1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
3
|
He J, Liu Q, Guo J, Wu D, Guo Y. Circulatory factors in stroke protection and recovery. Brain Res 2025; 1855:149594. [PMID: 40122323 DOI: 10.1016/j.brainres.2025.149594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Over the past decade, the management of acute ischemic stroke has undergone a paradigm shift, especially a longer time-window and a wider indication for endovascular treatments. However, many patients still have long-term dysfunction despite the best medical care at present. Based on findings from innovative proteomic and transcriptomic technologies, researchers have identified an array of novel or previously underappreciated circulatory factors that play pivotal roles in mediating post-injuries brain communication. Thus, the previous concept of the brain as a privileged compartment isolated from the rest of the body has been replaced by the novel consensus that brain bidirectionally interacts with the other organs after brain diseases. In this review, we make a summary of several axes that connect the brain with the rest of the body after stroke. More importantly, we summarize several circulatory factors that play pivotal roles in fostering post-stroke functional recovery in the chronic stage. Special attention is given to the instrumental role of circulatory signals, positing them as significant contributors to the complex process of brain function recovery and as translational therapeutic targets for ischemic stroke in future studies.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081 Heilongjiang, China
| | - Qi Liu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 10053, China.
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
4
|
Baghirov H. Mechanisms of receptor-mediated transcytosis at the blood-brain barrier. J Control Release 2025; 381:113595. [PMID: 40056994 DOI: 10.1016/j.jconrel.2025.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025]
Abstract
In receptor-mediated transcytosis (RMT) of large therapeutics across the blood-brain barrier (BBB), the construct - a macromolecule or a larger carrier with therapeutic payload - binds a protein on brain capillary endothelial cells (BCEC), with internalization and release into the brain parenchyma. The construct's internalization into, trafficking across and release from, but also possible entrapment within BCEC are affected by its engineered properties whose optimization has helped derive insights into transport mechanisms at BCEC. Furthermore, advances in multi-omics, as well as large-scale screening and directed evolution campaigns have helped identify new targets for RMT at BCEC. In this perspective, I raise and reflect on some fundamental questions one can arrive at by comparing the engineered properties of BBB-targeted constructs and the properties of different target proteins. These questions concern the underlying, transcytosis-promoting factors that the optimization of constructs' engineered properties appears to converge on, the precise role of target proteins in RMT, the different mechanisms through which these targets may mediate construct trafficking, and the tentative criteria for target selection on BCEC. Based on these considerations I propose several scenarios and strategies to interfere with the construct's trafficking for more efficient internalization, transport through the endosomal network toward the abluminal membrane, and release from BCEC, both for smaller macromolecules and for larger carriers.
Collapse
Affiliation(s)
- Habib Baghirov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.
| |
Collapse
|
5
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Wang L, Xia Z, Singh A, Murarka B, Baumgarth N, Aucott JN, Searson PC. Extravasation of Borrelia burgdorferi Across the Blood-Brain Barrier is an Extremely Rare Event. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413199. [PMID: 40071764 PMCID: PMC12061299 DOI: 10.1002/advs.202413199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Indexed: 05/10/2025]
Abstract
Lyme disease, the most widespread tick-borne disease in North America, is caused by the bacterium Borrelia burgdorferi (Bb). Approximately 10-15% of infections result in neuroborreliosis, common symptoms of which include headaches, facial palsy, and long-term cognitive impairment. Previous studies of Bb dissemination focus on assessing Bb transmigration at static time points rather than analyzing the complex dynamic process of extravasation. Furthermore, current in vitro models lack crucial physiological factors such as flow, demonstrating a need for more robust models for studying Bb dissemination to understand its dynamics and mechanisms. Here, a 3D tissue-engineered microvessel model is used and fluorescently-labeled Bb is perfused to model vascular dissemination in non-tissue-specific (iEC) and brain-specific (iBMEC) microvessels while acquiring time-lapse images in real time. In iECs, extravasation involves two steps: adhesion to the endothelium and transmigration into the extracellular matrix, which can be modulated through glycocalyx degradation or inflammation. In contrast, Bb extravasation in iBMECs is an extremely rare event regardless of glycocalyx degradation or inflammation. In addition, circulating Bb do not induce endothelial activation in iECs or iBMECs, but induces barrier dysfunction in iECs. These findings provide a further understanding of Bb vascular dissemination.
Collapse
Affiliation(s)
- Linus Wang
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Zikai Xia
- Department of Materials Science and EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Anjan Singh
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Bhavna Murarka
- Molecular and Cellular BiologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Nicole Baumgarth
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University615 N Wolfe StBaltimoreMD21205USA
| | - John N. Aucott
- Johns Hopkins Lyme Disease Research CenterJohns Hopkins University2360 Joppa RdTimoniumMD21093USA
| | - Peter C. Searson
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Materials Science and EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| |
Collapse
|
7
|
Rust R, Sagare AP, Zhang M, Zlokovic BV, Kisler K. The blood-brain barrier as a treatment target for neurodegenerative disorders. Expert Opin Drug Deliv 2025; 22:673-692. [PMID: 40096820 DOI: 10.1080/17425247.2025.2480654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a vascular endothelial membrane which restricts entry of toxins, cells, and microorganisms into the brain. At the same time, the BBB supplies the brain with nutrients, key substrates for DNA and RNA synthesis, and regulatory molecules, and removes metabolic waste products from brain to blood. BBB breakdown and/or dysfunction have been shown in neurogenerative disorders including Alzheimer's disease (AD). Current data suggests that these BBB changes may initiate and/or contribute to neuronal, synaptic, and cognitive dysfunction, and possibly other aspects of neurodegenerative processes. AREAS COVERED We first briefly review recent studies uncovering molecular composition of brain microvasculature and examine the BBB as a possible therapeutic target in neurodegenerative disorders with a focus on AD. Current strategies aimed at protecting and/or restoring altered BBB functions are considered. The relevance of BBB-directed approaches to improve neuronal and synaptic function, and to slow progression of neurodegenerative processes are also discussed. Lastly, we review recent advancements in drug delivery across the BBB. EXPERT OPINION BBB breakdown and/or dysfunction can significantly affect neuronal and synaptic function and neurodegenerative processes. More attention should focus on therapeutics to preserve or restore BBB functions when considering treatments of neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Kruize Z, van Campen I, Vermunt L, Geerse O, Stoffels J, Teunissen C, van Zuylen L. Delirium pathophysiology in cancer: neurofilament light chain biomarker - narrative review. BMJ Support Palliat Care 2025; 15:319-325. [PMID: 38290815 DOI: 10.1136/spcare-2024-004781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Background Delirium is a debilitating disorder with high prevalence near the end of life, impacting quality of life of patients and their relatives. Timely recognition of delirium can lead to prevention and/or better treatment of delirium. According to current hypotheses delirium is thought to result from aberrant inflammation and neurotransmission, with a possible role for neuronal damage. Neurofilament light chain (NfL) is a protein biomarker in body fluids that is unique to neurons, with elevated levels when neurons are damaged, making NfL a viable biomarker for early detection of delirium. This narrative review summarises current research regarding the pathophysiology of delirium and the potential of NfL as a susceptibility biomarker for delirium and places this in the context of care for patients with advanced cancer. Results Six studies were conducted exclusively on NfL in patients with delirium. Three of these studies demonstrated that high plasma NfL levels preoperatively predict delirium in older adult patients postoperatively. Two studies demonstrated that high levels of NfL in intensive care unit (ICU) patients are correlated with delirium duration and severity. One study found that incident delirium in older adult patients was associated with increased median NfL levels during hospitalisation. Conclusions Targeted studies are required to understand if NfL is a susceptibility biomarker for delirium in patients with advanced cancer. In this palliative care context, better accessible matrices, such as saliva or urine, would be helpful for repetitive testing. Improvement of biological measures for delirium can lead to improved early recognition and lay the groundwork for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zita Kruize
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Isa van Campen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Olaf Geerse
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Josephine Stoffels
- Department of Internal Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Department of Laboratory medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Lia van Zuylen
- Department of Medical Oncology, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Denis HL, de Rus Jacquet A, Alpaugh M, Panisset M, Barker RA, Boilard É, Cicchetti F. Erythrocyte-derived extracellular vesicles transcytose across the blood-brain barrier to induce Parkinson's disease-like neurodegeneration. Fluids Barriers CNS 2025; 22:38. [PMID: 40229767 PMCID: PMC11998243 DOI: 10.1186/s12987-025-00646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by motor and non-motor features. Hallmarks of the disease include an extensive loss of dopaminergic neurons in the substantia nigra pars compacta, evidence of neuroinflammation, and the accumulation of misfolded proteins leading to the formation of Lewy bodies. While PD etiology is complex and identifying a single disease trigger has been a challenge, accumulating evidence indicates that non-neuronal and peripheral factors may likely contribute to disease onset and progression. The brain is shielded from peripheral factors by the blood-brain barrier (BBB), which tightly controls the entry of systemic molecules and cells from the blood to the brain. The BBB integrates molecular signals originating from the luminal (blood) and abluminal (brain) sides of the endothelial wall, regulating these exchanges. Of particular interest are erythrocytes, which are not only the most abundant cell type in the blood, but they also secrete extracellular vesicles (EVs) that display disease-specific signatures over the course of PD. Erythrocyte-derived EVs (EEVs) could provide a route by which pathological molecular signals travel from the periphery to the central nervous system. The primary objective of this study was to evaluate, in a human-based platform, mechanisms of EEV transport from the blood to the brain under physiological conditions. The secondary objective was to determine the ability of EEVs, generated by erythrocytes of healthy donors or patients, to induce PD-like features. We leveraged two in vitro models of the BBB, the transwell chambers and a microfluidic BBB chip generated using human induced pluripotent stem cells. Our findings suggest that EEVs transcytose from the vascular to the brain compartment of the human BBB model via a caveolin-dependant mechanism. Furthermore, EEVs derived from individuals with PD altered BBB integrity compared to healthy EEV controls, and clinical severity aggravated the loss of barrier integrity and increased EEV extravasation into the brain compartment. PD-derived EEVs reduced ZO-1 and Claudin 5 tight junction levels in BMEC-like cells and induced the selective atrophy of dopaminergic neurons. In contrast, non-dopaminergic neurons were not affected by treatment with PD EEVs. In summary, our data suggest that EEV interactions at the human BBB can be studied using a highly translational human-based brain chip model, and EEV toxicity at the neurovascular unit is exacerbated by disease severity.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Aurélie de Rus Jacquet
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Michel Panisset
- Centre Hospitalier de l'Université de Montréal and Centre de recherche du Centre Hospitalier de l'Université de Montréal, Département de neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Éric Boilard
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Chen Y, Zhou Y, Bai Y, Jia K, Zhang H, Chen Q, Song M, Dai Y, Shi J, Chen Z, Yan X, Shen Y. Macrophage-derived CTSS drives the age-dependent disruption of the blood-CSF barrier. Neuron 2025; 113:1082-1097.e8. [PMID: 40015275 DOI: 10.1016/j.neuron.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The choroid plexus (CP) serves as the primary source of cerebrospinal fluid (CSF). The blood-CSF barrier, composed of tight junctions among the epithelial cells in the CP, safeguards CSF from unrestricted exposure to bloodborne factors. This barrier is thus indispensable to brain homeostasis and is associated with age-related neural disorders. Nevertheless, its aging is poorly understood. Here, we report that cathepsin S (CTSS), a protease secreted from the CP macrophages, is upregulated in aged CP due to increased cell senescence. CTSS cleaves the essential tight junction component, claudin 1 (CLDN1), and, in turn, impairs the blood-CSF barrier. Notably, inhibiting CTSS or upregulating CLDN1 in aged CP rejuvenates the blood-CSF barrier and brain functions. Our findings uncover a vital interplay between immune and barrier cells that accelerates CP and brain aging, identify CTSS as a potential target to improve brain homeostasis in aged animals, and underscore the critical role of circulating proteinases in aging.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqing Bai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiantao Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Drozd M, Bruns AF, Yuldasheva NY, Maqbool A, Viswambharan H, Skromna A, Makava N, Cheng CW, Sukumar P, Eades L, Walker AMN, Griffin KJ, Galloway S, Watt NT, Haywood N, Palin V, Warmke N, Imrie H, Bridge K, Beech DJ, Wheatcroft SB, Kearney MT, Cubbon RM. Endothelial insulin-like growth factor-1 signaling regulates vascular barrier function and atherogenesis. Cardiovasc Res 2025:cvaf055. [PMID: 40171617 DOI: 10.1093/cvr/cvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/19/2024] [Accepted: 02/15/2025] [Indexed: 04/04/2025] Open
Abstract
AIMS Progressive deposition of cholesterol in the arterial wall characterizes atherosclerosis, which underpins most cases of myocardial infarction and stroke. Insulin-like growth factor-1 (IGF-1) is a hormone that regulates systemic growth and metabolism and possesses anti-atherosclerotic properties. We asked whether endothelial-restricted augmentation of IGF-1 signaling is sufficient to suppress atherogenesis. METHODS AND RESULTS We generated mice with endothelial-restricted over-expression of human wildtype IGF-1R (hIGFREO/ApoE-/-) or a signaling defective K1003R mutant human IGF-1R (mIGFREO/ApoE-/-) and compared them to their respective ApoE-/- littermates. hIGFREO/ApoE-/- had less atherosclerosis, circulating leukocytes, arterial cholesterol uptake, and vascular leakage in multiple organs, whereas mIGFREO/ApoE-/- did not exhibit these phenomena. Overexpressing wildtype IGF-1R in human umbilical vein endothelial cells (HUVEC) altered the localization of tight junction proteins and reduced paracellular leakage across their monolayers, whilst overexpression of K1003R IGF-1R did not have these effects. Moreover, only overexpression of wildtype IGF-1R reduced HUVEC internalization of cholesterol-rich low density lipoprotein particles and increased their association of these particles with clathrin, but not caveolin-1, implicating it in vesicular uptake of lipoproteins. Endothelial overexpression of wildtype versus K1003R IGF-1R also reduced expression of YAP/TAZ target genes and nuclear localization of TAZ, which may be relevant to its impact on vascular barrier and atherogenesis. CONCLUSIONS Endothelial IGF-1 signaling modulates both para- and trans-cellular vascular barrier function. Beyond reducing atherosclerosis, this could have relevance to many diseases associated with abnormal vascular permeability.
Collapse
Affiliation(s)
- Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Andrew M N Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Stacey Galloway
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natalie Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Victoria Palin
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Helen Imrie
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Katherine Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Chen S, Chen H, Li X, He S, Shou K, Qian K, Fang Z, Gu F, Chang B, Cheng Z. Dynamic Pathophysiological Insight into the Brain by NIR-II Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416390. [PMID: 40041968 PMCID: PMC12021043 DOI: 10.1002/advs.202416390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Indexed: 04/26/2025]
Abstract
Cerebral collateral circulation and blood-brain barrier (BBB) are critically required to maintain the normal brain functions, a fact stressing the need for accurate and in vivo diagnostic tools that can afford valuable pathophysiological insight into the functioning of neurovascular unit in space and time. Currently, understanding of collateral perfusion and BBB evolution under both physiological and pathological conditions remains sparse, largely owing to limitations in methods for recording diminutive route of cerebral blood flow. Here, it is reported that highly crystalline semiconducting organic nanoprobes (named 4T-BSA) composed of small-molecule dye and bovine serum albumin showed vast potential for live-brain vascular imaging in the second near-infrared window (NIR-II, 1000-1700 nm). The 4T-BSA nanoprobes had superior imaging penetration depth in intact mouse brain with high signal-to-background ratio (SBR) of 6.0 and down to sub-50-µm spatial resolution of cerebral vasculature in three typical models of neurological pathophysiology. By visualizing the vascular collateral perfusion and albumin leakage, 4T-BSA nanoprobes identified the pathological activities of brain associated with the arterial/venous collateral flow network and BBB disruption. It is anticipated that NIR-II imaging of cerebral collateral circulation and BBB disruption will bring broad opportunities to address major medical challenges across timely, protective, and restorative interventions for neurological diseases.
Collapse
Affiliation(s)
- Si Chen
- Department of NeurologyXiangya HospitalCentral South UniversityXiangya Road 88Changsha410008China
- Molecular Imaging Program at Stanford (MIPS)Bio‐X ProgramDepartment of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCalifornia94305‐5344USA
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS)Bio‐X ProgramDepartment of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCalifornia94305‐5344USA
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Xinxin Li
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Shuqing He
- Molecular Imaging Program at Stanford (MIPS)Bio‐X ProgramDepartment of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCalifornia94305‐5344USA
| | - Kangquan Shou
- Molecular Imaging Program at Stanford (MIPS)Bio‐X ProgramDepartment of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCalifornia94305‐5344USA
| | - Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Zhao Fang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Feng Gu
- Department of Neurology & Neurological SciencesStanford University School of MedicineCalifornia94305‐5122USA
| | - Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)Bio‐X ProgramDepartment of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCalifornia94305‐5344USA
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Bohai Rim Advanced Research Institute for Drug DiscoveryYantai264000China
| |
Collapse
|
13
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2025; 9:566-598. [PMID: 39304761 PMCID: PMC11922799 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
14
|
Sun B, Li L, Harris OA, Luo J. Blood-brain barrier disruption: a pervasive driver and mechanistic link between traumatic brain injury and Alzheimer's disease. Transl Neurodegener 2025; 14:16. [PMID: 40140960 PMCID: PMC11938631 DOI: 10.1186/s40035-025-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Traumatic brain injury (TBI) has emerged as a significant risk factor for Alzheimer's disease (AD), a complex and devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Both conditions share a common feature: blood‒brain barrier (BBB) dysfunction, which is believed to play a pivotal role in linking TBI to the development of AD. This review delves into the intricate relationship between TBI and AD, with a focus on BBB dysfunction and its critical role in disease mechanisms and therapeutic development. We first present recent evidence from epidemiological studies highlighting the increased incidence of AD among individuals with a history of TBI, as well as pathological and animal model studies that demonstrate how TBI can accelerate AD-like pathology. Next, we explore the mechanisms by which BBB dysfunction may mediate TBI-induced AD pathology. Finally, we investigate the shared molecular pathways associated with BBB dysfunction in both TBI and AD conditions and discuss the latest findings on how targeting these pathways and employing regenerative approaches, such as stem cell therapy and pharmacological interventions, can enhance BBB function and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Odette A Harris
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
15
|
Zhong R, Chernick D, Hottman D, Tan Y, Kim M, Narayanan M, Li L. The HDL-Mimetic Peptide 4F Mitigates Vascular and Cortical Amyloid Pathology and Associated Neuroinflammation in a Transgenic Mouse Model of Cerebral Amyloid Angiopathy and Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04859-9. [PMID: 40120042 DOI: 10.1007/s12035-025-04859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite recent advances, more effective and safer treatment options for AD are needed. Cerebral amyloid angiopathy (CAA) is one of the key pathological hallmarks of AD characterized by amyloid-β (Aβ) deposition in the cerebral vasculature and is associated with intracerebral hemorrhage, cerebrovascular dysfunction, and cognitive impairment. CAA is also considered to underlie the main adverse effect of recently FDA-approved anti-Aβ immunotherapies, namely the amyloid-related imaging abnormalities (ARIA). Substantial evidence has shown that elevated levels of high-density lipoprotein (HDL) and its main protein component, APOA-I, are associated with reduced CAA and superior cognitive function. 4F is an APOA-I/HDL-mimetic peptide and its clinical safety and activity have been demonstrated in human trials for cardiovascular diseases. The present study investigates whether treatment with 4F modulates CAA and associated cognitive deficits and neuropathologies in the well-established Tg-SwDI mouse model of CAA/AD. Age/sex-matched Tg-SwDI mice received daily treatments of 4F or vehicle (PBS), respectively, by intraperitoneal injections for 12 weeks. The results showed that 4F treatment reduced overall Aβ plaque deposition and CAA, and attenuated CAA-associated microgliosis, without significantly affecting total levels of Aβ, astrocytosis, and behavioral function. Unbiased transcriptomic analysis revealed a heightened inflammatory state in the brain of SwDI mice and that 4F treatment reversed the overactivation of vascular cells, in particular vascular smooth muscle cells, relieving cerebrovascular inflammation in CAA/AD mice. Our study provides experimental evidence for the therapeutic potential of 4F to mitigate CAA and associated pathologies in AD.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dustin Chernick
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yejun Tan
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minwoo Kim
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Manojkumar Narayanan
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Yang K, Li Q, Ruan Y, Xia Y, Fang Z. Caveolae-Mediated Transcytosis and Its Role in Neurological Disorders. Biomolecules 2025; 15:456. [PMID: 40305173 PMCID: PMC12024798 DOI: 10.3390/biom15040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-brain barrier (BBB) controls the flow of substances to maintain a homeostatic environment in the brain, which is highly regulated and crucial for the normal function of the central nervous system (CNS). Brain endothelial cells (bECs), which are directly exposed to blood, play the most important role in maintaining the integrity of the BBB. Unlike endothelial cells in other tissues, bECs have two unique features: specialized endothelial tight junctions and actively suppressed transcellular vesicle trafficking (transcytosis). These features help to maintain the relatively low permeability of the CNS barrier. In addition to the predominant role of tight junctions in the BBB, caveolae-mediated adsorptive transcytosis has attracted much interest in recent years. The active suppression of transcytosis is dynamically regulated during development and in response to diseases. Altered caveolae-mediated transcytosis of bECs has been reported in several neurological diseases, but the understanding of this process in bECs is limited. Here, we review the process of caveolae-mediated transcytosis based on previous studies and discuss its function in the breakdown of the BBB in neurological disorders.
Collapse
Affiliation(s)
- Kunjian Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yushuang Ruan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Lu J, Weng X, Ma J, Zhang T, Ming H, Ma X. Preventive effects of perioperative drug injection on postoperative delirium after hip fracture surgery: a systematic review and meta-analysis. Am J Transl Res 2025; 17:1538-1553. [PMID: 40225995 PMCID: PMC11982853 DOI: 10.62347/nwpm9551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/28/2024] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To systematically evaluate the efficacy of perioperative drug injection in preventing postoperative delirium (POD) following hip fracture (HF) surgeries. METHODS This research scheme was published on the PROSPERO platform (registration number: CRD42024602190). Databases searched included PubMed, Web of Science, Embase, and Cochrane. The search deadline was July 2024. Statistical analyses were conducted using StataSE15.0 software. Paired analysis and network meta-analysis were performed in R Studio, with included drugs ranked using the cumulative ranking probability plot area (SUCRA) for each outcome measure. The incidence, severity, and duration of delirium were analyzed using risk ratios (RR), weighted mean differences (WMD), and their corresponding 95% confidence intervals (CI). RESULTS This meta-analysis included 13 studies: 9 RCTs and 4 cohort studies involving 2,291 patients with HF. The results indicated a significant reduction in the incidence of POD among patients who received perioperative drug injections, with a combined RR of 0.56 [95% CI (0.47, 0.67), P < 0.001]. There was also a significant reduction in the severity of delirium, with a combined WMD of -2.78 [95% CI (-4.38, -1.19), P = 0.01]. However, there were no significant differences in the duration of delirium or the incidence of adverse events, with combined values of [WMD = -1.81, 95% CI (-3.89, 0.27), P = 0.088] and [RR = 1.34, 95% CI (0.78, 2.32), P = 0.294], respectively. Network meta-analysis identified morphine as the most effective drug for preventing delirium, with a SUCRA value of 19.1%. CONCLUSION In patients undergoing surgery for HF, perioperative drug injections significantly reduce the incidence and severity of postoperative delirium, with intrathecal morphine being the most effective option for prevention. These findings provide valuable insights for managing postoperative delirium prevention in HF patients. Further high-quality randomized controlled studies are needed to validate these results.
Collapse
Affiliation(s)
- Jin Lu
- Department of Surgical Intensive Care Unit, Tianjin HospitalTianjin 50300, China
| | - Xin Weng
- Department of Surgical Intensive Care Unit, Tianjin HospitalTianjin 50300, China
| | - Jianxiong Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, Tianjin HospitalTianjin 50300, China
| | - Tao Zhang
- Department of Surgical Intensive Care Unit, Tianjin Huanhu HospitalTianjin 300350, China
| | - Haolang Ming
- Department of Neuro ICU, Tianjin MEDICAL University General HospitalTianjin 300000, China
| | - Xinlong Ma
- Department of Digital Orthopedics, Tianjin HospitalTianjin 50300, China
| |
Collapse
|
18
|
Omar OMF, Kimble AL, Cheemala A, Tyburski JD, Pandey S, Wu Q, Reese B, Jellison ER, Hao B, Li Y, Yan R, Murphy PA. Endothelial TDP-43 depletion disrupts core blood-brain barrier pathways in neurodegeneration. Nat Neurosci 2025:10.1038/s41593-025-01914-5. [PMID: 40087396 DOI: 10.1038/s41593-025-01914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Endothelial cells (ECs) help maintain the blood-brain barrier but deteriorate in many neurodegenerative disorders. Here we show, using a specialized method to isolate EC and microglial nuclei from postmortem human cortex (92 donors, 50 male and 42 female, aged 20-98 years), that intranuclear cellular indexing of transcriptomes and epitopes enables simultaneous profiling of nuclear proteins and RNA transcripts at a single-nucleus resolution. We identify a disease-associated subset of capillary ECs in Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal degeneration. These capillaries exhibit reduced nuclear β-catenin and β-catenin-downstream genes, along with elevated TNF/NF-κB markers. Notably, these transcriptional changes correlate with the loss of nuclear TDP-43, an RNA-binding protein also depleted in neuronal nuclei. TDP-43 disruption in human and mouse ECs replicates these alterations, suggesting that TDP-43 deficiency in ECs is an important factor contributing to blood-brain barrier breakdown in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar M F Omar
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Amy L Kimble
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Ashok Cheemala
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Jordan D Tyburski
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Swati Pandey
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Qian Wu
- Department of Pathology, University of Connecticut Medical School, Farmington, CT, USA
| | - Bo Reese
- Center for Genome Innovation, University of Connecticut, Storrs, CT, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Medical School, Farmington, CT, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA.
- Department of Immunology, University of Connecticut Medical School, Farmington, CT, USA.
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA.
| |
Collapse
|
19
|
Yi F, Yuan J, Somekh J, Peleg M, Zhu YC, Jia Z, Wu F, Huang Z. Genetically supported targets and drug repurposing for brain aging: A systematic study in the UK Biobank. SCIENCE ADVANCES 2025; 11:eadr3757. [PMID: 40073132 PMCID: PMC11900869 DOI: 10.1126/sciadv.adr3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In this study, we estimate magnetic resonance imaging (MRI)-based brain age using deep learning models trained on the UK Biobank and validated with three external datasets. A genome-wide association study for BAG identified two unreported loci and seven previously reported loci. By integrating Mendelian Randomization (MR) and colocalization analysis on eQTL and pQTL data, we prioritized seven genetically supported druggable genes, including MAPT, TNFSF12, GZMB, SIRPB1, GNLY, NMB, and C1RL, as promising targets for brain aging. We rediscovered 13 potential drugs with evidence from clinical trials of aging and prioritized several drugs with strong genetic support. Our study provides insights into the genetic basis of brain aging, potentially facilitating drug development for brain aging to extend the health span.
Collapse
Affiliation(s)
- Fan Yi
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Mor Peleg
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhilong Jia
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Fei Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhengxing Huang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Gilbert BR, Miglani C, Karmakar A, Pal M, Chandran VC, Gupta S, Pal A, Ganguli M. A combination of systemic mannitol and mannitol modified polyester nanoparticles for caveolae-mediated gene delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102480. [PMID: 40104113 PMCID: PMC11919422 DOI: 10.1016/j.omtn.2025.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant challenge for nucleic acid delivery to the brain. We have explored a combination of mannitol-modified poly (β-amino ester) (PBAE) nanoparticles and systemic mannitol injection for crossing the BBB. We incorporated mannitol in the PBAE polymer for caveolae targeting and selected monomers that may help avoid delivery to the liver. We also induced caveolae at the BBB through systemic mannitol injection in order to create an opportunity for the caveolae-targeting nanoparticles (M30 D90) containing plasmid DNA to cross the BBB. When a clinically relevant dose was administered intravenously in this caveolae induction model, M30 D90 demonstrated significant transgene expression of a reporter plasmid in the brain, with selective uptake by neuronal cells and minimal liver accumulation. We demonstrate that caveolae modulation using systemic mannitol administration and caveolae targeting using designed nanoparticles are necessary for efficient delivery to the brain. This delivery platform offers a simple, scalable, and controlled delivery solution and holds promise for treating brain diseases with functional targets.
Collapse
Affiliation(s)
- Betsy Reshma Gilbert
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | | | - Muneesh Pal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi 110067, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Wang YY, Zhou YN, Wang S, Liu L, Jiang L, Zhang Y, Zhang L, Zhou CN, Luo YM, Tang J, Liang X, Xiao Q, Dou XY, Zhou JR, Chao FL, Tang Y. Voluntary wheel exercise improves learning and memory impairment caused by hippocampal Hb-α deficiency by reducing microglial activation and reversing synaptic damage. Brain Behav Immun 2025; 127:81-95. [PMID: 40058668 DOI: 10.1016/j.bbi.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025] Open
Abstract
Decreased hemoglobin (Hb) levels in peripheral blood may be a risk factor for Alzheimer's disease (AD). Hb-α is a monomeric form of Hb that exists in the central nervous system. Our previous RNA sequencing results revealed a decrease in the expression of the Hb-α gene in the hippocampus of AD model mice. However, the effects of Hb-α deficiency in the hippocampus on cognitive function and the underlying mechanism are unclear. Running exercise has been shown to improve cognition, but whether it can reverse the damage caused by Hb-α deficiency in the hippocampus needs to be further researched. In the present study, Mendelian randomization (MR) analyses revealed that lower levels of mean corpuscular Hb and Hemoglobin alpha 1 (HBA1) increased the risk of developing AD. When an adeno-associated virus (AAV) was used to knock down hippocampal Hb-α, the learning and memory ability of the resulting model mice decreased, similar to that of AD model mice. Moreover, the expression levels of advanced glycation end products (AGE) and their receptor (RAGE) were upregulated, microglia were activated, and the number of engulfed synapses increased, which damaged the number and structure of hippocampal synapses in the model mice. However, four weeks of voluntary wheel exercise effectively improved these conditions. In addition, we found that voluntary wheel exercise may compensate for Hb-α protein deficiency in the hippocampus by increasing the expression levels of Hb-α protein in plasma, cerebrospinal fluid, and other brain regions without altering Hb-α mRNA in the hippocampus of model mice. These results highlight the key role of Hb-α in hippocampal synaptic damage, elucidate the mechanism by which running exercise improves cognition by connecting the peripheral circulation and central nervous system through Hb-α, and provide new ideas for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yi-Ying Wang
- College of Nursing, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan 646000, PR China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lei Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao-Yun Dou
- Technology Innovation Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Jian-Rong Zhou
- College of Nursing, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
22
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
23
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
24
|
Shi SM, Suh RJ, Shon DJ, Garcia FJ, Buff JK, Atkins M, Li L, Lu N, Sun B, Luo J, To NS, Cheung TH, McNerney MW, Heiman M, Bertozzi CR, Wyss-Coray T. Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature 2025; 639:985-994. [PMID: 40011765 PMCID: PMC11946907 DOI: 10.1038/s41586-025-08589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
The blood-brain barrier (BBB) is highly specialized to protect the brain from harmful circulating factors in the blood and maintain brain homeostasis1,2. The brain endothelial glycocalyx layer, a carbohydrate-rich meshwork composed primarily of proteoglycans, glycoproteins and glycolipids that coats the BBB lumen, is a key structural component of the BBB3,4. This layer forms the first interface between the blood and brain vasculature, yet little is known about its composition and roles in supporting BBB function in homeostatic and diseased states. Here we find that the brain endothelial glycocalyx is highly dysregulated during ageing and neurodegenerative disease. We identify significant perturbation in an underexplored class of densely O-glycosylated proteins known as mucin-domain glycoproteins. We demonstrate that ageing- and disease-associated aberrations in brain endothelial mucin-domain glycoproteins lead to dysregulated BBB function and, in severe cases, brain haemorrhaging in mice. Finally, we demonstrate that we can improve BBB function and reduce neuroinflammation and cognitive deficits in aged mice by restoring core 1 mucin-type O-glycans to the brain endothelium using adeno-associated viruses. Cumulatively, our findings provide a detailed compositional and structural mapping of the ageing brain endothelial glycocalyx layer and reveal important consequences of ageing- and disease-associated glycocalyx dysregulation on BBB integrity and brain health.
Collapse
Affiliation(s)
- Sophia M Shi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Suh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - D Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Francisco J Garcia
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Josephine K Buff
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ning-Sum To
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tom H Cheung
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
- MIRECC, Department of Veterans Affairs, Palo Alto, CA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Tony Wyss-Coray
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Iyer H, Benoist C, Bilbo SD, Boulanger LM, Burton MD, Daniels BP, Deczkowska A, Flajnik MF, Gareau MG, Grace PM, Irazoqui JE, Rosi S, Salinas I, Schaefer A, Sokol CL, Williams DW, Klein RS. Systems neuroimmunology: current bottlenecks, research priorities and future directions. Nat Immunol 2025; 26:325-329. [PMID: 39939753 PMCID: PMC12016954 DOI: 10.1038/s41590-025-02092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Strategies to advance the field of neuroimmunology by embracing its complexity via inclusion of its multidisciplinary properties were discussed at a meeting in Cold Spring Harbor. Attendees proposed fostering of open communications and funding of collaborations across disciplines, and the recognition that our understanding of the neuroimmune system requires interdisciplinary science.
Collapse
Affiliation(s)
- Harini Iyer
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Michael D Burton
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Susanna Rosi
- Altos Labs Bay Area Institute of Science, Redwood City, CA, USA
| | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Anne Schaefer
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dionna W Williams
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robyn S Klein
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
26
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
27
|
Grandke F, Fehlmann T, Kern F, Gate DM, Wolff TW, Leventhal O, Channappa D, Hirsch P, Wilson EN, Meese E, Liu C, Shi Q, Flotho M, Li Y, Chen C, Yu Y, Xu J, Junkin M, Wang Z, Wu T, Liu L, Hou Y, Andreasson KI, Gansen JS, Mass E, Poston K, Wyss-Coray T, Keller A. A single-cell atlas to map sex-specific gene-expression changes in blood upon neurodegeneration. Nat Commun 2025; 16:1965. [PMID: 40000636 PMCID: PMC11862118 DOI: 10.1038/s41467-025-56833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical course and treatment of neurodegenerative disease are complicated by immune-system interference and chronic inflammatory processes, which remain incompletely understood. Mapping immune signatures in larger human cohorts through single-cell gene expression profiling supports our understanding of observed peripheral changes in neurodegeneration. Here, we employ single-cell gene expression profiling of over 909k peripheral blood mononuclear cells (PBMCs) from 121 healthy individuals, 48 patients with mild cognitive impairment (MCI), 46 with Parkinson's disease (PD), 27 with Alzheimer's disease (AD), and 15 with both PD and MCI. The dataset is interactively accessible through a freely available website ( https://www.ccb.uni-saarland.de/adrcsc ). In this work, we identify disease-associated changes in blood cell type composition and the gene expression in a sex-specific manner, offering insights into peripheral and solid tissue signatures in AD and PD.
Collapse
Affiliation(s)
- Friederike Grandke
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany
| | - David M Gate
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | | | - Olivia Leventhal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | | | | | - Matthias Flotho
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Yongping Li
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- MGI Group, San Jose, CA, USA
| | | | - Yeya Yu
- MGI Group, San Jose, CA, USA
| | | | | | | | - Tao Wu
- MGI Group, San Jose, CA, USA
| | | | | | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Jenny S Gansen
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Kathleen Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- PharmaScienceHub, Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
28
|
Jiménez A, Estudillo E, Guzmán-Ruiz MA, Herrera-Mundo N, Victoria-Acosta G, Cortés-Malagón EM, López-Ornelas A. Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025; 17:281. [PMID: 40142945 PMCID: PMC11945272 DOI: 10.3390/pharmaceutics17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant challenge for drug delivery into the central nervous system. Nanoparticles (NPs) have been widely explored as drug carriers capable of overcoming this barrier and effectively transporting therapies to the brain. However, their potential to directly address and ameliorate BBB dysfunction has received limited attention. In this review, we examine how NPs enhance drug delivery across the BBB to treat neurodegenerative diseases and explore emerging strategies to restore the integrity of this vital structure.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico;
| | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nieves Herrera-Mundo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Georgina Victoria-Acosta
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enoc Mariano Cortés-Malagón
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| |
Collapse
|
29
|
Dang Z, Zheng X, Gao Y, Du Y, Zhang Y, Zhu S. In situ albumin tagging for targeted imaging of endothelial barrier disruption. SCIENCE ADVANCES 2025; 11:eads4412. [PMID: 39951533 PMCID: PMC11827639 DOI: 10.1126/sciadv.ads4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
The endothelial barrier (EB) is a critical component of the body's homeostatic mechanisms, thus developing effective imaging techniques to visualize its integrity is essential. The EB disruption is accompanied by the alternations in permeability and even the breakdown of tight junctions (TJs), leading to the leakage of albumin; thus, albumin can serve as a biomarker for EB disruption. Herein, we develop an albumin-specific, covalently tagged near-infrared II (NIR-II) dye, with its high selectivity for endogenous albumin, for targeted imaging EB disruption. Our albumin-tagging dye serves as a chromophore to construct NIR-II fluorescent proteins in situ, with substantially improved brightness. Thus, through in situ dye tagging of endogenous albumin as the efficient "targeting agent," we can precisely image disruptions in various endothelial barriers. Unlike the traditional exogenous targeting agents (e.g., dye-labeled antibodies) with enzymatic degradation or immune system capture issues, in situ albumin tagging demonstrates superhigh performance for targeted imaging.
Collapse
Affiliation(s)
- Zetao Dang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Xue Zheng
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Yanli Gao
- Department of Pediatric Ultrasound, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Yijing Du
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
30
|
Antesberger S, Stiening B, Forsthofer M, Joven Araus A, Eroglu E, Huber J, Heß M, Straka H, Sanchez-Gonzalez R. Species-specific blood-brain barrier permeability in amphibians. BMC Biol 2025; 23:43. [PMID: 39934799 PMCID: PMC11817546 DOI: 10.1186/s12915-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is a semipermeable interface that prevents the non-selective transport into the central nervous system. It controls the delivery of macromolecules fueling the brain metabolism and the immunological surveillance. The BBB permeability is locally regulated depending on the physiological requirements, maintaining the tissue homeostasis and influencing pathological conditions. Given its relevance in vertebrate CNS, it is surprising that little is known about the BBB in Amphibians, some of which are capable of adult CNS regeneration. RESULTS The BBB size threshold of the anuran Xenopus laevis (African clawed toad), as well as two urodele species, Ambystoma mexicanum (axolotl) and Pleurodeles waltl (Iberian ribbed newt), was evaluated under physiological conditions through the use of synthetic tracers. We detected important differences between the analyzed species. Xenopus exhibited a BBB with characteristics more similar to those observed in mammals, whereas the BBB of axolotl was found to be permeable to the 1 kDa tracer. The permeability of the 1 kDa tracer measured in Pleurodeles showed values in between axolotl and Xenopus vesseks. We confirmed that these differences are species-specific and not related to metamorphosis. In line with these results, the tight junction protein Claudin-5 was absent in axolotl, intermediate in Pleurodeles and showed full-coverage in Xenopus vessels. Interestingly, electron microscopy analysis and the retention pattern of the larger tracers (3 and 70 kDa) demonstrated that axolotl endothelial cells exhibit higher rates of macropinocytosis, a non-regulated type of transcellular transport. CONCLUSIONS Our study demonstrated that, under physiological conditions, the blood-brain barrier exhibited species-specific variations, including permeability threshold, blood vessel coverage, and macropinocytosis rate. Future studies are needed to test whether the higher permeability observed in salamanders could have metabolic and immunological consequences contributing to their remarkable regenerative capacity.
Collapse
Affiliation(s)
- Sophie Antesberger
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Beate Stiening
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | | | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Huber
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Martin Heß
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Rosario Sanchez-Gonzalez
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany.
| |
Collapse
|
31
|
Deng X, Bu M, Liang J, Sun Y, Li L, Zheng H, Zeng Z, Jiang M, Chen BT. Relationship between cognitive impairment and hippocampal iron overload: A quantitative susceptibility mapping study of a rat model. Neuroimage 2025; 306:121006. [PMID: 39788338 DOI: 10.1016/j.neuroimage.2025.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The aim of this study was to establish an iron overload rat model to simulate the elevated iron levels in patients with thalassemia and to investigate the potential association between hippocampal iron deposition and cognition. METHODS Two groups of iron overloaded rats and one group of control rats were used for this study. The Morris water maze (MWM) was used to test spatial reference memory indicated by escape latency time and number of MWM platform crossings. The magnetic susceptibility value of the hippocampal tissue, a measure of iron deposition, was assessed by quantitative susceptibility mapping (QSM) and was correlated with spatial reference memory performance. The iron content in hippocampal tissue sections of the rats were assessed using diaminobenzidine (DAB)-enhanced Perl's Prussian blue (PPB) staining. RESULTS The rat groups with iron overload including the Group H and Group L had higher hippocampal magnetic susceptibility values than the control rat group, i.e., Group D. In addition, the iron overloaded groups had longer MWM escape latency than the control group, and reduced number of MWM platform crossings. There was a positive correlation between the mean escape latency and the mean hippocampal magnetic susceptibility value, a negative correlation between the number of platform crossings and the mean hippocampal magnetic susceptibility value, and a negative correlation between the number of platform crossings and the latent escape time in Group H and Group L. CONCLUSION This rat model simulating iron overload in thalassemia showed hippocampal iron overload being associated with impairment of spatial reference memory. QSM could be used to quantify brain iron overload in vivo, highlighting its potential clinical application for assessing cognitive impairment in patients with thalassemia.
Collapse
Affiliation(s)
- Xi Deng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Meiru Bu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jiali Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Yihao Sun
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Liyan Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Heishu Zheng
- Guangxi Key Laboratory of Oral Maxillofacial Rehabilitation Reconstruction, No.22 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi 530021, PR China.
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 E Duarte, CA 91010, USA
| |
Collapse
|
32
|
Cummins MJ, Cresswell ET, Bevege RJ, Smith DW. Aging disrupts blood-brain and blood-spinal cord barrier homeostasis, but does not increase paracellular permeability. GeroScience 2025; 47:263-285. [PMID: 39476323 PMCID: PMC11872845 DOI: 10.1007/s11357-024-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/15/2024] [Indexed: 03/04/2025] Open
Abstract
Blood-CNS barriers protect the CNS from circulating immune cells and damaging molecules. It is thought barrier integrity becomes disrupted with aging, contributing to impaired CNS function. Using genome-wide and targeted molecular approaches, we found aging affected expression of predominantly immune invasion and pericyte-related genes in CNS regions investigated, especially after middle age, with spinal cord being most impacted. We did not find significant perturbation of endothelial cell junction genes or proteins, nor were vascular density or pericyte coverage affected by aging. We evaluated barrier paracellular permeability using small molecular weight tracers, serum protein extravasation, CNS water content, and iron labelling measures. We found no evidence for age-related increased barrier permeability in any of these tests. We conclude that blood-brain (BBB) and blood-spinal cord barrier (BSCB) paracellular permeability does not increase with normal aging in mouse. Whilst expression changes were not associated with increased permeability, they may represent an age-related primed state whereby additional insults cause increased leakiness.
Collapse
Affiliation(s)
- Mitchell J Cummins
- Neurobiology of Aging and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Ethan T Cresswell
- Neurobiology of Aging and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Renee J Bevege
- Neurobiology of Aging and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Doug W Smith
- Neurobiology of Aging and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
33
|
Kovacs M, Dominguez-Belloso A, Ali-Moussa S, Deczkowska A. Immune control of brain physiology. Nat Rev Immunol 2025:10.1038/s41577-025-01129-6. [PMID: 39890999 DOI: 10.1038/s41577-025-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
The peripheral immune system communicates with the brain through complex anatomical routes involving the skull, the brain borders, circumventricular organs and peripheral nerves. These immune-brain communication pathways were classically considered to be dormant under physiological conditions and active only in cases of infection or damage. Yet, peripheral immune cells and signals are key in brain development, function and maintenance. In this Perspective, we propose an alternative framework for understanding the mechanisms of immune-brain communication. During brain development and in homeostasis, these anatomical structures allow selected elements of the peripheral immune system to affect the brain directly or indirectly, within physiological limits. By contrast, in ageing and pathological settings, detrimental peripheral immune signals hijack the existing communication routes or alter their structure. We discuss why a diversity of communication channels is needed and how they work in relation to one another to maintain homeostasis of the brain.
Collapse
Affiliation(s)
- Mariángeles Kovacs
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Amaia Dominguez-Belloso
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Samir Ali-Moussa
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Aleksandra Deczkowska
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France.
| |
Collapse
|
34
|
Wei Y, Wang P, Zhao J, Fan X, Jiang J, Mu X, Wang Y, Yang A, Zhang R, Hu S, Guo Z. Overexpression of miR-124 enhances the therapeutic benefit of TMZ treatment in the orthotopic GBM mice model by inhibition of DNA damage repair. Cell Death Dis 2025; 16:47. [PMID: 39865088 PMCID: PMC11770086 DOI: 10.1038/s41419-025-07363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples. Among them, a high level of miR-124 is closely associated with a favorable survival rate in the clinical patients. In the phenotype experiment, we demonstrated that miR-124 overexpression increases responsiveness of GBM cells to TMZ-induced cell death, and vice versa. In the mechanistic study, we for the first time identified that RAD51, a key functional molecule in DNA damage repair, is a novel and bona fide target of miR-124 in GBM cells. Given that other miR-124-regulated mechanisms on TMZ sensitivity have been reported, we performed recue experiment to demonstrate that RAD51 is essential for miR-124-mediated sensitivity to TMZ in GBM cells. More importantly, our in vivo functional experiment showed that combinational utilization of miR-124 overexpression and TMZ presents a synergetic therapeutic benefit in the orthotopic GBM mice model. Taken together, we rationally explained a novel and important mechanism of the miR-124-mediated high sensitivity to TMZ-induced cell death in GBM and provided evidence to support that miR-124-RAD51 regulatory axis could be a promising candidate in the comprehensive treatment with TMZ in GBM.
Collapse
Affiliation(s)
- Yuchen Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianhui Zhao
- Department of Critical Care Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya City, Hainan Province, China
| | - Xin Fan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jun Jiang
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuli Mu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yuzhou Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Rui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Zhangyan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
35
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2025; 113:71-81. [PMID: 39395409 PMCID: PMC11717645 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Hansen CE, Vacondio D, van der Molen L, Jüttner AA, Fung WK, Karsten M, van Het Hof B, Fontijn RD, Kooij G, Witte ME, Roks AJM, de Vries HE, Mulder I, de Wit NM. Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction. Cell Death Dis 2025; 16:1. [PMID: 39753531 PMCID: PMC11698980 DOI: 10.1038/s41419-024-07306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model. In vitro, ERCC1-deficient brain ECs displayed increased senescence-associated secretory phenotype expression, reduced BBB integrity, and higher sprouting capacities due to an underlying dysregulation of the Dll4-Notch pathway. In line, EC-KO mice showed more P21+ cells, augmented expression of angiogenic markers, and a concomitant increase in the number of brain ECs and pericytes. Moreover, EC-KO mice displayed BBB leakage and enhanced cell adhesion molecule expression accompanied by peripheral immune cell infiltration into the brain. These findings were confined to the white matter, suggesting a regional susceptibility. Collectively, our results underline the role of endothelial aging as a driver of impaired BBB function, endothelial sprouting, and increased immune cell migration into the brain, thereby contributing to impaired brain homeostasis as observed during the aging process.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Davide Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lennart van der Molen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Radboud University Medical Center, IQ Health science department, Nijmegen, The Netherlands
| | - Annika A Jüttner
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Wing Ka Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Manon Karsten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gijs Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Inge Mulder
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
42
|
Guglielmi G, Zamagni C, Del Re M, Danesi R, Fogli S. Targeting HER2 in breast cancer with brain metastases: A pharmacological point of view with special focus on the permeability of blood-brain barrier to targeted treatments. Eur J Pharmacol 2024; 985:177076. [PMID: 39486766 DOI: 10.1016/j.ejphar.2024.177076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Understanding the capability of a drug to penetrate the blood-brain barrier (BBB) is an unmet medical need in patients with positive human epidermal growth factor receptor 2 (HER2 positive) and brain metastases. The National Comprehensive Cancer Network (NCCN) guidelines recommend the use of tyrosine kinase inhibitors (TKIs) lapatinib, neratinib, and tucatinib in co-administration with monoclonal antibodies or chemotherapy drugs and the antibody-drug conjugates (ADCs) trastuzumab-deruxtecan and trastuzumab-emtansine. Predicting the BBB permeability of these therapeutic agents is a pharmacological challenge due to the various factors involved in the barrier functions. In this review article, we discuss about the molecular and cellular features of the barriers located in the central nervous system and the pharmacological parameters found to be important in predicting BBB permeability in human normal brain, and in the presence of brain metastases. Finally, we reported the clinical outcomes and intracranial response of patients with HER2-positive breast cancer with brain metastases treated with targeted TKIs and ADCs.
Collapse
Affiliation(s)
- Giorgio Guglielmi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marzia Del Re
- Saint Camillus International University of Medical and Health Sciences, Rome, Italy; Direzione Scientifica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milano, Italy
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
43
|
Hao Y, Shen X, Liu J, Cai Z, Wang X, Yang Z, Chen F, Dong B, Wang R, Du X, Qi Z, Ge Y. A Supramolecular Protein Assembly Intrinsically Rescues Memory Deficits in an Alzheimer's Disease Mouse Model. NANO LETTERS 2024; 24:15565-15574. [PMID: 39592140 PMCID: PMC11640758 DOI: 10.1021/acs.nanolett.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Supramolecular protein assemblies have been used as intelligent drug delivery systems that can encapsulate drugs and transport them to specific tissues or cells. However, the known methods for designing supramolecular protein assemblies for transportation across the blood-brain barrier (BBB) remain challenging and inefficient. Herein, we report that the supramolecular recombinant-protein-based strategy enables the biosynthesis and production of a supramolecular protein assembly that is intrinsically capable of crossing the BBB. The recombinant protein constituting the essential part of apolipoprotein A1 can self-assemble into a supramolecular protein assembly known as a nanodisc. The nanodisc could efficiently enter the brain of an Alzheimer's disease mouse model, recognize Aβ1-42, eliminate amyloid plaques, promote neurogenesis, and ameliorate cognitive impairment. This work opens a new field for supramolecular protein assemblies and offers a new avenue for designing versatile and intelligent supramolecular biomaterials.
Collapse
Affiliation(s)
- Yuchong Hao
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xin Shen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Jiantao Liu
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhongqi Cai
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xinquan Wang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Zerui Yang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Fuqing Chen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Baorui Dong
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences & MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiubo Du
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhenhui Qi
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Yan Ge
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| |
Collapse
|
44
|
Real MGC, Falcione SR, Boghozian R, Clarke M, Todoran R, St Pierre A, Zhang Y, Joy T, Jickling GC. Endothelial Cell Senescence Effect on the Blood-Brain Barrier in Stroke and Cognitive Impairment. Neurology 2024; 103:e210063. [PMID: 39541552 DOI: 10.1212/wnl.0000000000210063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Age is an important risk factor of stroke, cognitive decline, and dementia. Senescent endothelial cells (ECs) accumulate with advancing age through exposure to cellular stress, such as that exerted by hypertension and diabetes. These senescent ECs have altered characteristics, such as altered tight junction proteins, use of a more indiscriminate transcellular transport system, increased inflammation, and increased immune cell interactions. ECs are the main component of the blood-brain barrier (BBB), separating the brain from systemic circulation. As senescent ECs accumulate in the BBB, their altered functioning results in the disruption of the barrier. They have inadequate barrier-forming properties, disrupted extracellular matrix, and increased transcytosis, resulting in an overly permeable barrier. This disruption of the BBB can have important effects in stroke and cognitive impairment, as presented in this review. Besides increasing the permeability of the BBB, senescent ECs can also impair angiogenesis and vascular remodeling, which in ischemic stroke may increase risk of hemorrhagic transformation and worsen outcomes. Senescent ECs may also contribute to microvascular dysfunction, with disruption of cerebral perfusion and autoregulation. These may contribute to vascular cognitive impairment along with increased permeability. With an aging population, there is growing interest in targeting senescence. Several ongoing trials have been evaluating whether senolytics can slow aging, improve vascular health, and reduce the risk of stroke and cognitive decline.
Collapse
Affiliation(s)
- Maria Guadalupe C Real
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Sarina R Falcione
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Roobina Boghozian
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Michael Clarke
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Raluca Todoran
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Alexis St Pierre
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Yiran Zhang
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Glen C Jickling
- From the Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
45
|
Tomatis F, Rosa S, Simões S, Barão M, Jesus C, Novo J, Barth E, Marz M, Ferreira L. Engineering extracellular vesicles to transiently permeabilize the blood-brain barrier. J Nanobiotechnology 2024; 22:747. [PMID: 39623431 PMCID: PMC11613868 DOI: 10.1186/s12951-024-03019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Drug delivery to the brain is challenging due to the restrict permeability of the blood brain barrier (BBB). Recent studies indicate that BBB permeability increases over time during physiological aging likely due to factors (including extracellular vesicles (EVs)) that exist in the bloodstream. Therefore, inspiration can be taken from aging to develop new strategies for the transient opening of the BBB for drug delivery to the brain. RESULTS Here, we evaluated the impact of small EVs (sEVs) enriched with microRNAs (miRNAs) overexpressed during aging, with the capacity to interfere transiently with the BBB. Initially, we investigated whether the miRNAs were overexpressed in sEVs collected from plasma of aged individuals. Next, we evaluated the opening properties of the miRNA-enriched sEVs in a static or dynamic (under flow) human in vitro BBB model. Our results showed that miR-383-3p-enriched sEVs significantly increased BBB permeability in a reversible manner by decreasing the expression of claudin 5, an important tight junction protein of brain endothelial cells (BECs) of the BBB, mediated in part by the knockdown of activating transcription factor 4 (ATF4). CONCLUSIONS Our findings suggest that engineered sEVs have potential as a strategy for the temporary BBB opening, making it easier for drugs to reach the brain when injected into the bloodstream.
Collapse
Affiliation(s)
- Francesca Tomatis
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana Rosa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
| | - Susana Simões
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
| | - Marta Barão
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Novo
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Barth
- Bioinformatics Core Facility, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Lino Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Li Y, Wu C, Long X, Wang X, Gao W, Deng K, Xie B, Zhang S, Wu M, Liu Q. Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood-brain-tumor barrier and tumor progression. MedComm (Beijing) 2024; 5:e70014. [PMID: 39640361 PMCID: PMC11617595 DOI: 10.1002/mco2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
The blood-brain barrier is often altered in glioblastoma (GBM) creating a blood-brain-tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear. We aimed to identify BBTB-associated pericytes in single-cell RNA sequencing data of GBM using pericyte markers, a normal brain pericyte expression signature, and functional enrichment. We identified parathyroid hormone receptor-1 (PTH1R) as a potential marker of pericytes associated with BBTB function. These pericytes interact with other cells in GBM mainly through extracellular matrix-integrin signaling pathways. Compared with normal pericytes, pericytes in GBM exhibited upregulation of several ECM genes (including collagen IV and FN1), and high expression levels of these genes were associated with a poor prognosis. Cell line experiments showed that PTH1R knockdown in pericytes increased collagen IV and FN1 expression levels. In mice models, the expression levels of PTH1R, collagen IV, and FN1 were consistent with these trends. Evans Blue leakage and IgG detection in the brain tissue suggested a negative correlation between PTH1R expression levels and blood-brain barrier function. Further, a risk model based on differentially expressed genes in PTH1R+ pericytes had predictive value for GBM, as validated using independent and in-house cohorts.
Collapse
Affiliation(s)
- Yuzhe Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurosurgeryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changwu Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinmiao Long
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Xiangyu Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Gao
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Kun Deng
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Bo Xie
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sen Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Minghua Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Qing Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
47
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
48
|
Torres-Espin A, Radabaugh HL, Treiman S, Fitzsimons SS, Harvey D, Chou A, Lindbergh CA, Casaletto KB, Goldberger L, Staffaroni AM, Maillard P, Miller BL, DeCarli C, Hinman JD, Ferguson AR, Kramer JH, Elahi FM. Sexually dimorphic differences in angiogenesis markers are associated with brain aging trajectories in humans. Sci Transl Med 2024; 16:eadk3118. [PMID: 39602511 DOI: 10.1126/scitranslmed.adk3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Aberrant angiogenesis could contribute to the development of cognitive impairment and represent a therapeutic target for preventing dementia. However, most studies addressing angiogenesis and cognitive impairment focus on model organisms. To test the relevance of angiogenesis to human cognitive aging, we evaluated associations of circulating blood markers of angiogenesis with brain aging trajectories in a pooled two-center sample from deeply phenotyped longitudinal human cohorts (n = 435; female = 207, age = 74 ± 9) using cognitive assessments, biospecimens, structural brain imaging, and clinical data. Blood markers included ligands involved in angiogenesis and vascular function such as basic fibroblast growth factor (bFGF), members of the vascular endothelial growth factor family (VEGFA, VEGFB, and VEGFC), and placental growth factor (PlGF), in addition to their receptors VEGF receptor 1 (VEGFR1) and tyrosine kinase with immunoglobulin and EGF homology domain 2 (Tie2). Machine learning and traditional statistics revealed sexually dimorphic associations of plasma angiogenic growth factors with brain aging outcomes, including executive function and gray matter atrophy. Specifically, markers of angiogenesis were associated with higher executive function and less brain atrophy in younger women (not men), a directionality of association that reversed around age 75. Higher concentrations of bFGF, known for pleiotropic effects on multiple cell types, predicted favorable cognitive trajectories in both women and men. An independent sample from a multicenter dataset (MarkVCID; n = 80; female = 30, age = 73 ± 9) was used to externally validate these findings. In conclusion, this analysis demonstrates the association of angiogenesis to human brain aging, with potential therapeutic implications for vascular cognitive impairment and dementia.
Collapse
Affiliation(s)
- Abel Torres-Espin
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannah L Radabaugh
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Treiman
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen S Fitzsimons
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Austin Chou
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cutter A Lindbergh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren Goldberger
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fanny M Elahi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- James J. Peters Veterans Affairs Health Care System, Bronx, NY 10468, USA
| |
Collapse
|
49
|
Singh V, Rochakim N, Ferraresso F, Choudhury A, Kastrup CJ, Ahn HJ. Caveolin-1 and Aquaporin-4 as Mediators of Fibrinogen-Driven Cerebrovascular Pathology in Hereditary Cerebral Amyloid Angiopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623066. [PMID: 39605467 PMCID: PMC11601418 DOI: 10.1101/2024.11.11.623066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hereditary Cerebral Amyloid Angiopathy (HCAA) is a rare inherited form of CAA, characterized by increased vascular deposits of amyloid peptides. HCAA provides a unique opportunity to study the pathogenic mechanisms linked to CAA, as it is associated with severe cerebrovascular pathology. Some of HCAA-associated amyloid-β (Aβ) mutations significantly enhance the interaction between fibrinogen and Aβ, resulting in altered fibrin structure and co-deposition with Aβ in the perivascular space. However, the mechanisms underlying perivascular fibrinogen deposition and the associated cerebrovascular pathology in HCAA remain unclear. To investigate this, we analyzed TgSwDI transgenic mice carrying HCAA-associated mutations and observed a significant age-dependent increase in fibrin(ogen) extravasation and fibrin(ogen)-Aβ colocalization in the perivascular space. Moreover, Caveolin-1, a protein involved in non-specific transcytosis across the endothelium, significantly increased with age in TgSwDI mice and correlated with fibrin(ogen) extravasation. Additionally, we noted significant aquaporin-4 (AQP4) depolarization in the CAA-laden blood vessels of TgSwDI mice, which also correlated with fibrin(ogen) extravasation and fibrin(ogen)-Aβ colocalization. Given that AQP4 plays a crucial role in Aβ clearance via the glymphatic pathway, its depolarization may disrupt this critical clearance mechanism, thereby exacerbating CAA pathology. To further explore the relationship between fibrin(ogen) and these factors, we depleted fibrinogen in TgSwDI mice using siRNA against fibrinogen. This intervention resulted in decreased CAA, reduced caveolin-1 levels, attenuated microglial activation, restored polarized expression of AQP4, and improved spatial memory in fibrinogen-depleted TgSwDI mice. These findings suggest that targeting fibrinogen could be a promising strategy for mitigating CAA pathology and its associated cerebrovascular pathology. Significance Statement Our study reveals the mechanism by which fibrin(ogen)-Aβ colocalization could exacerbates CAA pathology. Our findings highlight that the age-dependent increase of endothelial caveolin-1 could facilitate fibrin(ogen) extravasation, which binds with Aβ in the perivascular space inducing microglial neuroinflammation and AQP4 depolarization, thus exacerbating CAA pathology. Furthermore, fibrinogen depletion could mitigate CAA severity, reduce microglial activation, restore AQP4 polarization and memory impairment. These results suggest that targeting fibrinogen and caveolin-1-mediated transcytosis may offer new strategies to address CAA-associated cerebrovascular pathology.
Collapse
|
50
|
Tang Y, Song X, Xiao M, Wang C, Zhang X, Li P, Sun S, Wang D, Wei W, Liu S. Inhibition of Aβ Aggregation and Tau Phosphorylation with Functionalized Biomimetic Nanoparticles for Synergic Alzheimer's Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61774-61786. [PMID: 39494997 DOI: 10.1021/acsami.4c16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The main pathological mechanisms of Alzheimer's Disease (AD) are extracellular senile plaques caused by β-amyloid (Aβ) deposition and intracellular neurofibrillary tangles derived from hyperphosphorylated Tau protein (p-Tau). However, it is difficult to obtain a good curative effect because of the poor brain bioavailability of drugs, which is attributed to the blood-brain barrier (BBB) restriction and complicated brain conditions. Herein, HM-DK was proposed for synergistic therapy of AD by using hollow mesoporous manganese dioxide (HM) as a carrier to deliver an Aβ-inhibiting peptide and a Dp-peptide inhibitor of Tau-related fibril formation synergistically. Inspired by 4T1 cancer cells promoting BBB penetration during brain metastasis, a prospective biomimetic nanocarrier (HM-DK@CM) encapsulated by 4T1 cell membranes was designed. After crossing the BBB, HM-DK@CM inhibited Aβ aggregation and prevented Tau phosphorylation simultaneously. Moreover, by taking advantage of the catalase-like activity of HM, HM-DK@CM relieved oxidative stress and altered the microenvironment associated with the development of AD. Compared with the single therapeutic drug, HM-DK@CM restored nerve damage and improved AD mice's learning and memory abilities by decreasing Aβ oligomer, p-Tau protein, and inflammation through various pathways for synergistic therapy, which has broad prospects for the effective treatment of AD.
Collapse
Affiliation(s)
- Yunfei Tang
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mengmeng Xiao
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenchen Wang
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaowan Zhang
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Peng Li
- Beijing Life Science Academy, Beijing 102200, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Beijing 102200, PR China
| | | | - Wei Wei
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|