clinical repertoire for C. difficile infection includes the antibiotics vancomycin and/or fidaxomicin. The current therapies do not address the perturbed gut microbiome, which supports the recurrence of infection after cessation of antibiotic therapy. Peptide nucleic acids (PNAs) are novel alternatives to traditional antimicrobial therapy capable of forming strong and stable complexes with RNA and DNA, thus permitting targeted inhibition of specific genes. Here, we report a novel PNA that can target the RNA polymerase α subunit (rpoA) in C. difficile. The designed anti-rpoA construct inhibited clinical isolates of C. difficile (minimum inhibitory concentration values ranged between 4 and 8 µM) and exhibited bactericidal activity. Furthermore, silencing of the rpoA gene suppressed the expression of genes that encode virulence factors [toxin A (tcdA), toxin B (tcdB)] in C. difficile, and the gene that encodes the transcription factor stage 0 sporulation protein (spoOA). Interestingly, the efficacy of the designed PNA conjugate remained unaffected even when tested at different pH levels and against a high inoculum of the pathogen. The rpoA-TAT conjugate was very specific against C. difficile and did not inhibit members of the beneficial gut microflora. Taken altogether, our study confirms that the rpoA gene can be a promising narrow-spectrum therapeutic target to curb C. difficile infection. IMPORTANCE The widespread use of antibiotics can destroy beneficial intestinal microflora, opening the door for spores of Clostridioides difficile to run rampant in the digestive system, causing life-threatening diarrhea. Alternative approaches to target this deadly pathogen are urgently needed. We utilized targeted therapeutics called peptide nucleic acids (PNAs) to inhibit gene expression in C. difficile. Inhibition of the RNA polymerase α subunit gene (rpoA) by PNA was found to be lethal for C. difficile and could also disarm its virulence factors. Additionally, antisense inhibition of the C. difficile rpoA gene did not impact healthy microflora. We also propose a novel approach to manipulate gene expression in C. difficile without the need for established genetic tools.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Shalaby N, Samocha-Bonet D, Kaakoush NO, Danta M. The Role of the Gastrointestinal Microbiome in Liver Disease. Pathogens 2023; 12:1087. [PMID: 37764895 PMCID: PMC10536540 DOI: 10.3390/pathogens12091087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is a major global health problem leading to approximately two million deaths a year. This is the consequence of a number of aetiologies, including alcohol-related, metabolic-related, viral infection, cholestatic and immune disease, leading to fibrosis and, eventually, cirrhosis. No specific registered antifibrotic therapies exist to reverse liver injury, so current treatment aims at managing the underlying factors to mitigate the development of liver disease. There are bidirectional feedback loops between the liver and the rest of the gastrointestinal tract via the portal venous and biliary systems, which are mediated by microbial metabolites, specifically short-chain fatty acids (SCFAs) and secondary bile acids. The interaction between the liver and the gastrointestinal microbiome has the potential to provide a novel therapeutic modality to mitigate the progression of liver disease and its complications. This review will outline our understanding of hepatic fibrosis, liver disease, and its connection to the microbiome, which may identify potential therapeutic targets or strategies to mitigate liver disease.
Collapse
Affiliation(s)
- Nicholas Shalaby
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
| | - Dorit Samocha-Bonet
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Clinical Insulin Resistance Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mark Danta
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
14
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Abstract
Human microbiome research is evolving from describing associations to understanding the impact of bioactive strains on humans. Despite challenges, progress is being made to apply data-driven microbiome diagnostics and interventions, potentially leading to precision medicine breakthroughs in the next decade.
Collapse
|
16
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
Gut microbiota: a potential target for improved cancer therapy. J Cancer Res Clin Oncol 2023; 149:541-552. [PMID: 36550389 DOI: 10.1007/s00432-022-04546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Drug resistance and toxicity are major challenges observed during cancer treatment. In recent years, gut microbiota has been found to be strongly associated with the efficacy, toxicity, and side effects of chemotherapy, radiotherapy, and immunotherapy. Both preclinical studies and clinical trials have demonstrated the potential of microbiota modulation for cancer treatment. The human gut microbiota has exciting prospects for developing biomarkers to predict the outcome of cancer treatment. Moreover, multiple approaches can alter the gut microbiota composition, including faecal microbiota transplantation (FMT), probiotics, antibiotics (ATB), and diet. We describe the mechanisms by which the gut microbiota influences the efficacy and toxicity of cancer therapy, disease-related biomarkers, and methods to target the gut microbiota to improve outcomes. The purpose of this review is to provide new ideas for optimising cancer therapy by providing up-to-date information on the relationship between gut microbiota and cancer therapy, and hopes to find new targets for cancer treatment from human microbiota.
Collapse
|
18
|
Liu X, Zhang M, Wang X, Liu P, Wang L, Li Y, Wang X, Ren F. Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Front Microbiol 2022; 13:1037257. [PMID: 36532422 PMCID: PMC9748282 DOI: 10.3389/fmicb.2022.1037257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with gut microbiome dysbiosis, but the role of intestinal flora in CKD treatment remains to be elucidated. Fecal microbiota transplantation (FMT) can be utilized to re-establish healthy gut microbiota for a variety of diseases, which offers new insight for treating CKD. First, 5/6 nephrectomy rats (Donor CKD) and sham rats (Donor Sham) were used as donors for FMT, and fecal metagenome were analyzed to explore potential therapeutic targets. Then, to assess the effect of FMT on CKD, sterilized 1/2 nephrectomy rats were transplanted with fecal microbiota from Donor sham (CKD/Sham) or Donor CKD (CKD/CKD) rats, and 1/2 nephrectomy rats without FMT (CKD) or no nephrectomy (Sham) were used as model control or normal control. Results showed that Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 were enriched in Donor CKD, while Lactobacillus johnsonii and Lactobacillus intestinalis were reduced. In addition, the increased abundance of microbial functions included tryptophan metabolism and lysine degradation contributing to the accumulation of protein-bound uremic toxins (PBUTs) in Donor CKD. Genome analysis indicated that FMT successfully differentiated groups of gut microbes and altered specific gut microbiota after 1 week of treatment, with Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 increasing in CKD/CKD group as well as Lactobacillus johnsonii and Lactobacillus intestinalis being improved in CKD/Sham group. In comparison to CKD group, substantial PBUT buildup and renal damage were observed in CKD/CKD. Interestingly, compared to CKD or CKD/CKD group, tryptophan metabolism and lysine degradation were efficiently suppressed in CKD/Sham group, while lysine biosynthesis was promoted. Therefore, FMT considerably reduced PBUTs accumulation. After FMT, PBUTs and renal function in CKD/Sham rats remained the same as in Sham group throughout the experimental period. In summary, FMT could delay the malignant development of CKD by modifying microbial amino acid metabolism through altering the microenvironment of intestinal flora, thereby providing a novel potential approach for treating CKD.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
19
|
Effects of a farm-specific fecal microbial transplant (FMT) product on clinical outcomes and fecal microbiome composition in preweaned dairy calves. PLoS One 2022; 17:e0276638. [PMID: 36269743 PMCID: PMC9586405 DOI: 10.1371/journal.pone.0276638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Therefore, effective strategies to manipulate the microbiome of dairy calves under commercial dairy operations are of great importance to improve animal health and reduce antimicrobial usage. The objective of this study was to develop a farm-specific FMT product and to investigate its effects on clinical outcomes and fecal microbial composition of dairy calves. The FMT product was derived from feces from healthy donors (5–24 days of age) raised in the same calf ranch facility as the FMT recipients. Healthy and diarrheic calves were randomly enrolled to a control (n = 115) or FMT (n = 112) treatment group (~36 g of processed fecal matter once daily for 3 days). Fecal samples were collected at enrollment and again 9 days later after the first FMT dose. Although the FMT product was rich in organisms typically known for their beneficial probiotic properties, the FMT therapy did not prevent or ameliorate GI disease in dairy calves. In fact, calves that received FMT were less likely to recover from GI disease, and more likely to die due to GI disease complications. Fecal microbial community analysis revealed an increase in the alpha-diversity in FMT calves; however, no major differences across treatment groups were observed in the beta-diversity analysis. Calves that received FMT had higher relative abundance of an uncultured organism of the genus Lactobacillus and Lactobacillus reuteri on day 10. Moreover, FMT calves had lower relative abundance of Clostridium nexile and Bacteroides vulgatus on day 10. Our results indicate the need to have an established protocol when developing FMT products, based on rigorous inclusion and exclusion criteria for the selection of FMT donors free of potential pathogens, no history of disease or antibiotic treatment.
Collapse
|
20
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Chen G, Peng Y, Huang Y, Xie M, Dai Z, Cai H, Dong W, Xu W, Xie Z, Chen D, Fan X, Zhou W, Kan X, Yang T, Chen C, Sun Y, Zeng X, Liu Z. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. J Adv Res 2022:S2090-1232(22)00239-9. [PMID: 36341987 PMCID: PMC10403698 DOI: 10.1016/j.jare.2022.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.
Collapse
|
22
|
Wang YZ, Xiao FF, Xiao YM, Li XL, Hu H, Hong K, Li D, Le J, Yu GJ, Zhang T. Fecal microbiota transplantation relieves abdominal bloating in children with functional gastrointestinal disorders via modulating the gut microbiome and metabolome. J Dig Dis 2022; 23:482-492. [PMID: 36208299 DOI: 10.1111/1751-2980.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of fecal microbiota transplantation (FMT) in functional gastrointestinal disorders (FGIDs) in children with abdominal bloating and changes in their gut microbiome and metabolome. METHODS Twelve pediatric FGID patients with predominant abdominal bloating who underwent FMT were enrolled in the study. Fourteen healthy controls and four stool donors were included for analysis. Clinical responses were assessed at 8 weeks after FMT. Fecal bacterial composition was determined by 16S rRNA gene sequencing. The fecal metabolome was measured by targeted metabolomics analysis. RESULTS Median age of the 12 children with FGIDs was 6 years, and nine were boys. Abdominal bloating was relieved in all patients by FMT at 8 weeks. Meanwhile, FMT significantly improved abdominal pain and diarrhea. The a diversity was significantly lower in the FGID patients, while the fecal microbial community (β diversity) separated from that of healthy control (HCs). The relative abundances of multiple bacterial genera were significantly changed in the feces of the pediatric FGID patients. The levels of several short-chain fatty acids were lower, and lactic acid level was higher in FGID patients than in HCs. Altered bacterial composition was correlated with changes in the fecal metabolite profile and clinical symptoms in FGID patients. FMT modulated fecal microbiome and metabolome in FGID children toward a healthy state. CONCLUSIONS FMT relieves abdominal bloating and modulates fecal microbiome and metabolome toward a healthy state in children with FGIDs. FMT may provide an alternative therapy for children with FGIDs and abdominal bloating.
Collapse
Affiliation(s)
- Yi Zhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Fei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Mei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Lu Li
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Hu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Hong
- College of Liberal Arts, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Dan Li
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Le
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Jun Yu
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
24
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
25
|
Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact? J Intensive Care Med 2022; 38:121-131. [DOI: 10.1177/08850666221102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies’ results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.
Collapse
|
26
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
27
|
Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, Rioux J, Hodin R, Mihindukulasuriya KA, Handley SA, Jeffrey KL. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022; 7:eabn6660. [PMID: 35394816 PMCID: PMC9416881 DOI: 10.1126/sciimmunol.abn6660] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found that eukaryotic viruses and bacteriophages (collectively, the virome), enriched from non-IBD, noninflamed human colon resections, actively elicited atypical anti-inflammatory innate immune programs. Conversely, ulcerative colitis or Crohn's disease colon resection viromes provoked inflammation, which was successfully dampened by non-IBD viromes. The IBD colon tissue virome was perturbed, including an increase in the enterovirus B species of eukaryotic picornaviruses, not previously detected in fecal virome studies. Mice humanized with non-IBD colon tissue viromes were protected from intestinal inflammation, whereas IBD virome mice exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD patient-derived intestinal epithelial cells bearing loss-of-function mutations within virus sensor MDA5 when exposed to viromes. Our results demonstrate that innate recognition of IBD or non-IBD human viromes autonomously influences intestinal homeostasis and disease phenotypes. Thus, perturbations in the intestinal virome, or an altered ability to sense the virome due to genetic variation, contribute to the induction of IBD. Harnessing the virome may offer therapeutic and biomarker potential.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sreehaas Digumarthi
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L. Saunders
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raza-Ur Rahman
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jean Paquette
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
| | | | - John Rioux
- Montreal Heart Institute, Montreal Quebec Canada H1T 1C8
- Université de Montréal, Montreal Quebec Canada H3C 3J7
| | - Richard Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kate L. Jeffrey
- Department of Medicine, Division of Gastroenterology and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Zhou Y, Liu Z, Chen T. Gut Microbiota: A Promising Milestone in Enhancing the Efficacy of PD1/PD-L1 Blockade Therapy. Front Oncol 2022; 12:847350. [PMID: 35252014 PMCID: PMC8890472 DOI: 10.3389/fonc.2022.847350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, immunotherapy has emerged as one of the most promising strategies among current treatments of cancer. In particular, the field of PD1/PD-L1 inhibitors has been boosted, widely applied into clinical practice with potent therapeutic efficacy and remarkable survival benefits on various cancers such as melanoma, non-small cell lung cancer (NSCLC), and urothelial carcinoma (UC). However, the application of PD1/PD-L1 blockade therapy is still quite restricted because of unexpected toxicities, limited response rate, as well as associated resistance. In consequence, searching for potential strategies that possibly resolve the existing limitations and enhance the therapeutic responsiveness of PD1/PD-L1 blockade is of great significance. Fortunately, the gut microbiome has been demonstrated to serve as a pivotal regulator in anti-PD1/PD-L1 therapy, providing an applicable tool to improve anti-PD1/PD-L1 clinical efficacy. In this review, we summarized published advancements about how microbiota modulated in anti-PD1/PD-L1 therapy and illustrated its underlying mechanisms, giving insights into putative manipulation of gut microbiota to facilitate PD1/PD-L1 blockade.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Queen Mary School, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Bhattacharjee A, Dubey S, Sharma S. Storage of soil microbiome for application in sustainable agriculture: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3171-3183. [PMID: 34718953 DOI: 10.1007/s11356-021-17164-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Soil microbiome is a dynamic micro-ecosystem driving and fine-tuning several biological processes in the global macro-ecosystems. Its tremendous potential towards mediating sustainability in the ecosystem necessitates the urgent need to store it optimally and efficiently as "next-generation biologicals" for future applications via soil transplantation. The challenge, therefore, is to devise a strategy for the storage of soil microbiome such that its "functionality" is preserved for later application. This review discusses the current endeavours made towards storage of the soil microbiome. The methods for assessing the integrity of soil microbiome by targeting the structural diversity and functional potential of the preserved microbiomes have also been discussed. Further, the success stories related to the storage of fecal microbiome for application in transplants have also been highlighted. This is done primarily with the objective of learning lessons, and parallel application of the knowledge gained, in bringing about improvement in the research domain of soil microbiome storage. Subsequently, the limitations of current techniques of preservation have also been delineated. Further, the open questions in the area have been critically discussed. In conclusion, possible alternatives for storage, comprehensive analyses of the composition of the stored microbiome and their potential have been presented.
Collapse
Affiliation(s)
- Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
30
|
Han K, Nam J, Xu J, Sun X, Huang X, Animasahun O, Achreja A, Jeon JH, Pursley B, Kamada N, Chen GY, Nagrath D, Moon JJ. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat Biomed Eng 2021; 5:1377-1388. [PMID: 34168321 PMCID: PMC8595497 DOI: 10.1038/s41551-021-00749-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
The performance of immune-checkpoint inhibitors, which benefit only a subset of patients and can cause serious immune-related adverse events, underscores the need for strategies that induce T-cell immunity with minimal toxicity. The gut microbiota has been implicated in the outcomes of patients following cancer immunotherapy, yet manipulating the gut microbiome to achieve systemic antitumour immunity is challenging. Here we show in multiple murine tumour models that inulin-a widely consumed dietary fibre-formulated as a 'colon-retentive' orally administered gel can effectively modulate the gut microbiome in situ, induce systemic memory-T-cell responses and amplify the antitumour activity of the checkpoint inhibitor anti-programmed cell death protein-1 (α-PD-1). Orally delivered inulin-gel treatments increased the relative abundances of key commensal microorganisms and their short-chain-fatty-acid metabolites, and led to enhanced recall responses for interferon-γ+CD8+ T cells as well as to the establishment of stem-like T-cell factor-1+PD-1+CD8+ T cells within the tumour microenvironment. Gels for the in situ modulation of the gut microbiome may be applicable more broadly to treat pathologies associated with a dysregulated gut microbiome.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jin Heon Jeon
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Pursley
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace Y Chen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
32
|
Turroni F, Milani C, Ventura M, van Sinderen D. The human gut microbiota during the initial stages of life: insights from bifidobacteria. Curr Opin Biotechnol 2021; 73:81-87. [PMID: 34333445 DOI: 10.1016/j.copbio.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Current scientific literature has identified the infant gut microbiota as a multifaceted organ influencing a range of aspects of host-health and development. Many scientific studies have focused on characterizing the main microbial taxa that constitute the resident bacterial population of the infant gut. This has generated a wealth of information on the bacterial composition of the infant gut microbiota, and on the functional role/s exerted by their key microbial members. In this context, one of the most prevalent, abundant and investigated microbial taxon in the human infant gut is the genus Bifidobacterium, due to the purported beneficial activities is bestows upon its host. This review discusses the most recent findings regarding the infant gut microbiota with a particular focus on the molecular mechanisms by which bifidobacteria impact on host health and well-being.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland.
| |
Collapse
|
33
|
Pal R, Dai M, Seleem MN. High-throughput screening identifies a novel natural product-inspired scaffold capable of inhibiting Clostridioides difficile in vitro. Sci Rep 2021; 11:10913. [PMID: 34035338 PMCID: PMC8149678 DOI: 10.1038/s41598-021-90314-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Clostridioides difficile is an enteric pathogen responsible for causing debilitating diarrhea, mostly in hospitalized patients. The bacterium exploits on microbial dysbiosis induced by the use of antibiotics to establish infection that ranges from mild watery diarrhea to pseudomembranous colitis. The increased prevalence of the disease accompanied by exacerbated comorbidity and the paucity of anticlostridial drugs that can tackle recurrence entails novel therapeutic options. Here, we report new lead molecules with potent anticlostridial activity from the AnalytiCon NATx library featuring natural product-inspired or natural product-derived small molecules. A high-throughput whole-cell-based screening of 5000 synthetic compounds from the AnalytiCon NATx library helped us identify 10 compounds capable of inhibiting the pathogen. Out of these 10 hits, we found 3 compounds with potent activity against C. difficile (MIC = 0.5-2 μg/ml). Interestingly, these compounds had minimal to no effect on the indigenous intestinal microbial species tested, unlike the standard-of-care antibiotics vancomycin and fidaxomicin. Further in vitro investigation revealed that the compounds were nontoxic to Caco-2 cell line. Given their potent anticlostridial activity, natural product-inspired scaffolds may suggest potential avenues that can address the unmet needs in preventing C. difficile mediated disease.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
34
|
Chen J, Zaman A, Ramakrishna B, Olesen SW. Stool Banking for Fecal Microbiota Transplantation: Methods and Operations at a Large Stool Bank. Front Cell Infect Microbiol 2021; 11:622949. [PMID: 33937092 PMCID: PMC8082449 DOI: 10.3389/fcimb.2021.622949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives Fecal microbiota transplantation (FMT) is a recommended therapy for recurrent Clostridioides difficile infection and is being investigated as a potential therapy for dozens of microbiota-mediated indications. Stool banks centralize FMT donor screening and FMT material preparation with the goal of expanding access to FMT material while simultaneously improving its safety, quality, and convenience. Although there are published consensuses on donor screening guidelines, there are few reports about the implementation of those guidelines in functioning stool banks. Methods To help inform consensus standards with data gathered from real-world settings and, in turn, to improve patient care, here we describe the general methodology used in 2018 by OpenBiome, a large stool bank, and its outputs in that year. Results In 2018, the stool bank received 7,536 stool donations from 210 donors, a daily average of 20.6 donations, and processed 4,271 of those donations into FMT preparations. The median time a screened and enrolled stool donor actively donated stool was 5.8 months. The median time between the manufacture of an FMT preparation and its shipment to a hospital or physician was 8.9 months. Half of the stool bank's partner hospitals and physicians ordered an average of 0.75 or fewer FMT preparations per month. Conclusions Further knowledge sharing should help inform refinements of stool banking guidelines and best practices.
Collapse
|
35
|
Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug-microbiome interactions. Mol Syst Biol 2021; 17:e10116. [PMID: 33734582 PMCID: PMC7970330 DOI: 10.15252/msb.202010116] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Broad-spectrum antibiotics target multiple gram-positive and gram-negative bacteria, and can collaterally damage the gut microbiota. Yet, our knowledge of the extent of damage, the antibiotic activity spectra, and the resistance mechanisms of gut microbes is sparse. This limits our ability to mitigate microbiome-facilitated spread of antibiotic resistance. In addition to antibiotics, non-antibiotic drugs affect the human microbiome, as shown by metagenomics as well as in vitro studies. Microbiome-drug interactions are bidirectional, as microbes can also modulate drugs. Chemical modifications of antibiotics mostly function as antimicrobial resistance mechanisms, while metabolism of non-antibiotics can also change the drugs' pharmacodynamic, pharmacokinetic, and toxic properties. Recent studies have started to unravel the extensive capacity of gut microbes to metabolize drugs, the mechanisms, and the relevance of such events for drug treatment. These findings raise the question whether and to which degree these reciprocal drug-microbiome interactions will differ across individuals, and how to take them into account in drug discovery and precision medicine. This review describes recent developments in the field and discusses future study areas that will benefit from systems biology approaches to better understand the mechanistic role of the human gut microbiota in drug actions.
Collapse
Affiliation(s)
- Michael Zimmermann
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Kiran Raosaheb Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Athanasios Typas
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’University of TübingenTübingenGermany
| |
Collapse
|
36
|
Han C, Song J, Hu J, Fu H, Feng Y, Mu R, Xing Z, Wang Z, Wang L, Zhang J, Wang C, Dong L. Smectite promotes probiotic biofilm formation in the gut for cancer immunotherapy. Cell Rep 2021; 34:108706. [PMID: 33567279 DOI: 10.1016/j.celrep.2021.108706] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Administration of probiotics to regulate the immune system is a potential anti-tumor strategy. However, oral administration of probiotics is ineffective because of the poor inhabitation of exogenous bacteria in host intestines. Here we report that smectite, a type of mineral clay and established anti-diarrhea drug, promotes expansion of probiotics (especially Lactobacillus) in the murine gut and subsequently elicits anti-tumor immune responses. The ion-exchangeable microstructure of smectite preferentially promotes lactic acid bacteria (LABs) to form biofilms on smectite in vitro and in vivo. In mouse models, smectite laden with LAB biofilms (Lactobacillus and Bifidobacterium) inhibits tumor growth (when used alone) and enhances the efficacy of chemotherapy or immunotherapy (when used in combination with either of them) by activating dendritic cells (DCs) via Toll-like receptor 2 (TLR2) signaling. Our findings suggest oral administration of smectite as a promising strategy to enrich probiotics in vivo for cancer immunotherapy.
Collapse
Affiliation(s)
- Congwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinji Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junqing Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Huijie Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanxian Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR
| | - Ruoyu Mu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR; Medical School of Nanjing University, Nanjing, Jiangsu 21093, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Medical School of Nanjing University, Nanjing, Jiangsu 21093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
37
|
Wu WJH, Zegarra-Ruiz DF, Diehl GE. Intestinal Microbes in Autoimmune and Inflammatory Disease. Front Immunol 2020; 11:597966. [PMID: 33424846 PMCID: PMC7786055 DOI: 10.3389/fimmu.2020.597966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses resulting in excessive and uncontrolled tissue inflammation. Multiple factors including genetic variation, environmental stimuli, and infection are all thought to contribute to continued inflammation and pathology. Current evidence supports the microbiota as one such factor with emerging data linking commensal organisms to the onset and progression of disease. In this review, we will discuss links between the microbiota and specific diseases as well as highlight common pathways that link intestinal microbes with multiple autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wan-Jung H. Wu
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
38
|
Keskey R, Cone JT, DeFazio JR, Alverdy JC. The use of fecal microbiota transplant in sepsis. Transl Res 2020; 226:12-25. [PMID: 32649987 PMCID: PMC7572598 DOI: 10.1016/j.trsl.2020.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Sepsis is defined as a dysregulated inflammatory response, which ultimately results from a perturbed interaction of both an altered immune system and the biomass and virulence of involved pathogens. This response has been tied to the intestinal microbiota, as the microbiota and its associated metabolites play an essential role in regulating the host immune response to infection. In turn, critical illness as well as necessary health care treatments result in a collapse of the intestinal microbiota diversity and a subsequent loss of health-promoting short chain fatty acids, such as butyrate, leading to the development of a maladaptive pathobiome. These perturbations of the microbiota contribute to the dysregulated immune response and organ failure associated with sepsis. Several case series have reported the ability of fecal microbiota transplant (FMT) to restore the host immune response and aid in recovery of septic patients. Additionally, animal studies have revealed the mechanism of FMT rescue in sepsis is likely related to the ability of FMT to restore butyrate producing bacteria and alter the innate immune response aiding in pathogen clearance. However, several studies have reported lethal complications associated with FMT, including bacteremia. Therefore, FMT in the treatment of sepsis is and should remain investigational until a more detailed mechanism of how FMT restores the host immune response in sepsis is determined, allowing for the development of more fine-tuned microbiota therapies.
Collapse
Affiliation(s)
- Robert Keskey
- Section of General Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Jennifer T Cone
- Section of Trauma and Acute Care Surgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Jennifer R DeFazio
- Division of Pediatric Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - John C Alverdy
- Section of General Surgery, Department of Surgery, University of Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Liao ZQ, Ji QF, Zhou BJ. Strategies for inflammatory bowel disease drug research by targeting gut microbiota. Shijie Huaren Xiaohua Zazhi 2020; 28:1112-1120. [DOI: 10.11569/wcjd.v28.i22.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zi-Qiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| | - Qui-Feng Ji
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| | - Ben-Jie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| |
Collapse
|
40
|
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69:1867-1876. [PMID: 32759302 PMCID: PMC7497589 DOI: 10.1136/gutjnl-2020-321153] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The gut microbiota has been implicated in cancer and shown to modulate anticancer drug efficacy. Altered gut microbiota is associated with resistance to chemo drugs or immune checkpoint inhibitors (ICIs), whereas supplementation of distinct bacterial species restores responses to the anticancer drugs. Accumulating evidence has revealed the potential of modulating the gut microbiota to enhance the efficacy of anticancer drugs. Regardless of the valuable findings by preclinical models and clinical data of patients with cancer, a more thorough understanding of the interactions of the microbiota with cancer therapy helps researchers identify novel strategy for cancer prevention, stratify patients for more effective treatment and reduce treatment complication. In this review, we discuss the scientific evidence on the role of gut microbiota in cancer treatment, and highlight the latest knowledge and technologies leveraged to target specific bacteria that contribute to tumourigenesis. First, we provide an overview of the role of the gut microbiota in cancer, establishing the links between bacteria, inflammation and cancer treatment. Second, we highlight the mechanisms used by distinct bacterial species to modulate cancer growth, immune responses, as well as the efficacy of chemotherapeutic drugs and ICIs. Third, we demonstrate various approaches to modulate the gut microbiota and their potential in translational research. Finally, we discuss the limitations of current microbiome research in the context of cancer treatment, ongoing efforts to overcome these challenges and future perspectives.
Collapse
Affiliation(s)
- Wing Yin Cheng
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biomedical Bioinformatics and School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Xue LJ, Yang XZ, Tong Q, Shen P, Ma SJ, Wu SN, Zheng JL, Wang HG. Fecal microbiota transplantation therapy for Parkinson's disease: A preliminary study. Medicine (Baltimore) 2020; 99:e22035. [PMID: 32871960 PMCID: PMC7458210 DOI: 10.1097/md.0000000000022035] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Imbalances in the gut microbiota mediate the progression of neurodegenerative diseases such as Parkinson's disease (PD). Fecal microbiota transplantation (FMT) is currently being explored as a potential therapy for PD. The objective of this study was to assess the efficacy and safety of FMT on PD. Fifteen PD patients were included, 10 of them received FMT via colonoscopy (colonic FMT group) and 5 received FMT via nasal-jejunal tube (nasointestinal FMT group). The score of PSQI, HAMD, HAMA, PDQ-39, NMSQ and UPDRS-III significantly decreased after FMT treatment (all P < .05). Colonic FMT group showed significant improvement and longer maintenance of efficacy compared with nasointestinal FMT (P = .002). Two patients achieved self-satisfying outcomes that last for more than 24 months. However, nasointestinal FMT group had no significant therapeutic effect, although UPDRS-III score slightly reduced. There were no patients were satisfied with nasointestinal FMT for more than 3 months. Among 15 PD patients, there were 5 cases had adverse events (AEs), including diarrhea (2 cases), abdominal pain (2 cases) and flatulence (1 case). These AEs were mild and self-limiting. We conclude that FMT can relieve the motor and non-motor symptoms with acceptable safety in PD. Compared with nasointestinal FMT, colonic FMT seems better and preferable.
Collapse
Affiliation(s)
- Liu-Jun Xue
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qiang Tong
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
| | - Peng Shen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Shi-Jie Ma
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Shang-Nong Wu
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jin-Long Zheng
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| |
Collapse
|
42
|
Qiao Y, Hayashi H, Chong Teo S. Chemical Toolbox to Decode the Microbiota Lexicon. Chem Asian J 2020; 15:2117-2128. [PMID: 32558250 DOI: 10.1002/asia.202000541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/14/2020] [Indexed: 12/15/2022]
Abstract
The human microbiota deploys a diverse range of molecules and metabolites to engage in chemical communications with the host, mediating fundamental aspects of host health. Studies of the structures and activities of bioactive molecules produced by the microbiota are imperative to address their implications in microbiota associated diseases in human. By drawing experiences from different research fields, chemists and chemical biologists, who are experts in dealing with chemical molecules, are uniquely positioned to contribute to the emerging knowledge of human microbiota. In this minireview, we discuss the current chemical tools and methods that are pertinent to the discovery of microbiota molecules and metabolites, characterizations of their protein targets, as well as evaluations of their biodistributions in hosts. These are key aspects in understanding the chemical underpinnings of the microbiota-host interactions that would enable future development of diagnostics and therapeutics targeting the human microbiota.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Hirohito Hayashi
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Seng Chong Teo
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| |
Collapse
|
43
|
Zhang X, Tian H, Chen Q, Qin H, Li N. Fecal microbiota transplantation: standardization or diversification? SCIENCE CHINA. LIFE SCIENCES 2019; 62:1714-1716. [PMID: 31813093 DOI: 10.1007/s11427-019-1592-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xueying Zhang
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongliang Tian
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huanlong Qin
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ning Li
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|