1
|
Lee JH, Kim D, Kim Y, Kim DH, Park YC, Kim KH. Enzyme cascades for high-yield conversion of d-xylose into d-ribose by overcoming equilibrium constraints and enhancing selectivity. BIORESOURCE TECHNOLOGY 2025; 428:132435. [PMID: 40147566 DOI: 10.1016/j.biortech.2025.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
d-Ribose is essential for critical cellular functions and the synthesis of antiviral nucleosides. However, traditional chemical synthesis and fermentation methods of d-ribose production suffer from low yields and inefficient resource utilization. Here, we present a highly efficient enzymatic cascade strategy that utilizes selective phosphorylation and dephosphorylation processes, coupled with ATP regeneration to convert d-xylose into d-ribose with high yield. By optimizing this enzyme cascade, we achieved a substantial increase in d-ribose yield from 23.4 % to 93.5 % mol/mol, effectively overcoming the equilibrium limitations of sugar conversion processes. Notably, our approach allows for the selective conversion of d-xylose to d-ribose in lignocellulosic hydrolysates, even in the presence of d-glucose. This work demonstrates the highly efficient enzymatic conversion of d-xylose into d-ribose offering a competitive alternative to existing chemical synthesis methods. Our findings provide a novel approach to cellulosic biomass valorization and represent a significant contribution to the field of biorefinery.
Collapse
Affiliation(s)
- Ja Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Doyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yoonjoo Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Dey S, Dwivedi S, Sau A. Regioselective O-arylation of 6-hydroxy groups in carbohydrates. Carbohydr Res 2025; 552:109447. [PMID: 40048879 DOI: 10.1016/j.carres.2025.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/22/2025]
Abstract
We report an efficient method for regioselective O-arylation of the 6-hydroxy group of carbohydrates. The reaction involves a nucleophilic aromatic substitution reaction (SNAr) using electron-deficient arenes under mild conditions. Regioselectively monoarylated carbohydrate derivative was produced smoothly in the reaction by fine-tuning with the base. The pentafluoropyridine (P1) in combination with N, N-diisopropylethylamine (DIPEA) was successfully converted to regioselective O-arylated products of different positional hydroxy group free sugar derivatives with various functional groups.
Collapse
Affiliation(s)
- Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Shubhi Dwivedi
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Kawakatsu K, Usuki S, Jiang T, Taki N, Uesaka Y, Togawa H, Liu S, Einaga Y, Nakata K. Generation of Rare Sugars by Electrochemical Oxidation of d-Glucose Using Boron-Doped Diamond Electrode. J Am Chem Soc 2025. [PMID: 40340405 DOI: 10.1021/jacs.4c17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The electrochemical oxidation of biomass for the production of value-added chemicals represents a promising approach in the field of sustainable chemistry. In this study, we investigated the electrochemical conversion of d-glucose, a biomass-derived compound, using boron-doped diamond (BDD) electrodes under constant applied current (10 mA) or potentials (1.5-3.0 V vs Ag/AgCl). The reaction products were analyzed using high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) measurements, employing both p-aminobenzoic acid ethyl ester (ABEE) and l-tryptophan amide labeling methods to enable characterization. The results demonstrated that the BDD electrodes achieved 95.9% d-glucose degradation and successfully generated various rare sugars, including d-arabinose (0.126 mmol/L), d-erythrose (0.0544 mmol/L), d-glyceraldehyde, and l-glyceraldehyde (combined 0.148 mmol/L). Under identical conditions, Pt electrodes as a control showed only 10.2% d-glucose degradation with significantly lower rare sugar yields. The applied potential significantly influenced the product distribution, with optimal rare sugar production observed at 2.5 V vs Ag/AgCl, reflecting a balance between glucose oxidation and product degradation. Mechanistic studies suggest that the formation of rare sugars involves a series of oxidation and decarboxylation reactions, facilitated by electrochemically generated active species. The superior performance of the BDD electrodes is attributed to their wide potential window, efficient generation of oxidizing species, and unique surface characteristics. This research provides new insights into the electrochemical transformation of biomass-derived compounds and demonstrates the potential for sustainable production of high-value rare sugars, opening avenues for applications in food science, pharmaceuticals, and green chemistry.
Collapse
Affiliation(s)
- Kio Kawakatsu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Sho Usuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Tiangao Jiang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Naoko Taki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Yuma Uesaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Haru Togawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kazuya Nakata
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| |
Collapse
|
4
|
Stepanova EV, Shatskiy A, Doroshenko I, Dinér P, Kärkäs MD. Site-Selective C─H Bond Functionalization of Sugars. Angew Chem Int Ed Engl 2025; 64:e202424455. [PMID: 40013616 PMCID: PMC12051779 DOI: 10.1002/anie.202424455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Non-typical C-functionalized sugars represent a prominent yet hardly accessible class of biologically-active compounds. The available synthetic methodologies toward such sugar derivatives suffer either from an extensive use of protecting groups, requiring long and laborious synthetic manipulations, or from limited predictability and noncontrollable site-selectivity of the employed C-functionalization reactions. In this work, we disclose an alternative synthetic methodology toward nontypical sugars that allows facile, site-selective, and stereocontrolled C-functionalization of sugars through a traceless tethering approach. The described silyl-based redox-active tethering group appends directly to the unprotected sugar substrate and mediates the C-functionalization reaction through a photochemically-promoted 1,6-hydrogen atom transfer (HAT) mechanism, while transforming into a readily-removable silyl protecting group. The protocol is compatible with a variety of unprotected carbohydrate substrates featuring sensitive aglycons and a diverse set of coupling partners, providing a straightforward and scalable route to pharmaceutically relevant C-functionalized carbohydrate conjugates.
Collapse
Affiliation(s)
- Elena V. Stepanova
- Department of Chemistry, KTH Royal Institute of TechnologyTeknikringen 30StockholmSE‐100 44Sweden
- Tomsk Polytechnic UniversityTomsk634050Russia
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of TechnologyTeknikringen 30StockholmSE‐100 44Sweden
| | - Ivan Doroshenko
- Department of Chemistry, KTH Royal Institute of TechnologyTeknikringen 30StockholmSE‐100 44Sweden
- Tomsk Polytechnic UniversityTomsk634050Russia
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of TechnologyTeknikringen 30StockholmSE‐100 44Sweden
| | - Markus D. Kärkäs
- Department of Chemistry, KTH Royal Institute of TechnologyTeknikringen 30StockholmSE‐100 44Sweden
| |
Collapse
|
5
|
Xu M, Corio SA, Warnica JM, Kuker EL, Lu A, Hirschi JS, Dong VM. Dynamic Kinetic Asymmetric Hydroacylation: Racemization by Soft Enolization. J Am Chem Soc 2025. [PMID: 40298317 DOI: 10.1021/jacs.5c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report a dynamic kinetic asymmetric transformation (DyKAT) of racemic aldehydes by Rh-catalyzed hydroacylation of acrylamides. This intermolecular hydroacylation generates 1,4-ketoamides with high enantio- and diastereoselectivity. DFT and experimental studies provide mechanistic insights and reveal an unexpected Rh-catalyzed pathway for aldehyde racemization. Our study represents a pioneering kinetic resolution by intermolecular hydroacylation and contributes to the growing field of stereoconvergent catalysis featuring C-C bond construction.
Collapse
Affiliation(s)
- Mengfei Xu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Josephine M Warnica
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Erin L Kuker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Wu L, McIntyre BN, Wu S, Jiao Z, Fox CB, Schley ND, Schuppe AW. Photocatalyzed Epimerization of Quaternary Stereocenters. J Am Chem Soc 2025; 147:11080-11088. [PMID: 40105282 PMCID: PMC11969547 DOI: 10.1021/jacs.4c16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Quaternary stereocenters play a crucial role in shaping both the molecular topology of small molecules and the outcome of stereoselective transformations. While considerable progress has been achieved in constructing highly substituted carbon centers with varied substitution patterns, the stereoselective synthesis of quaternary carbon centers remains a significant challenge. Here we report a protocol for the precise manipulation of quaternary stereocenters through epimerization. The critical design element of our ketone α-epimerization process was developing a photoactive imine, which circumvents the numerous deleterious pathways of carbonyl photochemistry. Excitation of this imine with visible light in the presence of a photocatalyst enables reversible C-C bond cleavage and reformation to vary the stereochemistry of the quaternary center. This approach allows us to override intrinsic stereochemical outcomes of C-C bond construction, therefore providing novel tactics for retrosynthetic planning. The broad utility of this protocol was demonstrated by the topological alteration of various classes of carbocyclic scaffolds bearing diverse functional groups.
Collapse
Affiliation(s)
- Licheng Wu
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Baylee N. McIntyre
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Supeng Wu
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Ziqi Jiao
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Carter B. Fox
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Alexander W. Schuppe
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
7
|
Wu M, Wang Y, Lv X, Ma Z, Sheng X, Wang M, Zhang Y, An Z, Wang X. Direct α-C-H alkylation of alcohols via photoinduced hydrogen atom transfer. Org Biomol Chem 2025; 23:2365-2369. [PMID: 39907219 DOI: 10.1039/d4ob01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A general approach for the α-C-H alkylation of alcohols has been established, offering access to highly functionalized alcohols via visible light irradiation with TBAP as a co-catalyst. The methodology exhibits excellent functional group tolerance and a wide substrate scope. Its practicality is underscored by successful gram-scale synthesis and a sunlight-driven reaction demonstration.
Collapse
Affiliation(s)
- Mingzhong Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yaru Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xin Lv
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Zhengxian Ma
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Xiaojing Sheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Mengjie Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Zhenyu An
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| |
Collapse
|
8
|
Iglhaut M, Bach T. Stereochemical Editing at sp 3-Hybridized Carbon Centers by Reversible, Photochemically Triggered Hydrogen Atom Transfer. Acc Chem Res 2025; 58:777-786. [PMID: 39969052 PMCID: PMC11883745 DOI: 10.1021/acs.accounts.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
ConspectusMillions of chiral compounds contain a stereogenic sp3-hybridized carbon center with a hydrogen atom as one of the four different substituents. The stereogenic center can be edited in an increasing number of cases by selective hydrogen atom transfer (HAT) to and from a photocatalyst. This Account describes the development of photochemical deracemization reactions using chiral oxazole-annulated benzophenones with a bonding motif that allows them to recognize chiral lactam substrates by two-point hydrogen bonding. The backbone of the catalysts consists of a chiral azabicyclo[3.3.1]nonan-2-one with a U-shaped geometry, which enables substrate recognition to occur parallel to the benzoxazole part of the aromatic ketones. The photocatalysts facilitate a catalytic photochemical deracemization of several compound classes including hydantoins, N-carboxyanhydrides, oxindoles, 2,5-diketopiperazines, and 4,7-diaza-1-isoindolinones. In addition, if more than one stereogenic center is present, the editing delivers a distinct diastereoisomer upon the appropriate selection of the respective photocatalyst enantiomer. The chiral photocatalysts operate via the benzophenone triplet that selectively abstracts a properly positioned hydrogen atom in exclusively one of the two substrate enantiomers. The photochemical step creates a planar carbon-centered radical and erases the absolute configuration at this position. While returning HAT to the same position would likely recreate the stereogenic center with the same absolute configuration, spectroscopic and quantum chemical studies suggest that the hydrogen atom is delivered from the photocatalyst to a heteroatom that is in conjugation to the radical center. Two scenarios can be distinguished for the hydrogen atom shuttling process. For hydantoins, N-carboxyanhydrides, and 4,7-diaza-1-isoindolinones, the back HAT occurs to a carbonyl oxygen atom or an imine-type nitrogen atom which is not involved in binding to the catalyst. For oxindoles and 2,5-diketopiperazines, a single lactam carbonyl group in the substrate is available to accept the hydrogen atom. It is currently assumed that back HAT occurs to this group, although the carbonyl oxygen atom is involved in hydrogen bonding to the catalyst. In comparison to the former reaction pathway, the latter process appears to be less efficient and more prone to side reactions. For both cases, an achiral enol or enamine is formed, which delivers upon dissociation from the catalyst statistically either one of the two stereoisomers of the substrate. Since only one substrate enantiomer (or diastereoisomer) is processed, a high enantioselectivity (or diastereoselectivity) results. Even though the editing is a contra-thermodynamic process, the described decoupling of a photochemical and a thermal step allows the usage of a single catalyst in loadings that vary between 2.5 and 10 mol % depending on the specific mode of action.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
9
|
Wang J, Zhou F, Xu Y, Zhang L. Recent Advances in Organic Photocatalyst-Promoted Carbohydrate Synthesis and Modification under Light Irradiation. Chem Asian J 2025; 20:e202401114. [PMID: 39745292 DOI: 10.1002/asia.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Indexed: 01/14/2025]
Abstract
Photoredox catalysis has been developed as a sustainable and eco-friendly catalytic strategy, which might provide innovative solutions to solve the current synthetic challenges and barriers in carbohydrate chemistry. During the last few decades, the study of organic photocatalyst-promoted carbohydrate synthesis and modification has received significant attention, which provides an excellent and inexpensive metal-free alternative to photoredox catalysis as well as introduces a new fastest-growing era to access complex carbohydrates simply. In this review, we aim to provide an overview of organic photocatalyst-promoted carbohydrate synthesis and modification under light irradiation, which is expected to provide new directions for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| |
Collapse
|
10
|
Guo Q, Zhang MJ, Zheng LJ, Chen WX, Zheng H, Fan LH. Enhanced Synthesis of Rare d-Allose from d-Glucose by Positively Pulling and Forcing Reversible Epimerization in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40017091 DOI: 10.1021/acs.jafc.4c11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
d-Allose has great potential for application in the food and pharmaceutical industries owing to its remarkable physiological properties. Most studies on d-allose production have primarily focused on enzyme catalysis using the Izumoring strategy, which typically requires the use of expensive d-allulose as a substrate. Herein, a metabolically engineered strain of Escherichia coli was developed to synthesize d-allose directly from inexpensive d-glucose. The synthesis pathway was systematically optimized through a modular metabolic engineering. The functionality of the isomerases involved in the conversion of d-allulose to d-allose was confirmed in vivo, while the byproduct and transporter pathways were blocked to positively pull the reversible epimerization. Gene knockouts were employed to weaken glycolytic pathways, redirecting the carbon flux toward product synthesis. Additionally, the nonphosphorylated transport of d-glucose was introduced to enhance substrate utilization. In fed-batch fermentation, the engineered strain achieved a d-allose titer of 4.17 g/L, with a yield of 0.103 g/g from d-glucose. Our achievements are expected to advance the industrial production of d-allose, and this strategy is also applicable for producing other rare sugars.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meng-Jun Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wei-Xiang Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
11
|
Taskinen EK, Kolb D, Morgenstern M, König B. Photocatalyzed Dehydration of 1-Aryl-1,2-Ethanediols to Methyl Ketones Driven by Eosin Y Fragmentation Products. Chemistry 2025; 31:e202404200. [PMID: 39648462 DOI: 10.1002/chem.202404200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Herein, we report a mild photocatalytic redox-neutral dehydration of aryl-1,2-ethanediols forming the respective methyl ketones. In the proposed mechanistic cycle an initial hydrogen atom abstraction (HAT) is followed by a 1,2-spin center shift (SCS) as key steps. Interestingly, Eosin Y was found to act as a pre-catalyst dissociating into a catalytically active mixture under irradiation. To the best of our knowledge, this exemplifies the first synthetic utilization of Eosin Y degradation products. As a result, our reaction can be realized with a single organic photocatalyst and releases water as a sole by-product.
Collapse
Affiliation(s)
- Elina K Taskinen
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Daniel Kolb
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Martin Morgenstern
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Burkhard König
- Department of Chemistry and Pharmacy, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
12
|
Chen J, Martin R. Ni-Catalyzed Stereodivergent Synthesis of N-Glycosides. Chemistry 2025; 31:e202403822. [PMID: 39612346 DOI: 10.1002/chem.202403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Herein, we describe a stereoselective Ni-catalyzed N-glycosylation of glycals. The reaction is enabled by addition of an in situ generated nickel hydride across an olefin prior to C-N bond-formation. Stereodivergence can be accomplished on kinetic or thermodynamic grounds, thus giving access to either α- or β-N-glycosides with equal ease. The protocol is distinguished by its operational simplicity, generality and exquisite selectivity, thus offering a new gateway to expedite the synthesis of N-glycosides.
Collapse
Affiliation(s)
- Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
13
|
Liu WS, Lu ZM, Pu XH, Li XY, Zhang HQ, Zhang ZZ, Zhang XY, Shi T, Jiang XH, Zhou JS, Zhou X, Xin ZY, Li MG, Yuan J, Chen CM, Zhang XW, Gao J, Li M. A dendritic cell-recruiting, antimicrobial blood clot hydrogel for melanoma recurrence prevention and infected wound management. Biomaterials 2025; 313:122776. [PMID: 39236629 DOI: 10.1016/j.biomaterials.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Hui Pu
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Xin-Ying Li
- Department of Laboratory & Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hui-Qi Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhuan-Zhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin-Yi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Te Shi
- Department of Gastroenterology, People's Liberation Army of China Naval Medical Center, Shanghai, 200052, People's Republic of China
| | - Xiang-He Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Jing-Sheng Zhou
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhong-Yuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Mei-Gui Li
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jing Yuan
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Wei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
14
|
Guo T, Zhang Y, Li Y, Liu J, Wang X. Synergistic Boronic Acid and Photoredox Catalysis: Synthesis of C-Branched Saccharides via Selective Alkylation of Unprotected Saccharides. Org Lett 2025; 27:789-794. [PMID: 39801080 DOI: 10.1021/acs.orglett.4c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Here we present a regio- and stereoselective alkylation approach for unprotected saccharides using synergistic boronic acid and photoredox catalysis. Targeting the equatorial C-H bond of the cis-1,2-diol motif, this method employs MeB(OH)2 as a catalyst. Mechanistic investigations indicate that the formation of a tetracoordinate boron species, resulting from the interaction between the cyclic boronic diol ester and a free hydroxyl group in the saccharide, is critical to this transformation. Notably, this method enables efficient late-stage modification of complex carbohydrates, such as raffinose and the drug digoxin, expanding opportunities for carbohydrate functionalization.
Collapse
Affiliation(s)
- Tianyun Guo
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufeng Zhang
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yanyang Li
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- Department of Chemistry and School of Pharmacy, China State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Zhao X, Hou YL, Yang J, Wang XH, Hu CS, Zhu XQ, Shen GB. Establishing Thermodynamic Graphs of Nitrogenous Radical Cations Abstracting Hydrogen Atoms and Their Applications in Photoredox Reactions. Molecules 2025; 30:435. [PMID: 39942543 PMCID: PMC11819841 DOI: 10.3390/molecules30030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Nitrogenous compounds have been extensively utilized as hydrogen atom transfer (HAT) catalysts in photoredox reactions, with nitrogenous radical cations being the actual hydrogen atom abstractors. Building upon our previous work, 120 thermodynamic graphs of nitrogenous radical cations abstracting hydrogen atoms, which encompass seven vital thermodynamic parameters, are designed and established to elucidate their redox characteristics. Furthermore, the applications of thermodynamic graphs to select appropriate photocatalysts, assess the feasibility of the HAT process, and diagnose the possible activation mechanism were discussed, which would enable the utilities of nitrogenous compounds as HAT catalysts or nitrogenous radical cations as hydrogen atom abstractors in photoredox reactions.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Jun Yang
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Xin-Hua Wang
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Chong-Shan Hu
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| |
Collapse
|
16
|
Freund P, Pauls M, Babushkina D, Pickl T, Bannwarth C, Bach T. Photochemical Deracemization of 4,7-Diaza-1-isoindolinones by Unidirectional Hydrogen Atom Shuttling. J Am Chem Soc 2025; 147:1434-1439. [PMID: 39752316 PMCID: PMC11744763 DOI: 10.1021/jacs.4c16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74-98% yield, 86-99% ee) employing 2.5 mol % of a photocatalyst. Key to the success of the reaction is the fact that a chiral benzophenone recruits selectively one enantiomer of the substrate for a photoinduced hydrogen atom transfer. A combination of computational and experimental studies suggests that the hydrogen atom is shuttled via the oxygen atom of the catalyst to the 4-nitrogen atom of the substrate.
Collapse
Affiliation(s)
- Philip Freund
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Mike Pauls
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Daria Babushkina
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Thomas Pickl
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christoph Bannwarth
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Thorsten Bach
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
17
|
Yan X, Pang Y, Zhou Y, Chang R, Ye J. Photochemical Deracemization of Lactams with Deuteration Enabled by Dual Hydrogen Atom Transfer. J Am Chem Soc 2025; 147:1186-1196. [PMID: 39692147 DOI: 10.1021/jacs.4c14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photochemical deracemization has emerged as one of the most straightforward approaches to access highly enantioenriched compounds in recent years. While excited-state events such as energy transfer, single electron transfer, and ligand-to-metal charge transfer have been leveraged to promote stereoablation, approaches relying on hydrogen atom transfer, which circumvent the limitations imposed by the triplet energy and redox potential of racemic substrates, remain underexplored. Conceptually, the most attractive method for tertiary stereocenter deracemization might be hydrogen atom abstraction followed by hydrogen atom donation. However, implementing such a strategy poses significant challenges, primarily because the enantioenriched products are also reactive if the chiral catalyst is unable to differentiate between the two enantiomers. Herein we report a distinct dual hydrogen atom transfer strategy for photochemical deracemization of δ- and γ-lactams, achieving high enantioenrichment and deuterium incorporation despite the inherent reactivity of the products. Mechanistic studies reveal that benzophenone enables nonselective hydrogen atom abstraction while a tetrapeptide-derived thiol dictates the enantioselectivity of the hydrogen atom donation step. More importantly, a pyridine-based alcohol was found to play crucial roles in facilitating the hydrogen atom abstraction as well as enhancing the enantioselectivity of the hydrogen atom donation step.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2025; 25:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
19
|
Li W, Wu Y, Long S, Chen Z, Li L, Ju X. Evaluation of cross-linkers in the design of immobilized multi isomerase cascade for the preparation of rare sugars. Int J Biol Macromol 2025; 287:138592. [PMID: 39662556 DOI: 10.1016/j.ijbiomac.2024.138592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The cascade of sugar isomerases is one of the most practical methods for producing rare sugars, and enzyme immobilization endows it with high economic efficiency, operational convenience and reusability. However, the most employed cross-linker glutaraldehyde (GA) has the disadvantages of enzyme deactivation and limitation of substrate binding. Herein, three compounds, glyoxal, GA, and 2,5-furandicarboxaldehyde (DFF) were evaluated within a previously developed cascade comprising ribose-5-phosphate isomerase and D-tagatose-3-epimerase to prepare D-ribulose form D-xylose. Analyses of surface morphology, element and chemical bond revealed that all compounds effectively cross-linked the isomerases. High concentration of the cross-linkers was generally beneficial for binding protein and preventing enzyme leak during reusing cycles. Glyoxal performed the highest immobilization rate, though it hadn't been employed as a cross-linker for enzyme immobilization. DFF mediated cross-linking revealed the highest activity recovery, substrate conversion and residual activity after reusing cycles, suggesting better biocompatibility than glyoxal and GA. After 8 rounds of recycling, the residual activity of enzyme immobilized by DFF was 61.4 %, ∼30 % higher than that of GA. This study proved a potential alternative cross-linker DFF for the immobilization of enzyme cascade with high activity recovery and reusability, which could promote the efficient production of high value-added products from biomass monosaccharides.
Collapse
Affiliation(s)
- Wenhui Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuqiu Wu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Si Long
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
20
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
21
|
Cao S, Zhang H, Chen M, Zhu N, Zhan B, Xu P, Chen X, Yu B, Zhang X. Regiodivergent Functionalization of Protected and Unprotected Carbohydrates using Photoactive 4-Tetrafluoropyridinylthio Fragment as an Adaptive Activating Group. Angew Chem Int Ed Engl 2024; 63:e202412436. [PMID: 39206505 PMCID: PMC11656145 DOI: 10.1002/anie.202412436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The selective functionalization of carbohydrates holds a central position in synthetic carbohydrate chemistry, driving the ongoing quest for ideal approaches to manipulate these compounds. In this study, we introduce a general strategy that enables the regiodivergent functionalization of saccharides. The use of electron-deficient photoactive 4-tetrafluoropyridinylthio (SPyf) fragment as an adaptable activating group, facilitated efficient functionalization across all saccharide sites. More importantly, this activating group can be directly installed at the C1, C5 and C6 positions of biomass-derived carbohydrates in a single step and in a site-selective manner, allowing for the efficient and precision-oriented modification of unprotected saccharides and glycans.
Collapse
Affiliation(s)
- Shen Cao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Haobo Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Niming Zhu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| |
Collapse
|
22
|
Lam NS, Dhankhar J, Lahdenperä ASK, Phipps RJ. Catalytic Enantioselective Hydrogen Atom Abstraction Enables the Asymmetric Oxidation of Meso Diols. J Am Chem Soc 2024; 146:33302-33308. [PMID: 39589143 PMCID: PMC11638968 DOI: 10.1021/jacs.4c13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Desymmetrization of meso diols is an important strategy for the synthesis of chiral oxygen-containing building blocks. Oxidative desymmetrization is an important subclass, but existing methods are often constrained by the need for activated alcohol substrates. We disclose a conceptually distinct strategy toward oxidative diol desymmetrization that is enabled by catalytic enantioselective hydrogen atom abstraction. Following single electron oxidation of a cinchona alkaloid-derived catalyst, enantiodetermining hydrogen atom abstraction generates a desymmetrized ketyl radical intermediate which reacts with either DIAD or O2 before in situ elimination to form valuable hydroxyketone products. A range of cyclic and acyclic meso diols are competent, defining the absolute configuration of up to four stereocenters in a single operation. As well as providing rapid access to complex hydroxyketones, this work emphasizes the broad synthetic potential of harnessing hydrogen atom abstraction in an enantioselective manner.
Collapse
Affiliation(s)
| | - Jyoti Dhankhar
- Yusuf Hamied Department
of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | | | - Robert J. Phipps
- Yusuf Hamied Department
of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Sun Z, Yin Y, Jiang T, Zhou B, Ding H, Gai S, Yang P. Stretchable Unsymmetrical Piezoelectric BiO 2-x Deposited-Hydrogel as Multimodal Triboelectric Nanogenerators for Biomechanical Motion Harvesting. SMALL METHODS 2024; 8:e2400480. [PMID: 38803307 DOI: 10.1002/smtd.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the output performance of triboelectric nanogenerators (TENGs) is essential for increasing their application in smart devices. Oxygen-vacancy-rich BiO2-x nanosheets (BiO2-x NSs) are advanced-engineered nanomaterials with excellent piezoelectric properties. Herein, a stretchable unsymmetrical BiO2-x NSs deposited-hydrogel made of polyacrylamide (PAM) as a multimodal TENG is rationally fabricated, and the performance of TENG can be tailored by controlling the BiO2-x NSs deposition amount and spatial distribution. The alteration of resistance caused by the Poisson effect of PAM/BiO2-x composite hydrogel (H-BiO2-x) can be used as a piezoresistive sensor, and the piezoelectricity of BiO2-x NSs can effectively enhance the density of transfer charge, thus improving the output performance of the H-BiO2-x-based TENG. In addition, the chemical cross-linking between the BiO2-x NSs and the PAM polymer chain allows the hydrogel electrode to have a higher tensile capacity (867%). Used for biomechanical motion signal detection, the sensors made of H-BiO2-x have high sensitivity (gauge factor = 6.93) and can discriminate a range of forces (0.1-5.0 N) at low frequencies (0.5-2.0 Hz). Finally, the prepared TENG can collect biological energy and convert it into electricity. Consequently, the improved TENG shows a good application prospect as multimodal biomechanical sensors by combining piezoresistive, piezoelectric, and triboelectric effects.
Collapse
Affiliation(s)
- Zewei Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanqi Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tianzong Jiang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
24
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Lunic D, Vystavkin N, Qin J, Teskey CJ. Dual-Catalytic Structural Isomerisation as a Route to α-Arylated Ketones. Angew Chem Int Ed Engl 2024; 63:e202409388. [PMID: 38977417 DOI: 10.1002/anie.202409388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Isomerisation reactions provide streamlined routes to organic compounds which are otherwise hard to directly synthesise. The most common forms are positional, geometrical or stereochemical isomerisations which involve the relocation of a double bond or a change in relative location of groups in space. In contrast, far fewer examples of structural (or constitutional) isomerisation exist where the connectivity between atoms is altered. The development of platforms capable of such rearrangement poses a unique set of challenges because chemical bonds must be selectively cleaved, and new ones formed without overall addition or removal of atoms. Here, we show that a dual catalytic system can enable the structural isomerisation of readily available allylic alcohols into more challenging-to-synthesise α-arylated ketones via a H-atom transfer initiated semi-pinacol rearrangement. Key to our strategy is the combination of a cobalt catalyst and photocatalyst under reductive, protic conditions which allows intermediates to propagate catalytic turnover. By providing an unusual disconnection to structural motifs which are difficult to access through direct arylation, we anticipate inspiring other advanced catalytic isomerisation strategies that will further retrosynthetic logic for complex molecule synthesis.
Collapse
Affiliation(s)
- Danijela Lunic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nikita Vystavkin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Jingyang Qin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
26
|
Lahdenperä ASK, Dhankhar J, Davies DJ, Lam NYS, Bacoş PD, de la Vega-Hernández K, Phipps RJ. A chiral hydrogen atom abstraction catalyst for the enantioselective epimerization of meso-diols. Science 2024; 386:42-49. [PMID: 39361751 DOI: 10.1126/science.adq8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Hydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes meso-diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol. This results in an enantioselective epimerization process, forming the chiral diastereomer with high enantiomeric excess. Cyclic and acyclic 1,2-diols are compatible, as are acyclic 1,3-diols. Additionally, we demonstrate the viability of combining our approach with carbon-carbon bond formation in Giese addition. Given the increasing number of synthetic methods involving hydrogen atom transfer steps, we anticipate that this work will have a broad impact in the field of enantioselective radical chemistry.
Collapse
Affiliation(s)
- Antti S K Lahdenperä
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jyoti Dhankhar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel J Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - P David Bacoş
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
27
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Min G, Wang W, Li H, Wang T, Li C, Xu S, Xu K, Shang Y, Zhao X, Khandelwal G, Jiao X, Tang W. Optimizing Droplet-Based Electricity Generator via a Low Sticky Hydrophobic Droplet-Impacted Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402765. [PMID: 38940416 DOI: 10.1002/smll.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.
Collapse
Affiliation(s)
- Guanbo Min
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huifan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Tingyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxing Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Mechanical and Electrical Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yurui Shang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Xin Zhao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Gaurav Khandelwal
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Xufeng Jiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Orthopedic Surgery, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Lütjohann C, Näther C, Lindhorst TK. Ready chemistry with a rare sugar: Altrobioside synthesis and analysis of conformational characteristics. Carbohydr Res 2024; 544:109228. [PMID: 39153326 DOI: 10.1016/j.carres.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
We describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur. We describe the ready synthesis of the selectively protected altrosyl acceptors for the glycosidation from d-mannose and the altrosyl-trichloroacetimidate as useful glycosyl donor to achieve the (1 → 2), (1 → 3), (1 → 4), and (1 → 6)-α-linked altrobiosides. The diastereomeric α- and β-O-(d-altropyranosyl)-trichloroacetimidates adopt different ring conformations as analyzed by NMR and VCD spectroscopy. Also, the pyranose ring conformations of the obtained altrobiosides apparently differ from a regular 4C1 chair according to NMR analysis and are influenced by the regiochemistry of the interglycosidic linkage.
Collapse
Affiliation(s)
- Clemens Lütjohann
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Christian Näther
- Christiana Albertina University of Kiel, Institute of Inorganic Chemistry, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany.
| |
Collapse
|
30
|
Cho YH, Jin M, Jin H, Han J, Yu S, Li L, Kim YS. Efficient Ionovoltaic Energy Harvesting via Water-Induced p-n Junction in Reduced Graphene Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404893. [PMID: 39099395 PMCID: PMC11481184 DOI: 10.1002/advs.202404893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Water motion-induced energy harvesting has emerged as a prominent means of facilitating renewable electricity from the interaction between nanostructured materials and water over the past decade. Despite the growing interest, comprehension of the intricate solid-liquid interfacial phenomena related to solid state physics remains elusive and serves as a hindrance to enhancing energy harvesting efficiency up to the practical level. Herein, the study introduces the energy harvester by utilizing inversion on the majority charge carrier in graphene materials upon interaction with water molecules. Specifically, various metal electrode configurations are employed on reduced graphene oxide (rGO) to unravel its distinctive charge carriers that experience the inversion in semiconductor type upon water contact, and exploit this characteristic to leverage the efficacy of generated electricity. Through the strategic arrangement of the metal electrodes on rGO membrane, the open-circuit voltage (Voc) and short-circuit current (Isc) have exhibited a remarkable augmentation, reaching 1.05 V and 31.6 µA, respectively. The demonstration of effectively tailoring carrier dynamics via electrode configuration expands the practicality by achieving high power density and elucidating how the water-induced carrier density modulation occurs in 2D nanomaterials.
Collapse
Affiliation(s)
- Yong Hyun Cho
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Minho Jin
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Huding Jin
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Junghyup Han
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Seungyeon Yu
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Lianghui Li
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySuwon‐si16229Republic of Korea
| |
Collapse
|
31
|
Xia Y, Zhi J, Zhang R, Zhou F, Liu S, Xu Q, Qin Y. Synchronous Switching Strategy to Enhance the Real-Time Powering and Charging Performance of Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403361. [PMID: 38728529 DOI: 10.1002/adma.202403361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Triboelectric nanogenerators (TENGs) are of great significance as sustainable power sources that harvest energy from the human body and environment. Nevertheless, due to TENG's impedance-dependent output voltage characteristics, in traditional strategy (TS), real-timely powering a sensor with TENG has a poor sensing on/off ratio (or response), and directly charging a capacitor with TENG shows a low charging efficiency. This degraded real-time powering and charging performance of TENG compared to a commercial constant voltage source is a huge challenge of the TENG field for a long time. This work proposes a synchronous switching strategy (SSS) for TENG to real-timely power sensors or charge capacitors without degrading its performance. Compared with TS, this new strategy enables sensors to have 5-7 times sensing on/off ratio enhancement when using TENG as a power source, reaching the powering ability of a commercial constant voltage source, it makes the powering performance of TENG stable under different driving frequency, improving the powering robustness of TENG. In addition, compared with TS, SSS can also enhance the charging efficiency of TENG in every charging cycle by up to 2.4 times when charging capacitors. This work contributes to real-timely powering or charging the distributed, mobile and wireless electronics using TENG.
Collapse
Affiliation(s)
- Yuxuan Xia
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jinyan Zhi
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruichao Zhang
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qi Xu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yong Qin
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
32
|
Cassels WR, Sherman ER, Longmore KA, Johnson JS. Switchable Enantio- and Diastereoselective Michael Additions of β-Keto Amides to Nitroolefins: Crystallization-Based Inversion of Kinetic Stereocontrol. Org Lett 2024; 26:7176-7180. [PMID: 39151143 PMCID: PMC11420994 DOI: 10.1021/acs.orglett.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Asymmetric catalytic reactions rely on chiral catalysts that induce highly ordered transition states capable of imparting stereoselectivity in the bond-forming step(s). Productive deviations from this paradigm are rare yet hold the potential for accessing different stereoisomers using the same catalyst. Here, we present an enantio- and diastereoselective Michael addition of β-keto amides to nitroolefin electrophiles proceeding via an unusual scenario where the kinetic diastereocontrol imparted by the catalyst may be overridden by crystallization to provide the complementary stereoisomer of the product.
Collapse
Affiliation(s)
- William R. Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Emily R. Sherman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kaylah A. Longmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S. Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
33
|
Dang QD, Deng YH, Sun TY, Zhang Y, Li J, Zhang X, Wu YD, Niu D. Catalytic glycosylation for minimally protected donors and acceptors. Nature 2024; 632:313-319. [PMID: 38885695 DOI: 10.1038/s41586-024-07695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Oligosaccharides have myriad functions throughout biological processes1,2. Chemical synthesis of these structurally complex molecules facilitates investigation of their functions. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site, stereo- and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose5-8, adding considerable synthetic work. Here we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalyst brings this reactive intermediate close to an acceptor through a network of non-covalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to the preparation of naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.
Collapse
Affiliation(s)
- Qiu-Di Dang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yi-Hui Deng
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tian-Yu Sun
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yun-Dong Wu
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Carder HM, Occhialini G, Bistoni G, Riplinger C, Kwan EE, Wendlandt AE. The sugar cube: Network control and emergence in stereoediting reactions. Science 2024; 385:456-463. [PMID: 39052778 PMCID: PMC11774262 DOI: 10.1126/science.adp2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Stereochemical editing strategies have recently enabled the transformation of readily accessible substrates into rare and valuable products. Typically, site selectivity is achieved by minimizing kinetic complexity by using protecting groups to suppress reactivity at undesired sites (substrate control) or by using catalysts with tailored shapes to drive reactivity at the desired site (catalyst control). We propose "network control," a contrasting paradigm that exploits hidden interactions between rate constants to greatly amplify modest intrinsic biases and enable precise multisite editing. When network control is applied to the photochemical isomerization of hexoses, six of the eight possible diastereomers can be selectively obtained. The amplification effect can be viewed as a mesoscale phenomenon between the limiting regimes of kinetic control in simple chemical systems and metabolic regulation in complex biological systems.
Collapse
Affiliation(s)
- Hayden M. Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | | | - Alison E. Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Pasca F, Gelato Y, Andresini M, Romanazzi G, Degennaro L, Colella M, Luisi R. Synthesis of alcohols: streamlined C1 to C n hydroxyalkylation through photoredox catalysis. Chem Sci 2024; 15:11337-11346. [PMID: 39055000 PMCID: PMC11268494 DOI: 10.1039/d4sc02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Naturally occurring and readily available α-hydroxy carboxylic acids (AHAs) are utilized as platforms for visible light-mediated oxidative CO2-extrusion furnishing α-hydroxy radicals proved to be versatile C1 to Cn hydroxyalkylating agents. The direct decarboxylative Giese reaction (DDGR) is operationally simple, not requiring activator or sacrificial oxidants, and enables the synthesis of a diverse range of hydroxylated products, introducing connectivity typically precluded from conventional polar domains. Notably, the methodology has been extended to widely used glycolic acid resulting in a highly efficient and unprecedented C1 hydroxyhomologation tactic. The use of flow technology further facilitates scalability and adds green credentials to this synthetic methodology.
Collapse
Affiliation(s)
- Francesco Pasca
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Yuri Gelato
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Michael Andresini
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | | | - Leonardo Degennaro
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
36
|
Lin A, Lee S, Knowles RR. Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer. Acc Chem Res 2024; 57:1827-1838. [PMID: 38905487 PMCID: PMC11831427 DOI: 10.1021/acs.accounts.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C β-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.
Collapse
Affiliation(s)
- Angela Lin
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Sumin Lee
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| |
Collapse
|
37
|
Wang Y, Chu L, Meng S, Yang M, Yu Y, Deng X, Qi C, Kong T, Liu Z. Scalable and Ultra-Sensitive Nanofibers Coaxial Yarn-Woven Triboelectric Nanogenerator Textile Sensors for Real-Time Gait Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401436. [PMID: 38749008 PMCID: PMC11267306 DOI: 10.1002/advs.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Indexed: 07/25/2024]
Abstract
Yarn-woven triboelectric nanogenerators (TENGs) have greatly advanced wearable sensor technology, but their limited sensitivity and stability hinder broad adoption. To address these limitations, Poly(VDF-TrFE) and P(olyadiohexylenediamine (PA66)-based nanofibers coaxial yarns (NCYs) combining coaxial conjugated electrospinning and online conductive adhesive coating are developed. The integration of these NCYs led to enhanced TENGs (NCY-TENGs), notable for their flexibility, stretchability, and improved sensitivity, which is ideal for capturing body motion signals. One significant application of this technology is the fabrication of smart insoles from NCY-TENG plain-woven fabrics. These insoles are highly sensitive and possess antibacterial, breathable, and washable properties, making them ideal for real-time gait monitoring in patients with diabetic foot conditions. The NCY-TENGs and their derivatives show immense potential for a variety of wearable electronic devices, representing a considerable advancement in the field of wearable sensors.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Lang Chu
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Si Meng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Mingxuan Yang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Yidan Yu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Xiaokang Deng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics EngineeringCollege of Mechatronics and Control EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
- Department of UrologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037China
| | - Zhou Liu
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| |
Collapse
|
38
|
Li Y, Shi H, Yin G. Synthetic techniques for thermodynamically disfavoured substituted six-membered rings. Nat Rev Chem 2024; 8:535-550. [PMID: 38822206 DOI: 10.1038/s41570-024-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Six-membered rings are ubiquitous structural motifs in bioactive compounds and multifunctional materials. Notably, their thermodynamically disfavoured isomers, like disubstituted cyclohexanes featuring one substituent in an equatorial position and the other in an axial position, often exhibit enhanced physical and biological activities in comparison with their opposite isomers. However, the synthesis of thermodynamically disfavoured isomers is, by its nature, challenging, with only a limited number of possible approaches. In this Review, we summarize and compare synthetic methodologies that produce substituted six-membered rings with thermodynamically disfavoured substitution patterns. We place particular emphasis on elucidating the crucial stereoinduction factors within each transformation. Our aim is to stimulate interest in the synthesis of these unique structures, while simultaneously providing synthetic chemists with a guide to approaching this synthetic challenge.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
39
|
Chen J, Gan Z, Zhang Y, Chen Z, Liu S, Cui R, Xue Z, Sun H, Shi L, Jiang WF, Jin Y. Iron-Catalyzed Photoredox Alcohol α-C-H Alkylation and Tandem Intramolecular Cyclization: Facile Access to Multisubstituted 2,3-Dihydrofurans and γ-Butyrolactones. Org Lett 2024; 26:5329-5334. [PMID: 38869223 DOI: 10.1021/acs.orglett.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.
Collapse
Affiliation(s)
- Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Haoxiang Sun
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Feng Jiang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
40
|
Hoskin JF, Jeong M, Siler DA, Ebner DC, Sorensen EJ. Development of a Divergent Synthesis of Pleurotinoid Natural Products. J Org Chem 2024; 89:8551-8561. [PMID: 38841743 DOI: 10.1021/acs.joc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Herein, we describe the evolution of our syntheses of the pleurotinoid natural products pleurotin (1), pleurogrisein (3), and 4-hydroxypleurogrisein (4). An approach based on a proximity-induced intramolecular Diels-Alder cycloaddition of a transient ortho-quinone dimethide (e.g., 6, Scheme 1) was inferior to an alternative construction featuring Gao's titanium(IV)-mediated photoenolization Diels-Alder coupling of ortho-tolualdehyde 20 with functionalized hydrindenone 22. While this pairing exhibited the desired stereoface selectivity and produced cis-fused hydrindanone 23, the successful realization of our syntheses of 1, 3, and 4 required a post-Diels-Alder epimerization of the unactivated stereocenter at C-5 in compound 23. Ultimately, it was possible to generate a reactive oxygen-centered radical via a reductive homolytic cleavage of the N-O bond in 23 and capitalize on its ability to break the C5-H bond in an intramolecular 1,5-hydrogen atom transfer (HAT). The carbon radical arising from this pivotal 1,5-HAT was subsequently trapped in situ by an exogenous thiol in a kinetically controlled HAT reaction to establish the natural configuration at C-5. The successful flipping of the cis-hydrindane in 23 to the challenging trans configuration in 24 provided a firm foundation for a formal synthesis of pleurotin (1), as well as syntheses of pleurogrisein (3) and 4-hydroxypleurogrisein (4).
Collapse
Affiliation(s)
- John F Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Myungeun Jeong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David A Siler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David C Ebner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
41
|
Zhao X, Hou YL, Qian BC, Shen GB. Thermodynamic H-Abstraction Abilities of Nitrogen Centered Radical Cations as Potential Hydrogen Atom Transfer Catalysts in Y-H Bond Functionalization. ACS OMEGA 2024; 9:26708-26718. [PMID: 38911737 PMCID: PMC11191127 DOI: 10.1021/acsomega.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Y-H bond functionalization has always been the focus of research interest in the area of organic synthesis. Direct hydrogen atom transfer (HAT) from the Y-H bond is one of the most efficient and practical methods to activate the Y-H bond. Recently, nitrogen centered radical cations were broadly utilized as H-abstraction catalysts to activate Y-H bonds via the HAT process. As a type of HAT catalyst, the H-affinity of nitrogen centered radical cations is a significant thermodynamic parameter to quantitatively evaluate the thermodynamic H-abstraction potentials of nitrogen centered radical cations. In this work, the pK a values of 120 protonated N-containing compounds in acetonitrile (AN) are predicted, and the H-affinities of 120 nitrogen centered radical cations in AN are derived from the reduction potentials of nitrogen centered radical cations and pK a of protonated N-containing compounds using Hess' law. This work focuses on the H-abstraction abilities of 120 nitrogen centered radical cations in AN to enrich the molecule library of novel HAT catalysts or H-abstractors and provides valuable thermodynamic guidelines for the application of nitrogen centered radical cations in Y-H bond functionalization.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| |
Collapse
|
42
|
Zheng Q, Long S, Chen Z, Fu J, Ju X, Li L. Characterization of a novel ribose-5-phosphate isomerase B from Curtobacterium flaccumfaciens ZXL1 for D-allose production. Food Sci Biotechnol 2024; 33:1641-1649. [PMID: 38623425 PMCID: PMC11016020 DOI: 10.1007/s10068-023-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Enzymatic preparation of rare sugars as an alternative to traditional sweeteners is an effective strategy to achieve a low-calorie healthy diet. Ribose-5-phosphate isomerase B (RpiB) is a key enzyme in the non-oxidative branch of the catalytic pentose phosphate pathway. Here, we investigated the potential of Curtobacterium flaccumfaciens ZXL1 (C. flaccumfaciens ZXL1) derived RpiB (CfRpiB) in D-allose preparation. The optimal reaction conditions for recombinant CfRpiB were found experimentally to be pH 7.0, 55 °C, and no metal ions. The kinetic parameters Km, kcat, and catalytic efficiency kcat/Km were 320 mM, 4769 s-1, and 14.9 mM-1 s-1 respectively. The conversion of D-allulose by purified enzyme (1 g L-1 ) to D-allose was 13% within 1 h. In addition, homology modeling and molecular docking were used to predict the active site residues: Asp13, Asp14, Cys72, Gly73, Thr74, Gly77, Asn106, and Lys144.
Collapse
Affiliation(s)
- Qian Zheng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Si Long
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Jiaolong Fu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| |
Collapse
|
43
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
44
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
45
|
Sano K, Ishiwata A, Takamori H, Kikuma T, Tanaka K, Ito Y, Takeda Y. Synthesis of Sucrose-Mimicking Disaccharide by Intramolecular Aglycone Delivery. Molecules 2024; 29:1771. [PMID: 38675593 PMCID: PMC11051705 DOI: 10.3390/molecules29081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-β-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, β-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.
Collapse
Affiliation(s)
- Kanae Sano
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Hiroto Takamori
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| |
Collapse
|
46
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
47
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
48
|
Wang G, Ho CC, Zhou Z, Hao YJ, Lv J, Jin J, Jin Z, Chi YR. Site-Selective C-O Bond Editing of Unprotected Saccharides. J Am Chem Soc 2024; 146:824-832. [PMID: 38123470 DOI: 10.1021/jacs.3c10963] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Glucose and its polyhydroxy saccharide analogs are complex molecules that serve as essential structural components in biomacromolecules, natural products, medicines, and agrochemicals. Within the expansive realm of saccharides, a significant area of research revolves around chemically transforming naturally abundant saccharide units to intricate or uncommon molecules such as oligosaccharides or rare sugars. However, partly due to the presence of multiple hydroxyl groups with similar reactivities and the structural complexities arising from stereochemistry, the transformation of unprotected sugars to the desired target molecules remains challenging. One such formidable challenge lies in the efficient and selective activation and modification of the C-O bonds in saccharides. In this study, we disclose a modular 2-fold "tagging-editing" strategy that allows for direct and selective editing of C-O bonds of saccharides, enabling rapid preparation of valuable molecules such as rare sugars and drug derivatives. The first step, referred to as "tagging", involves catalytic site-selective installation of a photoredox active carboxylic ester group to a specific hydroxyl unit of an unprotected sugar. The second step, namely, "editing", features a C-O bond cleavage to form a carbon radical intermediate that undergoes further transformations such as C-H and C-C bond formations. Our strategy constitutes the most effective and shortest route in direct transformation and modification of medicines and other molecules bearing unprotected sugars.
Collapse
Affiliation(s)
- Guanjie Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chang Chin Ho
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhixu Zhou
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong-Jia Hao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jie Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
49
|
Vargas-Rivera MA, Liu AS, Ellman JA. Visible-Light-Mediated, Diastereoselective Epimerization of Exocyclic Amines. Org Lett 2023; 25:9197-9201. [PMID: 38114418 PMCID: PMC10771010 DOI: 10.1021/acs.orglett.3c03801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Stereoselective α-amino C-H epimerization of exocyclic amines is achieved via photoredox catalyzed, thiyl-radical mediated, reversible hydrogen atom transfer to provide thermodynamically controlled anti/syn isomer ratios. The method is applicable to different substituents and substitution patterns about aminocyclopentanes, aminocyclohexanes, and a N-Boc-3-aminopiperidine. The method also provided efficient epimerization for primary, alkyl and (hetero)aryl secondary, and tertiary exocyclic amines. Demonstration of reversible epimerization, deuterium labeling, and luminescence quenching provides insight into the reaction mechanism.
Collapse
Affiliation(s)
| | - Aidan S. Liu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
50
|
Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Creating a Defined Chirality in Amino Acids and Cyclic Dipeptides by Photochemical Deracemization. Angew Chem Int Ed Engl 2023; 62:e202313606. [PMID: 37793026 DOI: 10.1002/anie.202313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|