1
|
Yang X, Yue R, Zhao L, Wang Q. Integration of transcriptome and Mendelian randomization analyses in exploring the extracellular vesicle-related biomarkers of diabetic kidney disease. Ren Fail 2025; 47:2458767. [PMID: 39957315 PMCID: PMC11834810 DOI: 10.1080/0886022x.2025.2458767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a common complication in patients with diabetes, and its pathogenesis remains incompletely understood. Recent studies have suggested that extracellular vesicles (EVs) may play a significant role in the initiation and progression of DKD. This study aimed to identify biomarkers associated with EVs in DKD through bioinformatics and Mendelian randomization (MR) analysis. METHODS This study utilized two DKD-related datasets, GSE96804 and GSE30528, alongside 121 exosome-related genes (ERGs) and 200 inflammation-related genes (IRGs). Differential analysis, co-expression network construction, and MR analysis were conducted to identify candidate genes. Machine learning techniques and expression validation were then employed to determine biomarkers. Finally, the potential mechanisms of action of these biomarkers were explored through Immunohistochemistry (IHC) staining, enrichment analysis, immune infiltration analysis, and regulatory network construction. RESULTS A total of 22 candidate genes were identified as causally linked to DKD. CMAS and RGS10 were identified as biomarkers, with both showing reduced expression in DKD. IHC confirmed low RGS10 expression, providing new insights into DKD management. CMAS was involved primarily in mitochondria-related pathways, while RGS10 was enriched in the extracellular matrix and associated pathways. Significant differences were observed in neutrophils and M2 macrophages between DKD and normal groups, correlating strongly with the biomarkers. CONCLUSION This study identified two EV-associated biomarkers, CMAS and RGS10, linked to DKD and elucidated their potential roles in disease progression. These results offer valuable insights for further exploration of DKD pathogenesis and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Xu Yang
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Second Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyue Wang
- Department of Pediatrics, Chengdu Jinniu Hospital of TCM, Chengdu, China
| |
Collapse
|
2
|
Yu S, Fan J, Zong S, Yu Q, Cheng Q, Wang Y, Li M, Lu Z. Correlation of extracellular vesicle Alu RNA with brain aging and neuronal injury: a potential biomarker for brain aging. Ann Med 2025; 57:2493767. [PMID: 40248949 PMCID: PMC12010651 DOI: 10.1080/07853890.2025.2493767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are promising biomarkers for neurodegeneration. Alu elements are retrotransposons increasingly expressed with age and may be involved in aging-related diseases. OBJECTIVE To determine the potential of Alu RNA in plasma-derived EVs as a biomarker for brain aging and neuronal injury. METHODS EVs were isolated from plasma samples across different age groups. EV Alu RNA levels were measured and their associations with biomarkers of brain aging, including plasma neurofilament light chain (NfL), plasma amyloid-beta (Aβ42 and Aβ40), and plasma phosphorylated tau (p-Tau181), were analyzed. RESULTS EV Alu RNA levels were increased significantly with age and were strongly correlated with plasma NfL, suggesting a strong association between EV Alu RNA and neuronal injury. Significant correlations were also found between EV Alu RNA and plasma amyloid-beta levels, while no significant association was observed with tau pathology. CONCLUSIONS EV Alu RNA levels are elevated with age and associated with neuronal injury, highlighting their potential as a novel, non-invasive biomarker for brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Shuyi Yu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Fan
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Yu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Cheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Zohouri D, Mai TD, Reyre M, Smadja C, Krupova Z, Talbot L, Taverna M. Elucidation of extracellular vesicles behavior during capillary isoelectric focusing. Talanta 2025; 293:128055. [PMID: 40203599 DOI: 10.1016/j.talanta.2025.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
In this study, we investigated the behavior of extracellular vesicles (EVs), during capillary isoelectric focusing (cIEF). For that, we used different approaches, imaging cIEF with a whole-column imaging detection (WCID) and conventional cIEF as well as different detection methods (LIF after EV labelling, native fluorescence and UV). Our study reveals that EVs exhibit significant aggregation during their migration toward, and upon reaching, their isoelectric point (pI). By optimizing key parameters such as voltage and the addition of solubilizers, we successfully reduced this issue, particularly with bovine milk EVs. Our findings also showed distinct pI regions observed for EVs isolated from different sources: bovine milk EVs shows acidic pI characteristics (4.0-4.1), while pig and human plasma EVs exhibit more basic pI zones (4.7-4.9 and 5.8-6.7, respectively). The study was extended to cIEF coupled to laser induced fluorescence detection (LIF) using intra-vesicular CFDA-labeled EVs, to better understand their susceptibilities. Prolonged mobilization time due to long capillary lengths adversely affected EV's integrity in conventional cIEF. Our study reveals the necessity to specific cIEF optimization for each EV source due to variations in charge distribution and aggregation behavior across different pI regions. The use of a short capillary length (<10 cm), low electric field and solubilizers such as Tween-20 is recommended to preserve EVs integrity during cIEF-EV studies.
Collapse
Affiliation(s)
- Delaram Zohouri
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91300, Orsay, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91300, Orsay, France
| | - Melissa Reyre
- Excilone - 6, Rue Blaise Pascal - Parc Euclide, 78990, Elancourt, France
| | - Claire Smadja
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91300, Orsay, France
| | - Zuzana Krupova
- Excilone - 6, Rue Blaise Pascal - Parc Euclide, 78990, Elancourt, France
| | - Laurence Talbot
- Bio-Techne France, 19 Rue Louis Delourmel, 35230, Noyal-Châtillon-sur-Seiche, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91300, Orsay, France.
| |
Collapse
|
5
|
Kim MG, Ryu SM, Shin Y. Recent advances in bioreceptor-based sensing for extracellular vesicle analysis. Biosens Bioelectron 2025; 280:117432. [PMID: 40187151 DOI: 10.1016/j.bios.2025.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-bound structures secreted by various cell types into biofluids. They show great potential as biomarkers for disease diagnostics, owing to their ability to carry molecular cargo that reflects their cellular origin. However, the inherent heterogeneity of EVs in terms of size, composition, and source presents significant challenges for reliable detection and analysis. Recent advances in bioreceptor-based biosensor technologies provide promising solutions by offering high sensitivity and specificity in EV detection and characterization. These technologies address the limitations of conventional methods, such as ultracentrifugation and bulk analysis. Biosensors utilizing antibodies, aptamers, peptides, lectins, and molecularly imprinted polymers enable precise detection of EV subpopulations by targeting specific EV surface markers, including proteins, lipids, and glycans. Additionally, these biosensors support multiplexed and real-time analysis while preserving the structural integrity of EVs. This review highlights the transformative potential of combining modern biosensing tools with bioreceptor technologies to advance EV research and diagnostics, paving the way for innovations in disease diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo Min Ryu
- Life Science and Biotechnology, Underwood International College, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Life Science and Biotechnology, Underwood International College, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Nikapitiya C, Jayathilaka EHTT, Edirisinghe SL, Oh C, De Zoysa M. Characterization, microRNA profiling, and immunomodulatory role of plasma-derived exosomes from olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110316. [PMID: 40239934 DOI: 10.1016/j.fsi.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that frequently infects olive flounder (Paralichthys olivaceus), causing viral hemorrhagic septicemia (VHS), and posing a significant threat to global aquaculture. This study characterizes plasma-derived exosomes from olive flounder following VHSV challenge (VHSV-Exo) or phosphate buffered saline (PBS) injection (PBS-Exo), comparing their morphology, physicochemical properties, molecular profiles, and immunomodulatory functions. Both PBS-Exo (118.3 ± 8.6 nm) and VHSV-Exo (82.6 ± 5.9 nm) exhibited the typical cup-shaped morphology of exosomes. The successful isolation and purity of exosomes were confirmed by the presence of exosome markers (CD81, CD9, and CD63) and the absence of albumin. High-throughput sequencing identified 13 differentially expressed (DE) microRNAs (miRNAs) between PBS-Exo and VHSV-Exo, including six upregulated and seven downregulated miRNAs (log2 fold change ≥1 or ≤ -1). Toxicity assessments revealed that neither PBS-Exo nor VHSV-Exo were toxic to murine macrophage Raw 264.7 cells or zebrafish larvae at tested doses (up to 100 and 400 μg/mL, respectively). The absence of green fluorescence at 96 h post-treatment of VHSV-Exo indicated minimal reactive oxygen species generation, further supporting exosome safety. Functional studies demonstrated that both in vitro (Raw 264.7 cells) and in vivo (adult zebrafish) treatments with exosomes regulated immune-related genes and proteins expression. Notabaly, VHSV-Exo exhibited superior immunomodulatory effects, as evidenced by enhanced immune gene and protein expression. To our knowledge, this is the first study demonstrating the immunomodulatory potential of VHSV-Exo. These findings highlight VHSV-Exo as a promising immunomodulatory agent, with potential applications as a prophylactic vaccine candidate against VHSV infection in aquaculture.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Shan Lakmal Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Gujwa-eup, Jeju, 2670, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Zhu Q, Guo J, Alee I, Wang C, Li L. Differential expression of bovine milk-derived exosomal miRNAs and their role in modulating endometrial receptivity during early pregnancy. Res Vet Sci 2025; 190:105636. [PMID: 40239443 DOI: 10.1016/j.rvsc.2025.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Endometrial receptivity is critical for successful implantation of bovine embryos. MicroRNA (miRNA), as a key regulator of uterine receptivity, is involved in physiological processes such as cell differentiation, proliferation, and apoptosis. The aim of this study was to identify pregnancy-specific miRNAs derived from milk exosomes of non-pregnant and early pregnant cows. In addition, bioinformatics analysis was used to assess the differential expression, target genes, and functions of these miRNAs in order to examine their significance in endometrial cell regulation. Exosomes were isolated from milk using an exosome extraction kit and then identified by Western blotting and transmission electron microscopy. We used Illumina high-throughput sequencing to profile miRNAs and identify differentially expressed miRNAs in bovine milk-derived exosomes at different stages of pregnancy (days 15, 25 and 30) and in non-pregnant cows (day 0). The sequencing data revealed a significant upregulation of bta-miR-125b in pregnant cows at days 15 and 25 compared to non-pregnant cows. Bta-miR-125b targets the Leukemia inhibitory factor (LIF), which is thought to play a critical role in the development of endometrial receptivity by regulating gene expression. KEGG pathway enrichment and Gene Ontology analysis indicated that the target genes of the differential miRNAs were significantly enriched in the key signaling pathways, including the MAPK, phosphatidylinositol signaling system and PI3K-Akt signaling pathways, as well as physiological activities such as RNA polymerase II transcriptional regulation, protein phosphorylation, apoptosis control and cell proliferation regulation. These signaling pathways and physiological activities are all indispensable parts during the process of pregnancy. These findings emphasize bta-miR-125b critical function in regulating endometrial receptivity via important signaling pathways, providing potential indicators for early pregnancy detection and insights into enhancing reproductive efficiency in dairy cows.
Collapse
Affiliation(s)
- Qi Zhu
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Jiaxing Guo
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Ilyas Alee
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Cheng Wang
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
| |
Collapse
|
8
|
Akter A, Kamal T, Akter S, Auwal A, Islam F. Exosomes: a potential tool in the diagnosis, prognosis and treatment of patients with colorectal cancer. Future Oncol 2025:1-19. [PMID: 40515703 DOI: 10.1080/14796694.2025.2520150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 06/11/2025] [Indexed: 06/16/2025] Open
Abstract
Colorectal cancer (CRC), a commonly diagnosed malignancy, is one of the most frequent causes of cancer-related deaths worldwide. To effectively lower the death rate from this disease, it is essential to create public health methods, including developing new biomarkers that facilitate screening, diagnosis, prognosis, and therapy response prediction. CRC-derived Exosomes are a type of extracellular vesicle that transport functional molecules like proteins, lipids, nucleic acids (DNA, mRNA, miRNA, lncRNA, and noncoding RNA), and other metabolites, which act as molecular cargos to facilitate transportation. Exosomes generated and secreted from cancer cells are key biomarkers for early, noninvasive cancer diagnosis, prognosis, and treatment response, with their biogenesis in CRC offering molecular insights. Their expression varies across time, tissues, and disease stages. Thus, the development of innovative and effective techniques for isolating and detecting exosomes holds great potential for tumor diagnosis, prognosis prediction, and developing techniques (MSC-derived exosome, DC-derived exosome, engineered exosome, etc.) and their contents to improve the specificity and efficacy of therapies for patients with CRC. This review explores the features and formation of CRC-derived exosomes, highlighting their diagnostic, prognostic, and therapeutic significance through a comprehensive analysis of exosome extraction, identification, purification, and documented biological roles in existing literature.
Collapse
Affiliation(s)
- Azmin Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasnima Kamal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sharmin Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- School of Medicine and Dentsitry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Zhang Z, Liu L, Ti H, Chen M, Chen Y, Du D, Zhan W, Wang T, Wu X, Wu J, Mao D, Yuan Z, Ruan J, Rong G, Yuan FL. Synovial fibroblast derived small extracellular vesicles miRNA15-29148 promotes articular chondrocyte apoptosis in rheumatoid arthritis. Bone Res 2025; 13:61. [PMID: 40506465 PMCID: PMC12162823 DOI: 10.1038/s41413-025-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 06/16/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease in which synovial fibroblasts (SFs) maintain chronic inflammation by secreting proinflammatory mediators, leading to joint destruction. While the role of proinflammatory mediators in this process is well-established, the contribution of non-inflammatory regulators in SFs to joint pathology remains poorly understood. In this study, we investigated the non-inflammatory role of SFs in RA using a co-culture model, and found that SFs from RA patients promote apoptosis of human chondrocytes. Mechanistic investigations reveal that SFs can secrete small extracellular vesicles (sEVs), which are taken up by chondrocytes and induce chondrocyte apoptosis in both normal chondrocytes and chondrocytes from patients with RA. sEV-derived miRNA 15-29148 are identified as key signaling molecules mediating the apoptosis effects of chondrocytes. Further studies reveal that SF-derived miRNA 15-29148 targeting CIAPIN1 results in increased chondrocyte apoptosis. We further demonstrate that SF-derived miRNA 15-29148 is transferred to chondrocytes, exacerbating cartilage damage in vivo. Moreover, chondrocyte-specific aptamer-modified polyamidoamine nanoparticles not only ameliorated RA but also prevented its onset. This study suggests that, in RA, the secretion of specific sEV-miRNAs from SFs plays a crucial role in promoting chondrocyte apoptosis, potentially through non-inflammatory regulation, and that sEV-miRNA inhibition in SFs may represent an early preventive treatment strategy for cartilage degradation in RA.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Lulu Liu
- Biomedical engineering facility of National Infrastructures for Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases in Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huibo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Deyan Du
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Junjie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Zhengdong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
10
|
Saint-Pol J, Culot M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol In Vitro 2025; 106:106049. [PMID: 40074066 DOI: 10.1016/j.tiv.2025.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used. The International Society for Extracellular Vesicles (ISEV) published the Minimum Information for Studies of Extracellular Vesicles (MISEV) in 2014, updating it in 2018 and 2023 to reflect different study contexts and technical advancements. The primary objective of this review is to inform future authors about EVs, including their history, nomenclature, and technical recommendations for the for isolation and functionality analysis for conducing EV-based studies according to current standards. Additionally, it aims to inform reviewers about the key parameters required for characterizing EV preparations.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France.
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France
| |
Collapse
|
11
|
Mkrtchian S, Eldh M, Ebberyd A, Gabrielsson S, Végvári Á, Ricksten SE, Danielson M, Oras J, Wiklund A, Eriksson LI, Gómez-Galán M. Changes in circulating extracellular vesicle cargo are associated with cognitive decline after major surgery: an observational case-control study. Br J Anaesth 2025; 134:1683-1695. [PMID: 39426921 PMCID: PMC12106869 DOI: 10.1016/j.bja.2024.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Postoperative neurocognitive decline is a frequent complication triggered by unclear signalling mechanisms. This observational case-control study investigated the effects of hip or knee replacement surgery on the composition of circulating extracellular vesicles (EVs), potential periphery-to-brain messengers, and their association with neurocognitive outcomes. METHODS We mapped the microRNAome and proteome of plasma-derived EVs from 12 patients (six with good and six with poor neurocognitive outcomes at 3 months after surgery) at preoperative and postoperative timepoints (4, 8, 24, and 48 h). Complement C3-EV association was confirmed by flow cytometry in plasma- and cerebrospinal fluid (CSF)-derived EVs, with total plasma and CSF C3 and C3a concentrations determined using enzyme-linked immunosorbent assay. RESULTS Differential expression analysis found eight dysregulated EV microRNAs (miRNAs) exclusively in the poor neurocognitive outcomes group. Pathway analysis suggested potential downregulation of proliferative pathways and activation of extracellular matrix and inflammatory response pathways in EV target tissues. Proteome analysis revealed a time-dependent increase in immune-related EV proteins, including complement system proteins, notably EV surface-associated C3. Such upward kinetics was detected earlier in the poor neurocognitive outcomes group. Interestingly, CSF-derived EVs from the same group showed a drastic drop of C3 at 48 h with unchanged concentrations in the good neurocognitive outcomes group. Functionally, the complement system was activated in both patient groups in plasma, but only in the poor neurocognitive outcomes group in CSF. CONCLUSIONS Our findings highlight the impact of surgery on plasma- and CSF-derived EVs, particularly in patients with poor neurocognitive outcomes, indicating a potential role for EVs. The small sample size necessitates verification with a larger patient cohort.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Ricksten
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mattias Danielson
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anesthesia and Intensive Care, Sаhlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Andreas Wiklund
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; Capio Artro Clinic, Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Gómez-Galán
- Department of Physiology and Pharmacology, Section for Anaesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
D'Angelo G, Stahl PD, Raposo G. The cell biology of Extracellular Vesicles: A jigsaw puzzle with a myriad of pieces. Curr Opin Cell Biol 2025; 94:102519. [PMID: 40267602 DOI: 10.1016/j.ceb.2025.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Extracellular vesicle (EV) research has expanded beyond traditional boundaries, evolving into an inter-kingdom endeavor. First described over 50 years ago, EVs are now recognized as playing diverse roles in basic cellular functions, such as intercellular communication, transport, and cell migration. Their biogenesis and secretion involve complex molecular processes, with cargos that include proteins, lipids, and genetic material. Despite advances, isolation and purification methods are still developing. EVs are present in all body fluids, with different subtypes fulfilling distinct roles. Nonetheless, in biological ecosystems, vesicle diversity can be seen as a strength where each one complements the other in the dialogue between cells and tissues. The involvement of EVs in homeostasis and disease and their well-recognized potential for diagnosis and therapeutics will continue to boost investigations to reveal their fundamental biology.
Collapse
Affiliation(s)
- G D'Angelo
- Institut Curie, PSL Research University, Sorbonne University, CNRS, UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - P D Stahl
- Dept. of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Raposo
- Institut Curie, PSL Research University, Sorbonne University, CNRS, UMR144, Cell Biology and Cancer, 75005, Paris, France.
| |
Collapse
|
14
|
Hsu CW, Fang YC, Li JF, Cheng CA. Decoding Complex Biological Milieus: SHINER's Approach to Profiling and Functioning of Extracellular Vesicle Subpopulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2503638. [PMID: 40255212 DOI: 10.1002/smll.202503638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs) are celebrated for their pivotal roles in cellular communication and their potential in disease diagnosis and therapeutic applications. However, their inherent heterogeneity acts as a double-edged sword, complicating the isolation of specific EV subpopulations. Conventional EV isolation methods often fall short, relying on biophysical properties, while affinity-based techniques may compromise EV integrity and utility with harsh recovery conditions. To address these limitations, the SHINER (subpopulation homogeneous isolation and nondestructive EV release) workflow is introduced, which redefines how EVs are isolated and recoverd, featuring the innovative SWITCHER (switchable extracellular vesicle releaser) tool. The SHINER workflow facilitates the precise purification and gentle recovery of target EV subpopulations from complex biological mixtures, preserving their structural integrity and biological functionality. Importantly, SHINER demonstrates exceptional adaptability to multiple markers and clinical applications. It not only enhances the ability to trace EV origins for accurate disease diagnosis but also advances fundamental EV research and provides standardized EV materials for therapeutic innovations. By improving the understanding of EVs and enabling the development of personalized diagnostics and treatments, SHINER propels EV-based science into new frontiers of advanced medicine, offering transformative potential for healthcare.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Yao-Ching Fang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Jhih-Fong Li
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| |
Collapse
|
15
|
Le Lay S, Scherer PE. Exploring adipose tissue-derived extracellular vesicles in inter-organ crosstalk: Implications for metabolic regulation and adipose tissue function. Cell Rep 2025; 44:115732. [PMID: 40408250 DOI: 10.1016/j.celrep.2025.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Intercellular and inter-organ communication systems are vital for tissue homeostasis and disease development, utilizing soluble bioactive molecules for signaling. The field of extracellular vesicle (EV) biology has rapidly expanded in recent decades, highlighting EVs as effective bioactive nanovectors for cell-to-cell communication in various physiological and pathological contexts. Numerous studies indicate that adipocyte-derived EVs are crucial components of the adipose secretome, playing a key role in autocrine and paracrine interactions within adipose tissue, as well as in endocrine signaling. This review aims to present an updated perspective on EVs as mediators of communication between adipose tissue and other organs, while also examining their therapeutic potential in the light of recent advancements in EV biology research.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France.
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Jin J, Nolte PA. Mitochondrial Distribution and Osteocyte Mechanosensitivity. Curr Osteoporos Rep 2025; 23:22. [PMID: 40402395 PMCID: PMC12098195 DOI: 10.1007/s11914-025-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE OF REVIEW Mechanical loading of bone is an important physical stimulus for bone tissue remodeling and adaptation. It is transmitted from the extracellular matrix all the way to the osteocyte nucleus via the extracellular matrix-integrin-cytoskeleton-nucleus system. Mitochondria are integral in sensing of mechanical loads to allow the cell to adapt to its environment. This review provides a background of mitochondrial distribution in osteocytes especially during mechanical loading, discussing the importance of mitochondrial distribution in osteocyte mechanosensitivity and mechanotransduction. RECENT FINDINGS Mitochondria throughout the osteocyte are highly dynamic and provide essential metabolic and signal functions to regulate osteocyte morphology and function. They undergo the processes of fission and fusion accompanied by mitochondrial DNA distribution. The mitochondrial network structure and function in osteocytes can be regulated by mechanical loading. Interestingly, mitochondria can be transmitted by osteocytes into adjacent cells to communicate with them via tunneling nanotubes, migrasomes, and blebbisomes, causing changes in cell morphology and/or function. Mitochondrial distribution in or out osteocytes can be rearranged by physical and (bio)chemical signals via fission and fusion, as well as tunneling nanotubes, migrasomes, and blebbisomes. Mechanical loading-induced changes in mitochondria may drive signaling pathways of cell function in aging and diseases. More insights into interactions between neighbouring osteocytes and between osteocytes and other cell types would facilitate the development of new strategies to apply mitochondrial therapy for bone-related diseases.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, Amsterdam, 1081 LA, The Netherlands
| | - Peter A Nolte
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, Amsterdam, 1081 LA, The Netherlands.
- Department of Orthopedic Surgery, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM, Hoofddorp, The Netherlands.
| |
Collapse
|
17
|
Lin Y, Chen M, Yu Y, Xu P, Chen F, Zhou S, Xu J, Wu W, Zhu S, An Y, Zhang H, Wang W. Facile preparation of isolation columns filled with integral hybrid materials for efficient isolation of extracellular vesicles from microliter sample. Anal Chim Acta 2025; 1352:343939. [PMID: 40210292 DOI: 10.1016/j.aca.2025.343939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) and their anomalously altered cargoes represent a promising avenue for clinical diagnostics and prognostics. A critical challenge in EV research is the efficient isolation of these vesicles from complex biological samples with high recovery and purity. Although various of materials have good performance in EV isolation, these materials focus on the nanomaterials, which require multiple solution transfer steps in their use process. It will inevitably lead to sample loss, and is difficult to combine with online sample processing methods. RESULTS In this study, we introduce a novel isolation column for isolation of EVs, termed EvBHM, which leverages a bi-functional hybrid monolith and a polyethylene (PE) sieve plate. This design integrates the membrane insertion of distearoyl phospholipid ethanolamine (DSPE) with metal affinity chromatography (MAC), utilizing the interaction between titanium ions and the phospholipid membrane of EVs. The PE sieve plate serves as a robust support for the pore structure. This method provides a straightforward and user-friendly approach to prepare the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or plasma, ensuring minimal sample loss and high purity. Consequently, 37 up-regulated and 91 down-regulated proteins of plasma in colorectal cancer (CRC) patients are found over the health donors, and serval of them are associated with the occurrence and development of CRC. SIGNIFICANCE This method provides a straightforward and user-friendly approach to prepare of the isolation column, which demonstrates superior enrichment efficiency for EVs from microliter of cell culture media or serum as low as 10 μL, ensuring minimal sample loss and high purity. The results suggest this isolated method based on EvBHM isolation column is a promising strategy to search biomarkers for early diagnosis of cancers.
Collapse
Affiliation(s)
- Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Pengfei Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fengyu Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Song Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yuxin An
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Hangzhou, 310051, China.
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
18
|
Xu R, Lu Y, Cai L, Zhang L. Utilizing Extracellular Vesicles from Phaeodactylum tricornutum as a Novel Approach for Protecting the Skin from Oxidative Damage. ACS Biomater Sci Eng 2025. [PMID: 40396567 DOI: 10.1021/acsbiomaterials.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Oxidative stress is a principal factor contributing to skin damage induced by deleterious stimuli, including ultraviolet (UV) radiation. Microalgae-derived extracellular vesicles (EVs), particularly those from Phaeodactylum tricornutum (PTEV), are gaining recognition as a potential therapeutic avenue for restoring skin homeostasis, owing to their scalable production and multifaceted biological activities. This study evaluates the therapeutic effects of PTEV on oxidative damage in H2O2-stimulated HaCaT cells and UV-exposed KM mouse models, based on the extraction and characterization of PTEV. Subsequently, the oxidative stress injury model of HaCaT cells induced by H2O2 and the acute photodamage model of KM mice skin induced by UV were established. The results show that HaCaT cells exhibit a time-dependent uptake of PTEV, confirming that PTEV is nontoxic and has the potential for intercellular cross-boundary regulation. Treatment with PTEV can enhance the vitality of H2O2-stimulated HaCaT cells, reduce intracellular ROS levels, and increase antioxidant enzyme activity in the cells. Further evaluation revealed that PTEV can inhibit UV-induced thickening of the epidermis and degradation of collagen fibers in mice by suppressing the overexpression of matrix metalloproteinase (MMP-3) induced by UV. It enhances the expression of type I collagen (COL1A1) and increases the activity of antioxidant enzymes, as well as the overall antioxidant capacity of tissues. Additionally, PTEV reduces the increase in malondialdehyde levels and lowers the expression levels of inflammatory factors TNF-α and IL-6, thereby protecting the skin barrier and function in mice with acute photodamage. Continuous production of PTEV offers promising applications in therapeutic strategies.
Collapse
Affiliation(s)
- Ran Xu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ying Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Litao Zhang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
19
|
Liu R, Su X, Yang L, Xiao D. METTL3-mediated m⁶A methylation in cardiac diseases: pathogenic roles and therapeutic potential. Cell Biol Toxicol 2025; 41:87. [PMID: 40394351 PMCID: PMC12092566 DOI: 10.1007/s10565-025-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Cardiac dysfunction is a leading cause of death each year, putting heavy burdens on the global healthcare system. To improve our understanding of cardiac disease, novel perspectives for exploring their pathogenesis mechanisms are needed, which contributes to finding novel diagnoses and therapy targets for cardiac disease. To be noteworthy, researchers have paid great attention to understanding the pathogenesis of cardiac diseases from the perspective of methyltransferase-like 3 (METTL3, the catalytic core)-mediated RNA N6-methyladenosine modification and targeting METTL3 for therapy. Therefore, we aim to evaluate the significance of METTL3 in cardiac diseases. In the present review, we summarize and analyze all studies reporting the involvement of METTL3 in cardiac diseases (acute myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, and cardiac fibrosis) to interpret their interrelationship. This review suggests that METTL3 is a risk gene for cardiac diseases, which shows great promise as a disease diagnosis and prognosis biomarker and is poised to serve as an important target in drug development. Collectively, this review presents a comprehensive, cutting-edge overview of METTL3 in cardiac diseases, which could be a valuable reference for researchers to understand disease pathogenesis and develop novel drugs.
Collapse
Affiliation(s)
- Ruida Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- West China, School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Yang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongqiong Xiao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Chengdu Hi-Tech Zong Hospital for Women and Children, Chengdu, China.
| |
Collapse
|
20
|
Longo A, Manganelli V, Misasi R, Riitano G, Caglar TR, Fasciolo E, Recalchi S, Sorice M, Garofalo T. Extracellular Vesicles in the Crosstalk of Autophagy and Apoptosis: A Role for Lipid Rafts. Cells 2025; 14:749. [PMID: 40422252 DOI: 10.3390/cells14100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Autophagy and apoptosis are two essential mechanisms regulating cell fate. Although distinct, their signaling pathways are closely interconnected through various crosstalk mechanisms. Lipid rafts are described to act as both physical and functional platforms during the early stages of autophagic and apoptotic processes. Only recently has a role for lipid raft-associated molecules in regulating EV biogenesis and release begun to emerge. In particular, lipids of EV membranes are essential components in conferring stability to these vesicles in different extracellular environments and/or to facilitate binding or uptake into recipient cells. In this review we highlight these aspects, focusing on the role of lipid molecules during apoptosis and secretory autophagy pathways. We describe the molecular machinery that connects autophagy and apoptosis with vesicular trafficking and lipid metabolism during the release of EVs, and how their alterations contribute to the development of various diseases, including autoimmune disorders and cancer. Overall, these findings emphasize the complexity of autophagy/apoptosis crosstalk and its key role in cellular dynamics, supporting the role of lipid rafts as new therapeutic targets.
Collapse
Affiliation(s)
- Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Tuba Rana Caglar
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Elena Fasciolo
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
21
|
Wu J, Jin Z, Fu T, Qian Y, Bian X, Zhang X, Zhang J. Extracellular Vesicle-Based Drug Delivery Systems in Cancer Therapy. Int J Mol Sci 2025; 26:4835. [PMID: 40429976 PMCID: PMC12112466 DOI: 10.3390/ijms26104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles secreted by cells and ubiquitously present in various biofluids. They not only mediate intercellular communication but also serve as promising drug carriers that are capable of delivering therapeutic agents to target cells through their inherent physicochemical properties. In this review, we summarized the recent advances in EV isolation techniques and innovative drug-loading strategies. Furthermore, we emphasized the distinct advantages and therapeutic applications of EVs derived from different cellular sources in cancer treatment. Finally, we critically evaluated the ongoing clinical trials utilizing EVs for drug delivery and systematically assessed both the opportunities and challenges associated with implementing EV-based drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (J.W.); (Z.J.); (T.F.); (Y.Q.); (X.B.)
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (J.W.); (Z.J.); (T.F.); (Y.Q.); (X.B.)
| |
Collapse
|
22
|
Hegeman CV, Elsharkasy OM, Driedonks TAP, Friesen KRJ, Vader P, de Jong OG. Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery. J Control Release 2025; 384:113853. [PMID: 40393529 DOI: 10.1016/j.jconrel.2025.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/07/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The CRISPR/Cas9 toolbox consists of modular nucleases that can be employed to efficiently modify genomic sequences with high specificity. However, delivery of the large Cas9-sgRNA ribonucleoprotein (RNP) complexes remains challenging due to their immunogenicity, size, and overall negative charge. An approach to overcome these limitations is the use of extracellular vesicles (EVs) as intracellular delivery vehicles. EVs exhibit the natural ability to carry and deliver RNA and proteins across biological barriers, and can be engineered to load and deliver a variety of biotherapeutic molecules. Previous studies have shown that efficient EV-mediated cargo delivery does not only require active loading strategies, but also benefits from strategies to release cargo from the EV membrane. Here, we load Cas9 RNP complexes into EVs by expressing sgRNAs containing MS2 aptamers (MS2-sgRNAs), alongside Cas9 and a fusion protein of CD63 and tandem MS2 coat proteins (MCPs). We demonstrate that efficient Cas9 RNP delivery can also be facilitated by modulating the binding affinity between MS2 aptamers and the MCPs. To study the effect of altering the binding affinity between the MS2 hairpin and the MCP on Cas9 RNP delivery, various mutations affecting the binding affinity were made in both the interacting MS2-hairpin and the RNA-binding domain of the MCPs. Comparing Cas9 RNP delivery of the modulated MS2-sgRNAs revealed that adapting binding affinity highly affects functional RNP delivery. Mutations resulting in high affinity did not facilitate efficient RNP delivery unless combined with a photo-inducible release strategy, showing that cargo release was a limiting factor in RNP delivery. Mutations that decreased affinity resolved this issue, resulting in Cas9 RNP delivery without the requirement of additional release strategies. However, further decreasing affinity resulted in decreased Cas9 gene-editing efficiency due to decreased levels of Cas9 RNP loading into EVs. A similar effect on functional delivery was seen after modification of the RNA-binding domain of the MCPs. Our results demonstrate that EVs are capable of functional Cas9-sgRNA complex delivery, and that modulation of binding affinity can be used to increase efficient functional delivery with non-covalent loading constructs, without the need for additional engineering strategies for cargo release.
Collapse
Affiliation(s)
- Charlotte V Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Omnia M Elsharkasy
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tom A P Driedonks
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kate R J Friesen
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Huang C, Li H, Zhang Z, Mou T, Wang D, Li C, Tian L, Zong C. From Mechanism to Therapy: The Role of MSC-EVs in Alleviating Radiation-Induced Injuries. Pharmaceutics 2025; 17:652. [PMID: 40430942 PMCID: PMC12114651 DOI: 10.3390/pharmaceutics17050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Radiation injury is a severe issue in both nuclear accidents and cancer radiotherapy. Ionizing radiation impairs the regenerative and repair capabilities of tissues and organs, resulting in a scarcity of effective therapeutic approaches to prevent or mitigate such injuries. Mesenchymal stem cells (MSCs) possess favorable biological characteristics and have emerged as ideal candidates for the treatment of radiation injury. However, the use of MSCs as therapeutic agents is associated with uncertainties in therapeutic efficacy, transient effects, and the risk of immune rejection. Recent advances in research have revealed that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) exhibit similar beneficial properties to MSCs and represent a promising cell-free therapy for mitigating radiation injuries. MSC-EVs are enriched with microRNAs (miRNAs), proteins, and lipids, which can modulate immune responses, inflammatory reactions, cell survival, and proliferation in irradiated tissues. This review synthesizes recent studies on the application of MSC-EVs in radiation injury, focusing on the therapeutic effects and mechanisms of MSC-EVs derived from various sources in radiation-induced diseases of different organs. The therapeutic potential of MSC-EVs for radiation injury provides valuable insights for addressing ionizing radiation-induced injuries and offers a reference for future clinical applications.
Collapse
Affiliation(s)
- Chong Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Heng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Zhiyue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Ting Mou
- School of Stomatology, Jiamusi University, Jiamusi 154007, China;
| | - Dandan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Chenlu Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Chunlin Zong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| |
Collapse
|
24
|
Li Z, Wang Y, Mo F, Wolter T, Hong R, Barrett A, Richmond N, Liu F, Chen Y, Yang X, Dempsey L, Hu Q. Engineering pyroptotic vesicles as personalized cancer vaccines. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01931-2. [PMID: 40379868 DOI: 10.1038/s41565-025-01931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/31/2025] [Indexed: 05/19/2025]
Abstract
Tumour vaccines are designed to stimulate the host's immune system against existing tumours or tumour recurrence. However, individual differences, tumour heterogeneity and side effects hinder the applications of current tumour vaccines and require the development of personalized cancer vaccines. To overcome these challenges, we engineered pyroptotic vesicles-extracellular vesicles formed during tumour cell pyroptosis-as a tumour vaccine platform. The extracted pyroptotic vesicles possess abundant tumour antigens and potent immune-stimulating ability and, loaded into a biocompatible hydrogel, they can be implanted into post-surgical tumour cavities to prevent tumour recurrence. The pyroptotic-vesicle-based vaccine outperforms both exosome- and apoptotic-body-based vaccines in inhibiting tumour recurrence and metastasis in different post-surgical mouse models. Mechanistic studies reveal that the pyroptotic-vesicle-based vaccine could stimulate robust antigen-specific dendritic cell and T cell immune responses against both artificial OVA antigens and cancer neoantigens. In sum, our vaccine platform can be tailored to stimulate robust antitumour immune responses for treating individual cancer patients.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Allie Barrett
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Richmond
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren Dempsey
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Yu Q, Ye S, Chen M, Sun P, Weng N. A novel function for exosomes in depression. Life Sci 2025; 369:123558. [PMID: 40089099 DOI: 10.1016/j.lfs.2025.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Exosomes are a class of extracellular vesicles that encompass a diverse array of bioactive molecules, including proteins, lipids, mRNA, and microRNA(miRNA). Virtually all cell types release exosomes under both physiological and pathological conditions. In addition to electrical and chemical signals, exosomes are an alternative route of signaling between cells in the brain. In the brain, they are involved in processes such as synaptic plasticity, neuronal stress response, intercellular communication, and neurogenesis. A number of studies have shown that exosomes regulate the occurrence and development of depression by participating in the regulation of hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, immune inflammatory response and other mechanisms, showing that they may become potential biological agents for the diagnosis and treatment of depression. In addition, exosomes have the ability to easily cross the blood-brain barrier, making them ideal drug or molecular delivery tools for the central nervous system. Engineered exosomes have good brain targeting ability, and their research in central nervous system diseases has begun to emerge. However, the molecular pathways involved in the pathogenesis of depression remain unknown, and further studies are needed to fully understand the role of exosomes in the development or improvement of depression. Therefore, in this review, we mainly focus on the diagnostic performance and therapeutic effect of exosomes in depression, and explore the advantages of exosomes as biomarkers and gene delivery vectors for depression.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Chinese Medicine, Jinan 250000, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shuyi Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Mengxue Chen
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Ning Weng
- Department of Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan, China.
| |
Collapse
|
26
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 PMCID: PMC12078259 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
28
|
Gao Y, Li X, Ding Y, Wang Y, Du J, Chen Y, Xu J, Liu Y. MiR-451a-Enriched Small Extracellular Vesicles Derived from Mg 2+-Activated DPSCs Induce Vascularized Bone Regeneration through the AKT/eNOS/NO Axis. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40364481 DOI: 10.1021/acsami.5c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Blood vessel formation is a necessary part of bone tissue regeneration. MSCs-sEVs play a vital role in the in vivo bone regeneration strategy. However, natural MSCs-sEVs suffer from limited blood vessel formation potency, which makes it difficult to induce vascularized bone regeneration. Here, sEVs derived from magnesium cation-activated DPSCs (Mg2+-EVs) are purified and found to have superior potential in promoting endothelial cell migration and angiogenesis, as well as BMSC proliferation and osteogenesis. The beneficial effects of Mg2+-EVs could be attributed to the enrichment of miR-451a and the subsequent regulation and activation of AKT/eNOS signaling pathways. On this basis, Mg2+-EVs are delivered on β-TCP-modified GelMA scaffolds for slow release and better bioavailability. The rat cranial defect model verifies that GelMA/β-TCP with Mg2+-EVs has enhanced potential of inducing vascularized bone regeneration. The present study provides a cation-activated strategy to modulate the cargos and contents of MSC-derived sEVs, obtaining desirable vascular promotion and bone regeneration potential. Furthermore, the developed β-TCP-modified delivery scaffolds represent a promising strategy for efficient loading and slow-release delivery of sEVs for clinical translation.
Collapse
Affiliation(s)
- Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yichen Ding
- Department of Endodontics, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| |
Collapse
|
29
|
Drescher S, Blume A. The 8th International Symposium on Phospholipids in Pharmaceutical Research - An update on current research in phospholipids presented at the biennial symposium of the Phospholipid Research Center Heidelberg. Eur J Pharm Sci 2025; 210:107126. [PMID: 40374026 DOI: 10.1016/j.ejps.2025.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
This Conference Report recaps recent advances in the research on phospholipids and their applications for advanced drug delivery and analytical purposes that have been presented at the "8th International Symposium on Phospholipids in Pharmaceutical Research" of the Phospholipid Research Center (PRC), held from September 09-11, 2024, at the University of Heidelberg, Germany. The PRC is a non-profit organization focused on expanding and sharing scientific and technological knowledge of phospholipids in pharmaceutical and related applications. This is accomplished by, e.g., funding doctoral and postdoctoral research projects at universities worldwide. The PRC organizes this symposium every two years, at which international experts from science and industry present innovative and new applications of phospholipids. This year's symposium highlighted advancements in lipid-based gene and RNA delivery, anisotropic lipid nanoparticles, PEGylation challenges, tetraether lipids for drug delivery, ethical considerations in publishing, multifunctional lipopeptides, and phospholipid applications in therapeutics. Discussions also showcased award-winning research on optimizing liposome drug compatibility, reflecting the expanding role of phospholipids in pharmaceutical science.
Collapse
Affiliation(s)
- Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515 D-69120, Heidelberg, Germany.
| | - Alfred Blume
- Phospholipid Research Center, Im Neuenheimer Feld 515 D-69120, Heidelberg, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry - Physical Chemistry, von-Danckelmann-Platz 4 D-06120, Halle (Saale), Germany
| |
Collapse
|
30
|
Zhu T, Zhou Y, Zhang L, Kong L, Tang H, Xiao Q, Sun X, Shen F, Zhou H, Ni W, Liu S, Gao H, Jin G, Jia X, Hua F. A transcriptomic and proteomic analysis and comparison of human brain tissue from patients with and without epilepsy. Sci Rep 2025; 15:16369. [PMID: 40350490 PMCID: PMC12066717 DOI: 10.1038/s41598-025-00986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
The present study was to investigate potential biomarkers and therapeutic targets for epilepsy by conducting a transcriptomic and proteomic analysis of human brain tissue from patients with epileptic lesions. Brain tissue was collected from the epileptic lesions after surgical resection and surgical removed brain tissue from non-epileptic patients. Using RNA sequencing and iTRAQ-based proteomic analysis, The transcriptomic analysis identified 1,604 DEGs, with 584 upregulated and 1,020 downregulated. The proteomic analysis identified 694 DEPs, with 331 upregulated and 363 downregulated. The combined transcriptomic and proteomic analysis showed that the DEGs and DEPs were mainly enriched in biological processes such as D-aspartate transport, transmembrane transport, cell junctions, vesicle transport, and metabolic processes. Tubulin polymerization promoting protein family member-3 (TPPP3), proprotein convertase subtilisin/kexin type-1 (PCSK1), and dihydropyrimidinase-like 3 (DPYSL3) were significantly altered in the epilepsy patients, and their expression trends were confirmed by the RT-qPCR, WB, and IHC staining results. By integrating transcriptomic and proteomic analyses, we identified genes and proteins expressed differently in epileptic and non-epileptic patients and their associated biological processes. Three key DEPs (TPPP3, PCSK1, and DPYSL3) were identified, indicating their potential significance in the pathological mechanisms of epilepsy.
Collapse
Affiliation(s)
- Taiyang Zhu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Zhang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingwen Kong
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hai Tang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qihua Xiao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Sun
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fanyu Shen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department Neurology, West China Hospital, Sichuan University, Guo Xue Lane 37, Chengdu, 610041, Sichuan, PR China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huimin Gao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Jia
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, 30912, USA.
| |
Collapse
|
31
|
Jin Y, Xu C, Zhu Y, Gu Z. Extracellular vesicle as a next-generation drug delivery platform for rheumatoid arthritis therapy. J Control Release 2025; 381:113610. [PMID: 40058499 DOI: 10.1016/j.jconrel.2025.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation and progressive damage to connective tissue. It is driven by dysregulated cellular homeostasis, often leading to autoimmune destruction and permanent disability in severe cases. Over the past decade, various drug delivery systems have been developed to enable targeted therapies for disease prevention, reduction, or suppression. As an emerging therapeutic platform, extracellular vesicles (EVs) offer several advantages over conventional drug delivery systems, including biocompatibility and low immunogenicity. Consequently, an increasing number of studies have explored EV-based delivery systems in the treatment of RA, leveraging their natural ability to evade phagocytosis, prolong in vivo half-life, and minimize the immunogenicity of therapeutic agents. In this review, we first provide an in-depth overview of the pathogenesis of RA and the current treatment landscape. We then discuss the classification and biological properties of EVs, their potential therapeutic mechanisms, and the latest advancements in EVs as drug delivery platforms for RA therapy. We emphasize the significance of EVs as carriers in RA treatment and their potential to revolutionize therapeutic strategies. Furthermore, we examine key technological innovations and the future trajectory of EV research, focusing on the challenges and opportunities in translating these platforms into clinical practice. Our discussion aims to offer a comprehensive understanding of the current state and future prospects of EV-based therapeutics in RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yujuan Zhu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
32
|
Lei L, Zhou S, Zeng L, Gu Q, Xue H, Wang F, Feng J, Cui S, Shi L. Exosome-Based Therapeutics in Dermatology. Biomater Res 2025; 29:0148. [PMID: 40351703 PMCID: PMC12062580 DOI: 10.34133/bmr.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 05/14/2025] Open
Abstract
Exosomes (Exos) are tiny extracellular vesicles containing a variety of active biomolecules that play important parts in intercellular communication and influence the functions of target cells. The potential of Exos in the treatment of dermatological diseases has recently been well appreciated. This review highlights the constituents, function, and delivery of Exos, with a particular focus on their applications in skin therapy. Firstly, we offer a concise overview of the biochemical properties of Exos, including their sources, structures, and internal constituents. Subsequently, the biomedical functions of Exos and the latest advances in the extraction and purification of Exos are summarized. We further discuss the modes of delivery of Exos and underscore the potential of biomaterials in this regard. Finally, we summarize the application of Exo-aided therapy in dermatology. Overall, the objective of this review is to provide a comprehensive perspective on the applications and recent advancements of Exo-based approaches in treating skin diseases, with the intention of guiding future research efforts.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoyu Zhou
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lingyao Zeng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| | - Shumao Cui
- School of Food Science and Technology,
Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
33
|
Grange C, Deorsola L, Degiovanni B, Tomanin D, Prudente D, Peruzzi L, Pace Napoleone C, Bussolati B. Urinary Extracellular Vesicle Analysis Reveals Early Signs of Kidney Inflammation and Damage in Single Ventricle Paediatric Patients After Fontan Operation. Int J Nanomedicine 2025; 20:5907-5922. [PMID: 40356857 PMCID: PMC12067722 DOI: 10.2147/ijn.s483534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/18/2025] [Indexed: 05/15/2025] Open
Abstract
Background Extracellular vesicles present in urine (uEVs) are gaining considerable interest as biomarkers, to monitor and predict kidney physio-pathological state. Patients with single ventricle defects and hemodynamic stabilization by Fontan intervention may develop kidney dysfunction as one of the most prevalent extracardiac co-morbidity. Our study aimed to characterize uEVs in children with single ventricle heart defects who underwent Fontan surgery, focusing on markers for monitoring and predicting kidney function, to get physio-pathological insights on possible mechanisms of tissue damage and progression. Methods We isolated uEVs from urine of 60 paediatric patients affected by single ventricle defects, and from 10 healthy subjects. We analysed uEVs to assess the presence of the reno-protective hormone Klotho, using super resolution microscopy of single uEVs and ELISA. Moreover, we analysed the levels of markers of kidney regeneration, such as CD133 and CD24, and of inflammation using a bead-based cytofluorimetric multiplex analysis. The markers' levels were correlated with patients' demographical, clinical and surgical data. Results uEVs from children with single ventricle defects showed reduced levels of Klotho and CD133, compared with the ones of healthy subjects. In parallel, the levels of inflammatory markers (CD3, CD56, and HLA-DR) were significantly higher. Interestingly, levels of inflammatory markers correlated with age of patients and distance from surgery. Conclusion This study demonstrates that single ventricle patients, who underwent Fontan's surgery, present altered levels of uEV biomarkers related to regeneration, inflammation and fibrosis, suggesting the presence of early signs of kidney damage and inflammation, compatible with the complexity of the pathology.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Luca Deorsola
- Città della Salute e della Scienza Hospital, Torino, Italy
- Pediatric and Congenital Cardiac Surgery, Regina Margherita Children’s Hospital, Torino, Italy
| | - Beatrice Degiovanni
- Città della Salute e della Scienza Hospital, Torino, Italy
- Pediatric and Congenital Cardiac Surgery, Regina Margherita Children’s Hospital, Torino, Italy
| | - Dario Tomanin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Diego Prudente
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Licia Peruzzi
- Città della Salute e della Scienza Hospital, Torino, Italy
- Pediatric Nephrology Dialysis and Transplant Unit, Regina Margherita Children’s Hospital, Torino, Italy
| | - Carlo Pace Napoleone
- Città della Salute e della Scienza Hospital, Torino, Italy
- Pediatric and Congenital Cardiac Surgery, Regina Margherita Children’s Hospital, Torino, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
35
|
Izhar M, Lesniak MS. Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70051. [PMID: 40330713 PMCID: PMC12053894 DOI: 10.1002/jex2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Extracellular vesicles (EVs) are small particles released by various cells, including cancer cells. They play a significant role in the development of different cancers, including brain metastasis. These EVs transport biomolecular materials such as RNA, DNA, and proteins from tumour cells to other cells, facilitating the spread of primary tumours to the brain tissue. EVs interact with the endothelial cells of the blood-brain barrier (BBB), compromising its integrity and allowing metastatic cells to pass through easily. Additionally, EVs interact with various cells in the brain's microenvironment, creating a conducive environment for incoming metastatic cells. They also influence the immune system within this premetastatic environment, promoting the growth of metastatic cells. This review paper focuses on the research regarding the role of EVs in the development of brain metastasis, including their impact on disrupting the BBB, preparing the premetastatic environment, and modulating the immune system. Furthermore, the paper discusses the potential of EVs as diagnostic and prognostic biomarkers for brain metastasis.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Maciej S. Lesniak
- Department of Neurological SurgeryLou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
36
|
Liu W, Li L, Bai X, Zhang M, Lv W, Ma Y, Sun Y, Zhang H, Jiang Q, Yao Q, Zhang Z. Osteosarcoma Cell-Derived Migrasomes Promote Macrophage M2 Polarization to Aggravate Osteosarcoma Proliferation and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409870. [PMID: 40056029 PMCID: PMC12061288 DOI: 10.1002/advs.202409870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/22/2025] [Indexed: 05/10/2025]
Abstract
The local tumor microenvironment (TME) of osteosarcoma (OS) includes several tumor niches that control tumor growth and cell extravasation. Migrasomes are recently discovered extracellular vesicles produced during cell migration. Herein, the results show OS cell production of migrasomes in vivo and in vitro. Osteosarcoma cell-derived migrasomes (OCDMs) aggravate OS proliferation and metastasis, and impeding OCDM formation alleviates the malignant progression of OS. Further studies revealed that migrasome-associated nanoparticles (MANPs) are the functional unit of OCDMs and that OCDMs promote M2 polarization of macrophages in the TME in a MANPs-dependent manner. Moreover, milk fat globule-EGF factor 8 (MFGE8) in OCDMs is identified as a key protein that enhances phagocytosis to promote the M2 polarization of macrophages. Overall, the results reveal that OCDMs enhance the M2 polarization of macrophages in the TME to aggravate OS progression via MFGE8. These findings may guide the development of OCDM-modulating OS therapies.
Collapse
Affiliation(s)
- Wanshun Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for OrthopedicsSports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
| | - Lei Li
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
| | - Xiaoming Bai
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
| | - Mengxue Zhang
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
| | - Wei Lv
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
| | - Yongbin Ma
- Department of Central LaboratoryJintan HospitalJiangsu University500 Avenue JintanJintanJiangsu213200P. R. China
| | - Yuzhi Sun
- Department of Orthopaedic SurgeryNanjing First HospitalNanjing Medical University68 Changle RoadNanjingJiangsu210006P. R. China
| | - Hongjing Zhang
- Department of Orthopaedic SurgeryNanjing First HospitalNanjing Medical University68 Changle RoadNanjingJiangsu210006P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for OrthopedicsSports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
| | - Qingqiang Yao
- Department of Orthopaedic SurgeryNanjing First HospitalNanjing Medical University68 Changle RoadNanjingJiangsu210006P. R. China
| | - Zhi‐Yuan Zhang
- School of Basic Medical SciencesNanjing Medical University101 Longmian AvenueNanjingJiangsu211166P. R. China
| |
Collapse
|
37
|
Tian Y, Zhang D, Yang H, Zhang X, Xu S. Impact of FASN-enriched EVs on endothelial cell function in obstructive sleep apnea hypopnea syndrome. J Pharm Anal 2025; 15:101251. [PMID: 40521370 PMCID: PMC12166414 DOI: 10.1016/j.jpha.2025.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 06/18/2025] Open
Abstract
Endothelial dysfunction is a key factor linking obstructive sleep apnea hypopnea syndrome (OSAHS) with cardiovascular diseases. In this study, we used advanced proteomics and metabolomics approaches to investigate the impact of extracellular vesicles (EVs) derived from the serum of OSAHS patients on endothelial function. Our multi-omics analysis identified dysregulated pathways related to fatty acid metabolism, apoptosis regulation, and inflammatory responses, highlighting fatty acid synthase (FASN) as a crucial player in OSAHS-induced endothelial dysfunction. Both in vitro and in vivo experiments demonstrated that FASN-enriched EVs impair endothelial cell viability and disrupt metabolic homeostasis, offering new insights for the development of targeted therapies for cardiovascular complications associated with OSAHS.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Huaian Yang
- Ear, Nose, Throat, Head and Neck Surgery Comprehensive Ward, Shengjing Hospital of China Medical University, Shenyang 110020, China
| | - Xiaoli Zhang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shengqun Xu
- Ear, Nose, Throat, Head and Neck Surgery Comprehensive Ward, Shengjing Hospital of China Medical University, Shenyang 110020, China
| |
Collapse
|
38
|
Yao Y, Yin Y, Shuai F, Lam W, Zhou T, Xie Y, He X, Han X. M2 Macrophage-Derived Extracellular Vesicles Reprogram Immature Neutrophils into Anxa1 hi Neutrophils to Enhance Inflamed Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416159. [PMID: 40277454 DOI: 10.1002/advs.202416159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Indexed: 04/26/2025]
Abstract
Periodontitis is a microbiome-related inflammation that can lead to irreversible bone reduction and even tooth loss. This study reveals that macrophage polarization states significantly influence periodontal homeostasis, with M2 macrophage-derived extracellular vesicles (M2-EVs) playing a pivotal role in mitigating periodontitis-induced bone loss. Single-cell RNA sequencing of periodontal tissues treated with M2-EVs uncovered a unique Anxa1hi neutrophil subpopulation exhibiting pro-reparative properties. This subpopulation is characterized by immaturity and demonstrated osteogenic and angiogenic capabilities in vivo, partially mediated through the secretion of oncostatin M (OSM) signals. The findings suggest that this functional heterogeneity arises from M2-EVs disrupting the neutrophil maturation trajectory, with pivotal reprogramming genes, such as Acvrl1 and Fpr2, driving the differentiation of the Anxa1hi reparative subpopulation. This work underscores the potential of targeting M2 macrophage-neutrophil interactions to promote the regeneration of inflamed bone tissues.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Waishan Lam
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaxin Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuesong He
- The ADA Forsyth Institute, 100 Chestnut Street, Somerville, MA, 02143, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
39
|
Lin H, Yin L, Liu W, Li R, Jiang T, Yang M, Cao Y, Wang S, Yu Y, Chen C, Guo X, Wang W, Liu H, Dai Y, Yan J, Lin Y, Ding Y, Ruan C, Yang L, Wu T, Tao J, Chen L. Muscle-Derived Small Extracellular Vesicles Mediate Exercise-Induced Cognitive Protection in Chronic Cerebral Hypoperfusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410209. [PMID: 40271743 DOI: 10.1002/advs.202410209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 04/06/2025] [Indexed: 04/25/2025]
Abstract
Physical exercise protects against cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, the mechanisms through which exercise sends signals from the periphery to the central nervous system remain incompletely understood. This study demonstrated that exercise promotes the secretion of muscle-derived small extracellular vesicles (sEVs), which facilitate interorgan communication between the muscle and the brain. Systematic delivery of muscle-derived sEVs enhances synaptic plasticity and alleviated cognitive impairment in CCH. Notably, miRNA sequencing reveal miR-17/20a-5p as key cargos in sEVs involved in the exercise-induced muscle-brain crosstalk. Muscle-derived sEVs are also identified as the primary source of swimming-induced miR-17/20a-5p in circulating sEVs. Mechanistically, miR-17/20a-5p binds to the DEP-domain containing mTOR-interacting protein (DEPTOR) and activates the mammalian target of rapamycin (mTOR) pathway in the hippocampus. Depletion of miR-17/20a-5p from muscle-derived sEVs impairs the exercise-induced enhancement of synaptic plasticity and cognitive function. Moreover, overexpression of DEPTOR in the hippocampus attenuates the cognitive benefits of exercise. Conversely, hippocampus-specific activation of mTOR reverses these effects, highlighting the crucial role of mTOR in mediating the positive effects of exercise. Collectively, these findings identify miR-17/20a-5p in muscle-derived sEVs as the exercise-induced myokine with potent effects on the brain, emphasizing the therapeutic potential of exercise in managing cognitive impairment.
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Lianhua Yin
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China
| | - Weilin Liu
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Rui Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Tao Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yan Yu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Cong Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoqin Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wenju Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huanhuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanting Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanyi Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Chendong Ruan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Lei Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Tiecheng Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Lidan Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| |
Collapse
|
40
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
41
|
Liao J, Liu J, Zhou Y, Shi L, Chen YJ, Guo S, Zhang CY, Liu XY, Tao WQ, Xiang JJ, Yang-Lei, Liu G, Wang W, Kuang L, Ran LY. L1CAM + extracellular vesicles derived from the serum of adolescents with major depressive disorder induce depression-like phenotypes in adolescent mice. J Affect Disord 2025; 375:180-191. [PMID: 39842672 DOI: 10.1016/j.jad.2025.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND It has been reported that L1 cell adhesion molecule (L1CAM) antibody can capture neuron-derived extracellular vesicles (NDEVs) derived from peripheral blood. This antibody is significantly associated with occurrence of adult psychiatric disorders. However, the role and mechanism of L1CAM+ EVs (L1+ EVs) in adolescent with major depressive disorder (AMDD) is not well understood. This research aimed to explore the function and potential mechanism of L1+ EVs and miRNAs genes in AMDD. METHODS L1+ EVs derived from the serum of AMDD and healthy controls (HC) were transplanted into adolescent mice via tail vein. Their effects were explored using behavioral tests, hippocampal Nissl staining, and whole genome mRNA sequencing. MiRNAs expression in L1+ EVs was evaluated by whole-genome sequencing and qRT-PCR. Bioinformatics analysis was employed to explore the possible pathogenic molecular mechanisms of these miRNAs in AMDD. RESULTS Transplantation of L1+ EVs from AMDD induced depression-like behavior and hippocampal neuronal damage in adolescent mice and aberrant expression of 298 mRNA genes. The molecular signals related to MDD were enriched in the top pathways of the differentially expressed genes. Compared with HC, miR-375-3p and miR-200a-3p were upregulated in L1+ EVs from AMDD, miR-375-3p was also increased in the hippocampus of AMDD serum L1+ EVs-recipient mice. Bioinformatics analysis revealed that miR-375-3p might modulate the network of molecules associated with the MAPK pathway via protein interaction involving hippocampal differential genes Cadm2, Cacna2d1, and Casz1. CONCLUSION MiR-375-3p might contribute to L1+ EVs-induced AMDD. L1+ EVs miR-375-3p and miR-200a-3p could potentially serve as potential biomarkers for AMDD.
Collapse
Affiliation(s)
- Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jie Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yang Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yu-Jia Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shan Guo
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Chen-Yu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yang-Lei
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China.
| |
Collapse
|
42
|
Zhang J, Li Y, Li L, Li Y, Cao Y, Lei H. Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins. ACS NANO 2025; 19:14177-14186. [PMID: 40173012 DOI: 10.1021/acsnano.5c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.
Collapse
Affiliation(s)
- Junsheng Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luofei Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Hai Lei
- School of Physics, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
44
|
Mohammad Rahimi H, Mahdavi F, Eslami N, Nemati S, Mirjalali H. The Effects of Extracellular Vesicles Derived from Hydatid Cyst Fluid on the Expression of microRNAs Involved in Liver Fibrosis. Acta Parasitol 2025; 70:89. [PMID: 40220059 DOI: 10.1007/s11686-025-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Hydatidosis is a zoonotic neglected disease caused by the larval stage of Echinococcus granulosus. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles (EVs). However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. The current study aimed to investigate the effect of HCF derived EVs on expression of fibrotic and anti-fibrotic miRNAs in THP-1 cell line. METHODS In the current study, EVs were isolated using ultracentrifugation from wild-infected sheep HCF and characterized by western blot, electron microscope, and size distribution analysis. The effects of EVs on the expression levels of microRNAs (mir-16, mir-29a, and mir-155) involved in liver fibrosis were investigated using quantitative real-time PCR (qRT-PCR), 3 and 24 h after incubation. RESULTS Western blot analyses confirmed the expression of CD63 marker, while Calnexin and CD81 were absent in EVs samples. The SEM and morphology revealed round shape vesicles. The DLS analysis showed average size distribution 130.6 nm diameter. The expression levels of mir-16 and mir-29a were significantly upregulated after 3 h for 8.66 and 3.420, respectively, while they were significantly downregulated after 24 h for 3.853 and 1.859, respectively. CONCLUSION The main mechanism of the communication between EVs derived from HCF and their host remains unclear. Our results suggest that HC may modulate the expression of miRNAs, involved in liver fibrosis via EVs.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahdavi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Eslami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Sun Y, Zhao M, Cheng L, He X, Shen S, Lv J, Zhang J, Shao Q, Yin W, Zhao F, Sun R, Lu P, Ji Y, Wang XW, Ji J. Reduction of alternative polarization of macrophages by short-term activated hepatic stellate cell-derived small extracellular vesicles. J Exp Clin Cancer Res 2025; 44:117. [PMID: 40211350 PMCID: PMC11983935 DOI: 10.1186/s13046-025-03380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Activated hepatic stellate cells (HSCs) induce alternative (M2) polarization of macrophages and contribute to the progression of fibrosis and hepatocellular carcinoma (HCC). However, the effects of small extracellular vesicles released by HSCs (HSC-sEVs) during activation remain largely unknown. METHODS The aim of this study was to investigate the role of extracellular vesicles released by HSCs (HSC-sEVs) at different stages of activation in macrophage polarization. The effects of sEVs from short-term activated and long-term activated HSCs on liver macrophages was studied. Small RNA sequencing analyses were performed to obtain differential miRNAs transported by the short-term and long-term activated HSC- sEVs. The in vivo effects of short-term activated HSC-sEV-specific miRNA on liver macrophage and liver fibrosis were confirmed in a CCl4-induced liver injury mouse model. To study the tumor suppressive effects of the macrophages educated by short-term activated HSC-sEV-specific miRNA, human hepatoma cells were mixed and subcutaneously cotransplanted with miR-99a-5p mimic-pretreated macrophages. RESULTS We found that consistent with activated HSCs, long-term activated HSC-sEVs (14dHSC-sEVs) induce bone marrow-derived monocytes (MOs) toward an M2 phenotype, but short-term activated HSC-sEVs (3dHSC-sEVs) induce the resident macrophages (Kupffer cells, KCs) toward a classically activated (M1) phenotype. We identified five 3dHSC-sEV-specific miRNAs, including miR-99a-5p. In vitro and in vivo experiments support that miR-99a-5p negatively regulates alternative polarization of macrophages, decreases collagen deposition in chronic liver injury model, and suppresses the progression of hepatoma in a xenograft model partially by targeting CD93. CONCLUSION Collectively, our work reveals an unexpected proinflammatory role of 3dHSC-sEVs, preliminarily explores the underlying mechanism, and evaluates the therapeutic potential of 3dHSC-sEV-specific miR-99a-5p for liver fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Min Zhao
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Li Cheng
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaoqian He
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Shiqi Shen
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Jiaying Lv
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Junyu Zhang
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226001, China
| | - Wenxuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
| | - Fengbo Zhao
- Basic Medical Research Center, Medical School of Nantong University, Nantong, 226001, China
| | - Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226001, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, China.
- Key Laboratory of Microenvironment and Translational Cancer Research, Nantong, 226001, China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
46
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
47
|
Liu XJ, Ma ZS, Li Y, Fan TB, Ge ZW, Ou ZJ, Ou JS. A Simple Modification Results in a Significant Improvement in Measuring the Size of Extracellular Vesicles. Curr Med Sci 2025; 45:244-252. [PMID: 40205301 DOI: 10.1007/s11596-025-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Size distribution is an important biophysical property of extracellular vesicles (EVs). EVs include small EVs (s-EVs) and large EVs (l-EVs) by size. Differential ultracentrifugation (dUC) is widely used to separate EVs from biofluids, but it can precipitate large impurity particles. Dynamic light scattering (DLS) is a simple and fast method for analyzing the size distribution of EVs. However, this approach is nonideal for heterogeneous and polydisperse samples since a small quantity of large impurity particles can markedly disturb the DLS results. Here, we developed a simple method to improve the reliability of DLS measurements. METHODS Plasma was obtained from 13 volunteers. The plasma was first processed by dUC to obtain crude l-EVs. The crude l-EVs were filtered with syringe filters (pore size of 1 μm and membrane material of hydrophilic polyvinylidene fluoride (PVDF)) to remove large impurity particles from l-EVs. The size distributions of the crude l-EVs and filtered l-EVs were measured via DLS. RESULTS After the samples were filtered, the coefficients of variation of the hydrodynamic radius and Peak 1 intensity of the filtered l-EVs decreased from 20.39% (12.76-28.96%) and 20.44% (14.58-28.32%) to 3.05% (1.79-4.72%) and 3.43% (1.76-5.88%), respectively, compared with those of the crude l-EVs. CONCLUSION These findings suggest that filtration can effectively separate circulating l-EVs in plasma to remove large impurity particles and make samples suitable for characterization by DLS. Our findings provide a simple method to improve precision via DLS to measure the size distribution of EVs.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Tai-Bing Fan
- Department of Children Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen-Wei Ge
- Department of Adult Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Cardiovascular Department, Henan Provincial Chest Hospital, Zhengzhou, 450003, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
48
|
Cai XY, Zheng CX, Guo H, Fan SY, Huang XY, Chen J, Liu JX, Gao YR, Liu AQ, Liu JN, Zhang XH, Ma C, Wang H, Fu F, Peng P, Xu HK, Sui BD, Xuan K, Jin Y. Inflammation-triggered Gli1 + stem cells engage with extracellular vesicles to prime aberrant neutrophils to exacerbate periodontal immunopathology. Cell Mol Immunol 2025; 22:371-389. [PMID: 40016585 PMCID: PMC11955562 DOI: 10.1038/s41423-025-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Periodontitis is a prevalent and progressive detrimental disease characterized by chronic inflammation, and the immunopathological mechanisms are not yet fully understood. Mesenchymal stem cells (MSCs) play crucial roles as immunoregulators and maintain tissue homeostasis and regeneration, but their in vivo function in immunopathology and periodontal tissue deterioration is still unclear. Here, we utilized multiple transgenic mouse models to specifically mark, ablate and modulate Gli1+ cells, a critical and representative subset of MSCs in the periodontium, to explore their specific role in periodontal immunopathology. We revealed that Gli1+ cells, upon challenge with an inflammatory microenvironment, significantly induce rapid trafficking and aberrant activation of neutrophils, thus exacerbating alveolar bone destruction. Mechanistically, extracellular vesicles (EVs) released by Gli1+ cells act as crucial immune regulators in periodontal tissue, mediating the recruitment and activation of neutrophils through increased neutrophil generation of reactive oxygen species and stimulation of nuclear factor kappa-B signaling. Furthermore, we discovered that CXC motif chemokine ligand 1 (CXCL1) is exposed on the surface of EVs derived from inflammation-challenged Gli1+ cells to prime aberrant neutrophils via the CXCL1-CXC motif chemokine receptor 2 (CXCR2) axis. Importantly, specific inhibition of EV release from Gli1+ cells or pharmacological therapy with GANT61 ameliorates periodontal inflammation and alveolar bone loss. Collectively, our findings identify previously unrecognized roles of Gli1+ cells in orchestrating infiltration and promoting aberrant activation of neutrophils under inflammation, which provides pathological insights and potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Xin-Yue Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si-Yuan Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Yao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yu-Ru Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - An-Qi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Peng Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
49
|
Yu M, Su M, Tian Z, Pan L, Li Z, Huang E, Chen Y. Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413439. [PMID: 40041969 PMCID: PMC12021039 DOI: 10.1002/advs.202413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Indexed: 04/26/2025]
Abstract
Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.
Collapse
Affiliation(s)
- Miao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zongmeng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Enlai Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
50
|
Chen S, Bao Q, Xu W, Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J Nanobiotechnology 2025; 23:263. [PMID: 40170148 PMCID: PMC11960037 DOI: 10.1186/s12951-025-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Extracellular particles (EPs), including extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs), are multimolecular biomaterials released by cells that play a crucial role in intercellular communication. Recently, new subtypes of EPs associated with central nervous system (CNS), such as exophers and supermeres have been identified. These EPs provide new perspectives for understanding the pathological progression of CNS disorders and confer potential diagnostic value for liquid biopsies in neurodegenerative diseases (NDs). Moreover, EPs have emerged as promising drug delivery vehicles and targeted platforms for CNS-specific therapies. In this review, we delineate the landscape of EP subtypes and their roles in the pathophysiology of CNS diseases. We also review the recent advances of EP-based diagnosis in NDs and highlight the importance of analytical platforms with single-particle resolution in the exploitation of potential biomarkers. Furthermore, we summarize the application of engineered EVs in the treatment of CNS diseases and outline the underexplored potential of NVEPs as novel therapeutic agents.
Collapse
Affiliation(s)
- Shenyuan Chen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qinghua Bao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|